

Brief paper

Reduced order finite time observers and output feedback for time-varying nonlinear systems[☆]Frédéric Mazenc ^{a,*}, Saeed Ahmed ^b, Michael Malisoff^c^a EPI DISCO Inria-Saclay, Laboratoire des Signaux et Systèmes, CNRS, CentraleSupélec, Université Paris-Sud, 3 rue Joliot Curie, 91192, Gif-sur-Yvette, France^b Department of Mechanical and Process Engineering, TU Kaiserslautern, Kaiserslautern 67663, Germany^c Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA

ARTICLE INFO

Article history:

Received 27 May 2019

Received in revised form 10 January 2020

Accepted 19 May 2020

Available online 15 June 2020

ABSTRACT

We provide finite time reduced order observers for a class of nonlinear time-varying continuous-time systems. We use the observers to design globally asymptotically stabilizing output feedback controls. We illustrate our work in tracking dynamics for a nonholonomic system in chained form.

© 2020 Elsevier Ltd. All rights reserved.

Keywords:

Observer
Stabilization
Finite time
Time-varying

1. Introduction

This work continues our search for ways to estimate solutions of systems. This is an important problem, because solving it can make it possible to design output feedback stabilizing controls. The Luenberger observer from Luenberger (1979) is one of many observers for nonlinear systems. However, most existing observers usually only ensure asymptotic convergence of the estimation error to 0, and this can be an obstacle to their implementation.

By definition, a finite time observer is one that provides an exact value of the state that is being estimated after a finite time. This finite time may depend on the initial state (as in Du, Qian, Yang, and Li 2013 and Perruquetti, Floquet, and Moulay 2008), or it may be a fixed time that could be independent of the initial state as in Lopez-Ramirez, Polyakov, Efimov, and Perruquetti (2018). Other finite time observers use past output values or a dynamic extension. This later type of observers was proposed for

linear systems, e.g., in Engel and Kreisselmeier (2002), Menold, Findeisen, and Allgower (2003), and Raff and Allgower (2008). See also the finite time observers in Mazenc, Fridman, and Djema (2015) and Sauvage, Guay, and Dochain (2007) for nonlinear systems.

This paper is motivated by the fact that time-varying systems frequently arise, e.g., by recasting tracking problems as problems for time-varying systems whose goal is to uniformly globally asymptotically stabilize a zero equilibrium, and because measured state components need not be estimated. Here, we adapt Mazenc et al. (2015) and Sauvage et al. (2007) to build finite time reduced order observers for a class of nonlinear time-varying systems. As in Bonnans and Rouchon (2005, Chapt. 4, Sec. 4.4.3) and Friedland (2009), our observers only estimate unmeasured variables. This can produce simpler or better performing observers, and is helpful because when one needs formulas for fundamental solutions of time-varying systems, it is advantageous to consider smaller dimensions.

We believe that our work is the first to provide finite time reduced order observers. Another advantage of this work is that our main observer provides fixed time convergence that is independent of the initial state. It improves on our conference version (Mazenc, Ahmed, & Malisoff, 2018b) by adding sufficient conditions for our assumptions, a design based on dynamic extensions that yields a formula for the estimation of the state without distributed terms, an output feedback stabilization theorem, and a nonholonomic example that applies our output stabilization theorem, which were not included in Mazenc et al. (2018b).

[☆] A preliminary version appeared in the proceedings of the 2018 IEEE Conference on Decision and Control; see Section 1 for the differences between the conference version and this paper. Malisoff was supported by US National Science Foundation Grant 1711299. The material in this paper was partially presented at The 57th IEEE Conference on Decision and Control, December 17–19, 2018, Miami Beach, Florida, USA. This paper was recommended for publication in revised form by Associate Editor Denis Dochain under the direction of Editor Miroslav Krstic.

* Corresponding author.

E-mail addresses: frederic.mazenc@l2s.centralesupelec.fr (F. Mazenc), saeed.ahmed@mv.uni-kl.de (S. Ahmed), malisoff@lsu.edu (M. Malisoff).

We use the following standard notation. The dimensions of our Euclidean spaces are arbitrary, unless otherwise noted. The usual Euclidean norm and the induced matrix norm are denoted by $|\cdot|$, $|\cdot|_\infty$ is the sup norm, $|\cdot|_J$ is the sup over a set J , and I is the identity matrix. We use the standard comparison function classes \mathcal{KL} and \mathcal{K}_∞ and input-to-state stable (or ISS), properness, and positive definiteness definitions; see Khalil (2002, Chapter 4) and Malisoff and Mazenc (2009). A function $g : \mathbb{R} \times \mathbb{R}^n \rightarrow \mathbb{R}^m$ is called locally Lipschitz in the second variable uniformly in the first variable provided there is a function $\alpha \in \mathcal{K}_\infty$ such that for all constants $R > 0$, we have $|g(t, x) - g(t, y)| \leq \alpha(R)|x - y|$ for all $t \in \mathbb{R}$, $x \in \mathcal{B}(R)$, and $y \in \mathcal{B}(R)$, where $\mathcal{B}(R)$ is the closed ball of radius R centered at 0 in the usual Euclidean norm. A function $V : [0, \infty) \times \mathbb{R}^n \rightarrow \mathbb{R}$ is called uniformly proper and positive definite provided there exist functions $\underline{\alpha} \in \mathcal{K}_\infty$ and $\bar{\alpha} \in \mathcal{K}_\infty$ such that $\underline{\alpha}(|x|) \leq V(t, x) \leq \bar{\alpha}(|x|)$ for all $t \geq 0$ and $x \in \mathbb{R}^n$. We assume for simplicity that the initial times for our solutions are always $t_0 = 0$, unless otherwise noted. For any piecewise continuous function $\Omega : \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$, let Φ_Ω be the unique function such that the following conditions hold for all $t \in \mathbb{R}$ and $t_0 \in \mathbb{R}$:

$$\frac{\partial \Phi_\Omega}{\partial t}(t, t_0) = -\Phi_\Omega(t, t_0)\Omega(t) \text{ and } \Phi_\Omega(t_0, t_0) = I.$$

Then $\Phi_\Omega^{-1}(t, s) = \Phi_\Omega(s, t)$ holds for all real s and t , and $\mathcal{M}_\Omega(t, s) = \Phi_\Omega^{-1}(t, s)$ is the fundamental solution for Ω and the system $\dot{x} = \Omega(t)x$; see Sontag (1998, Lemma C.4.1). We also use the following generalization of Mazenc et al. (2018b, Lemma 2) which we prove in Appendix:

Lemma 1. Let $\mathcal{A} \in \mathbb{R}^{n \times n}$ be a constant matrix and let $\mathcal{E} : \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ be a bounded piecewise continuous function. Let $\mathcal{M}_{\mathcal{A}+\mathcal{E}}$ denote the fundamental solution of

$$\dot{\zeta}(t) = [\mathcal{A} + \mathcal{E}(t)]\zeta(t). \quad (1)$$

Then for all $t \in \mathbb{R}$ and $s \in \mathbb{R}$, the inequalities

$$|\mathcal{M}_{\mathcal{A}+\mathcal{E}}(t, s) - e^{\mathcal{A}(t-s)}| \leq |\mathcal{E}|_\infty |t - s| e^{(|\mathcal{A}| + |\mathcal{E}|_\infty)|t - s|} \quad (2)$$

and $|\mathcal{M}_{\mathcal{A}+\mathcal{E}}(t, s)| \leq e^{|t-s|(|\mathcal{A}| + |\mathcal{E}|_\infty)}$ are satisfied. \square

2. Main observer design for time-varying systems

2.1. Statement of result and remarks

We study nonlinear systems with outputs of the form

$$\begin{cases} \dot{z}(t) = A_1(t)x_r(t) + \delta_1(t, z(t)) \\ \dot{x}_r(t) = A_2(t)x_r(t) + \delta_2(t, z(t)) \\ y(t) = z(t) \end{cases} \quad (3)$$

where z is valued in \mathbb{R}^p , x_r is valued in \mathbb{R}^{n-p} , A_i for $i = 1$ and 2 is piecewise continuous and bounded, and our conditions on δ_1 and δ_2 will be specified below; see Remark 1 for the motivation for (3). We assume:

Assumption 1. There exist a constant $\tau > 0$ and a bounded matrix valued function $L : \mathbb{R} \rightarrow \mathbb{R}^{(n-p) \times p}$ of class C^1 with a bounded first derivative such that with the choice $H(t) = A_2(t) + L(t)A_1(t)$, the following are true: (i) The matrix

$$\kappa(t) = \Phi_H(t, t - \tau) - \Phi_{A_2}(t, t - \tau) \quad (4)$$

is invertible for all $t \in \mathbb{R}$ and (ii) the inverse function $\kappa^{-1}(t)$ is a bounded function of t . \square

Assumption 2. The δ_i 's are piecewise continuous with respect to t and locally Lipschitz with respect to z . The system (3) is forward complete. \square

See Section 2.3 on ways to check Assumption 1. We introduce the function

$$\delta_{\sharp}(t, z) = L(t)\delta_1(t, z) + \delta_2(t, z) + \dot{L}(t)z - H(t)L(t)z \quad (5)$$

where H and L are from Assumption 1, and the dynamic extensions

$$\begin{cases} \dot{\gamma}_1(t) = H(t)\gamma_1(t) + \delta_{\sharp}(t, z(t)) \\ \dot{\gamma}_2(t) = A_2(t)\gamma_2(t) + \delta_2(t, z(t)), \end{cases} \quad (6)$$

which are reminiscent of the ones used in Mazenc et al. (2015). In terms of the observer

$$\begin{aligned} x_r^*(t) = & \kappa(t)^{-1} [L(t - \tau)z(t - \tau) \\ & - \Phi_H(t, t - \tau)L(t)z(t) \\ & + \Phi_H(t, t - \tau)\gamma_1(t) - \gamma_1(t - \tau)] \\ & - \kappa(t)^{-1} [\Phi_{A_2}(t, t - \tau)\gamma_2(t) - \gamma_2(t - \tau)] \end{aligned} \quad (7)$$

for all $t \geq \tau$, we prove the following, but see Remark 2 on the implementability of the observer, and see Remark 3 for generalizations that allow external disturbances and measurement noise (but where instead of a finite time observer, we get an observation error depending on sup norms of the disturbances and of the measurement noise):

Theorem 1. Let L , A_1 , A_2 and τ be such that (3) satisfies Assumptions 1–2. Then

$$x_r(t) = x_r^*(t) \quad (8)$$

holds for all solutions of (3)–(6) for all $t \geq \tau$ and all initial conditions. If, in addition, the functions A_1 , A_2 and L are periodic of period $T > 0$ and $\tau = T$, then $\kappa(T) = \Phi_H(T, 0) - \Phi_{A_2}(T, 0)$ and

$$\begin{aligned} x_r^*(t) = & \kappa(T)^{-1} [L(t)z(t - T) - \Phi_H(T, 0)L(t)z(t) \\ & + \Phi_H(T, 0)\gamma_1(t) - \gamma_1(t - T)] \\ & - \kappa(T)^{-1} [\Phi_{A_2}(T, 0)\gamma_2(t) - \gamma_2(t - T)] \end{aligned} \quad (9)$$

holds for all $t \geq T$ and all constant initial functions $\gamma(0) \in \mathbb{R}^{2(n-p)}$ and $(z(0), x_r(0)) \in \mathbb{R}^n$.

Remark 1. To motivate (3), consider the class of nonlinear systems $\dot{x}(t) = Ax(t) + \delta(t, y(t))$ where A is a constant matrix and δ is uniformly locally Lipschitz in y uniformly in t , with an output $y(t) = Cx(t)$ that is valued in \mathbb{R}^p with $p < n$ where C is of full rank and where the pair (A, C) is observable. Since C has full rank, Luenberger (1979, pp. 304–306) (with $\delta(t, y)$ added to the right side) proves that there are constant matrices C_T and A_1 and A_2 , a linear change of coordinates $x_T = C_T x = [y^\top, x_r^\top]^\top$ and functions δ_i that are uniformly locally Lipschitz in y uniformly in t such that the x_T system can be written as the special case

$$\begin{cases} \dot{y}(t) = A_1 x_r(t) + \delta_1(t, y(t)) \\ \dot{x}_r(t) = A_2 x_r(t) + \delta_2(t, y(t)) \end{cases} \quad (10)$$

of (3) with (A_2, A_1) observable. Since (A_2, A_1) is observable, Mazenc et al. (2015, Lemma 1) provides an L and a $\tau > 0$ so that $\kappa = e^{-A_2\tau} - e^{-H\tau}$ with $H = A_2 + LA_1$ is invertible; this is done by picking L so that all eigenvalues of H are negative, real, and smaller than the real parts of the eigenvalues of $-A_2$, and then picking τ large enough so that $|e^{\tau H}| |e^{-\tau A_2}| < 1$. Hence, Assumption 1 holds for (10).

In fact, we can allow arbitrarily small constants $\tau > 0$, by the following approach. First, choose a matrix L and a constant $\tau_0 > 0$ such that $\kappa = e^{-A_2\tau_0} - e^{-H\tau_0}$ with $H = A_2 + LA_1$ is invertible, i.e., such that $\mathcal{D}(\tau) = \text{determinant}(e^{-A_2\tau} - e^{-H\tau})$ is nonzero at $\tau = \tau_0$. Then, for our fixed L and any constant $\bar{\tau} \in (0, \tau_0)$, we can find a constant $\tau_* \in (0, \bar{\tau})$ such that $\mathcal{D}(\tau_*) \neq 0$, so Assumption 1 holds with this τ_* . The existence of τ_* follows from the real analyticity of \mathcal{D} , because if there were a $\bar{\tau} \in (0, \tau_0)$ such that no such $\tau_* \in (0, \bar{\tau})$ existed, then $\mathcal{D}(\tau) = 0$ for all

$\tau \in (0, \bar{\tau})$, and then an analytic continuation argument would give the contradiction $\mathcal{D}(\tau_0) = 0$. Hence, we can eliminate the requirement that $\tau > 0$ is large enough. \square

Remark 2. The observer (7) can be computed in practice from the known y measurements and the known δ_i 's when Φ_H and Φ_{A_2} are available. Besides, the advantages of the formula (9) are important. First, there is no integral term in it (which is due to the use of the dynamic extension (6)). Second, in the periodic case that is described in Theorem 1, the constant matrices $\kappa(T)^{-1}$, $\Phi_H(T, 0)$ and $\Phi_{A_2}(T, 0)$ can be determined through software. In fact, since

$$\mathcal{M}_H(T, 0) = [\phi_H(T, 0, e_1) \dots \phi_H(T, 0, e_{n-p})]$$

where the i th column $\phi_H(T, 0, e_i)$ is the solution of the initial value problem $\dot{Z} = H(t)Z$, $Z(0) = e_i$, for all i evaluated at T , where $e_i \in \mathbb{R}^{n-p}$ is the i th standard basis vector (by the linearity of the system $\dot{Z} = H(t)Z$), we can compute $\mathcal{M}_H(T, 0)$ (and so also its inverse $\Phi_H(T, 0)$) by solving $n-p$ initial value problems. The same applies to $\mathcal{M}_{A_2}(T, 0)$. \square

Remark 3. Our proof of Theorem 1 in Section 2.2 is easily generalized to dynamics with external perturbations and measurement noise, as follows. If we add uncertainties $f_1(t)$, $f_2(t)$, and $\epsilon(t)$ to $\dot{z}(t)$, $\dot{x}_r(t)$, and $y(t)$ respectively in (3), where the f_i 's and ϵ piecewise continuous and locally bounded, and if we replace the local Lipschitzness condition in Assumption 2 by global Lipschitzness with respect to z , and if we replace the z values in (6)–(7) by the corresponding output values $y(t) = z(t) + \epsilon(t)$ with the measurement noise ϵ , then similar arguments to the ones in Section 2.2 (using the second conclusion of Lemma 1 and the boundedness of H and A_2 to get $\sup_{t \geq 0} \sup_{\ell \in [t-\tau, t]} |\mathcal{M}_H(t-\tau, \ell)| < \infty$ and $\sup_{t \geq 0} \sup_{\ell \in [t-\tau, t]} |\mathcal{M}_{A_2}(t-\tau, \ell)| < \infty$) provide a function $\gamma_\epsilon \in \mathcal{K}_\infty$ such that $|x_r^*(t) - x_r(t)| \leq \gamma_\epsilon(|f_1, f_2, \epsilon|_{[0, t]})$ holds for all $t \geq \tau$ and all initial conditions. \square

2.2. Proof of Theorem 1

Assumption 2 ensures that the system (3) is forward complete. We deduce that the solutions are defined for all $t \geq 0$. Next, let us introduce

$$s(t) = x_r(t) + L(t)z(t). \quad (11)$$

Simple calculations give

$$\begin{aligned} \dot{s}(t) &= A_2(t)x_r(t) + \delta_2(t, z(t)) \\ &\quad + \dot{L}(t)z(t) + L(t)\dot{z}(t) \\ &= H(t)x_r(t) + L(t)\delta_1(t, z(t)) + \delta_2(t, z(t)) \\ &\quad + \dot{L}(t)z(t) \\ &= H(t)s(t) + \delta_{\sharp}(t, z(t)), \end{aligned} \quad (12)$$

where δ_{\sharp} is defined in (5). By applying variation of parameters to

$$\begin{cases} \dot{s}(t) = H(t)s(t) + \delta_{\sharp}(t, z(t)) \\ \dot{x}_r(t) = A_2(t)x_r(t) + \delta_2(t, z(t)) \end{cases} \quad (13)$$

we obtain

$$\begin{cases} \Phi_H(t, t-\tau)s(t) = s(t-\tau) \\ + \int_{t-\tau}^t \mathcal{M}_H(t-\tau, \ell)\delta_{\sharp}(\ell, z(\ell))d\ell \text{ and} \\ \Phi_{A_2}(t, t-\tau)x_r(t) = x_r(t-\tau) \\ + \int_{t-\tau}^t \mathcal{M}_{A_2}(t-\tau, \ell)\delta_2(\ell, z(\ell))d\ell. \end{cases} \quad (14)$$

By subtracting the equalities in (14), we obtain

$$\begin{aligned} \Phi_H(t, t-\tau)[x_r(t) + L(t)z(t)] - \Phi_{A_2}(t, t-\tau)x_r(t) \\ = x_r(t-\tau) + L(t-\tau)z(t-\tau) \\ + \int_{t-\tau}^t \mathcal{M}_H(t-\tau, \ell)\delta_{\sharp}(\ell, z(\ell))d\ell - x_r(t-\tau) \\ - \int_{t-\tau}^t \mathcal{M}_{A_2}(t-\tau, \ell)\delta_2(\ell, z(\ell))d\ell \end{aligned} \quad (15)$$

which gives

$$\begin{aligned} \kappa(t)x_r(t) &= L(t-\tau)z(t-\tau) - \Phi_H(t, t-\tau)L(t)z(t) \\ &\quad + \int_{t-\tau}^t \mathcal{M}_H(t-\tau, \ell)\delta_{\sharp}(\ell, z(\ell))d\ell \\ &\quad - \int_{t-\tau}^t \mathcal{M}_{A_2}(t-\tau, \ell)\delta_2(\ell, z(\ell))d\ell. \end{aligned} \quad (16)$$

By applying variation of parameters to (6), we obtain

$$\begin{aligned} &\int_{t-\tau}^t \mathcal{M}_H(t-\tau, \ell)\delta_{\sharp}(\ell, z(\ell))d\ell \\ &= \Phi_H(t, t-\tau)\gamma_1(t) - \gamma_1(t-\tau) \text{ and} \\ &\int_{t-\tau}^t \mathcal{M}_{A_2}(t-\tau, \ell)\delta_2(\ell, z(\ell))d\ell \\ &= \Phi_{A_2}(t, t-\tau)\gamma_2(t) - \gamma_2(t-\tau). \end{aligned} \quad (17)$$

It follows that

$$\begin{aligned} \kappa(t)x_r(t) &= L(t-\tau)z(t-\tau) - \Phi_H(t, t-\tau)L(t)z(t) \\ &\quad + \Phi_H(t, t-\tau)\gamma_1(t) - \gamma_1(t-\tau) \\ &\quad - \Phi_{A_2}(t, t-\tau)\gamma_2(t) + \gamma_2(t-\tau). \end{aligned} \quad (18)$$

Consequently (8) is satisfied. In the particular case where the functions A_1 , A_2 and L are periodic of period $T = \tau$ then for all $t \in \mathbb{R}$, $\kappa(t)^{-1} = \kappa(T)^{-1}$, $\Phi_H(t, t-\tau) = \Phi_H(T, 0)$, $L(t-\tau) = L(t)$ and $\Phi_{A_2}(t, t-\tau) = \Phi_{A_2}(T, 0)$. This allows us to conclude.

2.3. Checking Assumption 1

In several cases, one can verify Assumption 1.

- (1) If $n-p = 1$, then we can apply variation of parameters to get Φ_{A_2} and Φ_H in explicit forms.
- (2) Let us assume that the functions A_1 , A_2 , and L are periodic of period $T = \tau$ and that

$$\kappa(T) = \Phi_H(T, 0) - \Phi_{A_2}(T, 0) \quad (19)$$

is invertible. Then $\kappa(t) = \kappa(\tau)$ is invertible for all $t \in \mathbb{R}$ so Assumption 1 is satisfied with $\tau = T$. The invertibility can be checked in practice by computing $\Phi_H(T, 0)$ and $\Phi_{A_2}(T, 0)$ as explained in Remark 2.

(3) Next, let us assume that there are an observable pair $(A_{02}, A_{01}) \in \mathbb{R}^{(n-p) \times (n-p)} \times \mathbb{R}^{p \times (n-p)}$ of constant matrices and functions Δ_i such that $A_i(t) = A_{0i} + \Delta_i(t)$ for $i = 1, 2$. Then one can determine a matrix L_0 and a constant $\bar{\delta} > 0$ such that if $|\Delta_i|_\infty \leq \bar{\delta}$, $i = 1, 2$, then Assumption 1 is satisfied with $L(t) = L_0$. Indeed, in this case one can use (Mazenc et al., 2015, Lemma 1) to find a constant matrix L_0 such that

$$\kappa_0 = e^{-(A_{02} + L_0 A_{01})\tau} - e^{-A_{02}\tau} \quad (20)$$

is invertible. By writing $\kappa(t)$ as

$$\begin{aligned} \kappa(t) &= \kappa_0 + [\Phi_H(t, t-\tau) - e^{-(A_{02} + L_0 A_{01})\tau}] \\ &\quad - [\Phi_{A_2}(t, t-\tau) - e^{-A_{02}\tau}] \\ &= \kappa_0 [I + R(t)] \end{aligned} \quad (21)$$

with

$$R(t) = \kappa_0^{-1} [\Phi_H(t, t-\tau) - e^{-(A_{02} + L_0 A_{01})\tau}] - \kappa_0^{-1} [\Phi_{A_2}(t, t-\tau) - e^{-A_{02}\tau}], \quad (22)$$

we can use Lemma 1 to prove that

$$|R|_\infty \leq \bar{c}(\bar{\delta})\bar{\delta}, \text{ where} \quad (23)$$

$$\begin{aligned} \bar{c}(\bar{\delta}) &= \\ |\kappa_0^{-1}| & \left[e^{(|A_{02}| + \bar{\delta})\tau} + (1 + |L_0|)e^{(|H_0| + (1 + |L_0|)\bar{\delta})\tau} \right] \tau \end{aligned} \quad (24)$$

and $H_0 = A_{02} + L_0 A_{01}$. Thus $|\kappa|_\infty \leq |\kappa_0|(1 + \bar{\delta}\bar{c}(\bar{\delta}))$. If, in addition, $\bar{\delta} < 1/\bar{c}(\bar{\delta})$, then we can check that $I + R(t)$ is invertible for all $t \in \mathbb{R}$ (by checking that its null space is trivial). Since κ_0 is invertible, it follows that $\kappa(t)$ is invertible for all $t \in \mathbb{R}$. Then

$$\kappa^{-1}(t) = (I + R(t))^{-1} \kappa_0^{-1}. \quad (25)$$

Since

$$(I + R(t))^{-1} = \sum_{k=0}^{\infty} (-1)^k R(t)^k \quad (26)$$

we deduce that

$$|(I + R(t))^{-1}| \leq \sum_{k=0}^{+\infty} (\bar{c}(\bar{\delta})\bar{\delta})^k \leq \frac{1}{1 - \bar{c}(\bar{\delta})\bar{\delta}}. \quad (27)$$

Hence, $|\kappa^{-1}|_{\infty} \leq \frac{|\kappa_0^{-1}|}{1 - \bar{c}(\bar{\delta})\bar{\delta}}$, so **Assumption 1** is satisfied.

3. Output feedback stabilization

In this section, we use the observer from the previous section to solve a dynamic output feedback stabilization problem.

3.1. Assumptions and statement of main result

We study

$$\begin{cases} \dot{z}(t) = A_1(t)x_r(t) + B_1(t)u(t) \\ \quad + \rho_1(t, z(t)) + f_1(t) \\ \dot{x}_r(t) = A_2(t)x_r(t) + B_2(t)u(t) \\ \quad + \rho_2(t, z(t)) + f_2(t) \end{cases} \quad (28)$$

where z is valued in \mathbb{R}^p , x_r is valued in \mathbb{R}^{n-p} , the output is $y(t) = z(t)$, A_i and B_i for $i = 1, 2$ are known piecewise continuous bounded matrix valued functions, $\rho = (\rho_1, \rho_2)$ is known and piecewise continuous with respect to t , and $f = (f_1, f_2)$ is an unknown locally bounded piecewise continuous function. We assume:

Assumption 3. There exist a function $u_s(t, \chi)$ that is locally Lipschitz in $\chi = (z, x_r)$ uniformly in t , a C^1 uniformly proper positive definite function V , positive constants c_1 and c_2 , and $\gamma \in \mathcal{K}_{\infty}$ so that for all choices of the locally bounded piecewise continuous functions $\mu = (\mu_1, \mu_2)$ and $h = (h_1, h_2)$ and all $t \geq 0$, the following hold: (1) The time derivative of V along all solutions of

$$\begin{cases} \dot{z}(t) = A_1(t)x_r(t) + B_1(t)u(t) \\ \quad + \rho_1(t, z(t)) + h_1(t) \\ \dot{x}_r(t) = A_2(t)x_r(t) + B_2(t)u(t) \\ \quad + \rho_2(t, z(t)) + h_2(t) \end{cases} \quad (29)$$

in closed loop with the state feedback $u(t) = u_s(t, x_r(t)) + \mu_1(t, z(t) + \mu_2(t))$ satisfies

$$\dot{V}(t) \leq -c_1 V(t, \chi(t)) + \gamma(|(\mu, h)(t)|) \quad (30)$$

and (2) its time derivative along all trajectories χ of (29) in closed loop with $u(t) = 0$ satisfies

$$\dot{V}(t) \leq c_2 V(t, \chi(t)) + \gamma(|h(t)|) \quad (31)$$

for all $t \geq 0$. \square

Assumption 4. The function $\rho = (\rho_1, \rho_2)$ is locally Lipschitz in its second variable uniformly in t and there is a function $\alpha \in \mathcal{K}_{\infty}$ such that $|\rho(t, a)| \leq \alpha(|a|)$ for all $a \in \mathbb{R}^p$ and $t \geq 0$. \square

The preceding assumptions are satisfied if the ρ_i 's have the linear forms $\rho_i(t, z) = \rho_{i,*}(t)z$ with continuous bounded functions $\rho_{i,*}(t)$ for $i = 1, 2$ and if in addition the system $\dot{\chi} = Q_1(t)\chi + Q_2(t)u$ with the choices $\chi = (z, x_r)$,

$$Q_1 = \begin{bmatrix} \rho_{1,*} & A_1 \\ \rho_{2,*} & A_2 \end{bmatrix}, \quad (32)$$

and $Q_2 = [B_1^T \ B_2^T]^T$ admits a bounded piecewise continuous function K_Q such that $\dot{\chi} = (Q_1(t) + Q_2(t)K_Q(t))\chi$ is uniformly

globally exponentially stable to 0. This is done by using the quadratic Lyapunov function for this closed-loop system provided by Khalil (2002, Theorem 4.14) and $u_s(t, \chi) = K_Q(t)\chi$. Setting

$$\rho_4(t, z) = -[D(t)z + \rho_3(t, z)], \quad (33)$$

where

$$\rho_3(t, z) = L(t)\rho_1(t, z) + \rho_2(t, z) \quad (34)$$

and

$$D(t) = \dot{L}(t) - H(t)L(t), \quad (35)$$

and with H, L , and κ from **Assumption 1**, we prove this ISS result:

Theorem 2. Let $\tau, L, H, u_s, \kappa, c_1$, and c_2 be such that **Assumptions 1, 3, and 4** hold. Then we can construct $\bar{\beta} \in \mathcal{KL}$ and $\bar{\gamma} \in \mathcal{K}_{\infty}$ such that: All solutions $\chi(t)$ of (28), in closed loop with $u(t) = u_*(t, \bar{x}_r(t), y(t))$ where

$$u_*(t, \bar{x}_r(t), y(t)) = \begin{cases} u_s(t, \bar{x}_r(t), y(t)) & \text{when } t \geq \tau \\ 0 & \text{when } t < \tau \end{cases} \quad (36)$$

and where \bar{x}_r is

$$\begin{aligned} \bar{x}_r(t) &= \kappa(t)^{-1} [L(t - \tau)z(t - \tau) \\ &\quad - \Phi_H(t, t - \tau)L(t)z(t) + \Phi_H(t, t - \tau)\omega_1(t) \\ &\quad - \omega_1(t - \tau)] \\ &\quad - \kappa(t)^{-1} [\Phi_{A_2}(t, t - \tau)\omega_2(t) - \omega_2(t - \tau)] \\ \dot{\omega}_1(t) &= H(t)\omega_1(t) \\ &\quad + [L(t)B_1(t) + B_2(t)]u_*(t, \bar{x}_r(t), y(t)) \\ &\quad + \rho_3(t, z(t)) + D(t)z(t) \\ \dot{\omega}_2(t) &= A_2(t)\omega_2(t) + B_2(t)u_*(t, \bar{x}_r(t), y(t)) \\ &\quad + \rho_2(t, z(t)) \end{aligned} \quad (37)$$

are such that

$$|\chi(t)| \leq \bar{\beta}(|\chi(0)|, t) + \bar{\gamma}(|f|_{[0,t]}) \quad (38)$$

holds for all $t \geq 0$ and all constant initial functions $\omega(0) \in \mathbb{R}^{2(n-p)}$, $\bar{x}_r(0) \in \mathbb{R}^{n-p}$, and $(z(0), x_r(0)) \in \mathbb{R}^n$. \square

3.2. Proof of Theorem 2

Let us consider the system (29) in closed-loop with (36). First, let us observe that (31) ensures that for any solution of this system, there is $s > \tau$ such that the solution is defined over $[0, s]$. Now, let

$$\begin{cases} \delta_1(t) = B_1(t)u_*(t, \bar{x}_r(t), y(t)) + \rho_1(t, z(t)) + f_1(t), \\ \delta_2(t) = B_2(t)u_*(t, \bar{x}_r(t), y(t)) + \rho_2(t, z(t)) + f_2(t) \end{cases} \quad (39)$$

and

$$\begin{cases} \dot{\gamma}_1(t) = H(t)\gamma_1(t) + L(t)\delta_1(t, z(t)) + \delta_2(t) \\ \quad + D(t)z(t), \\ \dot{\gamma}_2(t) = A_2(t)\gamma_2(t) + \delta_2(t). \end{cases} \quad (40)$$

Then arguing as we did to prove **Theorem 1**, we deduce that for all $t \in [\tau, s]$,

$$\begin{aligned} x_r(t) &= \kappa(t)^{-1} [L(t - \tau)z(t - \tau) \\ &\quad - \Phi_H(t, t - \tau)L(t)z(t) + \Phi_H(t, t - \tau)\gamma_1(t) - \gamma_1(t - \tau)] \\ &\quad - \kappa(t)^{-1} [\Phi_{A_2}(t, t - \tau)\gamma_2(t) - \gamma_2(t - \tau)]. \end{aligned} \quad (41)$$

Now, we observe that $\varrho_i = \gamma_i - \omega_i$ for $i = 1, 2$ satisfy

$$\begin{cases} \dot{\varrho}_1(t) = H(t)\varrho_1(t) + f_3(t) \text{ and} \\ \dot{\varrho}_2(t) = A_2(t)\varrho_2(t) + f_2(t), \end{cases} \quad (42)$$

where $f_3(t) = L(t)f_1(t) + f_2(t)$. By applying variation of parameters, we obtain

$$\begin{aligned} \Phi_H(t, t - \tau)\varrho_1(t) - \varrho_1(t - \tau) &= \int_{t-\tau}^t \mathcal{M}_H(t - \tau, \ell)f_3(\ell)d\ell \text{ and} \\ \Phi_{A_2}(t, t - \tau)\varrho_2(t) - \varrho_2(t - \tau) &= \int_{t-\tau}^t \mathcal{M}_{A_2}(t - \tau, \ell)f_2(\ell)d\ell \end{aligned} \quad (43)$$

for all $t \in [\tau, s]$. Thus,

$$\begin{aligned} \Phi_H(t, t - \tau)\gamma_1(t) - \gamma_1(t - \tau) &= \Phi_H(t, t - \tau)\omega_1(t) \\ -\omega_1(t - \tau) + \int_{t-\tau}^t \mathcal{M}_H(t - \tau, \ell)f_3(\ell)d\ell, \\ \Phi_{A_2}(t, t - \tau)\gamma_2(t) - \gamma_2(t - \tau) &= \Phi_{A_2}(t, t - \tau)\omega_2(t) \\ -\omega_2(t - \tau) + \int_{t-\tau}^t \mathcal{M}_{A_2}(t - \tau, \ell)f_2(\ell)d\ell. \end{aligned} \quad (44)$$

Combining (41) and (44), we obtain

$$\begin{aligned} x_r(t) &= \kappa(t)^{-1} [L(t - \tau)z(t - \tau) \\ &\quad - \Phi_H(t, t - \tau)L(t)z(t) + \Phi_H(t, t - \tau)\omega_1(t) \\ &\quad - \omega_1(t - \tau)] \\ &\quad - \kappa(t)^{-1} [\Phi_{A_2}(t, t - \tau)\omega_2(t) - \omega_2(t - \tau)] \\ &\quad + \kappa(t)^{-1} \int_{t-\tau}^t \mathcal{M}_H(t - \tau, \ell)f_3(\ell)d\ell \\ &\quad - \kappa(t)^{-1} \int_{t-\tau}^t \mathcal{M}_{A_2}(t - \tau, \ell)f_2(\ell)d\ell. \end{aligned} \quad (45)$$

From (37), it follows that

$$x_r(t) = \bar{x}_r(t) + \varsigma(t)$$

with

$$\begin{aligned} \varsigma(t) &= \kappa(t)^{-1} \int_{t-\tau}^t \mathcal{M}_H(t - \tau, \ell)[L(\ell)f_1(\ell) + f_2(\ell)]d\ell \\ &\quad - \kappa(t)^{-1} \int_{t-\tau}^t \mathcal{M}_{A_2}(t - \tau, \ell)f_2(\ell)d\ell. \end{aligned} \quad (47)$$

It follows that for all $t \in [\tau, s]$, the closed-loop system is

$$\begin{aligned} \dot{z}(t) &= A_1(t)x_r(t) + B_1(t)u_*(t, x_r(t) - \varsigma(t), y(t)) \\ &\quad + \rho_1(t, z(t)) + f_1(t) \\ \dot{x}_r(t) &= A_2(t)x_r(t) + B_2(t)u_*(t, x_r(t) - \varsigma(t), y(t)) \\ &\quad + \rho_2(t, z(t)) + f_2(t). \end{aligned} \quad (48)$$

Now, from [Assumption 3](#), it follows that

$$\dot{V}(t) \leq -c_1 V(t, \chi(t)) + \gamma(|(-\varsigma(t), 0, f_1(t), f_2(t))|) \quad (49)$$

for all $t \in [\tau, s]$ and

$$\dot{V}(t) \leq c_2 V(t, \chi(t)) + \gamma(|f(t)|) \quad (50)$$

for all $t \in [0, \tau]$. Since V is uniformly proper positive definite, we deduce that $s = +\infty$ and for all $t \in [0, \tau]$,

$$\begin{aligned} V(t, \chi(t)) &\leq e^{c_2 \tau} V(0, \chi(0)) + e^{c_2 \tau} \int_0^t \gamma(|f(\ell)|)d\ell \\ &\leq e^{c_2 \tau} V(0, \chi(0)) + e^{c_2 \tau} \tau \gamma(|f|_{[0,t]}) \end{aligned} \quad (51)$$

and for all $t > \tau$,

$$\begin{aligned} V(t, \chi(t)) &\leq e^{-c_1(t-\tau)} V(\tau, \chi(\tau)) \\ &\quad + \int_{\tau}^t e^{c_1(\ell-t)} \gamma(|(-\varsigma(\ell), 0, f_1(\ell), f_2(\ell))|)d\ell \\ &\leq e^{-c_1(t-\tau)} V(\tau, \chi(\tau)) \\ &\quad + \int_{\tau}^t e^{c_1(\ell-t)} \gamma(2|\varsigma(\ell)|)d\ell \\ &\quad + \int_{\tau}^t e^{c_1(\ell-t)} \gamma(2|f_1(\ell), f_2(\ell)|)d\ell \\ &= e^{-c_1(t-\tau)} V(\tau, \chi(\tau)) \\ &\quad + \int_{\tau}^t e^{c_1(\ell-t)} \gamma(2|\varsigma(\ell)|)d\ell \\ &\quad + \int_{\tau}^t e^{c_1(\ell-t)} d\ell \gamma(2|f|_{[0,t]}), \end{aligned} \quad (52)$$

by the bound $\gamma(a + b) \leq \gamma(2a) + \gamma(2b)$ for suitable a and b .

From the formula of ς in (47) and [Lemma 1](#), we deduce that

$$\begin{aligned} |\varsigma(t)| &\leq |\kappa^{-1}|_{\infty} \left(e^{\tau|H|_{\infty}} \int_{t-\tau}^t [|L|_{\infty} |f_1(\ell)| + |f_2(\ell)|]d\ell \right. \\ &\quad \left. + e^{\tau|A_2|_{\infty}} \int_{t-\tau}^t |f_2(\ell)|d\ell \right) \\ &\leq |\kappa^{-1}|_{\infty} \tau \left[e^{\tau|H|_{\infty}} |L|_{\infty} \sup_{s \in [t-\tau, t]} |f_1(s)| \right. \\ &\quad \left. + (e^{\tau|H|_{\infty}} + e^{\tau|A_2|_{\infty}}) \sup_{s \in [t-\tau, t]} |f_2(s)| \right] \\ &\leq \bar{b} \sup_{s \in [t-\tau, t]} |f(s)|, \end{aligned} \quad (53)$$

where

$$\bar{b} = |\kappa^{-1}|_{\infty} [e^{\tau|H|_{\infty}} |L|_{\infty} + e^{\tau|H|_{\infty}} + e^{\tau|A_2|_{\infty}}] \tau.$$

Then for all $t > \tau$,

$$\begin{aligned} V(t, \chi(t)) &\leq e^{-c_1(t-\tau)} V(\tau, \chi(\tau)) \\ &\quad + \int_{\tau}^t e^{c_1(\ell-t)} \gamma(2\bar{b}|f|_{[0,t]})d\ell \\ &\quad + \int_{\tau}^t e^{c_1(\ell-t)} d\ell \gamma(2|f|_{[0,t]}) \\ &\leq e^{-c_1(\tau-\tau)} V(\tau, \chi(\tau)) + \frac{1}{c_1} \gamma(2\bar{b}|f|_{[0,t]}) \\ &\quad + \frac{1}{c_1} \gamma(2|f|_{[0,t]}). \end{aligned} \quad (54)$$

This inequality and (51) yield

$$\begin{aligned} V(t, \chi(t)) &\leq e^{-c_1(t-\tau)} [e^{c_2 \tau} V(0, \chi(0)) \\ &\quad + e^{c_2 \tau} \tau \gamma(|f|_{[0,t]})] + \frac{1}{c_1} \gamma(2\bar{b}|f|_{[0,t]}) \\ &\quad + \frac{1}{c_1} \gamma(2|f|_{[0,t]}) \\ &\leq e^{-c_1 t + (c_1 + c_2) \tau} V(0, \chi(0)) + \gamma_{\dagger}(|f|_{[0,t]}) \end{aligned} \quad (55)$$

for all $t \geq \tau$ with

$$\gamma_{\dagger}(m) = e^{c_2 \tau} \tau \gamma(m) + \frac{1}{c_1} \gamma(2\bar{b}m) + \frac{1}{c_1} \gamma(2m). \quad (56)$$

Moreover from the second inequality of (51), we deduce that, for all $t \in [0, \tau]$,

$$\begin{aligned} V(t, \chi(t)) &\leq e^{-c_1 t + (c_1 + c_2) \tau} V(0, \chi(0)) \\ &\quad + e^{c_2 \tau} \tau \gamma(|f|_{[0,t]}). \end{aligned} \quad (57)$$

It follows that

$$V(t, \chi(t)) \leq e^{-c_1 t + (c_1 + c_2) \tau} V(0, \chi(0)) + \gamma_{\dagger}(|f|_{[0,t]}) \quad (58)$$

for all $t \geq 0$. The properties of V ensure that there are two functions \mathcal{P}_i , $i = 1, 2$ of class \mathcal{K}_{∞} such that

$$\mathcal{P}_1(|\chi|) \leq V(t, \chi) \leq \mathcal{P}_2(|\chi|) \quad (59)$$

for all $t \in \mathbb{R}$ and $\chi \in \mathbb{R}^n$. These inequalities and (58) yield

$$\begin{aligned} |\chi(t)| &\leq \mathcal{P}_1^{-1} (e^{-c_1 t + (c_1 + c_2) \tau} \mathcal{P}_2(|\chi(0)|) + \gamma_{\dagger}(|f|_{[0,t]})) \\ &\leq \mathcal{P}_1^{-1} (2e^{-c_1 t + (c_1 + c_2) \tau} \mathcal{P}_2(|\chi(0)|)) \\ &\quad + \mathcal{P}_1^{-1} (2\gamma_{\dagger}(|f|_{[0,t]})) \end{aligned} \quad (60)$$

for all $t \geq 0$. Since the function γ_{\dagger} is of class \mathcal{K}_{∞} , we can conclude.

4. Application to nonholonomic system in chained form

4.1. Tracking problem

We illustrate [Theorem 2](#) using this variant of a system from [Malisoff and Mazenc \(2009, p. 143\)](#):

$$\dot{\xi}_4 = \xi_2 v_1, \quad \dot{\xi}_3 = \xi_2 v_1, \quad \dot{\xi}_2 = v_2, \quad \dot{\xi}_1 = v_1 \quad (61)$$

with $(\xi_1, \xi_2, \xi_3, \xi_4)$ valued in \mathbb{R}^4 and the input (v_1, v_2) valued in \mathbb{R}^2 , which is a nonholonomic system in chained form, and where we will omit time arguments t of functions to make the notation more concise. We assume that ξ_4 , ξ_3 and ξ_1 are measured, but that ξ_2 is not measured. We design a dynamic output feedback making (61) track the trajectory $(\xi_{1r}(t), \xi_{2r}(t), \xi_{3r}(t), \xi_{4r}(t)) = (t + \frac{1}{2} \sin(t), 0, 0, 0)$. We use the change of variables and feedback and $x_1 = \xi_1 - \xi_{1r}(t)$ and $v_1(t, x_1) = -x_1 + 1 + \frac{1}{2} \cos(t)$. This produces the x_1 subsystem $\dot{x}_1 = -x_1$ and so prompts us to solve the problem of globally asymptotically stabilizing the tracking dynamics

$$\begin{aligned} \dot{\xi}_4 &= (1 + \frac{1}{2} \cos(t)) \xi_3, \quad \dot{\xi}_3 = (1 + \frac{1}{2} \cos(t)) \xi_2, \\ \dot{\xi}_2 &= v_2 \end{aligned} \quad (62)$$

to 0, by replacing x_1 by 0 in the $(\xi_2, \xi_3, \xi_4, x_1)$ dynamics. In terms of the notation of Section 3, the system (61) can be written as

$$\begin{cases} \dot{z}_1(t) = (1 + \frac{1}{2} \cos(t)) z_2(t) \\ \dot{z}_2(t) = (1 + \frac{1}{2} \cos(t)) x_r(t) \\ \dot{x}_r(t) = u(t), \end{cases} \quad (63)$$

which has the form (28) with the choices

$$A_1(t) = \begin{pmatrix} 0 \\ 1 + \frac{1}{2} \cos(t) \end{pmatrix}, \quad (64)$$

$$\rho_1(t, z) = \begin{pmatrix} (1 + \frac{1}{2} \cos(t)) z_2 \\ 0 \end{pmatrix} \quad (65)$$

$A_2(t) = 0$, $B_1(t) = 0$, $B_2(t) = 1$, $f_1 = 0$, $f_2 = 0$, and $\rho_2(t, z) = 0$. Let us choose $L(t) = [0 \ 2]$. This gives $H(t) = A_2(t) + L(t)A_1(t) = 2 + \cos(t)$ and the functions

$$\Phi_H(t, s) = e^{-2(t-s)+\sin(s)-\sin(t)} \text{ and } \Phi_{A_2}(t, s) = 1. \quad (66)$$

Choosing $\tau = 2$, we obtain

$$\kappa(t) = e^{-4+\sin(t-2)-\sin(t)} - 1. \quad (67)$$

The inequalities

$$|\kappa|_\infty \leq 1 \text{ and } |1/\kappa|_\infty \leq \frac{e^2}{e^2 - 1} \quad (68)$$

hold. It follows that [Assumption 1](#) is satisfied.

4.2. Applying [Theorem 2](#) to (63)

One can easily prove that [Assumption 3](#) is satisfied with

$$u_s(t, x_r, z) = (1 + \frac{1}{2} \cos(t)) (-z_1 - 3z_2 - 3x_r), \quad (69)$$

by using the Hurwitzness of

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3 \end{pmatrix} \quad (70)$$

to obtain a quadratic choice of V . [Assumption 4](#) is satisfied too. It follows that [Theorem 2](#) applies to (63). This theorem gives the following globally asymptotically stabilizing output feedback for (63):

$$u_*(t, \bar{x}_r(t), z(t)) = \begin{cases} u_s(t, \bar{x}_r(t), z(t)) & \text{when } t \geq 2 \\ 0 & \text{when } t < 2 \end{cases} \quad (71)$$

with

$$\begin{aligned} \bar{x}_r(t) &= \frac{\mathcal{T}(t)}{e^{-4+\sin(t-2)-\sin(t)}-1} + \frac{\omega_2(t-2)-\omega_2(t)}{e^{-4+\sin(t-2)-\sin(t)}-1}, \\ \dot{\omega}_1(t) &= (2 + \cos(t))\omega_1(t) + u_*(t, \bar{x}_r(t), z(t)) \\ &\quad - 2(2 + \cos(t))z_2(t), \\ \dot{\omega}_2(t) &= u_*(t, \bar{x}_r(t), z(t)) \end{aligned} \quad (72)$$

$$\begin{aligned} \mathcal{T}(t) &= 2z_2(t-2) - 2e^{-4+\sin(t-2)-\sin(t)}z_2(t) \\ &\quad + e^{-4+\sin(t-2)-\sin(t)}\omega_1(t) - \omega_1(t-2). \end{aligned} \quad (73)$$

4.3. Simulations

We performed simulations, which show the efficiency of our approach. [Fig. 1](#) shows the simulation of the system (63) with $u(t) = u_*(t, \bar{x}_r(t), z(t))$ as defined in (71). Since our simulation shows good stabilization, it helps illustrate our general theory, in the special case of the system (61).

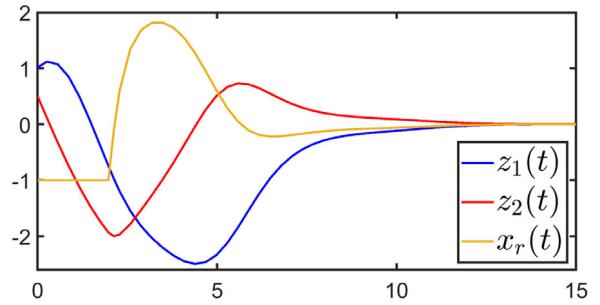


Fig. 1. Simulation of the time varying system (63) with $u(t) = u_*(t, \bar{x}_r(t), z(t))$. Time unit on horizontal axis is seconds.

5. Conclusions

We designed reduced order finite time dynamic observers and corresponding output feedback that are free of distributed control terms. We have exhibited families of systems for which the observer and control law can be easily implemented. We hope to combine [Theorem 2](#) with [Mazenc, Ahmed, and Malisoff \(2018a\)](#) to cover delays and disturbances in the input and intermittent output observations. Extensions pertaining to disturbances on the measurements are expected too.

Appendix. Proof of [Lemma 1](#)

For all real values of s and t , the function $z(t, s) = \mathcal{M}_{\mathcal{A}+\mathcal{E}}(t, s) - e^{\mathcal{A}(t-s)}$ satisfies

$$\frac{\partial}{\partial t} z(t, s) = (\mathcal{A} + \mathcal{E}(t))\mathcal{M}_{\mathcal{A}+\mathcal{E}}(t, s) - \mathcal{A}e^{\mathcal{A}(t-s)} = \mathcal{A}z(t, s) + \mathcal{E}(t)\mathcal{M}_{\mathcal{A}+\mathcal{E}}(t, s) \quad (74)$$

and $z(s, s) = 0$, so

$$z(t, s) = \int_s^t e^{\mathcal{A}(t-r)}\mathcal{E}(r)\mathcal{M}_{\mathcal{A}+\mathcal{E}}(r, s)dr, \quad (75)$$

by a variation of parameters. Also, for all real r and s , the Peano-Baker formula for fundamental matrix solutions (e.g., from [Sontag, 1998](#), p. 489) gives

$$|\mathcal{M}_{\mathcal{A}+\mathcal{E}}(r, s)| \leq e^{|\mathcal{A}+\mathcal{E}|_\infty|r-s|}. \quad (76)$$

Set $\underline{s} = \min\{s, t\}$ and $\bar{s} = \max\{s, t\}$. We can combine (76) with (75) to get

$$|z(t, s)| \leq e^{(\bar{s}-\underline{s})|\mathcal{A}|}|\mathcal{E}|_\infty(\bar{s}-\underline{s})e^{|\mathcal{E}|_\infty(\bar{s}-\underline{s})}. \quad (77)$$

The lemma follows by noting that $\bar{s}-\underline{s} = |t-s|$.

References

- Bonnans, F., & Rouchon, P. (2005). *Commande et optimisation de systèmes dynamiques*. Palaiseau, France: Les Editions de l'Ecole Polytechnique.
- Du, H., Qian, C., Yang, S., & Li, S. (2013). Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems. *Automatica*, 49(2), 601–609.
- Engel, R., & Kreisselmeier, G. (2002). A continuous time observer which converges in finite time. *IEEE Transactions on Automatic Control*, 47(7), 1202–1204.
- Friedland, F. (2009). Reduced-order state observers. In H. Unbehauen (Ed.), *Control systems, robotics and automation - Vol. VIII* (pp. 26–36). Oxford, United Kingdom: Eoless Publishers Co. Ltd.
- Khalil, H. (2002). *Nonlinear systems* (3rd ed.). Upper Saddle River, NJ: Prentice Hall.
- Lopez-Ramirez, F., Polyakov, A., Efimov, D., & Perruquetti, W. (2018). Finite-time and fixed-time observer design: Implicit Lyapunov function approach. *Automatica*, 87, 52–60.
- Luenberger, D. (1979). *Introduction to dynamic systems*. New York: John Wiley and Sons.
- Malisoff, M., & Mazenc, F. (2009). *Constructions of strict Lyapunov functions*. New York, NY: Springer.

Mazenc, F., Ahmed, S., & Malisoff, M. (2018a). Finite time estimation through a continuous-discrete observer. *International Journal of Robust and Nonlinear Control*, 28(16), 4831–4849.

Mazenc, F., Ahmed, S., & Malisoff, M. (2018b). Reduced order finite time observers for time-varying nonlinear systems. In *Proceedings of the IEEE conference on decision and control*, (pp. 2182–2186). Miami Beach, FL.

Mazenc, F., Fridman, E., & Djema, W. (2015). Estimation of solutions of observable nonlinear systems with disturbances. *Systems & Control Letters*, 79, 47–58.

Menold, P., Findeisen, R., & Allgower, F. (2003). Finite time convergent observers for linear time-varying systems, In *Proceedings of the mediterranean conference on control and automation*, (pp. 212–217). Rhodes, Greece.

Perruquetti, W., Floquet, T., & Moulay, E. (2008). Finite time observers: application to secure communication. *IEEE Transactions on Automatic Control*, 53(1), 356–360.

Raff, T., & Allgower, F. (2008). An observer that converges in finite time due to measurement-based state updates. *IFAC Proceedings Volumes*, 41(2), 2693–2695.

Sauvage, F., Guay, M., & Dochain, D. (2007). Design of a nonlinear finite time converging observer for a class of nonlinear systems. *Journal of Control Science and Engineering*, 2007.

Sontag, E. (1998). Mathematical control theory, (2nd ed.). New York: Springer.

Frédéric Mazenc received his Ph.D. in Automatic Control and Mathematics from the CAS at Ecole des Mines de Paris in 1996. He was a Postdoctoral Fellow at CESAME at the University of Louvain in 1997. From 1998 to 1999, he was a Postdoctoral Fellow at the Centre for Process Systems Engineering at Imperial College. He was a CR at INRIA Lorraine from October 1999 to January 2004. From 2004 to 2009, he was a CR1 at INRIA Sophia-Antipolis. Since 2010, he has been a CR1 at INRIA Saclay. He received a best paper award from the IEEE Transactions on Control Systems

Technology at the 2006 IEEE Conference on Decision and Control. His current research interests include nonlinear control theory, differential equations with delay, robust control, and microbial ecology. He has more than 200 peer reviewed publications. Together with Michael Malisoff, he authored a research monograph titled *Constructions of Strict Lyapunov Functions* in the Springer Communications and Control Engineering Series.

Saeed Ahmed received his Ph.D. at Bilkent University in Ankara, Turkey, under the co-supervision of Hitay Ozbay and Frederic Mazenc. He was a team member of the PHC Bosphore France–Turkey Project, a joint project of Bilkent University and INRIA Saclay. He is currently a postdoctoral researcher at the Technische Universität Kaiserslautern in Germany. His current research interests include stability analysis and control of switched and nonlinear systems with time delays, finite-time observer design and output feedback stabilization with limited information, robust and LPV control with an emphasis on biomedical applications.

Michael Malisoff earned his Ph.D. in Mathematics at Rutgers University in New Brunswick, NJ in 2000. He received the First Place Student Best Paper Award at the 1999 IEEE Conference on Decision and Control, and was a postdoctoral researcher at Washington University in St. Louis. In 2001, he joined the professorial faculty in the Department of Mathematics at Louisiana State University in Baton Rouge, LA, where he currently holds the Roy P. Daniels Professorship #3 in the College of Science. His research is on systems and control, with an emphasis on engineering applications. He is currently an associate editor for Asian Journal of Control, European Journal of Control, Discrete and Continuous Dynamical Systems Series B, and SIAM Journal on Control and Optimization.