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1. Introduction
Thanks to Drs Céline Cunen, Nils Lid Hjort and Tore
Schweder for their interest in our recent contribution
[1] concerning the probability dilution phenomenon
in satellite conjunction analysis and, more generally,
the difficulties associated with representing statistical
inference using ordinary or precise probabilities. Our
analysis focused primarily on Bayesian uncertainty
quantification but, of course, this is not the only
probabilistic approach available, so we welcome a
confidence distribution-based solution from those who
literally wrote the book on confidence distributions
[2]. Their illustration reproduces the lack of proper
calibration—or false confidence—that can emerge when
marginalizing a Bayesian posterior distribution and
highlights the difference between Bayesian posteriors
and confidence distributions (CDs) with respect to the
validity property advocated in our paper.

However, the message presented by Cunen et al. [3]—
that replacing a Bayesian posterior distribution with
a CD is all it takes to overcome false confidence—is
potentially misleading. Our false confidence theorem
applies to all epistemic probability distributions,
including CDs; so, contrary to the authors’ claim, their
proposed CD is at risk of false confidence too. In
particular, as is well known, CDs only support reliable
inferences on one-sided propositions of the form (−∞, a]
or [a, +∞). Other sets, including two-sided intervals and
their complements, are still subject to the false confidence
phenomenon uncovered in Balch et al. [1].

2021 The Author(s) Published by the Royal Society. All rights reserved.
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Section 2 confirms the presence of false confidence in CDs with a simple example. Section 3
explores one path forward for CDs to be free of false confidence, at least in a certain limited sense.
Section 4 emphasizes an important but overlooked point made in Balch et al. [1], Sec. 4, namely,
that coverage probability control is not enough to ward off false confidence. Adding in the missing
consonance feature takes one into the world of imprecise probability, and we show in §5 how this
can provide another path forward for advocates of CDs to justifiably claim they are free of false
confidence. Section 6 ends the note with some concluding remarks.

2. CDs only offer some C
In the abstract, Cunen et al. [3] present their take-home message:

confidence distributions [are] free of the false confidence syndrome.

Simply put, this claim is false; in fact, it cannot be true because our false confidence theorem
applies to all epistemic probability distributions, including CDs. The following example confirms
this.

To set the scene, a simplified version of the satellite collision problem assumes a bivariate
Gaussian observation Y = (Y1, Y2) with unknown mean vector θ = (θ1, θ2) and known covariance
matrix σ 2I, representing the true displacement between two satellites at closest approach and
the random error in a navigator’s prediction of that displacement, respectively. The quantity
of interest in this setting is δ = ‖θ‖ = (θ2

1 + θ2
2 )1/2, the true distance at closest approach. If that

distance is less than the combined size of the two satellites, a collision will occur. Given y = (y1, y2),
let Cy(d) denote the distribution function that determines Cunen et al.’s CD, i.e.

Cy(d) = 1 − H(σ−2‖y‖2; σ−2d2),

where H(·; λ) denotes a non-central χ2 distribution function with 2 degrees of freedom and non-
centrality parameter λ. With a slight abuse of notation, let Cy(A) denote the confidence assigned by
distribution Cy to a hypothesis A ⊂ (0, ∞) about δ. For a hypothesis of the form Aδ = (0, δ], CY(Aδ)
has a standard uniform distribution, as a function of Y, if the true distance at closest approach
happens to be δ; in fact, this is the defining property of a CD (e.g. [2,4]). This implies that, for any
hypothesis A ⊂ Ac

δ , which is false, the probability that CY(A) is large would be relatively small,
so there is no false confidence for that hypothesis A. But there are many other potentially false
hypotheses, and the above argument says nothing about the behaviour of CY(A) for those A’s.
For example, consider A = (0, 1.5] ∪ [2.5, ∞). If the true distance at closest approach happens to
be 2, then this hypothesis is false; so, CY(A) should tend to be relatively small. To check this, we
simulated data Y with true distance at closest approach equal to 2 and several different values of
the error standard deviation σ . Figure 1 plots the distribution function of the random variable
CY(A) for those different σ values. Clearly, this confidence assignment tends to be large, i.e.
relatively close to 1, and the practical consequence is that conclusions drawn about the hypothesis
A based on the magnitude of CY(A) are at risk of being systematically wrong. Therefore, contrary
to Cunen et al.’s claim, their CD is not free of false confidence in the sense of Balch et al. [1].

Two points deserve further emphasis. First, the problematic assertion A identified above is not
the only one. As we said, any A that is not fully contained in the interval Ac

δ = (δ, ∞) and does
not contain δ would be at risk of false confidence, regardless of the true δ value. The A selected
for the above illustration was just one of those we found where the effect of false confidence was
especially clear. Second, while our illustration of false confidence involves knowledge of the true
δ value—otherwise, we would not be able to identify a ‘false’ hypothesis to investigate in the
simulation—the phenomenon itself does not depend on or require a known δ. It is no different
than how the CD definition ‘CY(Aδ) is uniformly distributed at the true δ value’ depends on the
true δ value. The point is that a hypothesis A is either true or false, and in applications we use
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Figure 1. Plots of the distribution function α �→ PY|θ {CY (A)≤ α}, where CY (A) is the confidence assigned to the false
hypothesis A by the CD. (Online version in colour.)

data to help make inferences. Since there exist false hypotheses A for which CY(A) tends to be
large, there is good reason to question those inferences drawn from the CD.

3. CDs are not really Ds
Of course, in the context of satellite conjunction analysis, the satellite navigator really does only
care about one-sided sets on δ, in particular, whether the two satellites will get so close together
that they actually collide. Our point here is not that the CD solution to conjunction analysis is
totally unworkable but, rather, that CDs are not ‘distributions’ in any meaningful sense. The
chief advantage of basing inference on a data-dependent distribution is that it ought to provide
a complete quantification of uncertainty about the unknown parameters of the statistical model
based on the observed data. So once such a distribution has been constructed, it can be used to
answer all relevant questions at once. But, according to the false confidence theorem, all epistemic
probability distributions are afflicted by false confidence, and hence the distribution’s answers to
some questions are not reliable. To avoid this undesirable behaviour, the only option is to quantify
uncertainty with something less committal than an ordinary or precise probability distribution.

CDs, properly caveated, could fall under this ‘something less committal’ umbrella. The truth
is, CDs are limited objects; they only support reliable inferences on one-sided hypotheses about
scalar parameters:

distributions derived from a CD by ordinary calculus do however not automatically inherit the
property of being a CD · · · even in dimension 1 ([5], p. 58).

Also,

joint CDs should not be sought, we think, since they might easily lead the statistician astray ([5],
p. 59).

This is why Cunen et al. [3] do not start with a joint CD for θ in the satellite collision example and
derive CD for δ. Instead, they directly construct a CD for δ. This also explains the phenomenon
observed in the example from §2: that problematic hypothesis corresponds to a one-sided set
on a new parameter δ′ = |δ − 2|, which is a not-one-to-one function of δ, and the corresponding
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marginal distribution for δ′ is not necessarily a CD. If CDs lack the status of a distribution, as
Cunen et al. and many others acknowledge [6], then they are less committal than an ordinary or
precise probability. And the way to ensure that false confidence is avoided, at least in a certain
limited sense, is for CDs’ restriction to one-sided hypotheses to be clearly stated and consistently
enforced. This is preferable to making claims like ‘confidence in confidence distributions!’ that
hide the risks that might very well lead the statistician astray

The downside to this less committal perspective on CDs is that they lose much of their appeal.
Given a CD for one variable, if the proposition of interest is a one-sided hypothesis concerning
a second variable, then one must derive a completely new CD about that second variable. And
there is no clear general path for doing that—at least not using the ordinary/precise probability
calculus; but see §5 below.

Some authors have relaxed the requirement that CDs be proper probability distributions.
For example, Schweder & Hjort ([5], p. 61) suggest that a CD could be improper, i.e. assign
infinite total mass to the parameter space, and Thornton & Xie ([7], Def. 3) replace a single
CD with a lower and upper CD pair. But neither of these proposed relaxations addresses the
issue in question. First, an improper CD does not provide probabilistic uncertainty quantification
because, without propriety, the resulting CY(A) values could be arbitrarily large, even infinite,
so interpretation is unclear. Second, the sole purpose of lower/upper CDs in the latter reference
is to obtain confidence intervals in the context of discrete data; the authors make no proposal for
using their lower/upper CD pair for assigning lower/upper probabilities to quantify uncertainty.
Moreover, it was shown recently [8] that a particular imprecise probability model—a ‘confidence-
box’—encoded in the lower/upper CD pair derived for binomial inference in Thornton & Xie
([7], Example 2) is also afflicted by false confidence. So, the false confidence phenomenon is rather
subtle; it cannot be avoided simply by achieving a coverage probability property or by assigning
beliefs in an arbitrary but non-additive way. The next two sections explain this in more detail.

4. Coverage probability is not enough
Several statements in Cunen et al. [3] suggest that belief assignments made by CDs inherit
the reliability properties of those made by simple confidence regions. This claim is also false.
The authors misunderstood the proof offered in §4 of Balch et al. [1], which demonstrates that
simple confidence regions are free from false confidence. However, as stated in the footnote
accompanying that section, the reliability of simple confidence regions is due to the combination
of coverage probability and consonance. Simple confidence regions are trivially consonant and
thereby enjoy the reliability properties that hold for all consonant confidence structures, as
proved in Denœux & Li [9]. However, if you build a non-consonant structure out of multiple
confidence regions—for example, a CD—the broad reliability guarantees that held for the
individual constituent confidence regions do not necessarily hold for the total structure, as
has been conclusively demonstrated in §2 of this note and elsewhere. Otherwise, as proved in
Balch [10], it would be possible to propagate CDs meaningfully. But because coverage probability
is such a weak criterion, in and of itself, the scheme outlined in Balch [10] is only useful when
applied to consonant confidence structures.

5. Coverage+ consonance= no false confidence
There is a relatively straightforward fix to the shortcoming of coverage probabilities and CDs.
One can simply recast the CD in a possibilistic framework. In the CD literature, there is an object
called the confidence curve, dating back to Birnbaum [11]. In Cunen et al. [3], this is given by

cy(d) = |2Cy(d) − 1|.

The confidence curve is somewhat mysterious because the above manipulation is not a
meaningful one in the theory of probability. But it turns out that it is a fundamental structure
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Figure 2. Plots of the distribution function α �→ PY|θ {bY (A)≤ α}, where bY (A) is the confidence assigned to the false
hypothesis A by (5.1). (Online version in colour.)

in the theory of imprecise probability. Indeed,

py(d) = 1 − cy(d)

is the so-called plausibility contour associated with a consonant belief function (e.g. [12,13]); see, also,
the seminal work of Dempster [14–16] and the connections to possibility theory [17] and imprecise
probability more generally (e.g. [18]). In a possibilistic framework, the confidence assignments are
carried out differently. For a hypothesis A about δ, the degree of belief or support for a proposition
or hypothesis is computed as

by(A) = 1 − sup
d∈Ac

py(d). (5.1)

For illustration, we repeat the simulation study described in §2 above, and plot the distribution
of bY(A), as a function of data Y, for that same problematic hypothesis A. Figure 2 displays this
distribution function for three different values of σ . The key difference compared with figure 1 is
that this distribution function is above the diagonal line, indicating that bY(A) tends to be small.
This means the support for the false hypothesis is relatively small, hence no false confidence.

6. Conclusion
Contrary to claims in Cunen et al. [3], CDs are not completely free of false confidence, not
if they are understood as probability distributions. However, all it takes to remove the CD’s
false confidence affliction is to change perspectives, to recognize that the complement of the
corresponding confidence curve is a plausibility contour, and work in an imprecise rather
than precise probability framework. This perspective also makes it possible to construct a
multi-parameter CD but, again, interpreted as an imprecise probability with different rules
for marginalization compared with precise probability. Connections between confidence—and
frequentist inference more generally—and imprecise probability can be found in Balch [10] and
Martin [19–22], but more work is needed. Also, the solution based on (5.1) is exactly that presented
in Martin & Liu ([23], Sec. 4.3) based on an alternative approach, the so-called inferential model
(IM) framework, which works directly in the domain of imprecise probability through the use
of random sets. To our knowledge, the only general approach to distributional inference without
false confidence is the IM framework; see Martin & Liu [24,25] and Martin [26].
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Finally, while it is clearly desirable to avoid false confidence if possible, it is also interesting
to better understand what kind of hypotheses are afflicted by false confidence. Currently, theory
establishes the existence of problematic hypotheses, and a few have been constructed in specific
examples. A more precise characterization of those problematic hypotheses would shed more
light on the limitations of and risks associated with the use of probability as a tool for uncertainty
quantification in statistical inference.

Data accessibility. This article has no additional data.
Competing interests. We declare we have no competing interests.
Funding. R.M. acknowledges support from the NSF (DMS–1811802) and S.F. acknowledges support from the
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