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Abstract

Inferential challenges that arise when data are censored have been extensively
studied under the classical frameworks. In this paper, we provide an alternative
generalized inferential model approach whose output is a data-dependent plausibil-
ity function. This construction is driven by an association between the distribution
of the relative likelihood function at the interest parameter and an unobserved aux-
iliary variable. The plausibility function emerges from the distribution of a suitably
calibrated random set designed to predict that unobserved auxiliary variable. The
evaluation of this plausibility function requires a novel use of the classical Kaplan—
Meier estimator to estimate the censoring rather than the event distribution. We
prove that the proposed method provides valid inference, at least approximately,
and our real- and simulated-data examples demonstrate its superior performance
compared to existing methods.

Keywords and phrases: Kaplan—Meier estimator; plausibility; random set; rela-
tive likelihood; survival analysis.

1 Introduction

A class of challenging and practically relevant problems are those where the data are
corrupted in some way. Examples of such corruption include missingness, measurement
error, coarsening, etc. One special type of corruption, common in time-to-event studies, is
censoring, where at least one observation is incomplete in the sense that only an interval
that contains the actual value is available. For example, in a clinical trial, it may happen
that only lower bounds on some patients’ remission times are observed because subjects
drop out of the study, or the study ends before the event takes place. This is called
right-censoring. Alternatively, in environmental applications, it may happen that only
an upper bound on a chemical content is observed because the available device is limited
to a certain detection level. This is called left-censoring. Of course, a combination of left-
and right-censoring, or interval-censoring, is possible as well. Beyond censoring direction,
there are also Type I and Type II classifications, but we refer the reader to Klein and
Moeschberger (2003) for these details. For concreteness, we focus here on Type I right-
censored data in a time-to-event setting, but it is easy to apply the same ideas for left-
or interval-censored data and for contexts other than time.
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Let X; denote the event time and C; the censoring time for unit ¢ = 1,...,n. Under
right censoring, the observed data consists of the pair

where 1(-) is the indicator function, so that D; identifies whether T; is an event time or
a censoring time. Let Y = {(7;, D;) : i = 1,...,n} denote the observable data.

A common assumption that we will adopt here is that of random censoring, where
Xi, ..., X, are independent and identically distributed (iid) with continuous distribution
function Fj, depending on a parameter 6 € O; (4, ..., C, are iid with distribution function
G; and the X;’s and C;’s are independent of one another (Lawless 2011). Since the
variables denote an amount of time (or some other quantity), the statistical models,
Fy, considered here and in the literature more generally on this topic are supported
on subsets of (0,00) and are typically right-skewed. The goal is to make inference on
the unknown parameter 6 of the time-to-event distribution; G is an unknown nuisance
parameter assumed to have no dependence whatsoever on 6.

For data y = {(t;,d;)} observed from a random, Type I, right-censored data generating
process, Klein and Moeschberger (2003, Sec. 3.5) give the likelihood function

Ly(0) o [ [ folta) Fo(t:)' =", 6 €®, (2)

where fy = Fj and Fp = 1 — F} are the density and survival functions corresponding to
Fy, respectively. From the likelihood in (2), it is relatively straightforward to produce
point estimates, asymptotic confidence regions, or even Bayesian posterior distributions
(Ibrahim et al. 2001). These results, however, are not fully satisfactory; for example,
their coverage probabilities can be far from the target in finite samples.

In this paper, we take an alternative approach to construct an inferential model whose
output takes the form of a non-additive, data-dependent belief/plausibility function. This
construction relies on a particular connection between the data, parameter, and an unob-
servable auxiliary variable. Here, following the recommendations in Martin (2015, 2018),
we make use of an association driven by the relative likelihood derived from (2). The
belief function arises from the introduction of a (nested) random set aimed to predict that
unobserved auxiliary variable. An important consequence of this particular construction
is that the belief function output inherits a calibration or walidity property. A precise
statement is given in Section 2, but an important practical consequence of the validity
property is that the confidence, or plausibility, regions derived from the inferential model
achieve the nominal frequentist coverage probability.

Unfortunately, the presence of censoring complicates the basic inferential model con-
struction and validity properties described in Martin (2015, 2018). In particular, the
distribution G of the censoring times is an infinite-dimensional nuisance parameter whose
influence is difficult to overcome. Here we propose an extension of the basic approach
above, one that makes novel use of the Kaplan-Meier estimator (e.g., Kaplan and Meier
1958) for the censoring distribution G. We then develop a Monte Carlo algorithm to
evaluate the belief and plausibility of any hypothesis about 6, and we show—both the-
oretically and empirically—that inference drawn from the generalized inferential model
output is valid, at least approximately, in the sense described in Section 2. Details of this



construction and its properties are presented in Section 3 and numerical examples com-
paring the proposed solution to that of more traditional methods are given in Section 4.
Finally, some concluding remarks are given in Section 5.

2 Background

2.1 Basic inferential models

For observable data Y € Y, consider a statistical model {Pyjg : § € ©} that contains
candidate probability distributions for Y, indexed by a parameter space ©. Throughout
we write Y ~ Pyjy to mean “Y is distributed according to Pyy.” As a running example
for this section, consider a binomial problem Y ~ Py|y = Bin(n,6), where the number
of trials, n, is known but 6 is unknown and to be inferred. More complicated examples,
involving censored data, will be considered in the sections that follow.

As presented in Martin and Liu (2013, 2015), an inferential model is a map from
the available inputs, including observed data and posited statistical model, to a data-
dependent function, II, : 20 — [0,1], where I1,(A) denotes the data analyst’s degree of
belief about the hypothesis A C © based on the observed data Y = y. As the notation
suggests, the interpretation of the inferential model’s degree of belief is similar to that
of a lower bound on a collection of posterior probabilities for A, given y. So, naturally,
inferences would be drawn based on the magnitudes of II, (A) for various assertions of
interest A. This definition of an inferential model encompasses many different approaches,
including those based on additive beliefs, e.g., Bayes, fiducial, and others, as well as non-
additive beliefs like those discussed below.

What properties should II, have? In the scientific applications we have in mind here, if
it is desired that large IT, (A) be interpreted as support for the claim that A is true, then it
becomes essential that the degrees of belief be calibrated so that we know what a “large”
II, means, and consequently avoid making “systematically misleading conclusions” (Reid
and Cox 2015). We formalize this need for an inferential model to be calibrated in terms
of the following validity constraint:

sup Pyjp{Ily(A) >1—-a} <a, Vael01, VACO. (3)
ogA

That is, if the hypothesis A is false, so that A Z 0, the degree of belief II, (A), as a
function of Y ~ Py, will be stochastically no larger than Unif(0,1). This property
ensures that relatively low degree of belief values will be assigned to false hypotheses,
thus protecting the data analyst from systematic errors.

The desire for belief/plausibility functions to satisfy some sort of calibration property
relative to a statistical model is not unique to us here. Indeed, Walley (2002) considered
a validity condition very similar to—and slightly weaker than—that in (3). His goal
was to show that a reconciliation of frequentist calibration properties with generalized
Bayes was possible. However, his proposed method to achieve this reconciliation is rather
inefficient from a statistical point of view, and the inferential model approach taken here
is generally more efficient. Balch (2012) develops a theory of confidence structures with
similar motivation and properties to us here but with somewhat less flexibility. Finally,
Denceux and Li (2018) provided a review of some of these developments and proposed a
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new notion of calibration in the context of parameter estimation but this requires fixing
an « value on which the degrees of belief will depend.

The validity property (3) can be equivalently expressed in terms of the plausibility
function, IT,(A) = 1 — II (A®), the belief function’s dual (Shafer 1976). In terms of this
dual inferential model output, validity is satisfied if

sup Pyjp{Ily(4) <a} <a, Vae[0,1, VACO. (4)
feA

Following this constraint, the plausibility values can be compared to a Unif(0, 1) scale, and
decisions based on such comparisons will control frequentist error rates (Martin 2018).

Based on the false confidence theorem in Balch et al. (2019), Martin (2019) argues
that validity as in (3) requires that the degrees of belief be non-additive. Since we take
this validity property to be fundamental to the logic of statistical inference, we focus
here on genuinely non-additive degrees of belief, e.g., the belief/plausibility functions in
Shafer (1976) or the special case of necessity /possibility functions in Dubois and Prade
(1988), Dubois (2006), Destercke and Dubois (2014), and Hose and Hanss (2020).

How to construct a valid inferential model? The original construction in Martin and
Liu (2013), starts with an association, i.e., a characterization of the statistical model in
terms of an auziliary variable. The prototype for this takes the form

Y =a(0,U), U~ Py, (5)

where a is a given function and Py is a distribution for U € U that does not depend
on any unknown parameters. This describes an algorithm for simulating from Py but
also guides our intuition about inference. That is, if U were observable, along with Y,
then the best possible inference follows by simply solving (5) for 0, as in (6). Since U is
actually unobservable, it is tempting to create a sort of “posterior distribution” for 6 by
taking draws from Py, plugging them into (5), with the observed Y = y, and solving for
6. This is basically Fisher’s fiducial argument (e.g., Dempster 1963; Fisher 1973; Hannig
et al. 2016), which generally leads to additive beliefs that are not valid. Thanks to the
intuition provided by the auxiliary variable formulation, non-additivity can be introduced
by using random sets targeting the unobserved value of U in (5) that corresponds to the
observed Y = y and true 6. The following three steps summarize this construction.

A-step. Given the association (5) and the observed Y = y, define the focal elements
Oyu)={ve®:y=a,u)}, uvwel. (6)

Here and in what follows, we write 9 for a generic value of the parameter 6.

P-step. Introduce a random set S ~ Pg, taking values in 2V, designed to predict the
unobserved value of U in (5). Roughly, this random set is designed to contain those
“typical” values of U with certain frequencies; more precise details are provided below.

C-step. Combine the output of the A- and P-steps to get a new random set

0,(8) = | J 0,(u), S~Ps.

ueS

The intuition is that ©,(S) contains the unknown 6 if and only if S contains the unob-
served value of U. Consequently, if S can reliably contain the unobserved value of U,
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then ©,(S) can contain the true §. This implies ©,(S) carries some information about
the location of #, so it makes sense to define the belief function,

Hy(A) = PS{Gy(S) C A}> AC 67

as a measure of the degree of belief in the truthfulness of the assertion A about #. Then
its dual, the plausibility function, is given by II,(A) = 1 — I, (A¢). Another important
summary is the plausibility contour function

,(0) = Ps{0,(S) 39}, veo. (7)

For illustration, consider the binomial data problem mentioned above. For the A-step,
n association that links the binomial Y and the success probability 6 with an unobservable
auxiliary variable U ~ Py = Unif(0,1) is

Y = FyUU) <= Fy(Y —1) < U < Fy(Y),
where Fy is the Bin(n,#) distribution function. This leads to the set-valued map
(y,u) = Oy(u) ={0: Fy(y—1) <u < Fy(y)}.

The P-step proceeds by introducing a random set S targeting the unobserved value of U.
In this case, a reasonable choice is

S={uecl0,1]:|u—05/<|U-05]}, U~ Unif(0,1). (8)

Then the distribution Pg is completely determined by that of U, which is known and easy
to compute. For the C-step, we combine the above results to get a new, data-dependent

random set
0,(8) = |JOy(w) = [J{W: Fy(y - 1) <u < Fy(y)}.
ueS ueS
If we define B,; to be the Beta(a,b) distribution function, and apply the well-known
identity Fy(y) = Bn—yy+1(1 — ), then the above can be simplified:
0,(8) = [1= B, G +10—3D). 1= B, a5 - 10 -

n_y""l’y n_y7y+1

Nt

Since the right-hand side is simply a function of U ~ Unif (0,1), formulas for the belief
and plausibility functions are readily available. For example, if Ay = [0, 9], for ¥ € [0, 1],
is a one-sided assertion about @, then the belief function is

I1,(Ag) = Ps{0y(S) € A}
=Py{l- B!, G —|U-1) <9}

n—y,y+1\2
= max{0, 2By 11, (V) — 1},

N

where the last inequality uses the fact that Bay(1 — ) = By.(¥). The plausibility
function I1,(Ay) at Ay can be found similarly. The plausibility contour function, too, can
be written in closed form, as

my (V) = Ps{0,(S) 5V}
=1—max{0,2B,41,—y(¥) — 1} —max{0,1 — 2B, _,11,(V)}.
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Figure 1: Inferential model output for the binomial example with (n,y) = (18,7).

For illustration, suppose that n = 18 and y = 7. Panels (a) and (b) of Figure 1 show
the c-box determined by the belief and plausibility functions at Ay and the plausibility
contour function, respectively.

Under mild conditions on the user-specified random set S, the corresponding inferen-
tial model is valid in the sense of (3). Indeed, the only requirement is that S be calibrated
to predict unobserved draws from Py. This is relatively easy to arrange because Py is
known and S ~ Pg is user-specified. More specifically, let v(u) = Ps(S > u). Then
validity in the sense of (3) is implied by a stochastic dominance property in =y, namely,
that is stochastically no smaller than Unif (0, 1), i.e.,

Pu{7(U) <a}<a, Vae|0,1l]. 9)

See Definition 1 in Martin and Liu (2013). For example, with the random set S in (8)
targeting a Unif(0, 1) auxiliary variable U, we have

Y(u) =Ps(S2u)=1—2u—1|, vweU=]0,1].

Then it is easy to see that U ~ Unif(0,1) implies v(U) ~ Unif(0, 1), thus verifying the
above sufficient condition for validity as in (3).

Though not strictly necessary for validity, efficiency considerations suggest that &
be nested—Ilike S in (8)—which makes the belief function consonant. Moreover, when
S is nested, the inferential model’s output has the mathematical form of a consonant
belief/plausibility function or, equivalently, a necessity/possibility measure (e.g., Liu and
Martin 2020). The importance of possibility theory in the broader context of statistical
inference was discussed recently in Martin (2021).

2.2 Generalized inferential models

As Martin (2018) argued, the above formulation can be rather rigid; more flexibility can
be achieved by working with a so-called generalized association, one that does not fully
characterize the posited statistical model. As before, suppose we have data Y ~ Py,
and let (y,v) — R,(¥) be a real-valued function of generic data and parameter values.
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Knowing the distribution of Ry (f) does not provide sufficient information to simulate
copies of Y from Pyg, but it does provide an avenue for making inference on 6.

As in the previous section, our goal is to forge a relationship, or association, between
observable data Y, unknown parameter #, and an unobservable auxiliary variable with
known distribution. For this, we proposed to use the summary Ry () and write

Ry () = HyY(U), U ~ Py = Unif(0, 1), (10)
where Hy is the distribution function of Ry (0),
Hy(r) = Pyjp{Ry(8) <r}, reR.

The advantage of this generalized association is, as explained in Martin (2018), that we
have directly reduced the dimension of the auxiliary variable, from at least the dimension
of 6 down to 1. This greatly simplifies the construction of a (good) random set S for
predicting that unobservable quantity. What is an appropriate choice of R,(#)? The
options are virtually unlimited, but since dimension reduction would generally result in
loss of information, and since we prefer to retain as much information as possible, we opt
to take R, (0) as the relative likelihood

R,(6) = L,(6)/L,(9), (11)

where @ is the maximum likelihood estimator, i.e., § = arg maxy L, (19). Extensive studies
have explored the use of relative likelihood to define degrees of belief (e.g., Shafer 1976;
Wasserman 1990), but they focus on examples where the likelihood cannot be normalized
or where a normalized likelihood is misleading (Shafer 1982). Our approach differs in the
sense that we can evaluate the distribution of the relative likelihood by Monte Carlo.
From here, the inferential model construction is conceptually straightforward.

A-step. Set ©,(u) = {0 : R,(¥) = Hy ' (u)} for u € [0,1].
P-step. For the relative likelihood-based construction in the A-step, since values of R, (1)

indicate 1 is a plausible value of the parameter, it makes sense to use a one-sided random
set §. Here we work with

S=1[U,1, U~ Py:=Unif(0,1). (12)
Two properties of S deserve mentioning: first, y(u) = w and, hence, v(U) ~ Unif(0, 1),
which implies (9) is satisfied; second, S is nested just like that in Section 2.1.
C-step. Combine the two sets above to get

0,(8) = | ©y(u) = {9 : Hy(R,(9)) > U}, U ~ Unif(0,1).
ues
Then the plausibility contour m, in (7) is
my(0) = Hy(Ry(0)), 0 €6,

which determines the full belief and plausibility functions via consonance, e.g.,

I0,(A) =supm,(9), ACO.
A

ve

It follows from Theorem 1 in Martin (2018) that the generalized inferential model with
plausibility function determined by (7) achieves the validity property in (4).
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Figure 2: Plot of the plausibility contour 7, (1}) based on the inferential model construction
here (black) and that in the previous section (gray).

This generalized inferential model can also be applied to the binomial example pre-
sented above. In this case, the likelihood function is

L,(9) x 0¥(1 —9)"¥, 9 €[0,1]

and, since the maximum likelihood estimator is = y/n, the relatively likelihood is

R, (V) = Ly(q?) _ (?)3/(%”—_729)”;/‘

Then the generalized inferential model proceeds by finding the distribution function Hy(r)
of Ry(f). This has no convenient, closed-form expression but the relevant inferential
model output can easily and exactly be evaluated numerically as

Hg(’l“) = Z f@(y),

y: Ry (0)<r

where fp is the Bin(n, ) probability mass function. From this computation, all of the
relevant inferential model output can be evaluated. For illustration, we revisit that same
example presented in the previous section, where (n,y) = (18,7). Figure 2 plots the
plausibility contour of this generalized inferential model, compared that from the basic
inferential model presented in Figure 1. The stair-step pattern is standard in discrete-data
problems; see, e.g., Martin (2015) and Balch (2020). Note, however, that the generalized
inferential model is slightly more efficient that that developed in the previous section, as
indicated by its narrower plausibility contour.

Finally, it is often the case that the full parameter of the statistical model is of the
form (0,7), ie., Y ~ Pyjy,, where 6 is the quantity of interest and 7 is a so-called
nuisance parameter. The censored data application considered here is of this form—
with the censoring distribution G being the nuisance parameter—as is the meta-analysis
application in Cahoon and Martin (2020). A natural way to proceed with marginal
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inference on #, which we describe in more detail in Section 3, is to define a function
Ry (0) that does not directly depend on the value of the nuisance parameter n. This does
not immediately resolve the n-dependence, however, because the distribution function

7= Hyp,(r) == Pyp,{Ry(0) <r} (13)

will generally depend on the unknown 7. To overcome this dependence on the unknown
nuisance parameter, one might try plugging in an estimator 7 based on the available data,
which amounts to constructing a generalized inferential model based on the approximate
distribution function for Ry (#), namely, Hy ;. Of course, plugging in an estimate affects
the exact validity of the generalized inferential model but, at least intuitively, if 7 is a
reasonably accurate estimate of 7, then the corresponding plug-in generalized inferential
model ought to be approximately valid. This is precisely the situation encountered in
censored-data applications, and Theorem 1 below confirms the above intuition.

3 Generalized inferential models under censoring

3.1 Construction

For random right-censored data, the full likelihood for Y under distribution Py s ¢, where
Y; are independently generated from (1), is given by

L,6,G) = H Gt %g(t;) % H fot) 5 Ey(t) %, 6 ee. (14)

Censoring is a special case of data coarsening (Heitjan and Rubin 1991; Jacobsen and Kei-
ding 1995), which has attracted considerable attention in both the statistics and imprecise
probability community. For the latter, interest in such models is clear since coarsening of
the data is one common way that imprecision can be introduced into a statistical model,
see, e.g., Denceux (2014) and Couso and Dubois (2018). Here we are considering random
censoring which, according to Jacobsen and Keiding (1995, Example 4) corresponds to
coarsening at random, or CAR, in the terminology of Couso and Dubois (2018).

Since our interest is only in 6 and the censoring distribution GG does not depend on 6,
it is easy to see that the maximizer, 6, of ¥ — L,(¥,G) does not depend on G. Therefore,
we can adopt a modified relative likelihood

R,(¥) = L,(9,G)/L,(0,G), o e€o.

With this choice, note that the nuisance parameter G gets canceled out, leaving only
a function of data and interest parameter. Of course, the distribution of Ry (0), as a
function of ¥ ~ Pyg g, does depend on G see below.

Our generalized inferential model for censored data proceeds as outlined in Section 2.2.
The modified relative likelihood above is the connection between data, interest parameter
0, and a scalar auxiliary variable U. That is, for the A-step, we have

Ry(0) = Hy(U), where U ~ Py = Unif(0,1),



with Hy ¢ the distribution function of the modified relative likelihood as in (13). Just
like in Section 2.2, values of the modified relative likelihood closer to 1 suggest values of
the parameter that are more plausible so, for the P-step, we choose random sets in the
form of nested intervals as in (12), i.e., S = [U, 1], where U ~ Unif(0,1). Finally, the
C-step proceeds exactly as in Section 2.2, with all of the relevant output being based on
the plausibility contour

7, (V) = H&G(Ry(ﬁ)), ¥ € 0.

If G were known, then it would be relatively simple to evaluate the distribution function
Hy ¢ and, hence, the plausibility contour in (7). Moreover, validity of the generalized
inferential model would follow immediately from the general theory.

Of course, G is never known in applications, so we need to suitably modify the above
strategy in order to overcome this challenge. As we indicated above, it makes sense to plug
in an estimator of G. Unfortunately, the construction of an estimator and justification
of the corresponding plug-in method are non-trivial when G is an infinite-dimensional
object. The next two subsections address these two challenges in turn.

3.2 Implementation

Putting the above inferential model construction into practice requires that the distribu-
tion function of the relative likelihood be evaluated, at least approximately, for every 6.
This is straightforward to do when data are not censored. This is similarly straightfor-
ward if data are censored but the censoring distribution G is known. Indeed, a simple
Monte Carlo approximation is available:

Hy(r) = 47 > Ry () <1}, (15)

where {Y(™ :m = 1,..., M} are independent copies of Y* = {(T,D}) :i =1,...,n}
and (77, D}) as in (1), with X iid from Fy and C} iid from the known censoring distri-
bution G. However, in our present context, Hy s depends (implicitly) on the unknown
distribution G of censoring times, so something more sophisticated than that simple
strategy just described is needed. Here we recommend using a plug-in estimator G.

The Kaplan—Meier estimator (Kaplan and Meier 1958), summarized in Chapter 4 of
Klein and Moeschberger (2003), is a powerful tool in the basic censored data analysis
toolbox. It is designed to estimate the survival/distribution function of the event times
when censoring is present, and its implementation is included in all statistical software
programs, e.g., the survival package in R (Therneau 2014). Our goal here is slightly
different, however; we want to estimate the censoring distribution function G rather
than the event time distribution. Fortunately, there is a relatively straightforward way
to overcome this. Our proposal is simply to reverse the event/censored classifications.
That is, recall that the observations are T; = min(X;, C;). But now we treat C; as
the “event time” and X; as the “censoring time,” which amounts to simply defining
a new censoring indicator d; = 1 — d;. From here, we can immediately construct the
Kaplan—Meier estimator G based on this modified interpretation of the data. An R
code implementation that returns the plausibility contour and corresponding plausibility
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Figure 3: Plots of the Kaplan—Meier estimator of the survival function, 1 — G.

regions based on this generalized inferential model formulation, with the Kaplan—Meier
plug-in estimator, is available from the second author’s website.

Many different presentations of the Kaplan—Meier estimator can be given, but the
one that we find the easiest to understand is through the lens of maximum likelihood.
Just as the likelihood function L, (6, G) in (14) factored nicely for dealing with 6 in-
dependent of (G, the same factorization can be used here to deal with G. That is, to
maximize this function over G, independent of 6, we can ignore the second term in (14)
and focus exclusively on the first, which only depends on G. Being a function of an
infinite-dimensional G' complicates the details, but it turns out that the Kaplan—Meier
is the (nonparametric) maximum likelihood estimator of G under this event-to-censoring
time renaming device. There is a closed-form expression for the Kaplan—Meier estima-
tor (see Klein and Moeschberger 2003, Chap. 4), but the formula provides no additional
insights so we opt not to give it here. Instead, we briefly mention two relevant proper-
ties. First, being a maximum likelihood estimator, the Kaplan—Meier estimator inherits
many of the nice properties, including consistency and statistical efficiency, properties
that we make use of in our theoretical analysis presented in Appendix A. Second, like
many other nonparametric maximum likelihood estimators, G is a discrete distribution,
so it has a step-function form. For illustration, Panels (a) and (b) of Figure 3 plot the
Kaplan—Meier estimator of the censoring survival function 1 — G for the two real-data
examples in Sections 4.1 and 4.2, respectively.

While this Kaplan—Meier plug-in estimator strategy is conceptually straightforward,
there is one technical point worth making about the estimation process. In typical appli-
cations of the Kaplan—Meier estimator, where the goal is nonparametric estimation of the
event time distribution, if the largest observation corresponds to a censored outcome, the
the Kaplan—Meier estimator of the survival function at time ¢ does not vanish as t — oc.
This amounts to the estimated event time distribution putting some mass at co. In our
context, since we interpret the original event times as censoring times, our estimate GG
will put positive mass at oo when the largest observation is an event, under which C}’s
drawn from G will equal oo with positive probability and, consequently, 7;’s drawn will
correspond to an event time as X < C}. The question is whether this simulation process
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produces Y* data sets that reflect the censoring pattern seen in the original data. Our
numerical simulations presented below suggested that it does.

3.3 Validity properties

That the corresponding inferential model satisfies the validity property follows immedi-
ately from the arguments presented in Martin (2018). Since our predictive random sets
are tailored such that the plausibility contours are stochastically no larger than uniform
when Y ~ Py ¢, it follows that

sup Pyjpc{lly(4) <a} <a, Vael0,1], VACO. (16)
0eA

A desirable consequence of validity is that confidence regions having the nominal fre-
quentist coverage probability can be constructed immediately based on the plausibility
function output. Indeed, if 7, is the plausibility contour function corresponding to ﬁy,
then the set

{9 e :m,(0) > a} (17)

is a nominal 100(1 —«a)% confidence region for any « € (0, 1). This follows since the prob-
ability that the above region contains the true parameter value 6 equals the probability
that my (6) > «, which equals 1 — a.

Can anything be said about validity of the inferential model derived from the above
algorithm with the plug-in estimator G? That is, can we conclude that

Pyp.a{my(6;G) < a} <a,

at least approximately? Here 7@(9‘ @) denotes the plausibility function obtained by ap-
plying the above algorithm with G plugged in for the unknown G, i.e., simulating C}’s
iid from G. The dependence of my(6; G) on the Kaplan-Meier estimator, an infinite-
dimensional quantity, is quite complicated, but at the very least, under mild assumptions,
our proposed generalized inferential model should be valid for large n. The following
theorem confirms this. Since we are considering asymptotic properties as n — 0o, we
embellish on our previous notation to emphasize the dependence on n.

Theorem 1. Let Y™ = (Yi,...,Y,) be a sample obtained under random censoring,
Pynjg,c, as described in (1), where both § and G are unknown. The proposed plausibility
function for inference on 6, defined by

mya(60;Go) = Hy o (Ryn(9)),
with én the Kaplan—Meier estimator of G described above based on Y™, satisfies
myn (05 G) — Unif(0,1) in distribution as n — oc.

Therefore, the proposed generalized inferential model is approximately valid for large n.

Proof. See Appendix A. m
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Theorem 1 establishes approximate validity, but the theoretical support for our ap-
proach might actually be stronger than the theorem suggests. The proof amounts to
comparing the distribution of Ry« (#) under two different distributions for Y, one based
on (A, G) and the other based on (6, G,). The relative likelihood is well-known to be an
approximate pivot, that is, when n is large, the distribution Ry« (6), under Pynjg ¢, does
not depend on 6 or G. Since ¥ — R, (V) itself does not depend on G, the distribution of
Ry (0) is relatively insensitive to small changes in G. That is, if G’ and G are two censor-
ing distributions that are “reasonably close,” then the distribution of Ry« () is roughly
the same under Pynjg ¢ and Pynppc/. So all we need is for @n to be in a neighborhood of
G to conclude that 7y« (6; @n) is approximately uniform. Fortunately, we know that @n
gets close to G very quickly as n — 00, so we expect that myn(6; @n) — Unif(0,1) very
quickly too. Details behind these heuristics are made precise in the proof in Appendix A,
but it remains to determine if there really some kind of higher-order accuracy here.

To see this unexpected accuracy in action, we take 10,000 small samples of size
n = 15 in which X;’s are generated from a standard exponential subject to random
right censoring from the Unif(0,5). A Monte Carlo estimate of the distribution function
a — Pyjpc{my(6; @) < a} shown in Figure 4 is approximately uniform, hence approxi-
mate validity. Moreover, by starting with the relative likelihood R, (f) in (11), we removed
almost all dependence on the nuisance parameter GG; that is, the exact distribution of our
relative likelihood is roughly constant in GG and thus the plug-in estimator we used to
get G apparently does not need to be especially accurate. As a result, the plausibility
output using our plug-in method as described in Section 3.2 is close to the exact distribu-
tion. Simulated- and real-data examples in Section 4 further demonstrate the proposed
method’s strong performance compared to others.

4 Examples

We compare our proposed approach against frequentist and Bayesian methods with simu-
lated and real data. The exponential and Weibull examples are taken from the survival
package in R, while the last log-normal example is taken from Krishnamoorthy and Xu
(2011). We consider these three parametric distributions that are commonly used in
time-to-event analyses, and we generate 10,000 replications of censored data under var-
ious settings of these distributions. We repeat each set of simulations at four sample
sizes of n € {15,20,25,50}. As our results suggest, plausibility functions consistently
outperform more familiar methods, achieving nearly the nominal 100(1 — )% coverage
rate across different distributions, parameter settings, and sample sizes.

4.1 Exponential

The classic time-to-event distribution is exponential, characterized by a constant hazard
rate > 0, in which the density function is fy(t) = fe=%. For n items, independently
subject to random right censoring, summarized by y = {(¢;,d;) : ¢ = 1,...,n} as above,
the maximum likelihood estimate is § = S d;/ S ;. From its classical asymptotic
normality, a 95% confidence interval for 6 is easily obtained as 6 + 1.96/ (é)*l/ 2, where
1 (é) is the observed Fisher information, i.e., the negative second derivative of the log-
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Figure 4: Distribution of a — Py‘97g{py(0;é) < a} (solid) compared with that of
Unif(0,1) (dotted) based on Monte Carlo samples from a standard exponential distribu-
tion subject to random right censoring. The average censoring level among all 10,000
replications at this setting is 19.9%.

likelihood evaluated at 6. From a Bayesian standpoint, the censoring mechanism can
be safely ignored as the likelihood can be formed from (2) and combined with a conju-
gate Gamma(wy, fp) prior to arrive at the posterior Gamma(ag + Y o, di, fo + Doy ti)-
Posterior credible intervals are then easily obtained. Experiments with various values of
(v, Bo) revealed that ag = 2 and By = 1 had the best overall performance across our
settings with respect to coverage probability of the credible intervals.

From an inferential model perspective, we begin with the baseline association of the
relative likelihood for 6 € ©,

92iDip=03 T

ae e — HoeU), U~ Py =Unif(0,1). (18)

As described above, we write Ry (0) for the left-hand side of the above display. For fixed
data y, we follow through our A-step with the singleton-valued map
Oy(u) ={0: Ry(0) = Hyc(uw)}, we0,1].

Next, the P-step requires introducing a predictive random set S in (12) for U. We then
combine our A- and P-steps

0,(8) = | J ©y(u) = {v: Hyc(R,(¥)) > U}, U~ Unif(0,1).

ueS

And we summarize the distribution of this random set ©,(S) by a plausibility contour

(V) = Hy (R, (0)), 6>0.

14



A 100(1 — )% confidence interval can be obtained as the upper level set of the plausi-
bility contour as in (17). Evaluating this plausibility contour requires the Monte Carlo
procedure discussed in Section 3.

For comparison, we simulate 10,000 replications of lifetimes arising from nine different
0 values—between 0.5 and 15—in the exponential distribution. For each of these 90,000
simulations, the lifetimes X, ..., X,, ~ Fy generated were subject to random right cen-
soring from CY, ..., C, ~ Unif(0,5), allowing us to compare the coverage of our inference
procedure under a wide range of censoring levels. Results shown in Figure 5 demonstrate
that the nominal 100(1 — «)% coverage is achieved by our proposed method. Note that
this problem is particularly challenging in the n = 15 and large 6 case, since large 6
implies more censoring. The maximum likelihood and Bayes approaches appear to be
substantially affected by this extreme censoring, while our approach is not.

For a real-data illustration, we consider the primary biliary cirrhosis (PBC) data
from a clinical trial at the Mayo Clinic from 1974 to 1984. The data consists of n =
312 recorded survival times for patients involved in the randomized trial, along with a
corresponding right censoring indicator; there are 168 censored cases, more than 50%
of total observations. Figure 6 shows the point plausibility function m,(6) for a range
of parameter values, along with the corresponding 95% plausibility interval (17). For
comparison, 95% confidence intervals based on asymptotic normality of the maximum
likelihood estimate are also displayed. The intervals derived from the plausibility function
are almost indistinguishable from the likelihood-based intervals, which is a sign of our
proposed approach’s efficiency, since the latter are asymptotically “best.”

4.2 Weibull

One of the most widely used time-to-event distributions is the Weibull, with applications
in manufacturing, health, etc., as it has sufficient flexibility to capture changes in the
hazard rate (Lawless 2011). Exponential is a special case of the Weibull when the shape
parameter J = 1. The density and survival functions, indexed by 6 = (8, A), are

fo(t) = \BtP L exp (—)\tﬁ), Fy(t) = exp (—)\tﬁ).

Similar to the setup as described for the exponential example, we compare the perfor-
mance of our proposed approach against that of a more traditional frequentist or objective
Bayesian approach. An inferential model requires that we simulate the distribution of
Ry (0); so for a finite grid of 6 = (5, \) values, for each pair, 500 Monte Carlo samples
of Y* are obtained by taking the minimum between realizations of X* ~ Weib(f, A) and
C* ~ @, the modified Kaplan—Meier estimate. We implement this procedure for 10,000
replications of lifetimes arising from six different settings, with 3 ranging between 0.5 and
3.0, of the Weibull distribution. These 60,000 replications were each subject to random
right censoring from G ~ Unif(0,4). To compare against a Bayes approach, multiple
non-informative and weakly informative priors were used, from which the Gamma(0.1,1)
prior on the shape and N(0, 10) prior on the log transformed scale were selected, as they
resulted in credible regions with the highest coverage. Surprisingly, as shown in Fig-
ure 7, despite the careful specification of these priors, the generalized inferential model
still remains the only method that achieves nominal coverage across these censored data
settings. The joint confidence sets from maximum likelihood under-cover, while the joint
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Figure 5: Coverage probability of the 95% plausibility region for # in the exponential
model (black). Results compared to those based on maximum likelihood (dashed) and
Bayesian with a Gamma(2, 1) prior (dotted).
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Figure 6: Point plausibility function for the mean in the PBC example under an exponen-
tial model (black). Reference line at a = 0.05 (dotted) and approximate 95% confidence
intervals based on maximum likelihood (grey).

credible sets from our Bayes approach achieves nominal coverage only past a specific
value as, under our simulation settings, the average censoring levels tend be much larger
with small values of 5. Further investigations into interval lengths (not shown) also
demonstrate our plausibility intervals are on average shorter than the Bayesian intervals.
For a real-data example, we consider survival data on ovarian cancer patients from a
clinical trial that took place from 1974 to 1977. This data set has n = 26 survival times
for patients that entered the study with stage II or IITA cancer and were treated with
cyclophosphamide alone or cyclophosphamide with adriamycin. Of this patient group,
14 survived (or was censored) by the end of the study, while 12 died (Edmonson et al.
1979). Despite the small sample size and high censoring level, our plausibility contours
capture the non-elliptical shape as shown by the Bayesian posterior in Figure 8.

4.3 Log-normal

Within environmental science, the log-normal distribution is often used to approximate
data that are censored to the left, e.g., chemical pollutants that can only be detected
above some minimal threshold (Krishnamoorthy and Xu 2011). The density function,
indexed by 6 = (i, 0), is

0= g A1)

(2m) 20t o
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Figure 7: Coverage probability of the 95% plausibility region for § = (3, A) in the Weibull
model (black). Results compared to maximum likelihood (dashed) and Bayesian intervals
based on a Gamma(0.1, 1) prior on the shape and N(0, 10) prior on the log transformed
scale (dotted).
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Figure 8: Plausibility contour (black) for § = (3, A), the shape and scale parameter pair,
in the ovarian cancer data under a Weibull model subject to Type I right censoring.
Bayesian posterior samples based on a Gamma(1,0.1) prior for the shape and N(0, 10)
prior for the log transformed scale parameter (gray).

Similar to our examples above, we compare the coverage performance of our plausibility
contours against that of ellipses based on asymptotic normality of the maximum likelihood
estimator and posterior credible regions based on a Gamma(1,0.1) prior on the precision
7 = o~% and N(0,1000/7) prior on the mean. Again, 10,000 replications of censored
data were generated from 6 different settings of the log-normal distribution, subject to
left censoring under G ~ Unif(0,1). In order to approximate the distribution of Ry (6),
however, our modified Kaplan—Meier estimate G now requires putting positive mass at
0 when the smallest observation corresponds to an actual event record, so the challenges
we encountered under right censoring are simply reversed. A relevant quantity of interest
in log-normal model applications is the mean, 1 = exp(u + 02/2), a non-linear function
of (u,0). Figure 9 shows that, under various censoring levels, our proposed method gives
marginal plausibility intervals for ¢ that achieve the nominal 100(1 —«)% coverage while,
again, the other methods drastically under-cover.

We use Atrazine concentration data collected from a well in Nebraska as an example.
This set of 24 observations were randomly subject to two lower detection limits of 0.01 and
0.05 ug/1 of which 11 observations were censored. Despite this censoring level of 45.8%,
previous studies indicate the log-normality assumption holds (Helsel 2005). We apply
our Monte Carlo approach to determine the joint plausibility contours for § = (i, %) in
Figure 10, along with the marginal plausibility function for the log-normal mean, 1, in
Figure 11. The point at which we assign the highest plausibility aligns with the maximum
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Figure 9: Coverage probability of the 95% plausibility interval for ¢ in the log-normal
model (black). Results are compared to maximum likelihood (dashed) and Bayesian
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Figure 10: Plausibility contours a = {0.20,0.30, 0.40, 0.50, 0.60, 0.70, 0.80,0.90} for the
Atrazine example under a log-normal model with Type I left censoring.

likelihood estimator, i = —4.206 and ¢ = 1.462 (Krishnamoorthy and Xu 2011).

5 Conclusion

In this paper, we proposed a specific inferential model construction for contexts in which
the data are corrupted via censoring. The main obstacle is that the censoring distribu-
tion is a unknown; despite not being of scientific interest, the presence of an infinite-
dimensional nuisance parameter complicates the inferential model construction. To over-
come this challenge, we extend the generalized inferential model framework in Martin
(2018) to cover the case of censoring according to a distribution G. We propose a plug-in
approximation to the known-G inferential model construction with one that relies on a
modified version of the classical Kaplan—Meier estimator, swapping the roles of event and
censoring times. Approximate validity is established in Theorem 1, but we argued that
the validity result might actually be stronger than the theorem suggests. We demon-
strate numerically that the proposed inferential model approach outperforms traditional
maximum likelihood and Bayesian solutions in terms of coverage probability.

Aside from efforts to establish the validity property more rigorously for small n, it is of
interest to explore complicated and practical types of censored-data models. First, there
are interesting problems where censoring depends on covariates, so that an assumption
of random censoring might not be justified. In principle, the approach described—with
a generalized association based on the distribution of relative likelihood—would also
work in more general cases, the optimization and Monte Carlo computations required to
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Figure 11: Marginal plausibility function for the mean 1 in the Atrazine example. Ref-
erence lines at &« = 0.05 and at the maximum likelihood estimate (dashed).

evaluate the distribution function Hy ¢ would be much more involved. Ongoing efforts are
focused on this and other general improvements to the simple Monte Carlo computations
described here. Second, so-called current status examples are those where the event
times are unobservable, the only data is an examination time and a status indicator
which simply indicates if the event has happened by the examination time or not. This
data is corrupted even more so than with censored data, but it would still be possible to
extend the methodology developed here. Third, we could also consider interval-censored
data, where the event time is censored unless it falls within a certain (random) interval.
Here, like with the addition of covariates, extension of the proposed methodology is at
conceptually straightforward, but computationally more challenging. More generally,
there is an entire class of examples involving corrupted or coarsened data in Couso and
Dubois (2018) and it would be interesting to explore the application of the inferential
model machinery to those problems.
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A  Proof of Theorem 1
Start by writing my«(0; G,,) = my=(0; G) + A,,, where
A, = Hys (Ryn(0)) — Hyo(Ryn(0)),

with @n the Kaplan-Meier estimate and G the true censoring distribution. The key
insight is that my«(0; G) is exactly uniformly distributed under Py, so if we can show
that A,, — 0 in probability, the claim will follow from Slutsky’s theorem.

A first observation is that

I

|A,| < sup ‘H;@W(T) — Hy'(r)

rel0,1]

so we can prove the claim by showing that the above difference vanishes uniformly. But
since these are distribution functions, it is enough to show that the difference vanishes
pointwise, at each fixed r. To prove pointwise convergence, we refer to Banerjee (2005)
who shows that the usual large sample properties for the relative likelihood Ry« (6) hold
under Pynjg¢ and under Pynjpq,, as long as G and G, are “close.” In particular, he
shows that, for any G,, that satisfies G,, = G + n~'/2Z, for Z, bounded in probability,
the two distributions Pynjg.¢ and Pynjg g, are mutually contiguous and, therefore,

—2log Ry« (0) — ChiSq(dim(#)) in distribution as n — oo, (19)

under both Py« and Pynjg g, ; see also, Murphy and van der Vaart (1997, 2000). Theo-
rem 5 in Breslow and Crowley (1974) establishes that the Kaplan—Meier estimator satisfies

n'?|G, — G| = O(1) in probability as n — oo,

where |G—G'|| = sup,, |G(t)—G’(t)| and 7 is any value such that {1—Fy(7)}{1-G(7)} >

0. Therefore, we have
Hgq(r) — H®(r) and Hj (r)y— H>(r), n— o (20)
where H™ is the limiting distribution function of Ry« () from (19). If we write

[Hyg, (1) = Hio(r)] < |Hyg (1) = H=()| + [Hig(r) = HZ(r)

)

then we immediately see that the right-hand converges to 0 in Pynjgg-probability as
n — oo. This, in turn, implies the same for A, and, applying Slutsky’s theorem as
discussed above, we can conclude that py«(0;G,) — Unif(0, 1) in distribution.
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