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1. Introduction

This work continues the development (which started, e.g., in
[1-3], and [4]) of sequential predictor approaches for compensat-
ing for arbitrarily long input delays. Prior results covered dynam-
ics whose right sides satisfy a linear growth condition. Here we
cover feedback designs for dynamics for which this linear growth
condition is not needed and which therefore can be applied
to important bilinear systems that were beyond the scope of
previous sequential predictor methods; see [5-7] for the value
of bilinear systems.

Our method is motivated by the ubiquity of input delays in
many applications, and the bottlenecks that arise when using
standard controllers that were not designed to compensate for
the input delays; see [8-17]. A natural method for coping with
input delays is emulation, which calls for designing a stabilizing
feedback that can be applied when the input delays are zero,
and where one then calculates a bound on the input delays
under which the resulting closed loop system still enjoys de-
sired global asymptotic stability properties; see, e.g., [18]. For
cases where the delay bounds from emulation may be too small,
other authors explored other input delay compensation methods,
including exact predictor and reduction methods. These other
methods can compensate for arbitrarily long input delays, but
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can be complicated to use in practice because their controls are
only implicitly defined as solutions of integral equations; see, for
instance [19,20], and [21].

This motivated [1] and [2] and other papers on sequential
predictors for delay compensation, which normally express the
control using values of an auxiliary variable that is viewed as
an output of a collection of ordinary differential equations. This
collection of equations includes copies of the original system
running on multiple time scales, with additional stabilizing terms,
making it possible to compensate for arbitrarily long input delays
without having any distributed terms in the controls. However,
these results required that the right sides of the systems grow
linearly in the input and state, which excludes bilinear systems
having the form

X(t) =

AOXE) + > uit —h)(BIOKE) + G(D)) + D(D5(2) M
i=1

with unknown measurable locally essentially bounded functions
8 (representing uncertainty), constant delays h, controls u =
(uq,...,uc), and bounded coefficient matrices. Although such
systems are often stabilizable using bounded controls, knowing a
bound on u is not sufficient to extend previous sequential predic-
tor results to cover bilinear systems (1). This is because the earlier
results also need input-to-state stability (or ISS) with respect
to measurement uncertainty, and since one must find a bound
8 on the supremum of § using a bound on the measurement
uncertainty; see (7), the third part of the proof of Theorem 1,
and [3, Assumption 2].
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This calls for the innovations of this work, which eliminates
the requirement that the right sides grow linearly in the input
and state. These innovations are made possible by our signifi-
cantly different mathematical analysis, as compared to the study
of sequential predictors for linear systems. Our key ingredients
include (a) our new Lyapunov-Krasovskii functional construction
involving novel uses of Young’'s inequality and (b) a relaxed
condition on the measurement uncertainties in the control (in As-
sumption 1). This overcomes a longstanding obstacle to building
sequential predictors for bilinear systems. See Remarks 1-2 for
more on the innovations in our work.

We provide input delay compensating sequential predictors
for bilinear systems having the form (1) with continuous co-
efficient matrices, including ISS with respect to the §, which
were not previously available in the literature. We state and
prove a general sequential predictor feedback control result in
Sections 3-4. Then Section 5 provides sufficient conditions that
facilitate checking our assumptions of our general result. In
Section 6, we apply our method to a key class of bilinear systems,
which we demonstrate using a power system in Section 7.

2. Definitions and notation

Throughout this paper, the dimensions of the Euclidean spaces
are arbitrary unless we note otherwise, and we omit arguments
of functions when they are clear. The usual Euclidean norm in
R" and the induced matrix norm are denoted by |-|, and |¢|,
(resp., |¢|,) is the usual essential supremum of a function ¢ over
any interval Z in its domain (resp., its entire domain). Consider a
system of the form

X(t) = F(£, X(£), ur(t — h), A(t)), (2)

whose state X, feedback control u~, and unknown Lebesgue mea-
surable locally essentially bounded function A are valued in R™,
R™, and R"3, respectively, where h > 0 is a constant delay. Owing
to the delay, the solutions of (2) are defined for given initial times
to > 0, initial functions that are defined on an initial interval 7° C
(—o00, tg] such as [ty — h, ty], and functions A. We assume that (2)
is forward complete, i.e., all such solutions are uniquely defined
on 7°U([to, 0o); see Section 3 for our assumptions that ensure this
forward completeness property. We use the well known standard
classes KL and K., of comparison functions from [22, Chapt. 4]
and the definition of input-to-state stability (or ISS, which we also
use to mean input-to-state stable) for (2); see [23] and [3] for ISS
under delays. We use this definition:

Definition 1. For a fixed ur, we say that (2) is ISS with respect to
a disturbance set D C R™ provided there are functions 8 € KL
and y € Ko such that for all initial times ¢, initial functions, and
choices of the functions A that are valued in D, the corresponding
solutions of (2) all satisfy [X(t)] < B(IX|z0, t —to)+ ¥ (| Aljg.¢) for
all t > to.

Let N = {1, 2, ...}, and Bg denote the closed ball of any radius
R > 0 in Euclidean space centered at the origin. For subsets S;
and S, of Euclidean spaces, a function W : S; x S, — R"is
called locally Lipschitz in its second variable uniformly in its first
variable provided: for each constant R > 0, there is a constant
Lz > 0 such that |W(sq, sq) — W(s1, Sp)| < Lg|sq — sp| for all s1 €
Sq and all s, and s in Bg. If Ly in the preceding property can be
chosen independently of R, then we use the term globally (instead
of locally) Lipschitz. We call aJ : [0, co) x R" — [0, co) uniformly
proper and positive definite provided there exist functions y €
Koo and ¥ € Ko such that y(|x]) < J(t,x) < p(|x|) forall t > 0
and x € R". We set W, (s) = ¥(t +s)forall ¥,s <0,and t > 0
such that t +s lies in the domain of ¥. We also use 0, (resp., I;)
to mean the £ x r matrix whose entries are all 0 (resp., the r x r
identity matrix).
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3. General result

Before turning to our results on bilinear systems, we provide
a novel result for a more general class of systems

whose state x, control u, and unknown Lebesgue measurable
locally essentially bounded function § are valued in R", R, and
RY respectively, and h > 0 is a constant delay, where we use
different notation from (2) in part because the A in (2) will not
coincide with § in (3) in Assumption 1 to follow. One difference
between the result of this section and [3, Theorem 1] is that
here we remove the requirement that the dynamics grow linearly
in (x, u), and instead use boundedness conditions on ug, on the
control set, and on the disturbances € and §; see Remarks 1-2
for more on the significant differences between this work and [3]
and about the value added by this work. We assume:

Assumption 1. There are a compact neighborhood &/ C R® of
01, a continuous function us : [0, c0) x R" — i/ that is globally
Lipschitz in its second variable uniformly in its first variable, and
a constant € > 0 such that the system

X(e) = f(e, %), us(t, x(£) + €(1)), 8(¢)) (4)

with disturbance A =(e, §) is ISS with respect to the disturbance
set Bz xRY. Also, u(t, 0x1)=0,; forall teR. O

Assumption 2. The function f is continuous, and is locally
Lipschitz in (x, u, §) uniformly in t, satisfies f(t, 0,,1, Ocx1, O4x1) =
0, for all t > 0, and admits a constant k > 0 such that

If(t,z1,U, Ay) = f(t, 22, U, Ay)

5
< klzi — 22| + k|A1 — Ay| )

holds forallt > 0,z; e R",z, e R", U € U, A; € RY, and A, € R¢
for the choice of ¢/ from Assumption 1. O

Throughout this paper, we consider any constants m € N,
€, > 0,h > 0,C € (0,2m/h), G, > 0, and 1, > 0, and any
k and € satisfying Assumptions 1-2, and then we set

m(4k+1q)
2m—hC; °

’

€o,r :max{l, W}

p=

f=c%max{P2(1+C2),I<2(]+é)(1+%a)],
fO:mi“{Zk(—%(l—kAG)),%]’

e=max |2 (14 2) 20 ] ()

_— 2 2
M=f + 0 (14 ), =1+ 4,

wo =1, a)j:%(éwi—l'i‘f*) ifl<i<m-—1,

and €, = é min {0.560, S }

®Om—1

which will all be positive constants under condition (8) of our
theorem. The integer m will serve as the number of sequential
predictors, and the constants C; will serve as weighting functions
in our Young’s inequality applications in our Appendix. In terms
of (6) and any constant

Sefo & | )
m ZAﬂOWn_1

(which will serve as our bound on §) and the function fy(t, X, u) =
f(t,x, u,0), we prove:
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Theorem 1. Let k > 0 and € > 0 be constants such that (3)
satisfies Assumptions 1-2. Assume that

- hc(1 +Aa). (8)
k

Consider (3) in closed loop with
u(t) = us(t +h, Zm(t))v 9

where z,, is the last n components of the state of the system

21(’:) = fO (t + %7 Zl(t)v ¢(t7 Zm, 1))
—plz; (t — L) —x(t)]
Ht) = fo(t+ 2, 2(t), D(t, zm, 2))
—plz(t—5) —2()] (10)
inlt) = fo (€4 b 2Zu(£), Dt 2, )
—-p [Zm (t - %) - Zm—l(t)]
where

D(t, zm, 1) = ug(t + h — h(m — i)/m, zy,(t — h(m — i)/m))

forallt > 0andi € {1,2,...,m} and zyo = x. Then there are
functions By € KL and yq € Koo Such that all solutions (x,z) :
[to — 2h, 00) — RM™DN of the preceding closed loop system, for all
Lebesgue measurable essentially bounded functions é : [0, 00) — Bs
and all initial times to > h/m, satisfy

X < Ba <|X|[¢0_2h,t0+h/m]+|Z|[z0_2h.z0+h/m]a t_fo) (11)
+ ¥a(18i5.01)

forallt > to, where z = (z1,...,zy). O

Remark 1. Theorem 1 states that it is possible to design a
sequence of m predictors such that, when the un-delayed closed-
loop system (4) is ISS with respect to the disturbance §(t) and the
uncertainties €(t) in the state measurements under the bounds on
these functions from Assumption 1, then in the presence of delay,
the state of the closed loop system with the predictor remains
in a ball whose radius depends on the initial conditions and the
bound on §(t).

It is tempting to surmise that at least in bilinear cases, we can
reduce our analysis of (3) to systems that are globally Lipschitz in
the state (which were covered in [3]), by replacing f by the new
dynamics f,ew that is defined by

f(t, x,u,d),

_ if [u <R
frew(t, X, u,8) = { F(t,x, uR/|ul, ),

if |u| > R (12)

for a bound R on the control u;. However, this replacement would
not address the problems in this work, where there is a restriction
on the allowable measurement uncertainties ¢ in Assumption 1
(which makes our assumption less restrictive than in [3], where
the ISS assumption is required for all choices of the measurement
uncertainties e(t)) and where we must therefore find a bound §
on the allowable uncertainties 4.

Our (less restrictive) condition in Assumption 1 that € re-
mains in a bounded set is called for in order to produce a the-
orem whose assumptions we can check for bilinear systems; see
Lemmas 2-3. However, the price to pay for only considering €’s
that stay in a bounded set in Assumption 1 is that it calls for the
third part of our proof of our theorem; see especially (34) and
(37). The requirement that us is valued in the compact set U/ is
used to ensure that (5) is satisfied when U is a control value; see
(A.3)-(A.4). The bound on ¢ in Assumption 2 is needed for the
existence of the required k when (2) is bilinear; see (41).
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Remark 2. Theorem 1 is also new even when § = 0, because
of its less restrictive condition on the number m of sequential
predictors, as compared with the condition

m > h(4k + 1%/ (2/k)(1 + X4) (13)

from [3]; see Section 7. Our strategy for obtaining our less restric-
tive lower bound (8) on m is to use the degrees of freedom in the
Lyapunov-Krasovskii analysis in the Appendix, where the con-
stants C; and G, arise from using Young’s inequality instead of the
triangle inequality. This leads to a different Lyapunov-Krasovskii
functional in our analysis and a different p in the sequential pre-
dictors, as compared with [3], which used p = 4k + A,. Therefore,
although the sequential predictors (10) have the same general
structure as earlier sequential predictor designs (consisting of
copies of the original system running on different time scales with
additional corrective terms), there is considerable novelty in our
proof that makes it possible to apply this general structure in our
novel setting that includes bilinear systems.

A significant difference between works such as [24] and
Theorem 1 is that our theorem yields a control having no dis-
tributed terms, based on the computationally cheap sequential
predictors (10). While Lyapunov methods can produce conserva-
tiveness, we believe that this is the price to pay to compensate for
arbitrarily long input delays without using distributed terms that
would otherwise have occurred from using standard predictive
methods while also handling bilinearities. We can provide a
global exponential ISS estimate for the error vector (14) (in (30)),
which we can combine with (11) to obtain ISS estimates for the
combined variable (x, z), where z = (z1, ..., z,) is the vector of
predictors (using the fact that zj(t)=¢&(t) + &-_1(t + h/m)+-- -+
&1(t+(i—1)h/m)+x(t +ih/m) for all t > 0 and i > 2). We leave the
formulas for comparison functions in the ISS estimate for (x, z) to
the reader.

Remark 3. Like in [3], our requirement t;, > h/m in
Theorem 1 is used in our Lyapunov-Krasovskii analysis but can
be relaxed. While the main result of Mazenc and Malisoff [3]
contains suprema over [to — h, to + h/m] on the right side of (11)
instead of [ty — 2h, ty + h/m], we use 2h instead of h to allow
the special case where m = 1. Moreover, we can use the method
from [3, Section V] (with its requirement U € RC replaced by
U € u) to replace [ty — 2h, ty + h/m] by [ty — 2h, tp] in the final
estimate (11).

4. Proof of Theorem 1

Throughout the proof, all inequalities and equalities should be
understood to hold for all t > ty and to > h/m along all solutions
of the closed loop system from the statement of the theorem,
unless otherwise indicated. Recalling our definition zo = x, we
use the error variables

E=(&,...,En), Where (14)
&E(t)=2z(t)—zi_1 (t +h/m) fori=1,...,m.
The rest of the proof has three parts.
First Part: Lyapunov-Krasovskii Functionals for &. We use
1 t
e = Sl + [ isterae (15)
2 t—2h/m
fori=1,2,...,m and the following lemma (which we prove in

the Appendix, and where & is the ith component of &; for each

i):
Lemma 1. Consider the functions v(&) = 5|&/* and

wu(&ir) B . .
= v(&(6) + C(1 + Aa) [i_opm J; V(E(O))dLds (16)
and fiE;) = (&) + [ m EC)PdE
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fori=1,2,..., m. Then, the inequalities

e < —eoft(Ere) +MISI ¢ onm (17)
and

. ~ 2

wEy) =< (&) + %0|5171(t)|2

_f
2
3 (18)
+ (1 n Ciz) B [ & (0P AL

hold forallt > h/mandi€ {2,...,m}. O

The proof that ¢y from (6) satisfies the requirements from
Lemma 1 uses the fact that the constant ¢, from (6) is such that

uEe) < glar? :
+ CEl + g2 ] Ji—anym |ECO)PdE (19)
< eoeft(&ir)
fori =1,...,mand all t > h/m. We also use (19) later in the
proof below. From our choices (6) of our constants, it follows from
Lemma 1 that for alli € {2,..., m} and t > h/m, we have
(Eie) < =2 (Ee) + EUEi1e). (20)

Second Part: ISS Estimate for & Dynamics. We next show that
with the constants w; from (6), the function

Wl €)= omj(&e) (21)
j=1

is an ISS Lyapunov-Krasovskii functional for the £ dynamics with
the disturbance §. We use induction and the partial sums

Wi(E) = (Eme) + 01M(Em1,0) + - - - + O p(Em—r ) (22)
forr=1,...,m —1when m > 2. Using the fact that
(&) = w(Eme) + (2/€0)(€ + €)u(Em—1.0) (23)

and (20), we get

.4
My =

—eioﬂ(gm,r) — € l(Em-1,) + 6%(6 + €)(Em—2.t)

holds if m > 2 and t > h/m. On the other hand, for m = 2, we
can use (17) to verify that

(24)

I:L:; = _67011(62,1‘)_6*[}(5],[)—"_ %(E + 6*)M|8|ﬁ:,t+h/mj (25)
for all t > h/m. By induction, it follows that
P < —Gioljb(gm,t)
m—1 . (26)
— & Y UEmgit) + O AMISI
j=1
for all t > h/m and m > 1. Moreover, (19) gives
Om—it(Eit) < €0,00m-ifl(Eir) (27)
fori = 1,...,mand allt > h/m,and 1 < w; < w1 for

i=0,...,m—2and m > 2, since ¢ > ¢y/2.
It follows from (19) and (26) and our choice of €, in (6) that
we have

[y < —Exttin(E) + OmaMISIE o pym (28)

forall t > h/m. Applying the method of variation of parameters to
(28) (by multiplying it through by e®! and integrating the result
on [ty, t] for any to > h/m), we obtain a constant ¢, > 0 such
that

slE@)?

IA

Win(&)

_ i (29)
Caee*(to—t)|g|[[072h’t] +

512
Om—1MBIie ¢ in/m)

A

€x
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for all t > to. By multiplying (29) through by 2 and using the
subadditivity of the square root (to upper bound the square root
of the two right side terms), it follows that

[E(t)] <

_ _ 20m-_1M
e03&t0=0. /2¢4|E 1o —an.1o] T+ \/mé:*]w[fo‘“rh/’”]

holds for the £ dynamics for all t > ty and to > h/m.
Third Part: ISS-Like Estimate for Closed Loop x Dynamics. We
show how our new variable

(30)

m—1
Et) = ng,e(ure% —h) (31)
=0

can be viewed as a measurement error added to the state x(t) in
the feedback control in the closed loop system from the statement
of our theorem, which will allow us to apply Assumption 1 with
€ =&

To this end, we first choose a constant A, € (0, 1) that satisfies

(32)

which exists by (7). Since 1/, > 1, the exponential ISS condition
in (30) then yields a constant 7 > 0 such that

1 [ 2wm_1M -
)] < — | S (33)
As €y

for all t > tg + Gs and such that we also have

20m—_1M 3 -
(O] < MIElpenym < oy TETE =€ (34)
for all t > tog + h + Gs, where
Gs = T(|X|[r0—2h,r0+h/m] + |Z|[t0—2h,[0+h/m])’ (35)

by (32) and our condition |§|,, < §; a formula for the required
constant 7 can be deduced from the fact that In(1+r) < r for all
r>0.

On the other hand, using the fact that

Zn(t) = Em(t) 4+ Zm—1 (t + h/m)
Zm—l(t) = gm—l(t) + Zm—2 (t + h/m) s (36)
woand zi(t) = & () +x (t + 1)

all hold for all t > 0, it follows (e.g., by induction on m) that

Zm(t) = E*(t + h) + x(t + h). Hence, (3) in closed loop with (9) is
X(t) = f (£, x(8), us (¢, x() + (1)) , 8(¢)) . (37)

Then (34) allows us to use Assumption 1 with ¢ = &* along all
solutions of the closed loop system and all t > tg + h + Gs.

In fact, the last part of the proof of Mazenc and Malisoff [3,
Theorem 1] with its initial time t, replaced by tg =ty + Go allows
us to find functions B, € K£ and y, € K such that, for all
solutions of the closed loop system of our theorem, and for all
t > t; and to > h/m, we have

[x(t)] <

38
Bty £~ 0 = Go) 1181 .0) (38)

where Gy = Gs + h and x¥* = (x,z). On the other hand,
Assumptions 1-2 provides a constant L > 0 (that is independent
of the initial condition) such that |X*(t)| < i(llelt_,m + |5|[t0,[])
when t > ty > 0. Integrating the preceding bound for |¥*(t)|,
and applying Gronwall’s inequality to the function |x*|,_, ., we
get a constant ¢, > 0 (which is also independent of the initial
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condition) so that

O] = ¥ ]e-ng = €2965G0 (1K1t T8 1t0.01)
= €936, (Col¥ g + 505 + 2h181 (39)
< M(lxtl[t072h,fo+h/m]) + £(|8|[t0’r])

for t € [to, t; +h/m], with Go = Gs +2h, M(s) = 2cpse*bTS(T(s+
8) + 2h(1 4 8¢, 7)), and where £(s) = 2c,hs, and where we used
2heyeT5I8] < 2hey(oTse?TS + DI3], < 28hc2TesTSs +
2hcb|8|[t07t] (which is a consequence of the %ound e <re" +1 for
r > 0)and

¢
Xl 1tg—2n.tq+t/m) T 121t —an.cqrnsm = 21X |1eg—on,iq+h/m) (40)

and |8],, < 8. Using (39) to upper bound the first argument
of B, in (38), and then using the fact that By(r; + rp,13) <
By(2r1, 3) + Bp(212, 0) for all nonnegative ry, 15, and rs, it follows
that we can upper bound the first right side term of (38) by
Bo(ME(IX¥ |1t —2h. gy -4n/m1 )s £ — to) + Bo(2L(18] (¢, ¢1)- 0) with MF(s) =
max({s, 2M(s)}. Hence, by separately considering times t € [to, tg]
and t > té, we conclude that we can satisfy the requirements of
Theorem 1 with By(s, t) = max{M(s)e?T "t By (M*(s), max{t —
27s — h, 0})} and y4(s) = max{L(s), Bs(2L(s), 0) + y»(s)}.

5. Checking our assumptions

The growth requirement (5) from Assumption 2 holds for our
bilinear systems (1) for any bounded neighborhood ¢/ C R¢ of the
origin and any bounded continuous functions A, D, B;, and G; for
each i. This follows by picking

o
k:maxi|A|oo+l_JZ|Bi|ooa 12]188 (41)
i=1

for any bound U on the elements of Z/. However, it is less trivial
to check Assumption 1, so we next present sufficient conditions
for Assumptions 1-2 to hold for some u;. We specialize the
sufficient conditions from this section to bilinear systems in the
next section. We prove the following, whose condition (a) differs
from a standard Lyapunov decay condition because «g is not
required to be positive definite:

Lemma 2. Let f in (3) admit a compact neighborhood U/ C R¢ of
the origin and a constant k > 0 such that the requirements from
Assumption 2 hold. Let @ > 0 be a constant such that [—®, ®]° C
U. Assume that there are a C! function V : R"™! — [0, 00), a
continuous o : R" — [0, oo), a function y, € Ky, and C! functions
M; : R x R" — R that are locally Lipschitz in the second variable
uniformly in the first variable fori =1, 2, ..., c such that:

(a) the inequality

c
V < —ao(x(0)) + D wiMi(t, X(t)) + . (I8(1)]) (42)
i=1
holds along all solutions of x(t) = f(t, x(t), u, §(t)) for all
t > 0 and each vector u € U;
(b) the functions

C
co(x) + ) IMi(t,x)| and V(t,x) (43)
i=1
are uniformly proper and positive definite; and
(c) the functions M(t,x) = (0M;/9x)(t,x)/(1 + Mf(t,x)) are
bounded on R™! fori=1,...,c.
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Choose any positive value

L. > sup{|M;(t,x)| : (¢, x) e R™', 1 <i <c}. (44)

Then Assumption 1 is satisfied for any constant

éc (o, 7) (45)
2L,

and us = —Zn—“_’(arctan(Mﬂ, ...,arctan(M.)). O

Proof. For each tuple (t,x) € R x R", each ¢ € R", and each

i € {1,2,...,c}, we can apply the Fundamental Theorem of
Calculus to the function
M*€(A) = arctan(Mi(t, X + X)) (46)

on the interval [0, 1] to verify that
|arctan(M;(t, x + €)) — arctan(M;(t, x))|

= M) = MERE0)) < [ IV ()] ds (47)
= [ IMF(t, x + se)elds < Lilel
and so also

—arctan(M;(t, x + €))M;(t, x)

< — arctan(M(t, X))M(t. x) + L | [Mi(£. X). (48)

Fixing constants w, > 0 and §, € (0, 1) such that € = 8*71/(21:*)
(which exist by (45)) and such that arctan(s) > (8, + 1)w /4 for
all s > w, (which exists because lim;_, , , arctan(s) = 7 /2), and
any (t,x) e R™1 i e {1,2,...,c}, and € € Bz, we consider two
cases:

Case 1. |Mj(t, x)| < w,. To cover this case, we fix a constant
co > 0 such that arctan(s) > cps for all s € [0, w,]. Then
we can use the fact that arctan is an odd function to upper
bound the right side of (48) by —coMiZ(t,x) + L|e||Mi(t, x)| <
—5CoMA(t, x)+ ﬁiileﬁ where we used Young’s inequality ab <
coa®/2+b?/(2co) with a = |Mj(t, x)| and b = L,|e| to upper bound
LiJelIMi(t, x)|.

Case 2. |Mj(t, x)| > w,. In this case, we can use the fact that
arctan is nondecreasing on [0, oo) and odd to upper bound the
right side of (48) by —( /4)(8x + 1)|Mi(t, x)| + Li|e]|Mi(t, x)| <
—(1 = 6,)(r /4)|Mi(t, x)|, by our choices of §, and w,.

Combining the previous two cases, we conclude that for all
choices of the functions § and € from Assumption 1, the time
derivative of V along all solutions of (4) satisfies

c
V- !Olo(x) + 4t x)} + 718+ Z L2 le)?

=1 (49)
where Gi(t, x) =

2 min {(co/2)M(t, x). (1 — 8,)% IM(t, )]}

for each i and t > 0. Recalling our assumption (b), we conclude
that the sum in curly braces in (49) is uniformly proper and
positive definite. Therefore, V is an ISS Lyapunov function for
this closed loop system (as defined, e.g., in [22, Chapter 4]) for
disturbances (e, §) valued in B: x RY, giving the ISS property of
Assumption 1. O

Remark 4. We can replace the formulas arctan(M;(t, x)) in
Lemma 2 by o;(M;(t, x)) for any functions o; : R — R that satisfy:
o; is a bounded C' strictly increasing odd function,
lims_,q 03(s)/s > 0, and o/(M;(t, x))(dM;/dx)(t, x) is a bounded
function for i = 1,...,c. Then Lemma 2 remains true if we
replace /2 in (45) by max; |oj|,,, replace the M; formulas by
M(t,x) = o] (Mj(t, x))(0M;/9x)(t, x), and replace 2/m in the ug
formula by 1/sup, oi(s), by a similar proof. O
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6. Application to bilinear systems

This special case of Lemma 2 covers bilinear systems, and is
obtained by specializing Lemma 2 to the case where M;(t, x) =
2(xTP(t)B;(t)x+x T P(t)Gi(t)) using a quadratic Lyapunov function
V(t,x)= xTP(t)

Lemma 3. LetA:R — R™ D:R— R™ and B; : R — R™"
and G; : R — R" fori = 1,...,c be bounded matrix valued
continuous functions. Assume that there are a function y, € Ko,
constants ¢; > 0, and a C! bounded function P : R — R™" such
that PT(t) = P(t) for all t € R and such that the following hold
with V(t, x) = x"P(t)x:

(a) along all solutions of x = A(t)x + D(t)3, we have

1% < - Z CiX;
at all times t > 0;
(b) the functions V(t, x) and
S cx? 4+ D i [xTP(OBi(t)x + xTP(£)Gi(¢t))| (51)

are uniformly proper and positive definite; and
(c) the functions

t) + v«(18(t)]) (50)

20T (P(OB{(O)+B](OROHG] (ORE))
Hi(t, x)= T+4(x T P(OB;(x+x T P(6)Gi(D))2 (52)
are bounded fori=1,...,c.

Choose a positive value H, > sup{|#(t,x)| : (t,x) e R"™1 1 <i<
c}. Then, for any constants @ > 0 and € € (0, & /(2#,)), and with
the feedback

ug(t, x) = —w(arctan(Mq(t, x)), . .., arctan(M,(t, x)))
where Mj(t, x) = 2(x"P(t)Bi(t)x + x P(t)Gi(t)),

the bilinear system (1) satisfies Assumptions 1-2. O

(53)

The preceding results are novel, even in the special case where
the coefficient matrices in (1) are constant. To illustrate Lemma 3
in the constant coefficients case, we consider the case where the
coefficient matrices in (1) and P are

Ao On xn PO On xn
A= @M | p= <M 54
|: Onbxnﬂ Onbxnb Onbxna P] ( )

D, B Bp Git
D= Bi= dGi= 55
|: Ony xd :|’ ! |: Bis  Bis i|’ and &i |: Gi ] (55)

fori=1,...,c for any n, and n, = n — nq, where Aq is Hurwitz
and Py € R" ™ and P; € R™*™ are symmetric positive definite
matrices, and

PoAg + Ag Po = —In,, (56)

and where the upper sub-matrices in the block matrices D, B;, and
G; consist of n, rows. Using the triangle inequality, it follows that
along all solutions of X = Ax + D§, we have

V =—|xa|>+2x] PoD18 < —3|Xa|>+2|Po[?|D1[?|5? (57)

where x, denotes the first n, components of x. It follows that
we can satisfy requirement (a) of Lemma 3 using ¢; = 0.5 if
1<i<mngandc¢ = 0ifn, < i < nand y.(s) = 2|Po|?|D;|?s>.
Hence, if we let x, denote the last n, components of x, then
condition (b) of Lemma 3 will also be satisfied provided

c

Z |x; P1BiaXy + X, P1Gy | (58)
i=1

is proper and positive definite. This produces the following suf-
ficient condition for condition (b) of Lemma 3 to hold when the

N(Xb
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Fig. 1. Grid-connected three-phase PV converter.
coefficient matrices are constant: There is an index i € {1, ..., c}

such that P;G;; = 0 and such that P;Bj4 is either negative definite
or positive definite. We next illustrate the constant coefficient
case in a significant power system dynamic involving inverters.

7. Power systems application

We study a grid connected three-phase photovoltaic (PV) in-
verter shown in Fig. 1. The PV source is modeled using a voltage
controlled current source; see [25]. Let iy, denote the current
value of the PV source, and iy, i, and i and Vg, Vg, and Vg denote
the three-phase power grid currents and voltages, respectively.
We let L and R denote the aggregated inductance and resistance
of the output filter (which are needed for attenuating switching
harmonics), transformers, and transmission lines connected to
the output terminal of the converter, respectively, V4. denote the
voltage at the input terminal of the converter, and C;4. denote the
dc-link capacitor required to maintain the input voltage steady.
Using Park’s transformation (e.g. from [25, Appendix 2]) to trans-
form the three-phase power grid currents and voltages from the
abc reference frame into the synchronously rotating dqO reference
frame gives

L9 = dqVge — Rig + wlig — Ve
L% = dyVae — Rig — wlig — Vg (59)
Cdc dvd” = lpy— dgig — dqiq

as our PV converter model, where w is the angular frequency of
the power grid voltage, and (Vgq, Vgq) and (ig, ig) are the d-q com-
ponents of the power grid voltage and current in the dqO frame,
respectively; and dy and d; are corresponding controls associated
with the switching states of the PV inverter. The constants L, R,
, C4, and iy, are positive, and the constants Vg and Vg, are
nonnegative.

We next apply Lemma 3 to a bilinear error dynamics corre-
sponding to (59). Choose any reference values Ij > 0, Iy > 0,
and V. > O for the states ig, ig, and V. respectively that satisfy
R(I;)* + RUF)* + I5Vga + I3 Vg = iV, s0 I and I are not both
zero. The correspondmg steady state reference control values
Dy = (RIj — wLI} + Vgq)/Vy, and Dy = (RI} + wLI} + Vgg)/Vy, then
satisfy RI; = DV + oll} — Vgq, RI} = DV}, — wllj — Vg, and
0 =iy —Ddlj—DqI;. Choosing the error state variables x; = iz—I7,
Xy = ig — I, and x3 = Vg — V. and the new control variables
uy = dg — Dg and up = dg — Dy, the preceding relations produce
the error equations

x1(t) = 1 [Daxs(t) 4+ uy(t — h)(xs(t) + Vj.)
—Rx1(t) + wlx,(t)]

X(t) = 1 [Dgxs(t) + ua(t — h)(x3(t) + Vi) 60
“Rxa(t) — ol (1)] (80)
26 = g [=Daxa(t) — urt — W) + 1)

—Dgxy(t) — us(t — h)(xo(t) + 17)]
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Fig. 2. First (Red), Second (Blue), and Third (Green) Components of (60),
with Initial States (0.75, —0.75, 0), (—0.5, 0.5, 0), and (0.25, —0.25, 0), On Time
Intervals [0, 0.0015] (Top Panel) and [0.0015, 1.75] (Bottom Panel). (For inter-
pretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

which is a special case of (1) with § = 0. The requirements of
Lemma 3 are satisfied with n = 3, ¢ = 2, the diagonal matrix
P = 0.5diag{L, L, C4c}, c1 = ¢ = R, c3 = 0, My (¢, X) = Vj.x1—1]X3,
My(t,x) = Vix, — Igxs, and H, = max{|(Vg, I])I, (Vg I7)I}
Therefore, Theorem 1 applies.

Grid-tie inverters are widely employed for grid integration of
renewable energy sources. For realizing any control scheme for
the grid-tie inverter, voltage and current waveforms are mea-
sured and samples are sent to a digital signal processor (DSP).
Sampling takes place at a fixed frequency. However, due to lim-
ited processing capability of DSPs and control scheme complexity,
there is a delay between the time sample measurements are
received and the time control actions are made by the DSP.
Common sampling frequencies in grid-tie inverters are 10 to
20 kHz. As for digital implementation delay, it is a common
assumption to consider it equal to the sampling period. Thus, we
have considered a delay of 100 micro sec (= 1/10 kHz, i.e., the
reciprocal of the sampling frequency) in this paper.

In Fig. 2, we plot Mathematica simulations for the state x =
(x1, X2, x3) of (60) using the control from Theorem 1 with 0 initial
states for each z;, us from Lemma 3, the preceding choices, and
(41) with U = ﬁ&)(n/Z). We choose h = 0.0001, L = 0.015,
Vga = 230, Vi, =400, R = 0.2, w = 1207, Vg = 0, Cgc = 0.0015,
I} =80,Iy =0,1 = 0.1, ® = 1, m = 3, and Dg, Dg, and i,
from our formulas above, which satisfy the requirements from
Theorem 1 with the choices C; = 1.38/h and C; = 0.4.

We expressed the convergence in two phases in Fig. 2, to show
the qualitatively different performance on the interval [0, 0.0015]
(during which only two of the error states converge closely to
the 0 equilibrium) and the second phase during the interval
[0.0015, 1.75] (when all states convergence to the equilibrium).
The preceding simulations show the good performance of our
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Fig. 3. First (Red), Second (Blue), and Third (Green) Components of (60), with
Initial States (0.75, —0.75, 0), (—0.5, 0.5, 0), and (0.25, —0.25, 0), On Time Inter-
val [0, 1.75] without Delay Compensation. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

control design. Moreover, they illustrate the reduction in the
number m of required sequential predictors made possible by
Theorem 1, because if we had instead used the formula (13) for
the lower bound on m with all other parameter values kept the
same, then we would have required m > 5 sequential predictors,
instead of allowing m = 3.

While the components of our initial states at time t, = 0
range from —0.75 to 0.75, the corresponding x;(t) components
are valued in [—0.65, 1] by time 0.0015, and this explains why
the starting values of the x;(t)’s are contained in [—0.65, 1] in
the bottom panel which starts at time 0.0015. While h is small,
it is significant relative to the system dynamics, and we can
compensate for any constant h > 0. For example, if we increase
h to h = 0.001, then our assumptions are satisfied with m = 31
and with all other constants kept the same. On other hand, for this
larger h choice, the condition (13) would have required m > 47
sequential predictors, so again we see the improvement made
possible by Theorem 1, which in this case is a 34% reduction (from
47 to 31) in the required number m of sequential predictors.
The practical value of using m = 31 sequential predictors is
the reduction in computational burden, as compared with tradi-
tional predictor methods that yield distributed terms and which
therefore produce an infinite dimensional analysis.

It is tempting to surmise that since the delay h is small, the
system would exhibit good performance even without predictors.
However, this would not be correct, because our predictive ap-
proach still improves on the control performance compared to
what we would have obtained without delay compensation. This
is illustrated in our Mathematica simulation in Fig. 3, where we
replaced the components of the last sequential predictor z3 in the
controls by the corresponding components of x (by simulating
(60) with the controls u;(t —h) = — arctan(V;.x;(t — h) — I;x3(t —
h)) and u,(t — h) = —arctan(Vgxa(t — h) — Ix3(t — h)) and
the parameter values stated above), which corresponds to not
compensating for the delay, and kept everything else the same as
the first simulation. Since Fig. 3 illustrates the lack of convergence
in the absence of delay compensation, it also helps motivate our
methods.

8. Conclusions

We presented a new sequential predictor approach to feed-
back stabilization under arbitrarily long constant input delays
which can be applied to bilinear systems that violate the usual
linear growth conditions. Compared with other delay compen-
sation approaches, potential advantages include that the closed-
loop systems satisfy ISS without using distributed terms in the
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control that were present in exact predictor approaches. In future
work, we hope to explore applications to large scale networked
systems as in [15] and extensions for reaction-diffusion PDEs as
in [16]. We will also study cases where there are different delays
in different components of the input, which may call for bilinear
analogs of the predictor structures from [2] having different sets
of chain predictors corresponding to the different input delays.
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cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix. Proof of Lemma 1
Using the definition of fy gives
&i(t) = —p& (t — )
o (t+ L, zy(e) u(t
—f e+ x(t+2)u

- ) a1

(e="51) 8 (e 7))

and &(t) = —p& (t — %) + p&i_1(t)
+fo (€ +i%, z(0), u (c — L)) (A2)
(e ifz (4 ) (e - H)

when i > 1. We first study the &;-subsystem (A.1).
The Fundamental Theorem of Calculus yields

Ei(t) = —p&r (0) +p [ &(0)de
(0, u (e = 5H) (A3)

(kg x (e ) u (= 25) 8 (4 ))

Then Assumption 2 and Young’s inequality give

+o(t+ L2

o) < —plaOP +p fn 1(6) Ex(0)de
+ laOlk(|zi () —x (t+5)][ 4|8 (c+ L))
= (k=plat) +p [Ln &) E(0)AL
+ klg(0)] |8 (£ + L)
< (k=plEa(OP + ke r)||6 (t+ 1)) (A4)

+pf s [SER + 5 iéor ] de
= (k=p+BS) IO+ 5k fn &0 de
s (e+5)]-
Next note that (A.1) gives the following for all £ > 0:
1E1(0)
=ple(e— )+ fo (e + 5210, u (e - *H))
L (e ) (=) (e )
<ple(e—L)| + k(@I +18(e+ L)1),
by Assumption 2. Hence, Young’s Inequality gives
(1+ G)p*|&(L — h/m))?
+ (14 &) (IR + 15 + h/m)?
+21&(0)/18(¢ 4 h/m)] )

+ k|51(t

&) <
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< (1+G)p1&(L — h/m)?
+ (1 n c%) 2 ((1+2) 18 0)P
+(1+ 4/2a)I8(C + h/m)* )
for all t > 0. Therefore, (A.4) gives

i) = (k=p+Be) [E(OF HKIE(OIIS(E + h/m)

1+C t—h
+ b (2; 2) tfzh//"; |€1(0)2de

(A5)
+ 82 (14 L) (1 22) [ (0P
k2 4 t+h/m 2
5 (14 &) (1 ) S s Pde
forall t > % Since Young’s Inequality also gives
KIEWONS(E+h/m)| < 2 | (0)2+ £ 18t +h/m), (A6)

we can use (A.6) to upper bound the last term in (A.5) and our
choice of p from (6) and finally our choice of v to get

W) < —KEOPR + PG [T (e (0)Pde
+ 82 (142) (142) [ lE1(0PdE
+MI8IE ¢y (A7)
< —2k(E(0) +C [ v(E(O)dedE

+ MISIE ey »
where M is defined in (6).

Recalling our choice of u(&;,) from (16), it follows that for all
t > h/m, we have

S (&) < —2kv(E1(6)) + MISIE ¢ pjmy
€ (i gy VEONE + 2D (1)) (A8)
—C(1+ 2a) [y V(E(E))AL.

This gives
(&) < 2k [—

—1aC ftt—zh/m V(&

Therefore, our condition (8) from our theorem and our choice of
€0 in (6), combined with the bound

Aen) = vE(0) +2 (14 2a)) [ (e,

+ 01+ 20| En(e)
(A.9)

(€))de + MIS[E, ¢ /m)-

give (17) along all trajectories of the £; dynamics.
Similarly, since there is no § in the z system, (A.2) and the
relation 2rs < Aqr%/4 + 4s% /1, for all r > 0 and s > 0 give

ISP < (14 G)pPI&(e — h/m)?
+ (14 &) el + ple ()
< (14 G)P*&E — h/m))? (A.10)

+ (] + C%) K2(1 4 ra/4)EC0)
+ (1 + %) PP(1+4/2a)IE-1(0)?
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for any i € {2,3,..., m}. This implies that the function u(&)
from (18) satisfies the following for all t > h/m:

fuE) < —eopl&ie) + PIEDIIE (D)
+C [ 16 (0)PdE
< —eoiléi) + ISP + Elgi(0)P A1)
+C [ |E(0)PdE '
< —20E) + Elgia (0
+ G [ ym |Ea(OPdE,
where the second inequality used Young’s inequality and
G = (1 + C%) % (1+4/x), (A12)

which proves the lemma.
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