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a b s t r a c t

We construct delay-compensating input-to-state stabilizing feedback controllers for a class of nonlinear

control systems that include bilinear systems that have pointwise delays in their inputs. Our new

approach for delay compensation does not require constructing or estimating distributed terms in the

formulas for the stabilizing control laws. We allow arbitrarily long constant input delays. We illustrate

our findings in a power system example.
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1. Introduction

This work continues the development (which started, e.g., in
[1–3], and [4]) of sequential predictor approaches for compensat-
ing for arbitrarily long input delays. Prior results covered dynam-
ics whose right sides satisfy a linear growth condition. Here we
cover feedback designs for dynamics for which this linear growth
condition is not needed and which therefore can be applied
to important bilinear systems that were beyond the scope of
previous sequential predictor methods; see [5–7] for the value
of bilinear systems.

Our method is motivated by the ubiquity of input delays in
many applications, and the bottlenecks that arise when using
standard controllers that were not designed to compensate for
the input delays; see [8–17]. A natural method for coping with
input delays is emulation, which calls for designing a stabilizing
feedback that can be applied when the input delays are zero,
and where one then calculates a bound on the input delays
under which the resulting closed loop system still enjoys de-
sired global asymptotic stability properties; see, e.g., [18]. For
cases where the delay bounds from emulation may be too small,
other authors explored other input delay compensation methods,
including exact predictor and reduction methods. These other
methods can compensate for arbitrarily long input delays, but
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can be complicated to use in practice because their controls are
only implicitly defined as solutions of integral equations; see, for
instance [19,20], and [21].

This motivated [1] and [2] and other papers on sequential
predictors for delay compensation, which normally express the
control using values of an auxiliary variable that is viewed as
an output of a collection of ordinary differential equations. This
collection of equations includes copies of the original system
running on multiple time scales, with additional stabilizing terms,
making it possible to compensate for arbitrarily long input delays
without having any distributed terms in the controls. However,
these results required that the right sides of the systems grow
linearly in the input and state, which excludes bilinear systems
having the form

ẋ(t) =
A(t)x(t) +

c∑
i=1

ui(t−h)
(
Bi(t)x(t) + Gi(t)

)+ D(t)δ(t)
(1)

with unknown measurable locally essentially bounded functions
δ (representing uncertainty), constant delays h, controls u =
(u1, . . . , uc), and bounded coefficient matrices. Although such
ystems are often stabilizable using bounded controls, knowing a
ound on u is not sufficient to extend previous sequential predic-
or results to cover bilinear systems (1). This is because the earlier
esults also need input-to-state stability (or ISS) with respect
o measurement uncertainty, and since one must find a bound¯ on the supremum of δ using a bound on the measurement
ncertainty; see (7), the third part of the proof of Theorem 1,

nd [3, Assumption 2].
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This calls for the innovations of this work, which eliminates
the requirement that the right sides grow linearly in the input
and state. These innovations are made possible by our signifi-
cantly different mathematical analysis, as compared to the study
of sequential predictors for linear systems. Our key ingredients
include (a) our new Lyapunov–Krasovskii functional construction
involving novel uses of Young’s inequality and (b) a relaxed
condition on the measurement uncertainties in the control (in As-
sumption 1). This overcomes a longstanding obstacle to building
sequential predictors for bilinear systems. See Remarks 1–2 for
more on the innovations in our work.

We provide input delay compensating sequential predictors
for bilinear systems having the form (1) with continuous co-
efficient matrices, including ISS with respect to the δ, which
were not previously available in the literature. We state and
prove a general sequential predictor feedback control result in
Sections 3–4. Then Section 5 provides sufficient conditions that
facilitate checking our assumptions of our general result. In
Section 6, we apply our method to a key class of bilinear systems,
which we demonstrate using a power system in Section 7.

2. Definitions and notation

Throughout this paper, the dimensions of the Euclidean spaces
are arbitrary unless we note otherwise, and we omit arguments
of functions when they are clear. The usual Euclidean norm in
Rn and the induced matrix norm are denoted by |·|, and |φ|I
(resp., |φ|∞) is the usual essential supremum of a function φ over
any interval I in its domain (resp., its entire domain). Consider a
system of the form

Ẋ(t) = F
(
t, X(t), uF (t − h), ∆(t)

)
, (2)

whose state X , feedback control uF , and unknown Lebesgue mea-
surable locally essentially bounded function ∆ are valued in Rn1 ,
Rn2 , and Rn3 , respectively, where h > 0 is a constant delay. Owing
to the delay, the solutions of (2) are defined for given initial times
t0 ≥ 0, initial functions that are defined on an initial interval I0

⊆

(−∞, t0] such as [t0−h, t0], and functions ∆. We assume that (2)
is forward complete, i.e., all such solutions are uniquely defined
on I0

∪[t0, ∞); see Section 3 for our assumptions that ensure this
forward completeness property. We use the well known standard
classes KL and K∞ of comparison functions from [22, Chapt. 4]
and the definition of input-to-state stability (or ISS, which we also
use to mean input-to-state stable) for (2); see [23] and [3] for ISS
under delays. We use this definition:

Definition 1. For a fixed uF , we say that (2) is ISS with respect to
a disturbance set D ⊆ Rn3 provided there are functions β ∈ KL
and γ ∈ K∞ such that for all initial times t0, initial functions, and
choices of the functions ∆ that are valued in D, the corresponding
solutions of (2) all satisfy |X(t)| ≤ β(|X |I0 , t− t0)+γ (|∆|[t0,t]) for
all t ≥ t0.

Let N = {1, 2, . . .}, and BR denote the closed ball of any radius
R > 0 in Euclidean space centered at the origin. For subsets S1
and S2 of Euclidean spaces, a function W : S1 × S2 → Rn is
called locally Lipschitz in its second variable uniformly in its first
variable provided: for each constant R > 0, there is a constant
LR > 0 such that |W (s1, sa) − W (s1, sb)| ≤ LR|sa − sb| for all s1 ∈

S1 and all sa and sb in BR. If LR in the preceding property can be
chosen independently of R, then we use the term globally (instead
of locally) Lipschitz. We call a J : [0,∞)×Rn

→ [0,∞) uniformly
proper and positive definite provided there exist functions γ ∈

K∞ and γ ∈ K∞ such that γ (|x|) ≤ J(t, x) ≤ γ (|x|) for all t ≥ 0
nd x ∈ Rn. We set Ψt (s) = Ψ (t + s) for all Ψ , s ≤ 0, and t ≥ 0

such that t+s lies in the domain of Ψ . We also use 0ℓ×r (resp., Ir )
to mean the ℓ × r matrix whose entries are all 0 (resp., the r × r
identity matrix).
2

3. General result

Before turning to our results on bilinear systems, we provide
a novel result for a more general class of systems

ẋ(t) = f (t, x(t), u(t − h), δ(t)), (3)

whose state x, control u, and unknown Lebesgue measurable
locally essentially bounded function δ are valued in Rn, Rc , and
Rd respectively, and h > 0 is a constant delay, where we use
different notation from (2) in part because the ∆ in (2) will not
coincide with δ in (3) in Assumption 1 to follow. One difference
etween the result of this section and [3, Theorem 1] is that
ere we remove the requirement that the dynamics grow linearly
n (x, u), and instead use boundedness conditions on us, on the
ontrol set, and on the disturbances ϵ and δ; see Remarks 1–2
or more on the significant differences between this work and [3]
nd about the value added by this work. We assume:

ssumption 1. There are a compact neighborhood U ⊆ Rc of
c×1, a continuous function us : [0,∞)×Rn

→ U that is globally
ipschitz in its second variable uniformly in its first variable, and
constant ϵ̄ > 0 such that the system

˙(t) = f
(
t, x(t), us(t, x(t) + ϵ(t)), δ(t)

)
(4)

ith disturbance ∆= (ϵ, δ) is ISS with respect to the disturbance
et Bϵ̄ ×Rd. Also, us(t, 0n×1)=0c×1 for all t∈R. □

ssumption 2. The function f is continuous, and is locally
ipschitz in (x, u, δ) uniformly in t , satisfies f (t, 0n×1, 0c×1, 0d×1) =

n×1 for all t ≥ 0, and admits a constant k > 0 such that

|f (t, z1,U, ∆1) − f (t, z2,U, ∆2)|
≤ k|z1 − z2| + k|∆1 − ∆2|

(5)

olds for all t ≥ 0, z1 ∈ Rn, z2 ∈ Rn, U ∈ U , ∆1 ∈ Rd, and ∆2 ∈ Rd

or the choice of U from Assumption 1. □

Throughout this paper, we consider any constants m ∈ N,
∗ > 0, h > 0, C1 ∈ (0, 2m/h), C2 > 0, and λa > 0, and any
and ϵ̄ satisfying Assumptions 1–2, and then we set

p =
m(4k+λa)
2m−hC1

, ϵ0,ℓ = max
{
1, C(1+λa)h

m

}
,

C =
p
C1

max
{
p2(1 + C2), k2

(
1 +

1
C2

) (
1 +

λa
4

)}
,

ϵ0 = min
{
2k
(
1 −

hC
km (1 + λa)

)
, Cλam

2(hC(1+λa)+m)

}
,

ĉ = max
{

2p2
ϵ0

,

(
1 +

1
C2

)
p3
2C1

λ
♯
a,

ϵ0
2

}
,

M =
k2
2λa

+ λ
♯
a

phk2
2C1m

(
1 +

1
C2

)
, λ

♯
a = 1 +

4
λa

,

ω0 = 1, ωi =
2
ϵ0

(
ĉωi−1 + ϵ∗

)
if 1 ≤ i ≤ m − 1,

and ϵ̄∗ =
1

ϵ0,ℓ
min

{
0.5ϵ0, ϵ∗

ωm−1

}

(6)

which will all be positive constants under condition (8) of our
theorem. The integer m will serve as the number of sequential
redictors, and the constants Ci will serve as weighting functions
n our Young’s inequality applications in our Appendix. In terms
f (6) and any constant

¯ ∈

(
0,

ϵ

m

√
ϵ̄∗

2Mωm−1

)
(7)

(which will serve as our bound on δ) and the function f0(t, x, u) =

(t, x, u, 0), we prove:
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heorem 1. Let k > 0 and ϵ̄ > 0 be constants such that (3)
satisfies Assumptions 1–2. Assume that

m >
hC(1 + λa)

k
. (8)

Consider (3) in closed loop with

u(t) = us
(
t + h, zm(t)

)
, (9)

where zm is the last n components of the state of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1(t) = f0
(
t +

h
m , z1(t), Φ(t, zm, 1)

)
− p[z1

(
t −

h
m

)
− x(t)]

ż2(t) = f0
(
t +

2h
m , z2(t), Φ(t, zm, 2)

)
− p

[
z2
(
t −

h
m

)
− z1(t)

]
...

żm(t) = f0 (t + h, zm(t), Φ(t, zm,m))
− p

[
zm
(
t −

h
m

)
− zm−1(t)

]
(10)

where

Φ(t, zm, i) = us(t + h − h(m − i)/m, zm(t − h(m − i)/m))

for all t ≥ 0 and i ∈ {1, 2, . . . ,m} and z0 = x. Then there are
unctions βd ∈ KL and γd ∈ K∞ such that all solutions (x, z) :

[t0 − 2h, ∞) → R(m+1)n of the preceding closed loop system, for all
Lebesgue measurable essentially bounded functions δ : [0,∞) → Bδ̄

and all initial times t0 ≥ h/m, satisfy

|x(t)| ≤ βd

(
|x|[t0−2h,t0+h/m]+|z|[t0−2h,t0+h/m], t−t0

)
+ γd

(
|δ|[t0,t]

) (11)

for all t ≥ t0, where z = (z1, . . . , zm). □

Remark 1. Theorem 1 states that it is possible to design a
sequence of m predictors such that, when the un-delayed closed-
loop system (4) is ISS with respect to the disturbance δ(t) and the
uncertainties ϵ(t) in the state measurements under the bounds on
these functions from Assumption 1, then in the presence of delay,
the state of the closed loop system with the predictor remains
in a ball whose radius depends on the initial conditions and the
bound on δ(t).

It is tempting to surmise that at least in bilinear cases, we can
reduce our analysis of (3) to systems that are globally Lipschitz in
the state (which were covered in [3]), by replacing f by the new
dynamics fnew that is defined by

fnew(t, x, u, δ) =

{
f (t, x, u, δ), if |u| ≤ R
f (t, x, uR/|u|, δ), if |u| > R (12)

for a bound R on the control us. However, this replacement would
not address the problems in this work, where there is a restriction
on the allowable measurement uncertainties ϵ in Assumption 1
(which makes our assumption less restrictive than in [3], where
the ISS assumption is required for all choices of the measurement
uncertainties ϵ(t)) and where we must therefore find a bound δ̄

on the allowable uncertainties δ.
Our (less restrictive) condition in Assumption 1 that ϵ re-

mains in a bounded set is called for in order to produce a the-
orem whose assumptions we can check for bilinear systems; see
Lemmas 2–3. However, the price to pay for only considering ϵ’s
that stay in a bounded set in Assumption 1 is that it calls for the
third part of our proof of our theorem; see especially (34) and
(37). The requirement that us is valued in the compact set U is
used to ensure that (5) is satisfied when U is a control value; see
(A.3)–(A.4). The bound on U in Assumption 2 is needed for the
existence of the required k when (2) is bilinear; see (41).
3

Remark 2. Theorem 1 is also new even when δ = 0, because
of its less restrictive condition on the number m of sequential
predictors, as compared with the condition

m > h(4k + λa)3/2
√
(2/k)(1 + λa) (13)

rom [3]; see Section 7. Our strategy for obtaining our less restric-
ive lower bound (8) on m is to use the degrees of freedom in the
yapunov–Krasovskii analysis in the Appendix, where the con-
tants C1 and C2 arise from using Young’s inequality instead of the
riangle inequality. This leads to a different Lyapunov–Krasovskii
unctional in our analysis and a different p in the sequential pre-
ictors, as compared with [3], which used p = 4k+λa. Therefore,
lthough the sequential predictors (10) have the same general
tructure as earlier sequential predictor designs (consisting of
opies of the original system running on different time scales with
dditional corrective terms), there is considerable novelty in our
roof that makes it possible to apply this general structure in our
ovel setting that includes bilinear systems.
A significant difference between works such as [24] and

heorem 1 is that our theorem yields a control having no dis-
ributed terms, based on the computationally cheap sequential
redictors (10). While Lyapunov methods can produce conserva-
iveness, we believe that this is the price to pay to compensate for
rbitrarily long input delays without using distributed terms that
ould otherwise have occurred from using standard predictive
ethods while also handling bilinearities. We can provide a
lobal exponential ISS estimate for the error vector (14) (in (30)),
hich we can combine with (11) to obtain ISS estimates for the
ombined variable (x, z), where z = (z1, . . . , zm) is the vector of
redictors (using the fact that zi(t)=Ei(t)+ Ei−1(t + h/m)+ · · ·+

1(t+(i−1)h/m)+x(t+ih/m) for all t≥0 and i≥2). We leave the
ormulas for comparison functions in the ISS estimate for (x, z) to
he reader.

emark 3. Like in [3], our requirement t0 ≥ h/m in
heorem 1 is used in our Lyapunov–Krasovskii analysis but can
e relaxed. While the main result of Mazenc and Malisoff [3]
ontains suprema over [t0 − h, t0 + h/m] on the right side of (11)
nstead of [t0 − 2h, t0 + h/m], we use 2h instead of h to allow
he special case where m = 1. Moreover, we can use the method
rom [3, Section V] (with its requirement U ∈ Rc replaced by

∈ U) to replace [t0 − 2h, t0 + h/m] by [t0 − 2h, t0] in the final
stimate (11).

. Proof of Theorem 1

Throughout the proof, all inequalities and equalities should be
nderstood to hold for all t ≥ t0 and t0 ≥ h/m along all solutions
f the closed loop system from the statement of the theorem,
nless otherwise indicated. Recalling our definition z0 = x, we
se the error variables
E = (E1, . . . , Em), where
Ei(t) = zi(t) − zi−1 (t + h/m) for i = 1, . . . ,m.

(14)

he rest of the proof has three parts.
First Part: Lyapunov–Krasovskii Functionals for Ei. We use

ˆ (Ei,t ) =
1
2
|Ei(t)|2 +

∫ t

t−2h/m
|Ei(ℓ)|2dℓ (15)

or i = 1, 2, . . . ,m and the following lemma (which we prove in
he Appendix, and where Ei,t is the ith component of Et for each
):

emma 1. Consider the functions ν(Ei) =
1
2 |Ei|

2 and

µ(Ei,t )
= ν(Ei(t)) + C(1 + λa)

∫ t
t−2h/m

∫ t
s ν(Ei(ℓ))dℓds∫ t 2

(16)

and µ̃(Ei,t ) = µ(Ei,t ) + t−2h/m |Ei(ℓ)| dℓ
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or i = 1, 2, . . . ,m. Then, the inequalities

µ̇(E1,t ) ≤ −ϵ0µ̃(E1,t ) + M|δ|2
[t,t+h/m]

(17)

nd

µ̇(Ei,t ) ≤ −
ϵ0
2 µ̃(Ei,t ) +

p2
ϵ0

|Ei−1(t)|2

+

(
1 +

1
C2

)
p3
2C1

λ
♯
a
∫ t
t−h/m |Ei−1(ℓ)|2dℓ

(18)

old for all t ≥ h/m and i ∈ {2, . . . ,m}. □

The proof that ϵ0 from (6) satisfies the requirements from
Lemma 1 uses the fact that the constant ϵ0,ℓ from (6) is such that

µ(Ei,t ) ≤
1
2 |Ei(t)|

2

+ C(1 + λa) 2hm
1
2

∫ t
t−2h/m |Ei(ℓ)|2dℓ

≤ ϵ0,ℓµ̂(Ei,t )
(19)

or i = 1, . . . ,m and all t ≥ h/m. We also use (19) later in the
roof below. From our choices (6) of our constants, it follows from
emma 1 that for all i ∈ {2, . . . ,m} and t ≥ h/m, we have

µ̇(Ei,t ) ≤ −
ϵ0
2 µ̂(Ei,t ) + ĉµ̂(Ei−1,t ). (20)

Second Part: ISS Estimate for E Dynamics. We next show that
ith the constants ωi from (6), the function

♯

m(Et ) =

m∑
j=1

ωm−jµ(Ej,t ) (21)

s an ISS Lyapunov–Krasovskii functional for the E dynamics with
he disturbance δ. We use induction and the partial sums
♯

r (Et ) = µ(Em,t ) + ω1µ(Em−1,t ) + · · · + ωrµ(Em−r,t ) (22)

or r = 1, . . . ,m − 1 when m ≥ 2. Using the fact that
♯

1(Et ) = µ(Em,t ) + (2/ϵ0)(ĉ + ϵ∗)µ(Em−1,t ) (23)

nd (20), we get

µ̇
♯

1 ≤

−
ϵ0
2 µ̂(Em,t ) − ϵ∗µ̂(Em−1,t ) + ĉ 2

ϵ0
(ĉ + ϵ∗)µ̂(Em−2,t )

(24)

olds if m > 2 and t ≥ h/m. On the other hand, for m = 2, we
an use (17) to verify that

µ̇
♯

1 ≤ −
ϵ0
2 µ̂(E2,t )−ϵ∗µ̂(E1,t )+ 2

ϵ0
(ĉ + ϵ∗)M|δ|2

[t,t+h/m]
(25)

for all t ≥ h/m. By induction, it follows that

µ̇
♯
m ≤ −

ϵ0
2 µ̂(Em,t )

− ϵ∗

m−1∑
j=1

µ̂(Em−j,t ) + ωm−1M|δ|2
[t,t+h/m]

(26)

or all t ≥ h/m and m > 1. Moreover, (19) gives

m−iµ(Ei,t ) ≤ ϵ0,ℓωm−iµ̂(Ei,t ) (27)

or i = 1, . . . ,m and all t ≥ h/m, and 1 ≤ ωi ≤ ωi+1 for
= 0, . . . ,m − 2 and m ≥ 2, since ĉ ≥ ϵ0/2.
It follows from (19) and (26) and our choice of ϵ̄∗ in (6) that

e have

˙
♯

m ≤ −ϵ̄∗µ
♯

m(Et ) + ωm−1M|δ|2
[t,t+h/m]

(28)

or all t ≥ h/m. Applying the method of variation of parameters to
(28) (by multiplying it through by eϵ̄∗t and integrating the result
on [t0, t] for any t0 ≥ h/m), we obtain a constant ca > 0 such
hat
1
2 |E(t)|

2
≤ µ

♯
m(Et )

ϵ̄∗(t0−t) 2 ωm−1M|δ|2
[t0,t+h/m]

(29)

≤ cae |E|

[t0−2h,t] +
ϵ̄∗

g

4

for all t ≥ t0. By multiplying (29) through by 2 and using the
subadditivity of the square root (to upper bound the square root
of the two right side terms), it follows that

|E(t)| ≤

e0.5ϵ̄∗(t0−t)√2ca|E|[t0−2h,t0] +

√
2ωm−1M

ϵ̄∗
|δ|[t0,t+h/m]

(30)

olds for the E dynamics for all t ≥ t0 and t0 ≥ h/m.
Third Part: ISS-Like Estimate for Closed Loop x Dynamics. We

how how our new variable

♯(t) =

m−1∑
ℓ=0

Em−ℓ

(
t + ℓ

h
m

− h
)

(31)

an be viewed as a measurement error added to the state x(t) in
the feedback control in the closed loop system from the statement
of our theorem, which will allow us to apply Assumption 1 with
ϵ = E♯.

To this end, we first choose a constant λ∗ ∈ (0, 1) that satisfies

δ̄ = λ∗

ϵ̄

m

√
ϵ̄∗

2ωm−1M
, (32)

hich exists by (7). Since 1/λ∗ > 1, the exponential ISS condition
in (30) then yields a constant T > 0 such that

|E(t)| ≤
1
λ∗

√
2ωm−1M

ϵ̄∗

δ̄ (33)

for all t ≥ t0 + Gδ and such that we also have

|E♯(t)| ≤ m|E|[t−h,t−h/m] ≤
m
λ∗

√
2ωm−1M

ϵ̄∗
δ̄ = ϵ̄ (34)

for all t ≥ t0 + h + Gδ , where

Gδ = T (|x|[t0−2h,t0+h/m] + |z|[t0−2h,t0+h/m]), (35)

by (32) and our condition |δ|∞ ≤ δ̄; a formula for the required
constant T can be deduced from the fact that ln(1+ r) ≤ r for all
r ≥ 0.

On the other hand, using the fact that

zm(t) = Em(t) + zm−1 (t + h/m) ,

zm−1(t) = Em−1(t) + zm−2 (t + h/m) ,

..., and z1(t) = E1(t) + x
(
t +

h
m

) (36)

all hold for all t ≥ 0, it follows (e.g., by induction on m) that
zm(t) = E♯(t + h)+ x(t + h). Hence, (3) in closed loop with (9) is

ẋ(t) = f
(
t, x(t), us

(
t, x(t) + E♯(t)

)
, δ(t)

)
. (37)

hen (34) allows us to use Assumption 1 with ϵ = E♯ along all
olutions of the closed loop system and all t ≥ t0 + h + Gδ .
In fact, the last part of the proof of Mazenc and Malisoff [3,

heorem 1] with its initial time t0 replaced by t♯

0 = t0 +G0 allows
s to find functions βb ∈ KL and γb ∈ K∞ such that, for all
olutions of the closed loop system of our theorem, and for all
≥ t♯

0 and t0 ≥ h/m, we have

|x(t)| ≤

βb(|x♯
|
[t0−2h,t♯0+h/m]

, t − t0 − G0) + γb(|δ|[t0,t]),
(38)

here G0 = Gδ + h and x♯
= (x, z). On the other hand,

ssumptions 1–2 provides a constant L̄ > 0 (that is independent
f the initial condition) such that |ẋ♯(t)| ≤ L̄

(
|x♯

|[t−h,t] + |δ|[t0,t]
)

hen t ≥ t0 ≥ 0. Integrating the preceding bound for |ẋ♯(t)|,
nd applying Gronwall’s inequality to the function |x♯

|
[t−h,t], we

et a constant c > 0 (which is also independent of the initial
b
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ondition) so that

|x♯(t)| ≤ |x♯
|[t−h,t] ≤ ecbGδ cbĜ0

(
|x♯

|[t0−h,t0]+|δ|[t0,t]
)

≤ ecbGδ cb
(
Ĝ0|x♯

|[t0−h,t0] + δGδ + 2h|δ|[t0,t]

)
≤ M(|x♯

|[t0−2h,t0+h/m]) + L(|δ|[t0,t])

(39)

or t ∈ [t0, t
♯

0 +h/m], with Ĝ0 = Gδ +2h, M(s) = 2cbse2cbT s(T (s+
δ̄) + 2h(1 + δcbT )), and where L(s) = 2cbhs, and where we used
hcbecbT s

|δ|
[t0,t] ≤ 2hcb(cbT secbT s

+ 1)|δ|
[t0,t] ≤ 2δhc2

bT ecbT ss +

hcb|δ|[t0,t] (which is a consequence of the bound er ≤ rer + 1 for
≥ 0) and

x|
[t0−2h,t0+h/m]

+ |z|
[t0−2h,t0+h/m]

≤ 2|x♯
|
[t0−2h,t0+h/m]

(40)

nd |δ|∞ ≤ δ. Using (39) to upper bound the first argument
f βb in (38), and then using the fact that βb(r1 + r2, r3) ≤

b(2r1, r3)+βb(2r2, 0) for all nonnegative r1, r2, and r3, it follows
hat we can upper bound the first right side term of (38) by
b(M♯(|x♯

|[t0−2h,t0+h/m]), t − t♯

0)+ βb(2L(|δ|[t0,t]), 0) with M♯(s) =

ax{s, 2M(s)}. Hence, by separately considering times t ∈ [t0, t
♯

0]

nd t > t♯

0, we conclude that we can satisfy the requirements of
heorem 1 with βd(s, t) = max{M(s)e2T s+h−t , βb(M♯(s),max{t −
T s − h, 0})} and γd(s) = max{L(s), βb(2L(s), 0) + γb(s)}.

. Checking our assumptions

The growth requirement (5) from Assumption 2 holds for our
bilinear systems (1) for any bounded neighborhood U ⊆ Rc of the
origin and any bounded continuous functions A, D, Bi, and Gi for
each i. This follows by picking

k = max

{
|A|∞ + Ū

c∑
i=1

|Bi|∞, |D|∞

}
(41)

for any bound Ū on the elements of U . However, it is less trivial
to check Assumption 1, so we next present sufficient conditions
for Assumptions 1–2 to hold for some us. We specialize the
sufficient conditions from this section to bilinear systems in the
next section. We prove the following, whose condition (a) differs
from a standard Lyapunov decay condition because α0 is not
required to be positive definite:

Lemma 2. Let f in (3) admit a compact neighborhood U ⊆ Rc of
the origin and a constant k > 0 such that the requirements from
Assumption 2 hold. Let ω̄ > 0 be a constant such that [−ω̄, ω̄]

c
⊆

U . Assume that there are a C1 function V : Rn+1
→ [0,∞), a

continuous α0 : Rn
→ [0,∞), a function γ∗ ∈ K∞, and C1 functions

Mi : R × Rn
→ R that are locally Lipschitz in the second variable

uniformly in the first variable for i = 1, 2, . . . , c such that:

(a) the inequality

V̇ ≤ −α0(x(t)) +

c∑
i=1

uiMi(t, x(t)) + γ∗(|δ(t)|) (42)

holds along all solutions of ẋ(t) = f (t, x(t), u, δ(t)) for all
t ≥ 0 and each vector u ∈ U ;

(b) the functions

α0(x) +

c∑
i=1

|Mi(t, x)| and V (t, x) (43)

are uniformly proper and positive definite; and
(c) the functions M∗

i (t, x) = (∂Mi/∂x)(t, x)/(1 + M2
i (t, x)) are

bounded on Rn+1 for i = 1, . . . , c.
5

Choose any positive value

L̄∗ ≥ sup{|M∗

i (t, x)| : (t, x) ∈ Rn+1, 1 ≤ i ≤ c}. (44)

Then Assumption 1 is satisfied for any constant

ϵ̄ ∈

(
0,

π

2L̄∗

)
(45)

nd us = −
2ω̄
π
(arctan(M1), . . . , arctan(Mc)). □

Proof. For each tuple (t, x) ∈ R × Rn, each ϵ ∈ Rn, and each
∈ {1, 2, . . . , c}, we can apply the Fundamental Theorem of
alculus to the function
t,x,ϵ
i (λ) = arctan(Mi(t, x + λϵ)) (46)

n the interval [0, 1] to verify that

|arctan(Mi(t, x + ϵ)) − arctan(Mi(t, x))|
= |Mt,x,ϵ

i (1) − Mt,x,ϵ
i (0)| ≤

∫ 1
0 |Ṁt,x,ϵ

i (s)|ds
=
∫ 1
0 |M∗

i (t, x + sϵ)ϵ|ds ≤ L̄∗|ϵ|

(47)

nd so also
− arctan(Mi(t, x + ϵ))Mi(t, x)
≤ − arctan(Mi(t, x))Mi(t, x) + L̄∗|ϵ||Mi(t, x)|.

(48)

ixing constants w∗ > 0 and δ∗ ∈ (0, 1) such that ϵ̄ = δ∗π/(2L̄∗)
which exist by (45)) and such that arctan(s) ≥ (δ∗ + 1)π/4 for
ll s ≥ w∗ (which exists because lims→+∞ arctan(s) = π/2), and
ny (t, x) ∈ Rn+1, i ∈ {1, 2, . . . , c}, and ϵ ∈ Bϵ̄ , we consider two

cases:
Case 1. |Mi(t, x)| ≤ w∗. To cover this case, we fix a constant

c0 > 0 such that arctan(s) ≥ c0s for all s ∈ [0, w∗]. Then
we can use the fact that arctan is an odd function to upper
bound the right side of (48) by −c0M2

i (t, x) + L̄∗|ϵ||Mi(t, x)| ≤

−
1
2 c0M

2
i (t, x)+

1
2c0

L̄2
∗
|ϵ|2, where we used Young’s inequality ab ≤

c0a2/2+b2/(2c0) with a = |Mi(t, x)| and b = L̄∗|ϵ| to upper bound
L̄∗|ϵ||Mi(t, x)|.

Case 2. |Mi(t, x)| > w∗. In this case, we can use the fact that
rctan is nondecreasing on [0, ∞) and odd to upper bound the
ight side of (48) by −(π/4)(δ∗ + 1)|Mi(t, x)| + L̄∗|ϵ||Mi(t, x)| ≤

(1 − δ∗)(π/4)|Mi(t, x)|, by our choices of δ∗ and w∗.
Combining the previous two cases, we conclude that for all

hoices of the functions δ and ϵ from Assumption 1, the time
erivative of V along all solutions of (4) satisfies

V̇ ≤ −

{
α0(x) +

c∑
i=1

Gi(t, x)

}
+ γ∗(|δ|)+ ω̄

c0π
L̄2
∗
|ϵ|2

where Gi(t, x) =

2ω̄
π

min
{
(c0/2)M2

i (t, x), (1 − δ∗) π
4 |Mi(t, x)|

} (49)

for each i and t ≥ 0. Recalling our assumption (b), we conclude
that the sum in curly braces in (49) is uniformly proper and
positive definite. Therefore, V is an ISS Lyapunov function for
this closed loop system (as defined, e.g., in [22, Chapter 4]) for
disturbances (ϵ, δ) valued in Bϵ̄ × Rd, giving the ISS property of
Assumption 1. □

Remark 4. We can replace the formulas arctan(Mi(t, x)) in
Lemma 2 by σi(Mi(t, x)) for any functions σi : R → R that satisfy:
σi is a bounded C1 strictly increasing odd function,
lims→0 σi(s)/s > 0, and σ ′

i (Mi(t, x))(∂Mi/∂x)(t, x) is a bounded
function for i = 1, . . . , c . Then Lemma 2 remains true if we
eplace π/2 in (45) by maxi |σi|∞, replace the M∗

i formulas by
∗

i (t, x) = σ ′

i (Mi(t, x))(∂Mi/∂x)(t, x), and replace 2/π in the us
ormula by 1/sups σi(s), by a similar proof. □
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. Application to bilinear systems

This special case of Lemma 2 covers bilinear systems, and is
obtained by specializing Lemma 2 to the case where Mi(t, x) =

2(x⊤P(t)Bi(t)x+ x⊤P(t)Gi(t)) using a quadratic Lyapunov function
V (t, x) = x⊤P(t)x:

Lemma 3. Let A : R → Rn×n, D : R → Rn×d, and Bi : R → Rn×n

and Gi : R → Rn for i = 1, . . . , c be bounded matrix valued
continuous functions. Assume that there are a function γ∗ ∈ K∞,
constants ci ≥ 0, and a C1 bounded function P : R → Rn×n such
that P⊤(t) = P(t) for all t ∈ R and such that the following hold
with V (t, x) = x⊤P(t)x:

(a) along all solutions of ẋ = A(t)x + D(t)δ, we have

V̇ ≤ −

n∑
i=1

cix2i (t) + γ∗(|δ(t)|) (50)

at all times t ≥ 0;
(b) the functions V (t, x) and∑n

i=1 cix
2
i +

∑c
i=1

⏐⏐x⊤P(t)Bi(t)x + x⊤P(t)Gi(t)
⏐⏐ (51)

are uniformly proper and positive definite; and
(c) the functions

Hi(t, x)=
2(x⊤(P(t)Bi(t)+B⊤

i (t)P(t))+G⊤
i (t)P(t))

1+4(x⊤P(t)Bi(t)x+x⊤P(t)Gi(t))2
(52)

are bounded for i = 1, . . . , c.

Choose a positive value H∗ ≥ sup{|Hi(t, x)| : (t, x) ∈ Rn+1, 1 ≤ i ≤

}. Then, for any constants ω̄ > 0 and ϵ̄ ∈ (0, π/(2H∗)), and with
he feedback

us(t, x) = −ω̄(arctan(M1(t, x)), . . . , arctan(Mc(t, x)))

where Mi(t, x) = 2
(
x⊤P(t)Bi(t)x + x⊤P(t)Gi(t)

)
,

(53)

the bilinear system (1) satisfies Assumptions 1–2. □

The preceding results are novel, even in the special case where
he coefficient matrices in (1) are constant. To illustrate Lemma 3
n the constant coefficients case, we consider the case where the
oefficient matrices in (1) and P are

=

[
A0 0na×nb

0nb×na 0nb×nb

]
, P =

[
P0 0na×nb

0nb×na P1

]
, (54)

=

[
D1

0nb×d

]
, Bi =

[
Bi1 Bi2
Bi3 Bi4

]
, and Gi =

[
Gi1
Gi2

]
(55)

or i = 1, . . . , c for any na and nb = n − na, where A0 is Hurwitz
nd P0 ∈ Rna×na and P1 ∈ Rnb×nb are symmetric positive definite
atrices, and

0A0 + A⊤

0 P0 = −Ina , (56)

nd where the upper sub-matrices in the block matrices D, Bi, and
i consist of na rows. Using the triangle inequality, it follows that
long all solutions of ẋ = Ax + Dδ, we have

V̇ =−|xa|2+2x⊤
a P0D1δ ≤ −

1
2 |xa|

2
+2|P0|2|D1|

2
|δ|2 (57)

here xa denotes the first na components of x. It follows that
e can satisfy requirement (a) of Lemma 3 using ci = 0.5 if

1 ≤ i ≤ na and ci = 0 if na < i ≤ n and γ∗(s) = 2|P0|2|D1|
2s2.

Hence, if we let xb denote the last nb components of x, then
condition (b) of Lemma 3 will also be satisfied provided

N (xb) =

c∑
i=1

⏐⏐x⊤

b P1Bi4xb + x⊤

b P1Gi2
⏐⏐ (58)

is proper and positive definite. This produces the following suf-
ficient condition for condition (b) of Lemma 3 to hold when the
6

Fig. 1. Grid-connected three-phase PV converter.

coefficient matrices are constant: There is an index i ∈ {1, . . . , c}
such that P1Gi2 = 0 and such that P1Bi4 is either negative definite
or positive definite. We next illustrate the constant coefficient
case in a significant power system dynamic involving inverters.

7. Power systems application

We study a grid connected three-phase photovoltaic (PV) in-
verter shown in Fig. 1. The PV source is modeled using a voltage
controlled current source; see [25]. Let ipv denote the current
value of the PV source, and ia, ib, and ic and Vga, Vgb, and Vgc denote
the three-phase power grid currents and voltages, respectively.
We let L and R denote the aggregated inductance and resistance
of the output filter (which are needed for attenuating switching
harmonics), transformers, and transmission lines connected to
the output terminal of the converter, respectively, Vdc denote the
voltage at the input terminal of the converter, and Cdc denote the
dc-link capacitor required to maintain the input voltage steady.
Using Park’s transformation (e.g. from [25, Appendix 2]) to trans-
form the three-phase power grid currents and voltages from the
abc reference frame into the synchronously rotating dq0 reference
frame gives⎧⎪⎪⎨⎪⎪⎩

L did
dt = ddVdc − Rid + ωLiq − Vgd

L diq
dt = dqVdc − Riq − ωLid − Vgq

Cdc
dVdc
dt = ipv − ddid − dqiq

(59)

as our PV converter model, where ω is the angular frequency of
the power grid voltage, and (Vgd, Vgq) and (id, iq) are the d-q com-
ponents of the power grid voltage and current in the dq0 frame,
respectively; and dd and dq are corresponding controls associated
with the switching states of the PV inverter. The constants L, R,
ω, Cdc , and ipv are positive, and the constants Vgd and Vgq are
nonnegative.

We next apply Lemma 3 to a bilinear error dynamics corre-
sponding to (59). Choose any reference values I∗d ≥ 0, I∗q ≥ 0,
and V ∗

dc > 0 for the states id, iq, and Vdc respectively that satisfy
R(I∗d )

2
+ R(I∗q )

2
+ I∗dVgd + I∗qVgq = ipvV ∗

dc , so I∗d and I∗q are not both
zero. The corresponding steady state reference control values
Dd = (RI∗d −ωLI∗q +Vgd)/V ∗

dc and Dq = (RI∗q +ωLI∗d +Vgq)/V ∗

dc then
satisfy RI∗d = DdV ∗

dc + ωLI∗q − Vgd, RI∗q = DqV ∗

dc − ωLI∗d − Vgq, and
0 = ipv−DdI∗d−DqI∗q . Choosing the error state variables x1 = id−I∗d ,
x2 = iq − I∗q , and x3 = Vdc − V ∗

dc and the new control variables
u1 = dd − Dd and u2 = dq − Dq, the preceding relations produce
the error equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) =
1
L

[
Ddx3(t) + u1(t − h)(x3(t) + V ∗

dc)
−Rx1(t) + ωLx2(t)]

ẋ2(t) =
1
L

[
Dqx3(t) + u2(t − h)(x3(t) + V ∗

dc)
−Rx2(t) − ωLx1(t)]

ẋ3(t) =
1

Cdc

[
−Ddx1(t) − u1(t − h)(x1(t) + I∗d )

∗
]

(60)
−Dqx2(t) − u2(t − h)(x2(t) + Iq ) ,
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Fig. 2. First (Red), Second (Blue), and Third (Green) Components of (60),
ith Initial States (0.75, −0.75, 0), (−0.5, 0.5, 0), and (0.25, −0.25, 0), On Time

ntervals [0, 0.0015] (Top Panel) and [0.0015, 1.75] (Bottom Panel). (For inter-
retation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

hich is a special case of (1) with δ = 0. The requirements of
emma 3 are satisfied with n = 3, c = 2, the diagonal matrix
= 0.5diag{L, L, Cdc}, c1 = c2 = R, c3 = 0, M1(t, x) = V ∗

dcx1−I∗d x3,
M2(t, x) = V ∗

dcx2 − I∗q x3, and H∗ = max{|(V ∗

dc, I
∗

d )|, |(V
∗

dc, I
∗
q )|}.

Therefore, Theorem 1 applies.
Grid-tie inverters are widely employed for grid integration of

renewable energy sources. For realizing any control scheme for
the grid-tie inverter, voltage and current waveforms are mea-
sured and samples are sent to a digital signal processor (DSP).
Sampling takes place at a fixed frequency. However, due to lim-
ited processing capability of DSPs and control scheme complexity,
there is a delay between the time sample measurements are
received and the time control actions are made by the DSP.
Common sampling frequencies in grid-tie inverters are 10 to
20 kHz. As for digital implementation delay, it is a common
assumption to consider it equal to the sampling period. Thus, we
have considered a delay of 100 micro sec (= 1/10 kHz, i.e., the
reciprocal of the sampling frequency) in this paper.

In Fig. 2, we plot Mathematica simulations for the state x =

(x1, x2, x3) of (60) using the control from Theorem 1 with 0 initial
states for each zi, us from Lemma 3, the preceding choices, and
(41) with Ū =

√
2ω̄(π/2). We choose h = 0.0001, L = 0.015,

gd = 230, V ∗

dc = 400, R = 0.2, ω = 120π , Vgq = 0, Cdc = 0.0015,
I∗d = 80, I∗q = 0, λa = 0.1, ω̄ = 1, m = 3, and Dd, Dq, and ipv
from our formulas above, which satisfy the requirements from
Theorem 1 with the choices C1 = 1.38/h and C2 = 0.4.

We expressed the convergence in two phases in Fig. 2, to show
the qualitatively different performance on the interval [0, 0.0015]
(during which only two of the error states converge closely to
the 0 equilibrium) and the second phase during the interval
[0.0015, 1.75] (when all states convergence to the equilibrium).
The preceding simulations show the good performance of our
7

Fig. 3. First (Red), Second (Blue), and Third (Green) Components of (60), with
Initial States (0.75,−0.75, 0), (−0.5, 0.5, 0), and (0.25, −0.25, 0), On Time Inter-
al [0, 1.75] without Delay Compensation. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this
rticle.)

ontrol design. Moreover, they illustrate the reduction in the
umber m of required sequential predictors made possible by
heorem 1, because if we had instead used the formula (13) for
he lower bound on m with all other parameter values kept the
ame, then we would have required m ≥ 5 sequential predictors,
nstead of allowing m = 3.

While the components of our initial states at time t0 = 0
ange from −0.75 to 0.75, the corresponding xi(t) components
re valued in [−0.65, 1] by time 0.0015, and this explains why
he starting values of the xi(t)’s are contained in [−0.65, 1] in
he bottom panel which starts at time 0.0015. While h is small,
t is significant relative to the system dynamics, and we can
ompensate for any constant h > 0. For example, if we increase
to h = 0.001, then our assumptions are satisfied with m = 31
nd with all other constants kept the same. On other hand, for this
arger h choice, the condition (13) would have required m ≥ 47
equential predictors, so again we see the improvement made
ossible by Theorem 1, which in this case is a 34% reduction (from
7 to 31) in the required number m of sequential predictors.
he practical value of using m = 31 sequential predictors is

the reduction in computational burden, as compared with tradi-
tional predictor methods that yield distributed terms and which
therefore produce an infinite dimensional analysis.

It is tempting to surmise that since the delay h is small, the
system would exhibit good performance even without predictors.
However, this would not be correct, because our predictive ap-
proach still improves on the control performance compared to
what we would have obtained without delay compensation. This
is illustrated in our Mathematica simulation in Fig. 3, where we
replaced the components of the last sequential predictor z3 in the
ontrols by the corresponding components of x (by simulating
60) with the controls u1(t −h) = − arctan(V ∗

dcx1(t −h)− I∗d x3(t −
)) and u2(t − h) = − arctan(V ∗

dcx2(t − h) − I∗q x3(t − h)) and
he parameter values stated above), which corresponds to not
ompensating for the delay, and kept everything else the same as
he first simulation. Since Fig. 3 illustrates the lack of convergence
n the absence of delay compensation, it also helps motivate our
ethods.

. Conclusions

We presented a new sequential predictor approach to feed-
ack stabilization under arbitrarily long constant input delays
hich can be applied to bilinear systems that violate the usual

inear growth conditions. Compared with other delay compen-
ation approaches, potential advantages include that the closed-
oop systems satisfy ISS without using distributed terms in the
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ontrol that were present in exact predictor approaches. In future
ork, we hope to explore applications to large scale networked
ystems as in [15] and extensions for reaction–diffusion PDEs as
n [16]. We will also study cases where there are different delays
n different components of the input, which may call for bilinear
nalogs of the predictor structures from [2] having different sets
f chain predictors corresponding to the different input delays.
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ppendix. Proof of Lemma 1

Using the definition of f0 gives

Ė1(t) = −pE1
(
t −

h
m

)
+ f0

(
t +

h
m , z1(t), u

(
t −

h(m−1)
m

))
− f

(
t+ h

m , x
(
t+ h

m

)
, u
(
t− h(m−1)

m

)
, δ
(
t+ h

m

)) (A.1)

and Ėi(t) = −pEi
(
t −

h
m

)
+ pEi−1(t)

+ f0
(
t + i hm , zi(t), u

(
t −

h(m−i)
m

))
− f0

(
t + i hm , zi−1

(
t +

h
m

)
, u
(
t −

h(m−i)
m

)) (A.2)

hen i > 1. We first study the E1-subsystem (A.1).
The Fundamental Theorem of Calculus yields

Ė1(t) = −pE1 (t) + p
∫ t
t− h

m
Ė1(ℓ)dℓ

+f0
(
t +

h
m , z1(t), u

(
t −

h(m−1)
m

))
−f
(
t+ h

m , x
(
t +

h
m

)
, u
(
t− h(m−1)

m

)
, δ
(
t+ h

m

))
.

(A.3)

Then Assumption 2 and Young’s inequality give

ν̇(t) ≤ − p|E1(t)|2 + p
∫ t
t− h

m
E1(t)⊤Ė1(ℓ)dℓ

+ |E1(t)|k
(⏐⏐z1(t)−x

(
t+ h

m

)⏐⏐+ ⏐⏐δ (t+ h
m

)⏐⏐)
= (k − p)|E1(t)|2 + p

∫ t
t− h

m
E1(t)⊤Ė1(ℓ)dℓ

+ k|E1(t)|
⏐⏐δ (t +

h
m

)⏐⏐
≤ (k − p)|E1(t)|2 + k|E1(t)|

⏐⏐δ (t +
h
m

)⏐⏐
+ p

∫ t
t− h

m

[
C1
2 |E1(t)|2 +

1
2C1

|Ė1(ℓ)|
2
]
dℓ

=

(
k−p+

phC1
2m

)
|E1(t)|2+ p

2C1

∫ t
t− h

m
|Ė1(ℓ)|

2dℓ

+ k|E1(t)|
⏐⏐δ (t +

h
m

)⏐⏐ .

(A.4)

ext note that (A.1) gives the following for all ℓ ≥ 0:

|Ė1(ℓ)|

≤ p
⏐⏐E1 (ℓ −

h
m

)⏐⏐+ ⏐⏐f0 (ℓ +
h
m , z1(ℓ), u

(
ℓ −

h(m−1)
m

))
− f

(
ℓ +

h
m , x

(
ℓ +

h
m

)
, u
(
ℓ −

h(m−1)
m

)
, δ
(
ℓ +

h
m

))⏐⏐
≤ p

⏐⏐E1 (ℓ −
h
m

)⏐⏐+ k
(
|E1(ℓ)| + |δ

(
ℓ +

h
m

)
|
)
,

y Assumption 2. Hence, Young’s Inequality gives

|Ė1(ℓ)|
2

≤ (1 + C2)p2|E1(ℓ − h/m)|2

+

(
1 +

1
C2

)
k2
(

|E1(ℓ)|2 + |δ(ℓ + h/m)|2)

+ 2|E1(ℓ)||δ(ℓ + h/m)|

8

≤ (1 + C2)p2|E1(ℓ − h/m)|2

+

(
1 +

1
C2

)
k2
( (

1 +
λa
4

)
|E1(ℓ)|2

+(1 + 4/λa)|δ(ℓ + h/m)|2
)

for all t ≥ 0. Therefore, (A.4) gives

ν̇(t) ≤

(
k−p+

phC1
2m

)
|E1(t)|2+k|E1(t)||δ(t + h/m)|

+
p3(1+C2)

2C1

∫ t−h/m
t−2h/m |E1(ℓ)|2dℓ

+
pk2
2C1

(
1 +

1
C2

) (
1 +

λa
4

) ∫ t
t−h/m |E1(ℓ)|2dℓ

+
pk2
2C1

(
1 +

1
C2

)(
1 +

4
λa

) ∫ t+h/m
t |δ(ℓ)|2dℓ

(A.5)

or all t ≥
h
m . Since Young’s Inequality also gives

k|E1(t)||δ(t+h/m)| ≤
λa
2 |E1(t)|2+ k2

2λa
|δ(t+h/m)|2, (A.6)

we can use (A.6) to upper bound the last term in (A.5) and our
choice of p from (6) and finally our choice of ν to get

ν̇(t) ≤ −k|E1(t)|2 +
p3(1+C2)

2C1

∫ t−h/m
t−2h/m |E1(ℓ)|2dℓ

+
pk2
2C1

(
1+

1
C2

) (
1+

λa
4

) ∫ t
t−h/m |E1(ℓ)|2dℓ

+ M̄|δ|2
[t,t+h/m]

≤ −2kν(E1(t)) + C
∫ t
t−2h/m ν(E1(ℓ))dℓdℓ

+ M̄|δ|2
[t,t+h/m]

,

(A.7)

where M̄ is defined in (6).
Recalling our choice of µ(E1,t ) from (16), it follows that for all

t ≥ h/m, we have

d
dt µ(E1,t ) ≤ −2kν(E1(t)) + M̄|δ|2

[t,t+h/m]

+C
(∫ t

t−2h/m ν(E1(ℓ))dℓ +
2h(1+λa)

m ν(E1(t))
)

−C(1 + λa)
∫ t
t−2h/m ν(E1(ℓ))dℓ.

(A.8)

his gives

d
dt µ(E1,t ) ≤ 2k

[
−1 +

hC
km (1 + λa)

]
ν(E1(t))

−λaC
∫ t
t−2h/m ν(E1(ℓ))dℓ + M̄|δ|2

[t,t+h/m]
.

(A.9)

Therefore, our condition (8) from our theorem and our choice of
ϵ0 in (6), combined with the bound

µ̃(E1,t ) ≤ ν(E1(t)) + 2
(
1 +

hC(1+λa)
m

) ∫ t
t−2h/m ν(E1(ℓ))dℓ,

give (17) along all trajectories of the E1 dynamics.
Similarly, since there is no δ in the z system, (A.2) and the

relation 2rs ≤ λar2/4 + 4s2/λa for all r ≥ 0 and s ≥ 0 give

|Ėi(ℓ)|
2

≤ (1 + C2)p2|Ei(ℓ − h/m)|2

+

(
1 +

1
C2

)
(k|Ei(ℓ)| + p|Ei−1(ℓ)|)2

≤ (1 + C2)p2|Ei(ℓ − h/m)|2

+

(
1 +

1
C2

)
k2(1 + λa/4)|Ei(ℓ)|2

+

(
1 +

1
)
p2(1 + 4/λ )|E (ℓ)|2

(A.10)
C2 a i−1
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f
f

w

C

w

R

or any i ∈ {2, 3, . . . ,m}. This implies that the function µ(Ei,t )
rom (18) satisfies the following for all t ≥ h/m:

d
dt µ(Ei,t ) ≤ −ϵ0µ̃(Ei,t ) + p|Ei(t)||Ei−1(t)|

+C♯

2

∫ t
t−h/m |Ei−1(ℓ)|2dℓ

≤ −ϵ0µ̃(Ei,t ) +
ϵ0
4 |Ei(t)|2 +

p2
ϵ0

|Ei−1(t)|2

+ C♯

2

∫ t
t−h/m |Ei−1(ℓ)|2dℓ

≤ −
ϵ0
2 µ̃(Ei,t ) +

p2
ϵ0

|Ei−1(t)|2

+ C♯

2

∫ t
t−h/m |Ei−1(ℓ)|2dℓ,

(A.11)

here the second inequality used Young’s inequality and

♯

2 =

(
1 +

1
C2

)
p3

2C1
(1 + 4/λa) , (A.12)

hich proves the lemma.
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