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ABSTRACT

This paper describes vibrational control and stability of a
planar, horizontal 2-link mechanism using translational control
of the base pivot. The system is a 3-DOF two-link mechanism
that is subject to torsional damping, torsional stiffness, and is
moving on a horizontal plane. The goal is to drive the averaged
dynamics of the system to a desired configuration using a high-
frequency, high-amplitude force applied at the base pivot. The
desired configuration is achieved by applying an amplitude and
angle of the input determined using the averaged dynamics of
the system. We find the range of stable configurations that can
be achieved by the system by changing the amplitude of the os-
cillations for a fixed input angle and oscillation frequency. The
effects of varying the physical parameters on the achievable sta-
ble configurations are studied. Stability analysis of the system is
performed using two methods: the averaged dynamics and aver-
aged potential.

INTRODUCTION

Vibrational control of mechanical systems is an open-loop
control strategy that applies a high frequency, high amplitude in-
put to stabilize the system about a desired state or trajectory. The
desired configuration of the system may be a previously unstable
equilibrium that is stabilized using the vibrational input. An ad-
vantage of applying vibrational control is that it is an open-loop
control strategy which can be useful in underactuated systems
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with unmeasurable states or where measuring a state may be dif-
ficult or expensive.

Vibrational control theory was discussed by Meerkov in
[1] where he developed the necessary and sufficient condi-
tions for vibrational stabilizability of linear dynamic systems.
Bellman, Bentsman, and Meerkov, in [2, 3], expanded on the
work in [1] by applying vibrational control to nonlinear sys-
tems. Vibrational control systems use high-frequency, high-
amplitude force or moment. The analysis of dynamics with high-
frequency time-periodic inputs is made simpler using averag-
ing techniques [4-6]. Bullo [7, 8] developed an averaging tech-
nique applied to a class of mechanical control systems with high-
frequency, high-amplitude inputs, which is used in this paper;
the method requires forcing at a “sufficiently high” frequency,
although determining this minimum frequency can be difficult.
Tahmasian and Woolsey developed a control design method for
underactuated mechanical systems and applied vibrational con-
trol to a 3-DOF system with two oscillatory inputs [9,10]. Higher
order averaging is explored by Vela, Morgansen, and Burdick
in [11, 12] in applications such as biomimetic locomotion. Berg
and Wickramasinghe developed a method for vibrational control
without averaging using stability maps for second order linear
periodic systems in [13]; their work illustrates and then circum-
vents the problem of determining a lower bound for the forcing
frequency. Baillieul introduced the use of an “averaged poten-
tial” in [14] for stability analysis of periodically forced systems.
Weibel and Baillieul used the “averaged potential” and averaging
methods for robust open-loop control in [15].

While vibrational control is a fascinating illustration of non-
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intuitive mechanical system behavior, it also has a variety of ap-
plications. Wickramasinghe and Berg used vibrational control to
delay the onset of the pull-in instability for an electrostatic comb
drive [16]. Taha, Kiani, and Navarro discussed the application
of vibrational control in flapping-wing micro-air-vehicles [17].
Guo, Wang, Qu, and Braiman used open-loop vibrational con-
trol for atomic-scale friction control in a friction force micro-
scope [18]. Blekhman describes applications of vibrational me-
chanics such as the vibro-flier and vibro-ships in [19], as well as
some clever material transport strategies. The vibro-flier is an ap-
paratus that is lifted upwards due to axial oscillations of a body.
Vibro-ships experience transport due to the presence of fins and
the action of random hydrodynamic forcing from a fluid.

In this paper, we use the averaging technique developed
in [7, 8] to study the dynamics of a 3-DOF planar, horizontal
2-link mechanism with an applied force at the base pivot. The
system is subject to linear torsional damping and linear torsional
stiffness and its motion is not affected by gravity. The goal is
to drive the system to a neighborhood of a desired configuration
using the oscillatory input amplitude and angle. The achievable
stable configurations of the system are presented and the effects
of variation of the physical parameters on the achievable stable
configurations are studied. Additionally, stability analysis is per-
formed using the averaged potential described in [15]. Perform-
ing stability analysis using the averaged dynamics and averaged
potential prompt the following questions:

1. Do the conditions for stability obtained using these two per-
spectives agree?

2. If the conditions do not agree, which perspective provides
the least conservative conditions?

The paper continues with a brief discussion of averaging,
followed by modeling details for the apparatus that we consider.
We then present a numerical investigation of the stable equilib-
ria for the period-averaged, vibrationally forced mechanism fol-
lowed by formal stability analysis.

AVERAGING

Consider the following system in the form of an initial value
problem:

x=¢f(x,1), x(0)=xp (1)

where f(x,7) is a T-periodic function in its second argument and
€ > 0 is a small number. The time-averaged dynamics of the
system (1) is defined as [7]

x=ef(x), %(0)=x0 2)
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FIGURE 1: A 3-DOF PLANAR, HORIZONTAL 2-LINK
MECHANISM WITH PIVOT AT A CONSTRAINED TO
MOVE RADIALLY FROM THE ORIGIN AT AN ANGLE .

where

- 1 T
() = /0 £(x,1)dr 3)

Theorem 1 (First order periodic averaging [8]): There
exists a positive & such that, for all 0 < € < g,

(i) x(¢) —x(¢t) = O(g) as € — 0 on the time scale 1/¢, and

(i) if the origin is an exponentially stable equilibrium of (2),
then there is a corresponding exponentially stable periodic
orbit of (1).

Next, consider an n-DOF mechanical control system whose
dynamics are written in first-order form:

where x is the state vector (i.e., the vector of configurations and
velocities), Z(x) is the drift vector field, Y;(x), i € {1, ...,m|m <
n}, are the input vector fields for the force (or moment) inputs, €
is a small, positive number, and v;(¢) is a zero-mean T-periodic
input function. Associated with the input functions we define
scalar parameters kj, A;j, and y;; for i,j € {1,...,m} as fol-
lows [20]

1 T  pt
K= i/0 /0 vi(T)dt di )
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Aij= %/OT (/(:vi(r)dr) (/Olvj(r)w) dt (6)

and
1
Hij = 5 (Aij = KiK;) (7

We define the symmetric product between two input vector
fields Y;(x) and Y ;(x) as

(Yir Yj)(x) = (Y Yi) (%) = [Y;(x), [Z(x), Yi(x)]]  (8)
where |-, -] denotes the Lie bracket of the vector fields [10].

Theorem 2 (Averaging of systems subject to oscillatory
inputs [8], [20]): Given the system (4) with high-amplitude,
high-frequency T-periodic inputs év,(é) Suppose the compo-
nents of Z(xX) are homogeneous polynomials of velocities of de-
gree two or less. Consider the time-invariant system

X =1Z(%)— i Mij(Yi:Y;)(X) )]

ij=1

with the initial conditions X(0) = Xo. Then there exists a positive
€ such that, for all 0 < € < &, x(t) —X(t) = O(¢) as € = 0
on the time scale 1/€. If the system (9) has an exponentially
stable equilibrium point, then the system (4) has a corresponding
exponentially stable periodic orbit for all t > 0.

The time-invariant system (9) is referred to as the averaged
form, or averaged dynamics, of the time-periodic system (4).

A PLANAR, HORIZONTAL 2-LINK MECHANISM

Consider the 3-DOF planar, horizontal 2-link mechanism as
depicted in Fig. 1. The system consists of two links of masses
my and my and lengths /; and I, respectively. The links move
on a horizontal plane, i.e. their motions are not affected by
gravity. The base pivot of the first link, joint A, is constrained
to move radially from the origin, at an angle y measured
counter-clockwise from the positive x-axis. The distance from
the origin to the base pivot for this prescribed radial motion is
R =recos (é) Joint A has a torsional stiffness k;, and torsional
damping coefficient k4, . Joint B connects the two links /; and I,
and has a torsional stiffness k;, and torsional damping coefficient
kq,. The torsional stiffness and damping resist the rotation of the
links.

Vibrational Control of the 2-link Mechanism

The goal of this section is to control the orientation of the
two links using an oscillatory displacement input applied to joint
A to achieve desired orientation angles of the two links. The
dynamic equations of the system are:

M(q)dq+g(q,q) =h(q)u() (10)

where q = (6;,6,)", the inertia matrix is

mzdzll Cos (91 — 92)

M(q) myd? + 1 +myl?
o Iz—i-mzd%

mzdzll COS (91 — 92))

g(q ) _ (kd| 91 —‘rkdz (61 — 62) +mpdy g sin(91 — 92)922 +kt1 0, +k,2 (91 — 62))

h( )_ (m1d1+mzll)sin01 7(m1d1+mz11)C0591
Y= mad> sin 6, —mydy cos 6, ’

kdz (92 — 91) —modsly sin(61 - 92)612 +k[2 (62 — 91)

and

oo (3)

where d; and d, are the distances from joints A and B to the
centers of mass of links 1 and 2, respectively. I} and I, are the
mass moments of inertia about the centers of mass of links 1
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and 2, respectively. The acceleration components ¥ and y are
defined by the prescribed pivot motion

x(t) =recos ((o%t) cosy (11a)

y(t) = recos (w%t) siny (11b)

where r¢ is the amplitude and % is the frequency of oscillation.
(In the following, we substitute the value @y = 1 rad/s.) The
displacement input is a time-periodic zero-mean function (in this
example it is the cosine function) that moves the endpoint A of
link 1 back and forth at a prescribed angle y that is measured
counterclockwise from the positive x-axis.

The dynamic equations of the system (10) can be written in
the form of (4) where the drift vector field is

Z(x) = <_M1(:i)g(qa"l))

and the periodic forcing that acts on the system is

Y(")év (é) - é (M'O(qu)lh(q)) cos (é)

The drift and input vector fields are then used to obtain the
averaged dynamics of the system, as shown in (9). To control the
orientation of the links, a desired configuration, 6, = (e, 62¢),
is prescribed. The desired configuration is used to obtain solu-
tions for the amplitude of the displacement input, r€, and the
direction of the displacement y. The input frequency (as deter-
mined by the non-dimensional parameter €) is prescribed, so the
problem is to solve for the parameter r. If the desired configu-
ration is achievable, there will be one pair of real solutions, only
one of which will be admissible. The admissible solutions will
be referred to as r. and ..

If 6. can be achieved, the next step is to assess the stability
of this configuration. Our aim is to implement vibrational con-
trol on an experimental apparatus matching the model described
here. In order for a desired configuration to be observed in this
experiment, the desired configuration must be a stable equilib-
rium point of the averaged dynamics. To determine stability, the
Jacobian matrix of the averaged dynamics is found for 6, 7., and
V. . If the eigenvalues of this matrix have negative real parts then
the configuration will be locally asymptotically stable. Figure 2
shows the actual and averaged time histories of the link angles
for a stable desired configuration of 6, = (—{§, 9) radians. The
parameter € = 1/70. The required value of r and input angle y
were calculated to be r. = 1.74 m/s and y, = 1.64 radians, re-
spectively. The initial conditions are 6y = (6},,62,)" = ({5, %)
radians. The physical parameters used to characterize the system
are presented in Table 1.

L5t —— Actual
1.0f Averaged]
'§ 0.5F
Fg P‘RAAAAAAAAABAAAAAA AMAAAAARARRARRAAARAARAARARNAARARAANAN
= 00 U‘ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ T LT LA RRR TR AR AU LRI
= WV IV VTV VU VUV H
< -0.5¢
-1.0f
—15E i i i i ]
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t, seconds
L5t — Actual
1.0 W’ Averaged]
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2
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& -05F
-1.0f
—15E i i i i E
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FIGURE 2: TIME HISTORIES OF 6; AND 62 TO ACHIEVE
THE DESIRED CONFIGURATION 6, = (— 18, 9) RADIANS,
re = 1.74 M/S, AND vy, = 1.64 RADIANS.

TABLE 1: PHYSICAL PARAMETERS OF THE SYSTEM.

Parameter Value
mi 0.081 kg
my 0.0675 kg
A 0.12m
153 0.10 m
ki, 0.25 N-m/rad
ki, 0 N-m/rad
kq, 0.003 N-m/(rad/s)

0.002 N-m/(rad/s)

STABLE CONFIGURATIONS OF THE 2-LINK MECHA-
NISM

In this section, the stable configurations for the averaged dy-
namics of the 2-link mechanism are determined for a range of
values r € [0,10] m/s with € = 1/70 and y = =F radians. The
physical parameters of the nominal system are given in Table 1.
Various stable configurations for the dynamics defined in (10)
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(a) STABLE CONFIGURATIONS (6;,6,) OF THE NOMINAL SYS-
TEM WITH VARYING r.
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2, RESPECTIVELY.

FIGURE 3: STABLE CONFIGURATIONS OF THE NOMINAL
SYSTEM.

using the given parameter values are depicted in Fig. 3.

Effects of Parameters on Stable Configurations

To examine the effect of parameter values on the equilib-
ria and their stability, we define the following non-dimensional
parameters

Y= TLoand A= ul
ny lz

We denote the nominal values, corresponding to the values in
Table 1, with a superscript “0”. The variations considered here
are y € {37,2Y°}, 4 € {3A°,24°}, k,, € {3k, 2k} }, and k;, =
0.25 N-m/rad. Fig. 4 indicates that when the mass of link 1 is
larger than the mass of link 2, there are more achievable stable

0.2

0.11

E o0
-
—0.11
-0.2
-0.2 -0.1 0.0 0.1 0.2
X (m)
1
@7y=137"
021
0.1F
§, 0.0
-
-0.11
-0.21
-0.2 —0.1 0.0 0.1 0.2
X (m)
(b) y=2¢".

FIGURE 4: STABLE CONFIGURATIONS FOR DIFFERENT
VALUES OF 7.

configurations over the range of r-values tested. The variation of
the lengths of the links does not cause a noticeable difference in
stable configurations, however, as seen in Fig. 5. Reducing the
torsional stiffness applied at the base pivot as shown in Fig. 6a
decreases the range of achievable stable configurations while in-
creasing the torsional stiffness as in Fig. 6b increases the number
of achievable stable configurations. Figure 7 presents the stable
configurations when a non-zero value for the torsional stiffness
in joint B, k;,, is introduced. Adding torsional stiffness to joint B
causes the range of stability of the first link to increase. The sec-
ond link stays more aligned with the first link due to the addition
of the torsional stiffness in joint B.

The results of the parameter variation reveal the parameters
that the system is most sensitive to. For the nominal system in
this study, Yy = 1.2. When designing an experiment to test this
system, increasing the mass ratio y will allow us to achieve a
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FIGURE 5: STABLE CONFIGURATIONS FOR DIFFERENT
VALUES OF A.

wider range of stable configurations. The length of the system
can vary without affecting the stable configurations, which al-
lows for some freedom in the selection of the thicknesses and
widths of the links to accommodate hardware such as bearings
and torsional springs in the pivots. The results presented in this
manuscript will be used to design a 2-link mechanism and ex-
plore the stable configurations while varying the amplitude of
the periodic forcing.

STABILITY ANALYSIS USING AVERAGED POTENTIAL

In this section, we analyze stability using the averaged po-
tential described by Weibel and Baillieul in [15]. Following the

02t
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-
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-
—01f
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X (m)
_ 910
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FIGURE 6: STABLE CONFIGURATIONS FOR DIFFERENT
VALUES OF ki, .

steps outlined in [15], we consider a Lagrangian of the form

1
L(q,q;v) = EqTM(‘l)('I—&-vaT(‘I)"l— Vigv) (12

where q = (01,60,)7, M(q) is the inertia matrix, v is the time
derivative of the input, R = recos (%),

 (—(dimi +1imy) sin (6, — y)
a(q) = ( l_cilzmzlsinz( 982 - ‘I;) )

and

oy — o [k Tk =k 1 2
V(q,v)—q ( _ktz kt2 q 2(m1+m2)v
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FIGURE 7: STABLE CONFIGURATIONS WITH k;, = 0.25 N-
m/rad.

The Hamiltonian corresponding to this system is

Hapv) = 53— M (p-va) 4V (13)

where p are the conjugate momenta to the generalized coordi-
nates q. We can apply simple averaging to the Hamiltonian in
Eqn. (13) to obtain

_ 1 T

H(q,p) = ;/ H(q,p;v)dt
. 0 | (14)

= EpTM_lp—VaTM_ler EVaTM_laVnLV

where the overbar denotes a simple average. The input v is a
zero-mean, T -periodic function, therefore its average % fOT vdt =
0 and the term va’ M~ !p = 0. The averaged Hamiltonian H(q, p)
is divided into two parts: an averaged kinetic energy

1 ,
Ta=5p'M 'p (15)

and an averaged potential
L M a4V
VAzi(v )a"M a+V (16)

The equilibrium configurations . of the system are found
by solving the following equation

A/
Tq(q,r,l//)—() (17)

for the roots q = q.. The stability of each equilibrium for the 7-
averaged dynamics is determined by the eigenvalues of the Hes-
sian matrix evaluated at the equilibrium:

PVy IPVa

o 392 891892
Hess(VA(q,r, l//))|q:q* = 82\/1A BZVA
96,00, 962

q=qx

For stability, the Hessian matrix must be positive definite. Equiv-
alently, its eigenvalues must be positive. According to [15], sta-
bility of the equilibrium for the time-averaged system implies
stability of the periodic orbit for the original time-varying sys-
tem.

We consider the same desired equilibrium used in the result
in Fig. 2, q, = (—%, g)T radians, and solve for values of r and
the angle y which will achieve the desired configuration of the
links using Eqn. (17). This process gives the values re = 1.74 m/s
and W, = 1.64 radians. Evaluating the Hessian matrix at this de-
sired equilibrium, with the given values 7. and V., one finds that
it is positive definite, indicating that the desired equilibrium is
stable. Applying similar analysis to the range of simulation re-
sults in the previous section confirms stability as indicated by the
simulations. The two methods used to perform stability analysis
provide the same results for a desired configuration of the 2-link
mechanism.

CONCLUSION

This paper presented a numerical and analytical investiga-
tion of vibrational control of a 3-DOF planar, horizontal 2-link
mechanism. The effects of varying the physical parameters of
the system on the achievable stable orientations of the links were
explored over a range of amplitudes of the vibrational input for a
prescribed input angle and oscillation frequency. Stability analy-
sis was performed for one particular equilibrium using the aver-
aged dynamics and the averaged potential. The results of the sta-
bility analysis were the same for both methods. As future work,
this system will be physically constructed and the achievable sta-
ble configurations of the physical system will be compared with
the analytical results obtained following the procedure outlined
in this paper. We will also endeavor to answer the questions
posed in the introduction for a more general class of systems.
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