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Abstract

In the context of predicting future claims, a fully Bayesian analysis—one that spec-
ifies a statistical model, prior distribution, and updates using Bayes’s formula—is often
viewed as the gold-standard, while Bühlmann’s credibility estimator serves as a simple
approximation. But those desirable properties that give the Bayesian solution its ele-
vated status depend critically on the posited model being correctly specified. Here we
investigate the asymptotic behavior of Bayesian posterior distributions under a mis-
specified model, and our conclusion is that misspecification bias generally has damaging
effects that can lead to inaccurate inference and prediction. The credibility estimator,
on the other hand, is not sensitive at all to model misspecification, giving it an advan-
tage over the Bayesian solution in those practically relevant cases where the model is
uncertain. This begs the question: does robustness to model misspecification require
that we abandon uncertainty quantification based on a posterior distribution? Our
answer to this question is No, and we offer an alternative Gibbs posterior construction.
Furthermore, we argue that this Gibbs perspective provides a new characterization of
Bühlmann’s credibility estimator.

Keywords and phrases: asymptotics; Bernstein–von Mises phenomenon; exponen-
tial family; robustness; uncertainty quantification.

1 Introduction

The classical credibility theory of Bühlmann (1967) is a cornerstone of the insurance industry.
Designed mainly for premium estimation, the credibility estimator is simple and intuitive,
bypassing the many possible challenges of a full Bayesian analysis. But the state-of-the-art
in Bayesian analysis has changed a lot since the 1970s, computational and methodological
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tools are now readily available to carry out very sophisticated analyses. And a major selling
point of a Bayesian approach, compared to other existing frameworks, is that it provides
uncertainty quantification, in the form of a posterior distribution, about any relevant feature
of the claims distribution. Does this make the credibility theory irrelevant? From the
perspective of robustness to model misspecification bias, we will argue here that the answer
to this question is no. The perspective also eventually leads to a new characterization of
the credibility estimator in terms of a so-called Gibbs posterior, thereby bridging the gap
between the Bayesian and credibility frameworks.

After setting up the problem of predicting future claims and introducing the Bayesian and
credibility approaches to this problem in Section 2, we proceed in Section 3 to discuss model
misspecification and its effects on the Bayesian and credibility estimators. In particular,
we demonstrate that the Bayesian posterior is sensitive to model misspecification, to the
extent that inferences drawn can be misleading, even asymptotically. Specifically, under
mild regularity conditions, the Bayesian posterior satisfies a Bernstein–von Mises property,
i.e., is asymptotically normal, with vanishing variance. This is a desirable property when the
model is correctly specified, since the mean of that normal distribution will equal the true
value of the parameter asymptotically. When the model is incorrectly specified, however, a
“true value of the parameter” does not exist, so the mean of the normal distribution will
equal a “best approximation” relative to the posited model. That “best approximation” can
lead to estimates which are arbitrarily far from the quantity being estimated, depending
on the model quality, which is difficult to assess. The credibility estimator, on the other
hand, by virtue of its simplicity and lack of commitment to any model, is perfectly robust
to model misspecification, also converging to the true mean of the claims distribution. This
stark contrast in how the two frameworks respond to model misspecification has important
practical consequences. In particular, can one ever really be sure that a posited model
is “correct”? If not, then how meaningful are those aforementioned selling points of the
Bayesian framework? And those cases of exact credibility (e.g., Jewell 1975; Diaconis and
Ylvisaker 1979), where the Bayes premium is equal to the credibility estimator provide little
comfort since, even though the marginal posterior distribution for the mean might not be
affected by misspecification, it is likely that the marginal posterior for every other feature is
severely biased. These and other more subtle issues are addressed in Section 3.3.

The ubiquity of model misspecification and the havoc it can wreak on the Bayesian solu-
tion suggests that practitioners ought to avoid the risk altogether, sticking with the classical
credibility theory. But to have a posterior distribution that quantifies uncertainty about the
relevant unknowns, one might still be tempted towards a Bayesian analysis. The question is:
is it necessary that we give up on having probabilistic uncertainty quantification if we wish to
avoid the risks of model misspecification? Here, again, we argue that the answer is no, but
since the Bayesian framework is tied directly to a statistical model through its dependence
on the likelihood function, we require a new kind of posterior distribution construction, one
that does not depend on a likelihood. For this, we recommend, in Section 4, a so-called
Gibbs posterior, which has origins in machine learning (e.g., Zhang 2006ab) and has received
considerable attention in statistics (e.g., Syring and Martin 2017, 2019ab; Wang and Martin
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2019; Alquier 2008; Alquier and Ridgway 2017), even in an insurance application (Syring et
al 2019). This framework proceeds to link data and quantities of interest through a discrep-
ancy or risk function, rather than a likelihood. This discrepancy function is then combined
with relevant prior information, very much like in Bayes’s formula, leading to a posterior
distribution that does not depend on any posited model. A novel feature of the Gibbs poste-
rior is its learning rate parameter (e.g. Grünwald and van Ommen 2017, Bissiri et al. 2016,
Syring and Martin 2019a) that controls the spread, and by properly tuning that spread, the
Gibbs posterior uncertainty quantification can be made valid. Interestingly, the Bühlmann’s
classical credibility estimator can be characterized as the mean of a suitable Gibbs posterior,
so that our proposed framework based on the former provides the aforementioned bridge
between Bayes and credibility.

2 Background

2.1 Problem setup and model misspecification

Suppose the actuary has observable claims Xn = (X1, . . . , Xn), assumed to be independent
and identically distributed (iid) with common marginal distribution P ?, having density func-
tion p? with respect to a σ-finite measure ν on X = R or X = [0,∞), typically Lebesgue
measure. One relevant feature of P ? is the mean µ? =

∫
x p?(x) ν(dx), since that would be

a best prediction of the next claim Xn+1. The actuary might also be interested in other
features of P ?, such as value-at-risk, conditional tail expectation, etc.

Since P ? is unknown, these features must be estimated based on the claims data. To this
end, it is common to introduce a statistical model

P = {Pθ : θ ∈ Θ},

which is just a collection of probability distributions on X, having densities pθ with respect
to ν, indexed by a parameter θ taking values in a parameter space Θ. For example, P might
be the class of gamma distributions indexed by the parameter θ = (α, β) that determines the
shape and scale, respectively. Under a posited statistical model, those features of interest
to the actuary are now described as functions of the model parameter θ. For example,
the mean is µθ =

∫
x pθ(x) ν(dx), depending explicitly on θ, and similarly the variance is

σ2
θ =

∫
(x− µθ)2 pθ(x) ν(dx); in our insurance context, these are referred to as the individual

premium and process variance, respectively.
When the actuary introduces a model P , he/she is effectively assuming that P ? ∈ P .

Of course, efforts can be made to justify such an assumption but, at the end of the day,
it is still just an assumption that may or may not be true. When the model is correct,
i.e., P ? ∈ P , we say that the model is well-specified, and it implies existence of a θ? ∈ Θ
such that Pθ? = P ?. An important consequence of the model being well-specified is that
accurate estimation of θ? implies accurate estimation of any (smooth) feature of P ?. On the
other hand, when the model is incorrect, i.e., P ? 6∈ P , we say that the model is misspecified,
which implies that there is no “true” value of θ. The actuary is, of course, unaware of
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this misspecification, so he/she will proceed to estimate the model parameter and relevant
features of the claims distribution, but it is not immediately clear what will happen. Surely,
there will be some features of the claims distribution that cannot be accurately estimated
using methods based on a misspecified model, and we will generically refer to this deficiency
as model misspecification bias. Here we explore the effect of model misspecification, e.g.,
what relevant features are unaffected by misspecification and under what conditions?

2.2 Bayesian estimation

The Bayesian approach is a normative framework for statistical inference. It starts with a
statistical model P , indexed by a parameter θ ∈ Θ, along with a prior distribution Π0 on
Θ, and applies Bayes’s formula to construct a posterior distribution Πn, depending on the
claims data Xn, to be used for estimation, inference, prediction, etc. That is, the posterior
distribution is defined as

Πn(A) =

∫
A
Ln(θ) Π0(dθ)∫

Θ
Ln(θ) Π0(dθ)

, A ⊆ Θ, (1)

where Ln(θ) =
∏n

i=1 pθ(Xi) is the likelihood function for θ based on data Xn. Only in
certain special cases can the posterior distribution be written in closed-form, but Monte
Carlo methods can be used to produce accurate numerical approximations.

Before proceeding with the discussion of how the posterior distribution will be used, it
is important to first clarify what it represents. Rarely does the prior distribution Π0 encode
genuine prior beliefs about the model parameter θ. Indeed, the model itself is uncertain be-
fore and sometimes—as in our present case—even after data is observed, so it is not possible
to have real prior information about a parameter that did not exist prior to specification of
the model. There might be prior information available about certain features of the under-
lying P ?, such as the mean µ?, as discussed in Section 4, that can be used to help motivate a
particular prior distribution for θ, but it generally does not determine the prior. Therefore,
the prior is usually of a non- or partially-informative variety, and taken to have a relatively
simple mathematical form, e.g., conjugate. Our point is that the prior is viewed simply as
a device to get from data to a posterior, via Bayes’s formula, not as a believable part of the
model. So even though, mathematically, the Bayesian framework operates under a full joint
distribution for data and parameter, i.e.,

θ ∼ Π0 and (X1, X2, . . . , Xn, . . .) | θ
iid∼ Pθ,

the modern Bayesian does not take this as a genuine model for the claims data; he/she
assumes, as above, that claims are iid from some P ?, so questions about the behavior and
performance of the posterior distribution under the iid setup are relevant, in both the well-
and misspecified cases.

Various features of the posterior distribution might be of interest in a given application,
but we are specifically interested in prediction of the next claim and, for this, the posterior
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predictive distribution is important. If Πn is the posterior distribution as defined above, then
the predictive density is

pn(x) =

∫
Θ

pθ(x) Πn(dθ), n ≥ 0.

This can be viewed as an estimate of the true density p?, the best guess of the distribution
of Xn+1, based on data Xn. The case n = 0 corresponds to a “no-data” scenario and p0 is
referred to as the prior predictive density. The mean of the predictive distribution is called
the Bayes premium and, by Fubini’s theorem, has two different looking expressions:

µ̂Bn :=

∫
X
x pn(x) ν(dx) =

∫
Θ

µθ Πn(dθ).

As the notation suggests, µ̂Bn is the Bayes estimate of the mean µ? of P ? under squared-error
loss based on the claims data Xn. In the the “no-data” scenario with n = 0, the prior
predictive mean µ0 is called the collective premium.

2.3 Credibility estimation

While the full Bayesian analysis described above is conceptually straightforward, the technol-
ogy needed to actually carry out these computations for realistic models was unavailable until
the early 1990s. Since important real-life problems existed long before the 1990s, Bühlmann
(1967), building on ideas of Whitney (1918) and Bailey (1950), suggested a work-around
that could achieve some of the benefits of a Bayesian analysis but without the computa-
tional burden. Specifically, Bühlmann’s classical credibility theory seeks an estimator µ̂Cn ,
linear in Xn, that minimizes the overall mean square prediction error. That is, define the
function B : Xn → R to be solution to the optimization problem

arg min
µ̂(·)

∫
Θ

∫
Xn

{µθ − µ̂(xn)}2 νn(dxn) Π0(dθ),

where the minimum is over all estimators µ̂(xn) that are linear in xn. Then Bühlmann’s
recommendation is to set µ̂Cn = B(Xn). It is not too difficult to show that

µ̂Cn =
n

n+ κ
X̄n +

κ

n+ κ
µ0, (2)

where X̄n = n−1
∑n

i=1Xi is the sample mean, and

κ =

∫
σ2
θ Π0(dθ)∫

(µθ − µ0)2 Π0(dθ)
.

This is just a convex combination of the prior mean, µ0, and the sample mean, X̄n, with the
weight attached to the latter approaching unity as the data becomes more informative, i.e., as
n→∞. Therefore, µ̂Cn is asymptotically equally as good as the optimal estimator, the sample
mean, while accounting for some available prior information in finite-samples. Roughly
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speaking, κ indicates homogeneity of the policyholders with respect to the risk parameter
θ. A relatively homogeneous pool of policyholders means a relatively small denominator
of κ and vice versa. In certain cases, namely, when the model P is an exponential family
(see Section 3.3), there is so-called exact credibility (Jewell 1975, Diaconis and Ylvisaker
1979) in the sense the Bayes premium actually equals the credibility estimator; this provides
some additional—albeit unneeded—theoretical support for the credibility estimator. For a
detailed account of the credibility theory, we refer readers to Bühlmann and Gisler (2005)
and Klugman et al. (2008).

3 Effects of model misspecification

3.1 Bayesian case

In the well-specified model case, under certain relatively mild conditions, the Bayesian poste-
rior satisfies a number of desirable asymptotic properties, e.g, posterior consistency, optimal
or at least near-optimal concentration rates, a Bernstein–von Mises style posterior normality
property, etc. However, when the model is misspecified, things are more complicated; in fact,
it is not immediately clear what the desired asymptotic properties would be, given that there
is no “true θ” around which we would hope the posterior to concentrate. While there is no
“true θ,” there is a “best θ” in the sense that it minimizes the Kullback–Leibler divergence
of the model Pθ from the true distribution P ?. More specifically, if

K(p?, pθ) :=

∫
log(p?/pθ) p

? dν

denotes the Kullback–Leibler divergence of Pθ from P ?, then point around which we hope
the posterior will concentrate is the minimizer

θ† = arg min
θ
K(p?, pθ).

General sufficient conditions for existence and uniqueness of the Kullback–Leibler minimizer
are discussed in, e.g., Kleijn and van der Vaart (2006). For the smooth, finite-dimensional
problems we have in mind here, finding a minimizer and showing that it is unique involves
only basic calculus techniques; see Example 1 below. Of course, if the model is well-specified,
so that there exists a “true value” θ?, with P ? = Pθ? , then θ† = θ?, so the discussion
here generalizes those like in Ghosh and Ramamoorthi (2003) and elsewhere; see Hong and
Martin (2017b) for such a discussion in the context of insurance applications. This notion of
minimizing the Kullback–Leibler divergence shows up in both the Bayesian (e.g., Berk 1966;
Bunke & Milhaud 1998; Kleijn and van der Vaart; De Blasi and Walker 2013; Ramamoorthi
et al. 2015) and non-Bayesian (e.g., Dahalhaus and Wefelmeyer 1996; Patilea 2001) literature
on misspecification for finite- and infinite-dimensional models.

Example 1. Suppose an actuary is entertaining the following gamma model:

P =
{

(θ3/2)x2e−θx, x > 0 : θ ∈ (0,∞)
}
,
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where Γ(α) =
∫∞

0
tα−1e−tdt is the gamma function. But the observable claims X1, . . . , Xn

are in fact iid from the following lognormal model:

p?(x) = (x
√

2π)−1e−(log x−1)2/2, x > 0.

Note that the true mean is µ? = exp(1 + 1
2
) ≈ 4.48. In this case, it is easy to check that

K(p?, pθ) = µ?θ − 3 log θ + c,

where c is a constant that does not depend on θ and µ? denotes the true mean. It is now just
a simple calculus exercise to show that the Kullback–Leibler minimizer θ† exists, is unique,
and equals 3/µ? = 0.669.

Since our focus is on finite-dimensional cases and, in particular, nice exponential family
models, we describe here some relatively recent results (Kleijn and van der Vaart 2012) on the
so-called Bernstein–von Mises phenomenon under misspecification, where, as n → ∞, the
posterior Πn resembles a normal distribution centered near θ† with a variance that is O(n−1).
In order to not disrupt the flow of our presentation, we give an incomplete statement of the
result here, postponing discussion of the technical details until Appendix A. It will help
to keep in mind that the posterior distribution itself is random because it depends on data
Xn, so the forthcoming distributional convergence results also have stochastic qualifications.
Here and throughout, we will use the notation ġ and g̈ to denote the gradient vector and
Hessian matrix of a real-valued function g.

Theorem 1 (Kleijn and van der Vaart 2012). Let P ? be the true marginal distribution for
the iid sequence X1, X2, . . . and consider the statistical model {Pθ : θ ∈ Θ}, where Θ ⊆ Rd

for finite d ≥ 1. Let θ† denote the unique Kullback–Leibler minimizer and suppose that

• Conditions 1–2 in Appendix A hold for the pair (P ?, θ†), and

• the prior Π has a density that is positive and continuous in a neighborhood of θ†.

Then the posterior Πn in (1) satisfies

ρtv
[
Πn, Nd{θ̂n, (nVθ†)−1}

]
→ 0 in L1(P ?) as n→∞,

where ρtv is the total variation distance, θ̂n is a maximum likelihood estimator, and Vθ† =
k̈?(θ†), for k?(θ) = K(p?, pθ), is a positive definite d× d covariance matrix.

The conditions eluded to in Theorem 1 are rather mild, so this strong conclusion applies
to a wide range of statistical models, including exponential families as discussed below. To
rephrase those conclusions in more colloquial terms, under certain conditions, features of
the posterior distribution can be accurately approximated, asymptotically, by those same
features of a normal distribution with mean θ̂n and covariance (nVθ†)

−1. For example, when
n is large, the mean of the posterior is approximately θ̂n (which is approximately θ†, see
Appendix A) and a 100(1− α)% highest posterior density credible region is approximately

{ϑ ∈ Θ : n(ϑ− θ̂n)>Vθ†(ϑ− θ̂n) ≤ cα},
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where cα is the (1 − α)-quantile of the chi-square distribution with d degrees of freedom.
Moreover, if θ is approximately normal under the posterior Πn, with O(n−1) variance, then
we can immediately get a corresponding normal distribution approximation for any smooth
function g(θ) of θ using the delta theorem. For example, if g is scalar-valued, then

θ ∼ Πn =⇒ g(θ) ∼ N
(
g(θ̂n), ġ(θ†)>(nVθ†)

−1ġ(θ†)
)
, for large n,

where, of course, ġ is assumed to be non-vanishing at θ†. A particularly relevant choice of g
is the mean function, θ 7→ µθ, and a particular consequence of the above discussion is that
the Bayes premium satisfies µ̂Bn → µθ† . Other features can be handled similarly.

The above is a mostly complete story of the effect of model misspecification on the
Bayesian posterior distribution. While the story is relatively simple and elegant, it does not
have a happy ending in general. That is, the villain—misspecification bias—delivers a major,
sometimes fatal blow to the hero—the Bayesian posterior—casting doubt on any subsequent
statistical analysis. See Section 3.3 for more details. Next is an example giving a particular
instantiation of the general results discussed above.

Example 2. Consider same the setup in Example 1, with a gamma model, indexed by the
rate parameter θ, and lognormal truth. Suppose the actuary takes a Bayesian approach
and chooses the prior for θ to be the exponential distribution with hazard rate λ = 0.2.
The argument presented in Appendix A shows that Theorem 1 applies. Therefore, µ̂Bn →
µθ† = µ? = 4.48. The delta theorem also implies that the value-at-risk and conditional
tail expectation at the 100q-th level, with q ∈ (0, 1), of the predictive density, denoted by
VaRn(q) and CTEn(q) respectively, satisfy VaRn(q)→ VaRθ†(q) and CTEn(q)→ CTEθ†(q).
For example, if we take q = 0.95, then VaRθ†(0.95) = 9.411 and CTEθ†(0.95) = 11.363.
But VaR?(0.95) = 14.081 and CTE?(0.95) = 23.261. This substantial gap between the true
values and those the Bayesian solution points to clearly demonstrates the negative effect of
model misspecification. To visualize the Bernstein–von Mises phenomenon in this case, we
also perform a small simulation study. For three different sample sizes 200, 400 and 600,
Panel (a) of Figure 1 shows the posterior density πn(θ). Panels (b), (c), and (d) demonstrate
the corresponding posterior densities of µ̂Bθ , VaRθ(0.95), and CTEθ(0.95) along with the
values of µθ† , VaRθ†(0.95), and CTEθ†(0.95).

3.2 Credibility case

As discussed in Section 2.3, a cornerstone of the classical credibility theory is simplicity,
and that shines through here too in our assessment of the effect of model misspecification.
Indeed, it is immediate from the credibility estimator’s definition in (2) and the strong law
of large numbers that µ̂Cn converges with P ?-probability 1 to the true mean µ?, regardless of
whether P ? ∈ P or P ? 6∈ P . Therefore, the credibility estimator always identifies the true
mean so, if premium estimation is the primary goal, the credibility estimator is superior to
Bayes because it has no risk of model misspecification bias, no computational challenges,
and no loss of efficiency. More details on this claim, along with connections to the so-called
exact credibility case, are given in Section 3.3; see, also, Section 4.

8



0.50 0.55 0.60 0.65 0.70 0.75 0.80

0
5

10
15

20
25

parameter

po
st

er
io

r 
de

ns
ity

X

(a) posterior density of θ

3.5 4.0 4.5 5.0 5.5

0.
0

0.
5

1.
0

1.
5

2.
0

mean

po
st

er
io

r 
de

ns
ity

3.5 4.0 4.5 5.0 5.5

0.
0

0.
5

1.
0

1.
5

2.
0

3.5 4.0 4.5 5.0 5.5

0.
0

0.
5

1.
0

1.
5

2.
0

X

(b) posterior density of µθ

7 8 9 10 11 12

0.
0

0.
5

1.
0

1.
5

VaR

po
st

er
io

r 
de

ns
ity

7 8 9 10 11 12

0.
0

0.
5

1.
0

1.
5

7 8 9 10 11 12

0.
0

0.
5

1.
0

1.
5

X

(c) posterior density of VaRθ(0.95)

9 10 11 12 13 14 15

0.
0

0.
5

1.
0

1.
5

CTE

po
st

er
io

r 
de

ns
ity

9 10 11 12 13 14 15

0.
0

0.
5

1.
0

1.
5

9 10 11 12 13 14 15

0.
0

0.
5

1.
0

1.
5

X

(d) posterior density of CTEθ(0.95)

Figure 1: Illustration of the Bernstein–von Mises phenomenon under misspecification in
Example 2. In all panels, three different sample sizes are taken: 200 (dotted), 400 (dashed)
and 600 (solid). (a) Posterior densities of the parameter; (b) Posterior densities of the
mean; (c) Posterior densities of VaR; (d) Posterior densities of CTE. The Kullback Leibler
minimizer is marked by the symbol X.
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3.3 Take-away messages

Take-away 1. In Section 3.1, we demonstrated that, under appropriate conditions, the
Bayesian posterior distribution is going to concentrate its mass around the minimizer θ†

of the Kullback–Leibler divergence of the model Pθ from the true distribution P ?. This is
the best possible outcome when the model is misspecified, but further investigation is still
needed. First, there are some cases where this outcome is satisfactory. In particular, con-
sider an exponential family model {Pθ : θ ∈ Θ} in its natural or canonical form, with density
given by

pθ(x) = h(x) exp{θ x− A(θ)},
where h(x) > 0 and A is determined by the constraint that pθ must integrate to unity;
see, e.g., Brown (1986) for details about the many nice properties possessed by this class
of distributions. In addition to the well-known regularity of exponential families, which
ensure that the conditions of Theorem 1 hold (see Appendix A), it can be shown that the
Kullback–Leibler minimizer θ† satisfies the equation

µθ† = µ?,

where the mean µθ is given by the expression Ȧ(θ); see, e.g., Example 2.66 in Schervish
(1995) or Example 2 in Bunke and Milhaud (1998). Consequently, if the Bayesian specifies
an exponential family model that happens to be misspecified, then he/she will still be able to
recover the individual premium asymptotically. In fact, if one takes a prior Π0 conjugate to
the exponential family model (Diaconis and Ylvisaker 1979), then the corresponding Bayes
estimator µ̂Bn is exactly the credibility estimator µ̂Cn , a case commonly referred to as exact
credibility (Jewell 1975). This is the good news. The bad news is that most or all of the other
relevant features of the posterior will be negatively affected by the model misspecification,
since the feature g(θ†) of the limiting posterior distribution does not equal the corresponding
feature of the true P ?. The major selling point of a Bayesian approach is that it offers a
normative framework for learning and making inference about any relevant feature of P ?, but
this argument only holds up when the model is well-specified. Under a misspecified model,
the Bayesian approach will give incorrect or misleading answers, even asymptotically, to all
or most relevant questions about P ?.

Take-away 2. To follow up on the previous point, it would not make sense for a Bayesian to
opt for an exponential family model just because the Bayes premium matches the credibility
estimator. With the knowledge outlined above, suitable measures must be taken to keep
our analyses safe from the effects of model misspecification bias (e.g., Grünwald 2018).
One such measure would be to abandon the Bayesian framework for the simpler credibility
estimator. This is a rather extreme measure because there is something desirable about
having a “posterior” that provides uncertainty quantification. In Section 4 we present a
strategy that balances between Bayesian and credibility estimation.

Take-away 3. We have focused more on the effect of model misspecification on the location
of the posterior distribution, i.e., that for a given feature g(θ) of Pθ, the posterior will center
around g(θ†) which might be very different from the target feature of P ?. A more subtle issue
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is the effect that model misspecification has on the spread of the posterior. Recall that, in
Theorem 1, it happens that the posterior will asymptotically center around θ̂n, the maximum
likelihood estimator. When the model is misspecified, there is no longer a connection between
the likelihood function and the claims distribution and that changes the status of θ̂n to a
M-estimator (e.g., van der Vaart 1998, Chapter 5). This is important because, in the well-
specified case, there is a direct connection between the variance of the maximum likelihood
estimator and the second derivative of the log-likelihood function, consequence of the identity
(e.g., Brown 1986, Section 4.3) ∫

˙̀
θ

˙̀>
θ pθ dν = −

∫
῭
θ pθ dν, (3)

where `θ = log pθ. However, as is well known, the variance of a M-estimator is given by the
so-called sandwich formula (e.g., Müller 2013). For illustration, consider our setting where
we are interested in the marginal posterior distribution of µθ. The delta theorem argument
above says that the posterior variance is

n−1 µ̇>θ†V
−1
θ†
µ̇θ† .

However, the asymptotic variance of the M-estimator, θ̂n, is

n−1µ̇θ†V
−1
θ†
Mθ†V

−1
θ†
µ̇θ† ,

where, compared to the left-hand side of (3),

Mθ =

∫
˙̀
θ

˙̀>
θ p

? dν. (4)

Note that Vθ† is like the matrix on the right-hand side of (3), but with expectation according
to p?. In general, Mθ† and Vθ† will be different, so the two asymptotic variances disagree.
Consequently, the spread of the posterior can be too narrow or too wide, casting doubt on
the validity of the uncertainty quantification contained therein. The Bayesian framework
offers no remedy to correct for the variance mismatch, but see Section 4.

Take-away 4. Our focus here has been on finite-dimensional cases where the specification of
a statistical model P = {Pθ : θ ∈ Θ} can be a serious restriction. For Bayesians who are con-
cerned about misspecification and want to avoid this risk, one option is to expand the model
to include a wider collection of distributions, a so-called Bayesian nonparametric approach
where the unknown distribution is the “parameter,” making it an infinite-dimensional prob-
lem. By expanding the scope of the model, one enjoys a number of benefits, in particular, the
more flexible model automatically eliminates some but not all of the risk of misspecification
bias; see, e.g., Kleijn and der Vaart (2006), DeBlasi and Walker (2013). and Ramamoorthi
et al. (2015). But this added flexibility does not come for free—there are costs in terms of
both computational and statistical efficiency when one expands to an infinite-dimensional
model—so the actuary wanting to take a Bayesian approach has a difficult choice to make.
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Hong and Martin (2016, 2017a, 2018) discuss the benefits of a nonparametric formulation,
the relevant theoretical properties, and implementation details in an insurance context; see,
also, Richardson and Hartman (2019). Fortunately, a middle-ground between the finite-
and infinite-dimensional Bayes formulation—retaining the benefits of both, but without the
shortcomings—is possible and we discuss this in Section 4.

4 A new perspective on credibility theory

As discussed above, the Bayesian approach is attractive because it results in a posterior
probability distribution that incorporates available prior information and quantifies uncer-
tainty about any unknown feature of P ?, but it is sensitive to model misspecification. The
credibility estimator, on the other hand, provides only a point estimate, but it is optimal
in terms of estimation accuracy and is not sensitive to model misspecification. Is there a
middle-ground that offers the benefits of each approach but without their shortcomings?
Our desiderata are as follows:

• incorporates available prior information and returns a sort of “posterior;”

• the “posterior” is robust, i.e., not sensitive to model misspecification;

• estimates derived from the “posterior” are optimal;

• and uncertainty quantification derived from the “posterior” should be valid in the sense
that a 100(1 − α)% credible region, for α ∈ (0, 1), should have approximately 1 − α
coverage probability under P ?.

For the first desideratum, a Bayesian-style prior-to-posterior updating would be nice, but
it cannot involve a likelihood because that is what leads to sensitivity to model misspec-
ification. To be robust in the sense of the second desideratum, the updating should be
through something other than a likelihood. Moreover, the third and fourth desiderata re-
quire, roughly, that this “posterior” have right center and spread. So the crucial step is
identifying a suitable substitute for the likelihood in Bayes’s formula.

Before that, however, there is one point that deserves emphasis. The above desiderata
cannot be achieved simultaneously for all relevant features of P ?. What makes this uniformity
possible in the Bayesian formulation1 is that the assumed model is part of the posterior
construction, and that is precisely what leads to its sensitivity to model misspecification.
The price of achieving robustness as in the second desideratum is that we have to choose
a relevant feature of P ? on which to focus. In what follows, we will work with the mean
µ of the claims distribution, since that is most relevant to the prediction task, but other
features can be investigated similarly; it is also possible to investigate finitely many features
simultaneously, but we will not discuss this here.

The remainder of this section is devoted to the construction of a so-called Gibbs posterior
for the mean of P ?. The name is derived from its connections to the Gibbs distribution often

1Even in the well-specified case, the Bayesian cannot make reliable inference on all features, due to certain
limitations on marginalization. This false confidence phenomenon is described in Martin (2019)
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encountered in statistical mechanics, but that is not important for our purposes. Some rela-
tively recent references on Gibbs posteriors include Zhang (2006ab) and Bissiri et al. (2016).
Given a generic value, µ, of the mean of P ?, possibly different from the true value, µ?, one
way to measure its feasibility relative to a set of claims Xn is via the discrepancy function

Dn(µ) =
1

n

n∑
i=1

(Xi − µ)2. (5)

That is, if Dn(µ′) > Dn(µ), then we say that µ is more feasible than µ′ relative to the
data. (Of course, this is not the only way one can measure feasibility but, in light of the
connections we find below between our Gibbs posterior and those in the Bernstein–von Mises
phenomenon of Theorem 1, we think this is a very reasonable approach.) Suppose that prior
information about the mean of P ? is available, and that it can be encoded into a prior
distribution Π; note the immediate advantage of only having to specify prior information
about a feature of interest compared to a model parameter, e.g., a shape parameter, that
may not have any direct real-world interpretation. Then we can define the Gibbs posterior
distribution as

Πn(dµ) ∝ e−ω nDn(µ) Π(dµ), µ ∈ R, (6)

where the scale parameter ω > 0 is called the learning rate (e.g. Grünwald and van Ommen
2017, Bissiri et al. 2016, Syring and Martin 2019a), related to the fourth desideratum, and
will be discussed below. For different features of interest or for an entirely different context,
the Gibbs posterior (6) looks the same, just the discrepancy function might be different.
Other examples are presented in Syring and Martin (2017, 2019ab), Syring et al (2019), and
Wang and Martin (2019).

So far we have achieved the first desideratum, going from a prior to a Gibbs posterior.
Turning to robustness, note that there is no model explicitly being assumed in the definition
of the Gibbs posterior. The reader might notice that we did implicitly assume a sort of
Gaussian likelihood (see below), but there is a substantial practical difference between “ex-
plicit” and “implicit” in this case, and the learning rate parameter allows us to correct for
the shortcomings of the implicit model that is sure to be wrong. That discrepancy function
in (5) was not chosen for its Gaussian-like form, but rather for where it is minimized. In
particular, it is easy to check that Dn(µ) is minimize at µ = X̄n, the sample mean; similarly,
the expected discrepancy, D(µ) =

∫
(x − µ)2 p?(x) ν(dx), the pointwise limit of Dn(µ), is

minimized at µ = µ?, the true mean. This is relevant to the third desideratum because, just
like the Bayesian posterior whose mode is near the maximum likelihood estimator, which
tends to be close to the Kullback–Leibler minimizer, this property implies that the Gibbs
posterior will concentrate around X̄n, the optimal estimator of µ?.

Before proceeding to the fourth desideratum, we first do some simplification of the Gibbs
posterior distribution in our present case focused on the mean of P ?. That is,

Πn(dµ) ∝ e−ω n(µ−X̄n)2 Π(dµ), µ ∈ R.

Ignoring the prior, this resembles a normal distribution, centered at X̄n, with variance pro-
portional to (ωn)−1. This makes clear that, through an appropriate choice of ω, the Gibbs
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posterior spread could be made such that the derived uncertainty quantification is valid in
the sense described above. To be more precise, consider a N(µ0, σ

2
0) prior for µ. Then the

Gibbs posterior is exactly

N
(
µ̂Cn ,

κσ2
0

n+κ

)
= N

(
µ̂Cn , (2nω + 1)−1

)
,

where κ = (2ωσ2
0)−1 and µ̂Cn is the corresponding credibility estimator in (2). Compare this

to the conclusion of Theorem 1 plus delta theorem presented in Section 3.1. Thus, we have
a new characterization of Bühlmann’s credibility estimator as the mean of a Gibbs posterior.
Finally, to address the fourth desiderata, remember that the asymptotic variance of µ̂Cn is
the same as that of X̄n and is equal to n−1σ?2, where σ?2 is the variance of P ?. And since
both the Gibbs posterior and the limiting sampling distribution of X̄n are normal, to achieve
the validity condition described in the fourth desideratum, it suffices to tune ω such that the
two variances are asymptotically equal. That is, we need

σ?2

n
≈ 1

2nω + 1
or ω ≈ 1

2σ?2
.

Of course, we do not know σ?2 but it can be easily estimated and that estimate can be plugged
in to tune ω. In other cases, achieving the appropriate tuning might be more challenging,
but methods are available in Syring and Martin (2019a), Lyddon et al. (2019), etc.

The key point is that, if we are specifically interested in the mean of P ?, then the Gibbs
posterior achieves all four desiderata described above, thereby retaining the benefits of both a
Bayesian posterior and credibility estimator, while avoiding the risk of model misspecification
bias. Finally, the reader may have noticed that, in the Gibbs presentation above, we allowed
the generic µ to range over the entire real line whereas, at least for claims data, we know
that the mean is positive. In that case, the Gibbs posterior can be truncated to [0,∞), hence
a truncated normal. For large n, this truncation has only a negligible effect, so all of what
was discussed above would carry over unchanged to the truncated case.

5 Concluding remarks

In this paper we have investigated the asymptotic convergence properties of Bayesian pos-
terior distributions when the model is misspecified. The general conclusion is that model
misspecification has damaging effects on the Bayesian posterior distribution, at least for some
features of the quantity of interest, that can lead to misleading inferences. One situation
where the effect of model misspecification is seemingly mild is in the case where the model is
an exponential family, so that the Bayesian marginal posterior distribution for µθ, the mean
of the loss distribution, will be correctly centered around the true mean asymptotically. Even
in this case, the spread of the posterior distribution is affected by misspecification bias so
that uncertainty quantification based on that distribution would not be meaningful. The
credibility estimator, on the other hand, is not affected by model misspecification at all so, if
one cares only about prediction and is concerned about model misspecification bias, then one
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should abandon the Bayesian approach for the credibility estimator. But it is still possible to
work with a “posterior” distribution that is not sensitive to model misspecification, but one
has to go beyond a Bayesian framework. Here we suggested a Gibbs posterior construction
and provided a new characterization of the classical credibility estimator as the mean of our
Gibbs posterior distribution.

A shortcoming of the Bayesian approach is that it offers no remedy for misspecification
bias. The remedy we recommended here was to construct a posterior distribution in a
different way, using a discrepancy function instead of a proper likelihood. But this is not the
only way. Recently, Grünwald has written about a so-called generalized Bayesian approach
wherein one takes a proper likelihood as usual, but introduces a learning rate parameter—a
power on the likelihood—like we had in our Gibbs formulation. He argues that, by taking
that learning rate to be suitably small, one can correct for model misspecification in the
sense that predictions will still be accurate; see, e.g., Grünwald (2012) and Grünwald and
van Ommen (2017). In our insurance context, prediction is the motivation so Grünwald’s
SafeBayes approach seems promising and deserves further investigation.
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A Details from Section 3.1

Here we fill in the left-out details in our discussion of the Bernstein–von Mises result in
Section 3.1, based on Kleijn and van der Vaart (2012). In particular, we precisely state
and explain their two key conditions, central to the approximate normality of the Bayesian
posterior distribution in Theorem 1.

We adopt the notation used in van der Vaart (1998) where, if f is a real-valued measurable
function and µ is a measure, then µf denotes the integral

∫
f(x)µ(dx) of f with respect to

µ. Also, recall that we have a model with densities pθ indexed by the parameter θ ∈ Θ, and
Ln(θ) =

∏n
i=1 pθ(Xi) denotes the likelihood function for that model based on data Xn.

The first condition pertains to the regularity of the posited model with respect to the true
distribution P ?. It is related to those familiar conditions presented in introductory math-stat
courses for establishing asymptotic normality of the maximum likelihood estimators.

Condition 1: Regularity. The model {pθ : θ ∈ Θ} satisfies a local asymptotic normality
condition at θ† relative to P ?. That is, there exists random vectors ∆n,θ† , bounded in P ?-
probability, and a positive definite matrix Vθ† such that, for any compact H,

sup
h∈H

∣∣∣log
Ln(θ† + n−1/2h)

Ln(θ†)
− h>Vθ†∆n,θ† − 1

2
h>Vθ†h

∣∣∣→ 0 in P ?-probability. (7)

Intuitively, this condition says that, in a certain strong sense, the log-likelihood function
is approximately quadratic around θ†. This approximately quadratic shape is precisely what
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drives the asymptotic normality of the posterior distribution. While in some cases—including
the one we focus on below—it is possible to verify Condition 1 directly, but, for our discussion
of Condition 2 below, we list here the general sufficient conditions for establishing Condition 1
presented in Kleijn and van der Vaart (2012).

A1. θ 7→ log pθ(x) is differentiable at θ† for P ?-almost all x;

A2. there exists an open neighborhood U of θ† and a P ?-square integrable function x 7→
mθ†(x) such that, for all θ1, θ2 ∈ U ,

| log pθ1(x)− log pθ2(x)| ≤ mθ†(x)‖θ1 − θ2‖, for P ?-almost all x;

A3. θ 7→ k?(θ) = K(p?, pθ) has a second-order Taylor approximation at θ?,

k?(θ)− k?(θ†) = 1
2
(θ − θ†)>Vθ†(θ − θ†) + o(‖θ − θ†‖2), θ → θ†,

where Vθ† is a positive definite matrix.

The second condition is concerned with the size of the neighborhood around θ† to which
the posterior assigns the majority of its mass.

Condition 2: Posterior concentration rate. The posterior distribution has a root-n concen-
tration rate around θ† with respect to P ?, i.e., for any sequence an →∞,

Πn({θ ∈ Θ : ‖θ − θ†‖ > ann
−1/2})→ 0 in L1(P ?) as n→∞. (8)

This condition says that the posterior distribution will assign nearly all of its mass to
a neighborhood of θ† of radius roughly O(n−1/2). This is important to the asymptotic
normality result because it guarantees that the region where the quadratic approximation
of the log-likelihood is inaccurate can be effectively ignored. In certain cases, the posterior
concentration rate property can be checked directly. For example, suppose that the posterior
mean vector and covariance matrix can be evaluated in closed form, and write these as mn

and Cn, respectively. Then it follows from Markov’s inequality and the usual bias–variance
decomposition of mean square error, we get

Πn({θ ∈ Θ : ‖θ − θ†‖ > ann
−1/2}) ≤ n

a2
n

{
‖mn − θ†‖2 + tr(Cn)

}
.

Therefore, if the expected ‖mn − θ†‖2 and tr(Cn) are O(n−1) as n → ∞, which is common
in finite-dimensional problems, then the root-n posterior concentration rate results holds.
But for cases where the posterior mean and variance are not available in closed-form, then
indirect methods are needed to verify Condition 2 above, and Kleijn and van der Vaart
(2012) offer the following sufficient conditions.

B1. For all θ a neighborhood of θ†, P ?(pθ/pθ†) <∞;

B2. for mθ† as in A2 above, P ? exp(smθ†) <∞ for some s > 0;
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B3. the matrix Mθ† defined in (4) is invertible; and

B4. for every ε > 0, there exists a sequence of test functions, ψn : Xn → [0, 1] such that

P ?nψn → 0 and sup
θ:‖θ−θ†‖>ε

Qn
θ (1− ψn)→ 0,

where Qθ is the measure with density given by qθ(x) = p?(x)pθ(x)/pθ†(x).

Next we illustrate the above for the one-parameter exponential family model with den-
sities pθ(x) = h(x) exp{θ x − A(θ)}; of course, other models can be handled in a similar
way. Recall that the Kullback–Leibler minimizer, θ†, satisfies the relation µθ† = µ?, where
µθ = Ȧ(θ). That is, the best approximation of P ? in the exponential family model is the
one that matches the mean. As an aside, the maximum likelihood estimator is the unique
solution to the equation Ȧ(θ) = X̄n, so consistency follows from the law of large numbers
and the continuous mapping theorem.

Starting with Condition 1, we could verify A1–A3, but it is no more difficult to check (7)
directly. Since θ 7→ A(θ) is smooth, we have the following Taylor approximation around θ†:

A(θ)− A(θ†) = Ȧ(θ†)(θ − θ†) + 1
2
Ä(θ†)(θ − θ†)2 + o(|θ − θ†|2).

Plugging this in to the log-likelihood function gives

log
Ln(θ† + hn−1/2)

Ln(θ†)
= hn−1/2

{
nX̄n − nȦ(θ†)

}
− 1

2
Ä(θ†)h2 + o(1), n→∞.

Since Ȧ(θ†) = µ?, it follows from the central limit theorem that

∆n,θ† := n−1/2Ä(θ†)−1
{
nX̄n − nȦ(θ†)

}
is asymptotically normal and, therefore, bounded in P ?-probability. And since the “o(1)”
term above is independent of both h and data, Condition 1 holds, with Vθ† = Ä(θ†).

It would be possible to check Condition 2 directly if we had a particular exponential
family form. For instance, if the actuary chooses an exponential prior with hazard rate 1/5
for the model in Example 2. Then the posterior Πn will have a gamma distribution with
a shape parameter 3n + 1 and rate parameter 1/5 +

∑n
i=1X

−1
i . Then we have closed-form

expressions for the mean and variance and the strategy outlined above can be followed to
confirm that (8) holds. But for a general exponential family, we need to check Condition 2
indirectly using B1–B4. For these exponential family models, B1 is a consequence of B2.
For B2 in this case, it is easy to check that we can take

mθ†(x) = |x|+ constant,

so the integrability assumption in B2 holds if the tails of P ? are sufficiently thin. Next, it is
easy to check that Mθ† is just a covariance matrix of P ? so, existence of an inverse is only
a mild assumption. So it turns out that B4 is the only non-trivial sufficient condition to
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check. We do not give all the details here, but we do believe that it is worth describing the
test construction, etc. (Note that the construction of such tests is straightforward when the
model is well-specified; it is the model misspecification that complicates the matter.)

The null hypothesis is P ? and the alternative is {Qθ : |θ− θ†| > ε}, for fixed ε > 0, and a
classical Neyman–Pearson style likelihood ratio test is an obvious choice. Note that, in the
ratio p?/qθ, the true density gets canceled out, so it is effectively just a comparison between
two distributions in the model, namely, Pθ and Pθ† . Therefore, the intuition is that we would
reject the null hypothesis if the data are more consistent with {Pθ : |θ − θ†| > ε} than with
Pθ† . Now for the details. In our one-parameter setting, it is enough to test {Qθ : θ = θ†± ε}
so let us focus on testing P ? versus Qθ†+ε; the other case can be handled in an analogous
way, and we will put the two together below. Define the test

ψ+
n =

{
1 if n−1

∑n
i=1 log{p?(Xi)/qθ†+ε(Xi)} < 0

0 otherwise.

By the law of large numbers,

1

n

n∑
i=1

log
p?(Xi)

qθ†+ε(Xi)
→ K(p?, pθ†+ε)−K(p?, pθ†), P ?-almost surely,

Since the limit above positive by definition of θ†, the first conclusion in B4 holds, i.e.,
P ?nψ+

n → 0. Establishing the second conclusion in B4, namely, Qn
θ (1− ψ+

n )→ 0, requires a
good amount of care so we refer the interested reader to the proof of Theorem 3.2 (middle of
page 369) in Kleijn and van der Vaart (2012) for details. Now define a second test ψ−n that
replaces θ† + ε with θ† − ε; the same analysis above applies to this test also. Now combine
these two tests as follows:

ψn = max(ψ+
n , ψ

−
n ).

The two conditions in B4 hold for ψn because they hold for both components, ψ+
n and ψ−n .

Since we have now checked all of the sufficient conditions, it follows that the Bernstein–von
Mises phenomenon holds for this exponential family model.
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