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1. Introduction

This work continues our search for ways to estimate solu-
tions of systems. This is an important problem, because solving
it can make it possible to design output feedback stabilizing
controls. The Luenberger observer from Luenberger (1979) is
one of many observers for nonlinear systems. However, most
existing observers usually only ensure asymptotic convergence
of the estimation error to 0, and this can be an obstacle to their
implementation.

By definition, a finite time observer is one that provides an
exact value of the state that is being estimated after a finite time.
This finite time may depend on the initial state (as in Du, Qian,
Yang, and Li 2013 and Perruquetti, Floquet, and Moulay 2008),
or it may be a fixed time that could be independent of the ini-
tial state as in Lopez-Ramirez, Polyakov, Efimov, and Perruquetti
(2018). Other finite time observers use past output values or a
dynamic extension. This later type of observers was proposed for
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linear systems, e.g., in Engel and Kreisselmeier (2002), Menold,
Findeisen, and Allgower (2003), and Raff and Allgower (2008).
See also the finite time observers in Mazenc, Fridman, and Djema
(2015) and Sauvage, Guay, and Dochain (2007) for nonlinear
systems.

This paper is motivated by the fact that time-varying sys-
tems frequently arise, e.g., by recasting tracking problems as
problems for time-varying systems whose goal is to uniformly
globally asymptotically stabilize a zero equilibrium, and because
measured state components need not be estimated. Here, we
adapt Mazenc et al. (2015) and Sauvage et al. (2007) to build finite
time reduced order observers for a class of nonlinear time-varying
systems. As in Bonnans and Rouchon (2005, Chapt. 4, Sec. 4.4.3)
and Friedland (2009), our observers only estimate unmeasured
variables. This can produce simpler or better performing ob-
servers, and is helpful because when one needs formulas for fun-
damental solutions of time-varying systems, it is advantageous to
consider smaller dimensions.

We believe that our work is the first to provide finite time
reduced order observers. Another advantage of this work is that
our main observer provides fixed time convergence that is in-
dependent of the initial state. It improves on our conference
version (Mazenc, Ahmed, & Malisoff, 2018b) by adding sufficient
conditions for our assumptions, a design based on dynamic exten-
sions that yields a formula for the estimation of the state without
distributed terms, an output feedback stabilization theorem, and
a nonholonomic example that applies our output stabilization
theorem, which were not included in Mazenc et al. (2018b).
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We use the following standard notation. The dimensions of

our Euclidean spaces are arbitrary, unless otherwise noted. The
usual Euclidean norm and the induced matrix norm are denoted
by ||, || is the sup norm, |-|; is the sup over a set J, and I is
the identity matrix. We use the standard comparison function
classes KL and K, and input-to-state stable (or ISS), properness,
and positive definiteness definitions; see Khalil (2002, Chapter 4)
and Malisoff and Mazenc (2009). A function g : R x R" — R™
is called locally Lipschitz in the second variable uniformly in the
first variable provided there is a function « € K such that for
all constants R > 0, we have |g(t, x) — g(t,y)| < «(R)|x —y| for
allt € R, x € B(R), and y € B(R), where B(R) is the closed ball
of radius R centered at 0 in the usual Euclidean norm. A function
V . [0,00) x R" — R is called uniformly proper and positive
definite provided there exist functions ¢ € K, and @ € K, such
that «(]x]) < V(t, x) < a(|x|) for all t > 0 and x € R". We assume
for simplicity that the initial times for our solutions are always
to = 0, unless otherwise noted. For any piecewise continuous
function £2 : R — R™", let @, be the unique function such
that the following conditions hold for all t € R and ¢, € R:
%(f, t()) = —@g(t, fo)Q(f) and @Q(to, f()) =1].
Then ¢§](t, s) = @gn(s, t) holds for all real s and t, and Mg(t, )
= @51(t, s) is the fundamental solution for §£2 and the system
x = £(t)x; see Sontag (1998, Lemma C.4.1). We also use the
following generalization of Mazenc et al. (2018b, Lemma 2) which
we prove in Appendix:

Lemma 1. Let A € R™" be a constant matrix and let £ : R —
R™" be a bounded piecewise continuous function. Let M 4 ¢ denote
the fundamental solution of

£(t) = [A+ED]L(0). (1
Then for all t € R and s € R, the inequalities
[Mare(t,s) — eI < €] |t — slelAHERI (2)

and | M aye(t, s)| < elt=sIUAIHIEL) gre satisfied. O
2. Main observer design for time-varying systems
2.1. Statement of result and remarks

We study nonlinear systems with outputs of the form

2(t) = A(E)x:(t) + 81(t, 2(1))
{ xp(t) = Ax()xe(1) + 82(t, 2(1)) (3)
y(t) = z(t)

where z is valued in RP, x, is valued in R"P A; fori = 1 and 2
is piecewise continuous and bounded, and our conditions on §;
and §, will be specified below; see Remark 1 for the motivation
for (3). We assume:

Assumption 1. There exist a constant ¢ > 0 and a bounded
matrix valued function L : R — R™P*P of class C' with a
bounded first derivative such that with the choice H(t) = A,(t)+
L(t)A1(t), the following are true: (i) The matrix

k(t) = Pyt t — 1) — Pay(t, t — T) (4)
is invertible for all t € R and (ii) the inverse function « ~!(t) is a

bounded function of t. O

Assumption 2. The §;’s are piecewise continuous with respect to
t and locally Lipschitz with respect to z. The system (3) is forward
complete. O

See Section 2.3 on ways to check Assumption 1. We introduce
the function

8:(t, z) = L(£)81(t, z) + 62(t, z) + L(t)z — H(t)L(t)z (5)

where H and L are from Assumption 1, and the dynamic exten-
sions

y1(t) = H(t)yi(t) + 8:(t, z(t)) 6)
ya(t) = Ax(t)ya(t) + 8a(t, z(t)),

which are reminiscent of the ones used in Mazenc et al. (2015).
In terms of the observer

Xi(t) = w(t) VLt — T)Z(t — 1)
— @yt t — T)L(t)z(t) 7
+ @yt t — T)ya(t) — yi(t — 7)]
— k()7 [Pay(t, t — T)ya(t) — ya(t — )]

for all t > t, we prove the following, but see Remark 2 on
the implementability of the observer, and see Remark 3 for gen-
eralizations that allow external disturbances and measurement
noise (but where instead of a finite time observer, we get an
observation error depending on sup norms of the disturbances
and of the measurement noise):

Theorem 1. Let L, Ay, Ay and t be such that (3) satisfies
Assumptions 1-2. Then
x:(t) = x;(t) (8)

holds for all solutions of (3)-(6) for all t > t and all initial
conditions. If, in addition, the functions A, A, and L are periodic
of period T > 0 and v =T, then k(T) = ®y(T, 0) — @4, (T, 0) and

Xi(t) = k(T) V[L()z(t — T) — @y(T, O)L(t)z(t)
+ @u(T, 0)y1(t) — yi(t —T)] 9)
—k(T) @4, (T, 0)ya(t) — ya(t — T)]

holds for all t > T and all constant initial functions y(0) € R*"P)
and (z(0), x,(0)) € R™.

Remark 1. To motivate (3), consider the class of nonlinear
systems x(t) = Ax(t) + §(t, y(t)) where A is a constant matrix
and § is uniformly locally Lipschitz in y uniformly in t, with an
output y(t) = Cx(t) that is valued in R with p < n where C is
of full rank and where the pair (A, C) is observable. Since C has
full rank, Luenberger (1979, pp. 304-306) (with §(t, y) added to
the right side) proves that there are constant matrices Cr and A,
and Ay, a linear change of coordinates x; = Crx = [y, x]T and
functions §; that are uniformly locally Lipschitz in y uniformly in
t such that the x system can be written as the special case

y(t) = Ax(t) + 81(¢, y(t))
x:(t) = Axx,(t) + 82(t, y(t))

of (3) with (A;,A;) observable. Since (A,,A;) is observable,
Mazenc et al. (2015, Lemma 1) provides an L and a t > 0 so
that « = e — e7H* with H = A, + LA, is invertible; this
is done by picking L so that all eigenvalues of H are negative,
real, and smaller than the real parts of the eigenvalues of —A,,
and then picking 7 large enough so that |e™"||e=™2| < 1. Hence,
Assumption 1 holds for (10).

In fact, we can allow arbitrarily small constants 7 > 0, by
the following approach. First, choose a matrix L and a constant
7o > 0 such that k = e ™% — e~ Hwo with H = A, + LA,
is invertible, i.e., such that D(r) = determinant(e™2* — e~H7)
is nonzero at t = t,. Then, for our fixed L and any constant
T € (0, 19), we can find a constant 7, € (0, T) such that D(z,) # 0,
so Assumption 1 holds with this t,. The existence of 7, follows
from the real analyticity of D, because if there were a T € (0, 7o)
such that no such t, € (0, 7) existed, then D(r) = 0 for all

(10)
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v € (0, 7), and then an analytic continuation argument would
give the contradiction D(7g) = 0. Hence, we can eliminate the
requirement that t > 0 is large enough. O

Remark 2. The observer (7) can be computed in practice from
the known y measurements and the known §;’s when &y and
&,, are available. Besides, the advantages of the formula (9) are
important. First, there is no integral term in it (which is due to
the use of the dynamic extension (6)). Second, in the periodic
case that is described in Theorem 1, the constant matrices «(T)~!,
@4(T, 0) and @4, (T, 0) can be determined through software. In
fact, since

My(T,0) = [¢y(T,0,e1)...0u(T, 0, en_p)]

where the ith column ¢4(T, 0, ¢;) is the solution of the initial
value problem Z = H(t)Z, Z(0) = e;, for all i evaluated at T,
where e; € R"? is the ith standard basis vector (by the linearity
of the system Z = H(t)Z), we can compute My(T, 0) (and so also
its inverse @y(T, 0)) by solving n — p initial value problems. The
same applies to My, (T,0). O

Remark 3. Our proof of Theorem 1 in Section 2.2 is easily gener-
alized to dynamics with external perturbations and measurement
noise, as follows. If we add uncertainties fi(t), f(t), and €(t) to
2(t), %,(t), and y(t) respectively in (3), where the f;'s and ¢ piece-
wise continuous and locally bounded, and if we replace the local
Lipschitzness condition in Assumption 2 by global Lipschitzness
with respect to z, and if we replace the z values in (6)-(7) by
the corresponding output values y(t) = z(t) + €(t) with the
measurement noise ¢, then similar arguments to the ones in
Section 2.2 (using the second conclusion of Lemma 1 and the
boundedness of H and A; to get sup,.. SUP¢i_,. [IMu(t — 7, £)| <
00 and sup,., SUP,;_, . IMa,(t — T, £)] < 00) provide a function
Ye € Koo such that [x7(t) — x,(t)| < ve(I(f1, f2, €)l0.,7) holds for all
t > 7 and all initial conditions. O

2.2. Proof of Theorem 1

Assumption 2 ensures that the system (3) is forward complete.
We deduce that the solutions are defined for all t > 0. Next, let
us introduce

s(t) = x.(t) + L(t)z(t). (11)
Simple calculations give

$(t) = Ax()xr(t) + 82(t, z(t))

+L(t)z(t) 4 L(£)z(t)

H(E)x(t) + L(£)84(t, 2(t)) + 82(t, 2(t)) (12)
+ L(t)z(t)

H(t)s(t) + 84(t, z(t)),

where §; is defined in (5). By applying variation of parameters to

5(t) = H(t)s(t) + 8,(t, z(t)) (13)
x:(t) = Ax(t)x,(t) + 82(t, z(1))
we obtain

Dy(t, t — 1)s(t) = s(t — 1)
+ [ Mu(t — T, 0)8:(¢, z(£))d¢ and

Dp, (8 —T(8) = X:(t — T)
L Myt — T, 0)85(¢, z(£))de.
By subtracting the equalities in (14), we obtain
Py(t, t — T)[x:(t) + L(£)z(£)] — Pay(t, £ — T)x,(E)
=x(t—7t)+ Lt —1)z(t — 1) (15)

+ [L Mu(t — 7, 0)8:(6,2(£))dl — x:(t — 1)
— 5 May(t — T, 0)8,(¢, z(€))de

which gives

(t)x:(t) = L(t — 7)z(t — T) — Py(t, t — T)L(t)z(t)
+ [, Mu(t — T, 08:(¢, 2(0))de (16)
— [L May(t — 7, 5,(€, 2(0))de.

By applying variation of parameters to (6), we obtain

J Myt — T, 0)8:(€, z(€))de

= @p(t, t = )n(t) — yi(t — 7) and (17)
J, May(t — T, 0)85(€, z(€))de
= By (.t — T)ya(t) = yalt — 7).

It follows that

k() (t) = L(t — 1)z(t — T) — Py(t, t — T)L(t)z(t)
+@y(t, t — T)yi(t) — it — 1) (18)
— @, (t, t — T)ya(t) + ot — 7).

Consequently (8) is satisfied. In the particular case where the
functions Ay, A; and L are periodic of period T = t then for all
teR, k() =«(T) !, dy(t,t — 1) = Py(T,0), L(t — ) = L(t)
and @y, (t, t — 7) = Py,(T, 0). This allows us to conclude.

2.3. Checking Assumption 1

In several cases, one can verify Assumption 1.
(1) If n—p = 1, then we can apply variation of parameters to get
@4, and @y in explicit forms.
(2) Let us assume that the functions Aq, A;, and L are periodic of
period T = 7 and that

k(T) = Pyu(T, 0) — Pa,(T, 0) (19)
is invertible. Then «(t) = «(t) is invertible for all t € R so
Assumption 1 is satisfied with ¢ = T. The invertibility can

be checked in practice by computing @4(T, 0) and @,,(T, 0) as
explained in Remark 2.

(3) Next, let us assume that there are an observable pair (Agz, Ao1)
e R=Px(=p)  RPX("=P) of constant matrices and functions A;
such that A;(t) = Ag; + A(t) for i = 1, 2. Then one can determine
a matrix Ly and a constant § > 0 such that if |A;], <48,i=1, 2,
then Assumption 1 is satisfied with L(t) = Lo. Indeed, in this case
one can use (Mazenc et al., 2015, Lemma 1) to find a constant
matrix Ly such that

Ko = e~ (Ao2+loAo1)T _ o—An2t (20)

is invertible. By writing «(t) as
k(t) = ko + [®u(t, t — 7) — e"o2tlofor)r]

— [®ay(t,t — 1) — e horr] (21)
= ko [I +R(t)]
with
— 1 _ —(Ao2+LoAp1)T
R(t) = Ky [qu (t,t—1)—e s ] (22)
— kg [@ay(t, t — 1) —eh2T]
we can use Lemma 1 to prove that
IR|o, < C(6)8, where (23)
E =
(24)

[e(\A02I+5)r (1 + |Lo|)e(IHol+(1 Lo )7 ]

and Ho = Aoz + LoAo1. Thus |« |, < |«ol(1+ 8¢(8)). If, in addition,
8 < 1/¢(8), then we can check that I + R(t) is invertible for
all t € R (by checking that its null space is trivial). Since kg is
invertible, it follows that «(t) is invertible for all t € R. Then

k()= A+RE) kg ' (25)
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Since
I +RE)N™ =D (—DFR)! (26)
k=0

we deduce that

+00 1
T+RE) 7 <) @) < ——. 27
@ +RE)™| ;((n s (27)
Hence, [k~ 1|, < 1"(2(3')5 so Assumption 1 is satisfied.

3. Output feedback stabilization

In this section, we use the observer from the previous section
to solve a dynamic output feedback stabilization problem.

3.1. Assumptions and statement of main result

We study

Z(t) = A1(E)x(t) + B1(t)u(t)
+ p1(t, z(£)) + f(t)

X:(t) = Ax(t)x,(t) + Ba(t)u(t)
+ pa(t, z(t)) + fo(t)

where z is valued in RP, x, is valued in R"P, the output is
y(t) = z(t), A; and B; for i = 1, 2 are known piecewise continuous
bounded matrix valued functions, p = (p1, p2) is known and
piecewise continuous with respect to t, and f = (fi,f;) is an
unknown locally bounded piecewise continuous function. We
assume:

(28)

Assumption 3. There exist a function ug(t, x) that is locally
Lipschitz in x = (z, x;) uniformly in ¢, a C' uniformly proper
positive definite function V, positive constants ¢; and ¢, and
y € Ko so that for all choices of the locally bounded piecewise
continuous functions © = (w1, u2) and h = (hy, hy) and all t > 0,
the following hold: (1) The time derivative of V along all solutions
of

H() = MO (0) + B (tu(D)
+p1(¢,2(6)) + ha(0) 29)
() = A0 (€) + Bo(u(D)

+ pa(t, 2(t ))+hz( )

in closed loop with the state feedback u(t) =
w1(t), z(t) 4+ uo(t)) satisfies

V(t) < —aV(t, x () + y(I(s, h)O)D) (30)

and (2) its time derivative along all trajectories x of (29) in closed
loop with u(t) = 0 satisfies

V(t) < aV(t, x(£)) + y(h(t)]) (31)
forallt > 0. O

us(t7 XT(t) +

Assumption 4. The function p = (p1, p2) is locally Lipschitz in
its second variable uniformly in t and there is a function o € K
such that |p(t, a)] < «a(la]) forallae RP and t > 0. O

The preceding assumptions are satisfied if the p;'s have the
linear forms p;(t, z) = pi «(t)z with continuous bounded functions
pix(t) for i = 1,2 and if in addition the system x = Qi(t)x +
Qx(t)u with the choices x = (z, x;),

| o A
Q= |: 02 Az i|’ (32)

and Q; = [B] BJ]" admits a bounded piecewise continuous
function Ky such that x = (Qi(t) + Qu(t)Kq(t))x is uniformly

globally exponentially stable to 0. This is done by using the
quadratic Lyapunov function for this closed-loop system provided

by Khalil (2002, Theorem 4.14) and u(t, x) = Ko(t)x.

Setting
pa(t, z) = —[D(t)z + ps(t, 2)], (33)
where
p3(t, z) = L(t)pa(t, z) + palt, 2) (34)
and
D(t) = L(t) — H(O)L(L), (35)

and with H, L, and « from Assumption 1, we prove this ISS result:

Theorem 2. Lett, L H, uy, k, ¢4, and ¢, be such that Assumptions 1,
3, and 4 hold. Then we can construct § € KL and y € K such that:
All solutions x(t) of (28), in closed loop with u(t) = u,(t, x.(t), y(t))
where

ug(t, x.(t), y(t)) whent >t

u*(t,?r(t),y(t))=: 0 whent < 1 (36)
and where X, is
X (t) = k() V[L(t — T)z(t — T)
— dy(t, t — t)L(t)z(t) + Py(t, t — T)w1(t)
—wi(t —7)]
— k() [Pay(t, t — T)wa(t) — wot — 1))
w1(t) = H(t)w:(t) (37)

+ [L(£)B1(t) + Ba()] u(t, X(£), y(t))
+ ps(t, z(t)) + D(t)z(t)

@(t) = Ay(t)wa(t) + Ba(t)u,(t, X:(t), y(t))
+ pa(t, (1))

are such that

Ix(0) < BUx O £) + 7([fl10.0) (38)
holds for all t > 0 and all constant initial functions w(0) € RX"P),
X:(0) € R" P, and (z(0), x,(0)) e R". O

3.2. Proof of Theorem 2

Let us consider the system (29) in closed-loop with (36). First,
let us observe that (31) ensures that for any solution of this
system, there is s > t such that the solution is defined over [0, s).
Now, let

51(t) = B](t)u*(tv ir(t)v J/(f)) + p](t7 Z(t)) +f1(t)v (39)
82(t) = Ba(t)u(t, x,(t), y(t)) + pa(t, z(t)) + fo(t)
and
71(t) = H(t)y1(£) + L(t)d1(t, z(t)) + S2(t)
{ + D(t)z(t), (40)
Y2(t) = Ax(t)ya(t) + 8a(t).

Then arguing as we did to prove Theorem 1, we deduce that for
all t € [7,5),
x(6) = k(t)V[L(t — T)z(t — T)
— @y(t, t — T()z(t) + Pu(t, t — T)ya(L)
— k()7 [@ay(t, t = T)palt) — 2t — T)].

Now, we observe that o; = y; — w; for i = 1, 2 satisfy

01(t) = H(t)o1(t) + f5(t) and
02(t) = Ax(t)o(t) + fo(1),
where f3(t) = L(t)f1(t)+f2(t

we obtain
@y(t, t — 1)oi(t) — 01t — 1)
= -[t ‘L'MH t— T,K) 3(£)d1€ and
D, (L, t — T)0a(t) — 02t — T)
= [, Ma(t — 7, 0)f(£)de

—yi(t — )] (41)

(42)

). By applying variation of parameters,

(43)
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forall t € [z, s). Thus,

Dy(t, t — )yi(t) — yi(t — 1) = Py(t, t — T)w(t)
—oi(t — )+ [ My(t — 7, Ofs(£)de,

Pay(t, £ = T)s(6) = 1alt — ) = Bay(t, € — Theon(t) (44)
—(t — )+ [ Mgy (t — 7, O)f(£)de.
Combining (41) and (44), we obtain
x(t) = k(6)"V[L(t — T)z(t — T)
—&y(t, t — TL(t)z(t) + Py(t, t — T)ws(t)
—wi(t —7)]
— k() [ Dyt t — Tan(t) — wn(t — 7] (45)
() [, Mu(t — T, Ofs(£)de
—k(6)71 [ May(t — T, Of(E)dE.
From (37), it follows that
x:(8) = %:(t) + 5 (t) (46)
with
S(t) = k(6 [, Mult — T OILER() + f(0)]de )
— k(&) [ May(t — T, Of(0)de.
It follows that for all t € [z, s), the closed-loop system is
2(t) = A1()x(t) + By (t)uu(t, x:(t) — ¢(t), ¥(t))
+ pa(t, z(t)) + f1(t) (48)
X:(t) = Ax(t)x(t) + Ba(t)uu(t, x,(t) — ¢(£), ¥(t))
+ pa(t, 2(t)) + fot).
Now, from Assumption 3, it follows that
V(t) < —cV(t, x(0)) + y(I(—5(t), 0, fi(0), () (49)
forall t € [7,s) and
V(t) < (e, x(0) + () (50)

for all t € [0, t]. Since V is uniformly proper positive definite, we
deduce that s = 400 and for all t € [0, 7],

VIE x(6) = €7V(0, x(0)) + €27 [y y(F())de 6D
< e27V(0, x(0)) + e Ty (Ifl0,¢1)

and forall t > 7,
V(t, x(1) < e V(T x(1))
+ [L ey ([(—(£), 0, f1(£), fH(€)))de
e~V (z, x (1))
+ [l 215(0)))de
+ [ ey 21(f1(0), H(0))de
= e TV (z, x(1))
+ [} ey (2] (e))de
+f: ecl(l_t)dzy(ZW[o,r]),

by the bound y(a + b) < y(2a) + y(2b) for suitable a and b.
From the formula of ¢ in (47) and Lemma 1, we deduce that

IA

IA

(52)

(0] = Ik (e [ LLILGLACO] + (O)]1de
el [T If(0)lde)

IA

|K_]|oot |:er|H|°C|L|oo sup  |f(s)l (53)

se(t—r1,t]

+ (el 4 eTM2le) sup  [fy(s)|

se[t—r,t]

b sup |f(s)l.

se[t—rt,t]

IA

where

b= k"o [0 L], + €l 4 eTHzl] 7.

Then for all ¢t > 7,

V(t, x(t)) < e 1DV (z, x (1))

+ [1 ety (2bIf|jq,) de

+ [ e10dey (21f]jo,) (54)

e 1=V (7, x(7) + %)’ (ZBW[o,r])

+ é)’(zlﬂ[o,r])-

This inequality and (51) yield

V(t, x(t)) < e~ [e27V(0, x(0))
+e2 Ty ([fljo.)] + &V (2bIf110.07)

IA

+ %V(Zlﬂ[o.t]) (55)
< e IHEHRIV(0, 7(0) + ¥ (flo.0)
for all t > t with
pi(m) = €7 ey (m) + -y (2Bm) + ~y(2m). (56)

Moreover from the second inequality of (51), we deduce that, for
all t € [0, 7],

V(t, x(1)) < e~atHatalry(o, x(0))
+e2 Ty (Iflj0.)-

It follows that
V(t, x(t)) < et HatTy(0, x(0)) + y4(Ifl10.) (58)

for all t > 0. The properties of V ensure that there are two
functions P;, i = 1, 2 of class K, such that

Pillx]) = V(t, x) = Pa(Ix1) (59)

for all t € R and x € R". These inequalities and (58) yield

X(@O1 < Pyt (em AT By (0)) + ¥4(If l10,01)

Py (2eatHatR)Tpy(1x(0)))) (60)
+7;! (ZVT(Ifl[O,t]))

for all t > 0. Since the function y; is of class K, we can conclude.

(57)

IATA

4. Application to nonholonomic system in chained form
4.1. Tracking problem

We illustrate Theorem 2 using this variant of a system
from Malisoff and Mazenc (2009, p. 143):

é4 = &y, é3 =&y, éz = V2, él = (61)

with (&1, &, &, &) valued in R* and the input (vq, v,) valued in
R?, which is a nonholonomic system in chained form, and where
we will omit time arguments t of functions to make the notation
more concise. We assume that &4, &3 and &; are measured, but
that & is not measured. We design a dynamic output feedback
making (61) track the trajectory (&1:(t), &,(t), &3:(t), £4r(t)) =
(t+ % sin(t), 0,0, 0). We use the change of variables and feed-
back and x; = & — &(t) and vi(t,x;) = —x1 + 1 + 3 cos(t).
This produces the x; subsystem X; = —x; and so prompts us
to solve the problem of globally asymptotically stabilizing the
tracking dynamics

%:'4 =(1+ %cos(t)) £, & = (1 + %cos(t)) &,

&=, (62)
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to 0, by replacing x; by 0 in the (&, &3, &4, ;1) dynamics. In terms
of the notation of Section 3, the system (61) can be written as

71(t) = (1 + 3 cos(t)) zx(t)
2(t) = (1+ 5 cos(t)) x,(t) (63)
xe(t) = u(t),
which has the form (28) with the choices
0
Ailt) = ( 1+ 2 cos(t) ) ’ (64)
pl(t,z)=( (143 costt) 2 ) (65)

Az(t) =0, B1(t) =0, BZ(t) = 1,f1 =0, fz = 0, and ,02(1',2) = 0.

Let us choose L(t) = [0 2]. This gives H(t) = A,(t) + L(t)A(t) =
2 + cos(t) and the functions
Dy(t,s) = e A7)0 and @, (£, 5) = 1. (66)
Choosing T = 2, we obtain
K(t) — e—4+sin(t—2)—sin(t) —-1. (67)
The inequalities

2
lKloo <1 and [1/k|y < o (68)

hold. It follows that Assumption 1 is satisfied.

4.2. Applying Theorem 2 to (63)

One can easily prove that Assumption 3 is satisfied with
us(t, %, 2) = (1+ 3 cos(t)) (=21 — 322 = 3x1) , (69)

by using the Hurwitzness of

0 1 0
( 0 0 1 ) (70)
-1 -3 -3

to obtain a quadratic choice of V. Assumption 4 is satisfied too.
It follows that Theorem 2 applies to (63). This theorem gives the
following globally asymptotically stabilizing output feedback for
(63):

_ ug(t, x:(t), z(t)) whent > 2
(¢, % (0), 2(0)) = { 0 b o (71)
with
ir(t) - —4+sm(tTg[)) sin(t) _1 + —401155([2;) u;zn((tg 1°
&1(6) = (2 + cos(Ee(t) + (¢, % (0), 2(0) (72)
—202+ COS( )2a(t),

@y(t) = u(t, X:(t), z(t)) and

T(t) = 2zy(t — 2) — 2e~4Hsin(t=2)=sinlt)z, (1) (73)

+ e—4+sin(t—2)—sin(t)w1(t) _ C()](t _ 2).
4.3. Simulations

We performed simulations, which show the efficiency of our
approach. Fig. 1 shows the simulation of the system (63) with
u(t) = u.(t,x:(t), z(t)) as defined in (71). Since our simulation
shows good stabilization, it helps illustrate our general theory, in
the special case of the system (61).

1 ]
of kf,
4l —z1(t) ]
— 29 (t)
, =20

Fig. 1. Simulation of the time varying system (63) with u(t) =
Time unit on horizontal axis is seconds.

w(t, % (1), 2(t)).

5. Conclusions

We designed reduced order finite time dynamic observers
and corresponding output feedback that are free of distributed
control terms. We have exhibited families of systems for which
the observer and control law can be easily implemented. We hope
to combine Theorem 2 with Mazenc, Ahmed, and Malisoff (2018a)
to cover delays and disturbances in the input and intermittent
output observations. Extensions pertaining to disturbances on the
measurements are expected too.

Appendix. Proof of Lemma 1

For all real values of s and t, the function z(t, s) = M 4 ¢(t, S)
— eAl=9 satisfies
Fe2t.5) = (A+EO)Maye(t, 5) — AeA) (74)
= Az(t,s) + E(E)M a+e(t, 5)
and z(s,s) =0, so
z(t,s) = f eAtTe(P)M gqe(r, s)dr, (75)

by a variation of parameters. Also, for all real r and s, the Peano-
Baker formula for fundamental matrix solutions (e.g., from Son-
tag, 1998, p. 489) gives

[Mase(r,s)| < eMA+Eleolr=sl, (76)

Set s = min{s, t} and s = max{s, t}. We can combine (76) with
(75) to get

2(t,5)) = €SI g] 5 — )l (77)

The lemma follows by noting that s —s = |t — s|.
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