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Abstract
Disease registries, surveillance data, and other datasets with extremely large
sample sizes become increasingly available in providing population-based infor-
mation on disease incidence, survival probability, or other important public
health characteristics. Such information can be leveraged in studies that col-
lect detailed measurements but with smaller sample sizes. In contrast to recent
proposals that formulate additional information as constraints in optimization
problems, we develop a general framework to construct simple estimators that
update the usual regression estimators with some functionals of data that incor-
porate the additional information. We consider general settings that incorporate
nuisance parameters in the auxiliary information, non-i.i.d. data such as those
from case-control studies, and semiparametricmodels with infinite-dimensional
parameters common in survival analysis. Details of several important data and
sampling settings are provided with numerical examples.
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1 INTRODUCTION

With the development of population-based biomedical sci-
ence, large studies and datasets become increasingly avail-
able. Examples include census data, disease registries,
healthcare databases, and various consortia of individual
studies (Chatterjee et al., 2016). Using these large datasets,
certain characteristics of the population can be accurately
described, and they may serve as auxiliary information to
improve estimation efficiency in analyzing data from small
studies. As the large datasets are usually designed for pur-
poses different from the hypotheses of interest, they may
not be directly utilized as a complementary sample for the
original research question. However, the moment condi-
tions or unbiased estimating equations that correspond to

the characteristic of the underlying population can be uti-
lized in smaller studies of interest. One example is the
Surveillance, Epidemiology, and End Results (SEER) Pro-
gram of the National Cancer Institute (National Cancer
Institute, 2021), which is an authoritative source of infor-
mation on cancer incidence and survival in the United
States. It provides information on the most recent cancer
incidence, mortality, survival, prevalence, and lifetime risk
statistics that would serve as auxiliary information in can-
cer clinical trials.
In the absence of auxiliary information, regression

methods are routinely used to study the association
between exposures and outcomes andmany suchmethods
are based on maximizing a likelihood or other objective
function. These estimators can also be formulated as
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solving first-order (score) equations that are just-
identified, that is, the number of equations are the
same as the dimension of the model parameters. Auxiliary
information in the form of additional estimating func-
tions would therefore lead to a system of overidentified
estimating functions, in which efficient estimation can be
attained by empirical likelihood (Qin and Lawless, 1994).
The empirical likelihood approach has been applied in
the survey sampling setting to incorporate auxiliary infor-
mation on the finite population in the estimation of the
populationmean, total, distribution function, or quantiles,
while adjusting for different sampling schemes (Chen and
Qin, 1993; Chen and Sitter, 1999; Qin, 2000; Wu and Sitter,
2001; Chaudhuri et al., 2008; Qin et al., 2015; Chatterjee
et al., 2016). Computation for the empirical likelihood
estimation usually involves iteratively maximizing the
objective function that includes Lagrange multipliers and
solving for the value of the Lagrange multipliers, and
may cause computational challenges (Han and Wang,
2013). Generalized method of moment (GMM) provides
an alternative framework for handling overidentified esti-
mating functions and is recently studied for incorporating
population-based auxiliary information (Kundu et al.,
2019; Sheng et al., 2020). However, such methods still
requires optimization to obtain the estimators.
When model parameters include infinite dimensional

components, for example, in semiparametric models,
incorporation of auxiliary information becomesmore chal-
lenging. Zhou (2006) and Hu and Zhou (2010) studied
the proportional hazardsmodelwith auxiliary information
on functionals of the hazard and formulated the empir-
ical likelihood function in terms of the baseline hazard
function. Huang et al. (2016) proposed a double empirical
likelihood approach to combine the published subgroup
𝑡-year survival probabilities in a proportional hazards
model for individual-level data. The above methods made
use of certain special structure of the proportional hazards
model to obtain a closed-formprofile estimator of the base-
line hazard function. As the closed-form solution for the
infinite-dimensional parameter is not always available, the
methods cannot be easily generalized to other semipara-
metric models.
In this paper, we study a general estimation frame-

work in which a simple noniterative update procedure
that incorporates auxiliary information can attain the same
statistical efficiency as certain maximum empirical like-
lihood estimators. Unlike empirical likelihood methods
that require constraint optimization through introduction
of additional Lagrange multipliers, the proposed method
avoids their computation entirely by exploiting intricate
mathematical structure of the problem. We consider the
general setting of semiparametric models, where the con-
straints corresponding to the auxiliary information can be

summarized as estimating equations, and allow additional
unknown parameters present only in the constraints.
Our formulation also provides a simple asymptotic vari-
ance estimator for inference. We demonstrate use of the
proposed methods in various common parametric and
semiparametric settings with simulations and some real
examples.

2 METHODS

To simplify the derivations, we consider i.i.d. sampling in
the exposition, and the generalization to non-i.i.d. samples
will be discussed in Web Appendix A. Let 𝑿𝑖 (𝑖 = 1, … , 𝑛)

be i.i.d. observations of a random variable 𝑿, whose dis-
tribution is associated with an unknown 𝑝-dimensional
parameter 𝜽 ∈ Θ ⊂ ℝ𝑝 and an infinite-dimensional nui-
sance parameter 𝜂. Suppose that the true value (𝜽0, 𝜂0) of
(𝜽, 𝜂)maximizes a criterion function 𝐸{𝑚(𝑿; 𝜽, 𝜂)}, where
𝐸(⋅) is the expectation function with respect to 𝑿. Then,
an initial estimator (𝜽, 𝜂) can be constructed by maximiz-
ing the function

∑𝑛

𝑖=1
𝑚(𝑿𝑖; 𝜽, 𝜂). In particular, the choice

of 𝑚(𝑿; 𝜽, 𝜂) = log 𝑓(𝑿; 𝜽, 𝜂) corresponds to the maxi-
mum likelihood estimator, where 𝑓(𝑿; 𝜽, 𝜂) is the density
function of 𝑿.
Suppose that additional information on the distribution

of 𝑿 can be summarized as another set of 𝑞-dimensional
functions 𝒈(𝑿; 𝜽, 𝝅, 𝜂) with 𝐸{𝒈(𝑿; 𝜽, 𝝅, 𝜂)} = 𝟎, where 𝝅
is a 𝑣-dimensional nuisance parameter that is not of pri-
mary interest. Here, even though the same notation 𝑿 is
used in the criterion function𝑚(𝑿; 𝜽, 𝜂) and the additional
information function𝒈(𝑿; 𝜽, 𝝅, 𝜂), theymay involve differ-
ent subsets of 𝑿. Based on the observed data {𝑿1, … , 𝑿𝑛},
we obtain another set of estimating equations

𝑛∑
𝑖=1

𝒈(𝑿𝑖; 𝜽, 𝝅, 𝜂) = 𝟎. (1)

If 𝑣 < 𝑞, then we cannot directly solve (1) for 𝝅 even if 𝜽
and 𝜂 are given, as the system of equations is overidenti-
fied. To obtain an estimator that makes use of the auxil-
iary information (1) efficiently, we propose a noniterative
update procedure. Particularly, the procedure is based on
a comparison of the asymptotic distributions of the esti-
mator that incorporates the auxiliary information and an
initial estimator that maximizes

∑𝑛

𝑖=1
𝑚(𝑿𝑖; 𝜽, 𝜂).

To incorporate the auxiliary information, we con-
sider a composite empirical likelihood approach such
that we maximize

∑𝑛

𝑖=1
{𝑚(𝑿𝑖; 𝜽, 𝜂) + log 𝑝𝑖} subject to

the constraints
∑𝑛

𝑖=1
𝑝𝑖 = 1, 𝑝𝑖 ≥ 0 for 𝑖 = 1, … , 𝑛, and∑𝑛

𝑖=1
𝑝𝑖𝒈(𝑿𝑖; 𝜽, 𝝅, 𝜂) = 𝟎, where 𝑝𝑖 is a point mass corre-

sponding to subject 𝑖. By applying the Lagrange multiplier
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arguments, it can be seen that the estimator maximizes

𝑛∑
𝑖=1

[
𝑚(𝑿𝑖; 𝜽, 𝜂) − log

{
1 + 𝒕T𝒈(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}]
,

where 𝒕 is a 𝑞-vector of Lagrange multipliers that satisfies

𝑛∑
𝑖=1

𝒈(𝑿𝑖; 𝜽, 𝝅, 𝜂)

1 + 𝒕T𝒈(𝑿𝑖; 𝜽, 𝝅, 𝜂)
= 𝟎.

Remark 1. The objective function we considered is a com-
posite log-likelihood such that we address a combination
of initial objective function𝑚(𝑿𝑖; 𝜽, 𝜂) and empirical mass
log 𝑝𝑖 that corresponds to the auxiliary information. Here,
we directly sum up𝑚(𝑿𝑖; 𝜽, 𝜂) and log 𝑝𝑖 , suggesting equal
weights for the internal data and auxiliary information.
In settings with certain level of belief on auxiliary infor-
mation, we may place different weights or include an
additional parameter, for example, 𝑚(𝑿𝑖; 𝜽, 𝜂) + 𝛼 log 𝑝𝑖 ,
to form a different composite likelihood. The estimation
procedure can be revised to address this change. In the spe-
cial case of a parametric regressionmodel, where the initial
objective function corresponds to a conditional probability
of outcome variable and the auxiliary information relates
only to the marginal distribution of the independent vari-
able, the proposed composite likelihood function is asymp-
totic equivalent to the empirical likelihood considered in
Qin (2000) and is efficient.

Write 𝒔𝜽(𝑿; 𝜽, 𝜂) and 𝒔̇𝜽𝜽(𝑿; 𝜽, 𝜂) as the first and sec-
ond derivatives of 𝑚(𝑿; 𝜽, 𝜂) with respect to 𝜽, respec-
tively. In addition, write 𝒈̇𝜽(𝑿; 𝜽, 𝜋, 𝜂) and 𝒈̇𝝅(𝑿; 𝜽, 𝜋, 𝜂)

as the derivatives of 𝒈(𝑿; 𝜽, 𝝅, 𝜂) with respect to 𝜽 and 𝝅,
respectively. Under some regularity conditions, we show
in Web Appendix A that after profiling out the infinite-
dimensional parameter 𝜂, the composite likelihood estima-
tor 𝜽 then satisfies√

𝑛(𝜽 − 𝜽0) =
(
𝑰𝑝×𝑝, 𝟎𝑝×(𝑣+𝑞)

){
𝐸𝑨(𝑿; 𝜽0, 𝝅0, 𝜂0)

}−1
×

{
𝑛−1∕2

𝑛∑
𝑖=1

𝒍̃(𝑿𝑖; 𝜽0, 𝝅0, 𝜂0)

}
+ 𝑜ℙ(1),

(2)

where

𝑨(𝑿; 𝜽, 𝝅, 𝜂)

=

⎛⎜⎜⎜⎝
−𝒔𝜽𝜽(𝑿; 𝜽, 𝜂) 𝟎𝑝×𝑣 𝒈𝜽(𝑿; 𝜽, 𝝅, 𝜂)

T

𝟎𝑣×𝑝 𝟎𝑣×𝑣 𝒈̇𝝅(𝑿; 𝜽, 𝝅, 𝜂)
T

−𝒈𝜽(𝑿; 𝜽, 𝝅, 𝜂) −𝒈̇𝝅(𝑿; 𝜽, 𝝅, 𝜂) 𝑮(𝑿; 𝜽, 𝝅, 𝜂)

⎞⎟⎟⎟⎠ ,

and 𝒍̃(𝑿; 𝜽, 𝝅, 𝜂) = (𝒔𝜽(𝑿; 𝜽, 𝜂)
T, 𝟎T𝑣×1, 𝒈(𝑿; 𝜽, 𝝅, 𝜂)

T)T.
The functions 𝒔𝜽𝜽 , 𝒈𝜽 , 𝑮, 𝒔𝜽 , and 𝒈 are respective versions
of 𝒔̇𝜽𝜽 , 𝒈̇𝜽 , 𝒈⊗2, 𝒔𝜽 , and 𝒈 with 𝜂 profiled out, as defined in
Web Appendix A. The explicit forms are also given in an
example in Section 3.1.
For the initial estimator (𝜽, 𝜂) that maximizes∑𝑛

𝑖=1
𝑚(𝑿𝑖; 𝜽, 𝜂), we show in Web Appendix A that

√
𝑛(𝜽 − 𝜽0) =

(
𝑰𝑝×𝑝𝟎𝑝×𝑣 −

{
𝐸𝒔𝜽𝜽(𝑿; 𝜽0, 𝜂0)

}−1
× {𝐸𝒈𝜽(𝑿; 𝜽0, 𝝅0, 𝜂0)}

T)
×
{
𝐸𝑨(𝑿; 𝜽0, 𝝅0, 𝜂0)

}−1
×

{
𝑛−1∕2

𝑛∑
𝑖=1

𝒍̃(𝑿𝑖; 𝜽0, 𝝅0, 𝜂0)

}
+ 𝑜ℙ(1). (3)

Comparing (2) and (3), we can obtain an asymptotic equiv-
alent version of 𝜽 by

𝜽 +
⎛⎜⎜⎝𝟎𝑝×𝑝𝟎𝑝×𝑣

{
𝑛−1

𝑛∑
𝑖=1

𝒔𝜽𝜽(𝑿𝑖; 𝜽, 𝜂)

}−1

{
𝑛−1

𝑛∑
𝑖=1

𝒈𝜽(𝑿𝑖;𝜽,𝝅,𝜂)

}T⎞⎟⎟⎠
{
𝑛−1

𝑛∑
𝑖=1

𝑨(𝑿𝑖;𝜽, 𝝅, 𝜂)

}−1

×

{
𝑛−1

𝑛∑
𝑖=1

𝒍̃(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}
, (4)

where 𝝅 is a consistent estimator of 𝝅 that may be
given or estimated (see Remark 3). With a slight abuse
of notation, we denote (4) by 𝜽 because they are asymp-
totically equivalent. We can further show that

√
𝑛(𝜽 −

𝜽0) converges weakly to a 𝑝-dimensional zero-mean
normal random vector with covariance matrix 𝑫𝑽𝑫T,
where 𝑫 = (𝑰𝑝×𝑝, 𝟎𝑝×(𝑣+𝑞)){𝐸𝑨(𝑿; 𝜽0, 𝝅0, 𝜂0)}

−1 and 𝑽 =

𝐸{̃𝒍(𝑿; 𝜽0, 𝝅0, 𝜂0)
⊗2}. A natural variance estimator for 𝜽 is

⎡⎢⎢⎣
(
𝑰𝑝×𝑝 𝟎𝑝×(𝑣+𝑞)

){
𝑛−1

𝑛∑
𝑖=1

𝑨(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}−1⎤⎥⎥⎦
×

{
𝑛−1

𝑛∑
𝑖=1

𝒍̃(𝑿𝑖; 𝜽, 𝝅, 𝜂)
⊗2

}

×
⎡⎢⎢⎣
(
𝑰𝑝×𝑝 𝟎𝑝×(𝑣+𝑞)

){
𝑛−1

𝑛∑
𝑖=1

𝑨(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}−1⎤⎥⎥⎦
T

.
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We show inWebAppendix A that when the original esti-
mator is a semiparametric maximum likelihood estimator
of a regression model, the asymptotic variance of

√
𝑛(𝜽 −

𝜽0) is given by {𝐸𝒔𝜽(𝑿; 𝜽0, 𝜂0)
⊗2 + 𝑩𝑸−1𝑩T}−1, where 𝑩

and 𝑸 are defined in Web Appendix A. The asymptotic
variance is no larger than that of

√
𝑛(𝜽 − 𝜽0), indicating

an improvement of efficiencywith the incorporation of the
auxiliary information.

Remark 2. Our updating formula is substantially dif-
ferent from the one-step efficient estimation procedure
that supplies an initial consistent estimator to the Taylor
series expansion of an efficient estimating equation. First,
𝑚(𝑿; 𝜽, 𝜂) is not required to be a log-likelihood function. In
addition, the estimator (4) is constructed by comparing the
asymptotic distributions of the estimators with and with-
out auxiliary information addressed, and exploits a special
structure that the right-hand sides of (2) and (3) can be
expressed with a difference of only a matrix factor and an
asymptotically negligible term. A similar idea is also used
in Cox and Wermuth (1990), where a one-step update is
constructed by comparing the information from a model
and an extended model with more model parameters.

Remark 3. A consistent estimator for 𝝅 is often available
from previous studies as a form of external information
and could be treated as fixed, as discussed in detail in
Chatterjee et al. (2016). If such information is not avail-
able, we can still obtain an initial estimate 𝝅 by solving∑𝑛

𝑖=1
𝒈1(𝑿𝑖; 𝜽, 𝝅, 𝜂) = 𝟎 where 𝒈1 is defined without loss

of generality to be the first 𝑣-dimensional component of
𝒈. Specific examples are given in Sections 3.2 and 3.3. The
asymptotic variance of the updating estimator 𝜽 does not
depend on the version of 𝒈1 chosen to compute the initial
estimator 𝝅 , as long as 𝒈1 is a 𝑣-dimensional subcompo-
nent of 𝒈 and 𝝅 is consistent, see Web Appendix A. This is
an advantage for using the composite empirical likelihood
to handle nuisance parameters appearing only in the auxil-
iary information. When the estimation and inference of 𝝅

is of interest, we can modify the procedure to update both
𝜽 and 𝝅 . Details are given in Remark 4.

Remark 4. When the estimation and inference on 𝝅 is
also of interest, we may modify the proposed procedure to
update the estimation of 𝝅 along with 𝜽. Let

𝑯(𝜽, 𝝅, 𝜂) =

{
𝑛−1

𝑛∑
𝑖=1

𝒈1𝜽(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}

×

{
𝑛−1

𝑛∑
𝑖=1

𝒔𝜽𝜽(𝑿𝑖; 𝜽, 𝜂)

}−1

×

{
𝑛−1

𝑛∑
𝑖=1

𝒈𝜽(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}T

− 𝑛−1
𝑛∑
𝑖=1

𝒈1(𝑿𝑖; 𝜽, 𝝅, 𝜂)𝒈(𝑿𝑖; 𝜽, 𝝅, 𝜂)
T,

and 𝒈1𝜽(𝑿; 𝜽, 𝝅, 𝜂) and 𝒈̇1𝝅(𝑿; 𝜽, 𝝅, 𝜂) be the vectors of the
first 𝑣 elements of 𝒈𝜽(𝑿; 𝜽, 𝝅, 𝜂) and 𝒈̇𝝅(𝑿; 𝜽, 𝝅, 𝜂), respec-
tively. We can show that the updating estimator (𝜽, 𝝅) is
given by

(
𝜽

𝝅

)
+

⎛⎜⎜⎜⎝
𝟎𝑝×𝑝 𝟎𝑝×𝑣

{
𝑛−1

∑𝑛

𝑖=1
𝒔𝜽𝜽(𝑿𝑖; 𝜽, 𝜂)

}−1{
𝑛−1

∑𝑛

𝑖=1
𝒈𝜽(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}T

𝟎𝑣×𝑝 𝟎𝑣×𝑣 −
{
𝑛−1

∑𝑛

𝑖=1
𝒈̇1𝝅(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}−1

𝑯(𝜽, 𝝅, 𝜂)

⎞⎟⎟⎟⎠
×

{
𝑛−1

𝑛∑
𝑖=1

𝑨(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}−1{
𝑛−1

𝑛∑
𝑖=1

𝒍̃(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}
, (5)

and we can estimate the covariance matrix of (𝜽, 𝝅) by

⎡⎢⎢⎣
(
𝑰(𝑝+𝑣)×(𝑝+𝑣) 𝟎(𝑝+𝑣)×𝑞

){
𝑛−1

𝑛∑
𝑖=1

𝑨(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}−1⎤⎥⎥⎦
×

{
𝑛−1

𝑛∑
𝑖=1

𝒍̃(𝑿𝑖; 𝜽, 𝝅, 𝜂)
⊗2

}

×

[(
𝑰(𝑝+𝑣)×(𝑝+𝑣) 𝟎(𝑝+𝑣)×𝑞

)

×

{
𝑛−1

𝑛∑
𝑖=1

𝑨(𝑿𝑖; 𝜽, 𝝅, 𝜂)

}−1⎤⎥⎥⎦ T.
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The justification of joint updating is given in Web
Appendix A. Note that even though the asymptotic vari-
ance of the updating estimator 𝜽 does not depend on
the version of 𝒈1 chosen to compute the initial esti-
mator 𝝅, a poorly chosen 𝒈1 including little informa-
tion on 𝝅 may pose difficulties to updating 𝝅 because
the inversion of 𝑛−1

∑𝑛

𝑖=1
𝒈̇1𝝅(𝑿𝑖; 𝜽, 𝝅, 𝜂) may not be

stable.

3 IMPORTANT SPECIAL CASES

3.1 Parametric model with known
mean

We first consider the simple case of a parametric regression
model with auxiliary information on the mean outcome
(Qin, 2000). This case arises naturally in microeconomet-
ric settings (Imbens and Lancaster, 1994). For example,
we may build a linear regression model of food expen-
diture on income of a sample, with auxiliary informa-
tion of the national average household expenditure on
food in the United States available from the US Census
Bureau.
Suppose that we observe an i.i.d. sample of 𝑿 ≡

(𝑌, 𝑍), and we model the conditional distribution of
𝑌 given 𝑍 by 𝑓(𝑌; 𝑍, 𝜽). An initial estimator for 𝜽

can be obtained by maximizing the log-likelihood func-
tion, that is, 𝑚(𝑿; 𝜽) = log 𝑓(𝑌; 𝑍, 𝜽). Suppose that aux-
iliary information on the mean of 𝑌, 𝜇𝑌 , is available.
The auxiliary information is then identified by 𝑔(𝑍; 𝜽) =
𝐸𝜽(𝑌|𝑍) − 𝜇𝑌 , where 𝐸𝜽(𝑌|𝑍) is the conditional expecta-
tion of 𝑌 given 𝑍 with the conditional density given by
𝑓(𝑌; 𝑍, 𝜽).
In the following, we provide numerical simulations to

examine three parametric settings presented inQin (2000).
In particular, we consider three settings:

(1) 𝑌 ∼ 𝑁(𝜃00 + 𝜃10𝑍, 1), 𝑍 ∼ 𝑁(1, 1), and 𝜽0 ≡

(𝜃00, 𝜃10) = (1, 0.5).
(2) 𝑌 ∼ 𝐸𝑥𝑝(1∕(𝜃00 + 𝜃10𝑍)), 𝑍 ∼ 𝜒2(1), and 𝜽0 = (1, 1).
(3) 𝑌 ∼ 𝐸𝑥𝑝(exp(−𝜃00 − 𝜃10𝑍)), 𝑍 ∼ 𝑁(0, 1), and 𝜽0 =

(1, 1).

Here, we illustrate the implementation of the pro-
posed approach in setting (c). Note that 𝑚(𝑿; 𝜽) = −𝜃0 −

𝜃1𝑍 − 𝑌 exp(−𝜃0 − 𝜃1𝑍) and 𝑔(𝑿; 𝜽) = exp(𝜃0 + 𝜃1𝑍) −

exp(𝜃00 + 𝜃2
10
∕2). The proposed algorithm can be imple-

mented as follows:

Step 1. We calculate the maximum likelihood estimator
(without incorporating auxiliary information on

the mean outcome) by

𝜽 = (𝜃0, 𝜃1)
T = argmax

𝜽
𝑛−1

𝑛∑
𝑖=1

𝑚(𝑿𝑖; 𝜽)

= argmax
𝜽

𝑛−1
𝑛∑
𝑖=1

{−𝜃0 − 𝜃1𝑍𝑖

− 𝑌𝑖 exp(−𝜃0 − 𝜃1𝑍𝑖)}.

Step 2. For each 𝑖 = 1, … , 𝑛, we calculate the key quanti-
ties

𝒔𝜽(𝑿𝑖; 𝜽) = −1 + 𝑌𝑖 exp(−𝜃0 − 𝜃1𝑍𝑖)(1, 𝑍𝑖)
T,

𝒔̇𝜽𝜽(𝑿𝑖; 𝜽) = −𝑌 exp(−𝜃0 − 𝜃1𝑍𝑖)(1, 𝑍𝑖)
⊗2,

𝒈̇𝜽(𝑿𝑖; 𝜽) = exp(𝜃0 + 𝜃1𝑍𝑖)(1, 𝑍𝑖)
T,

𝑨(𝑿𝑖; 𝜽) =

(
−𝒔̇𝜽𝜽(𝑿𝑖; 𝜽) 𝒈̇𝜽(𝑿𝑖; 𝜽)

−𝒈̇𝜽(𝑿𝑖; 𝜽)
T 𝑔(𝑿𝑖; 𝜽)

2

)
,

and 𝒍(𝑿𝑖; 𝜽) = (𝒔𝜽(𝑿𝑖; 𝜽)
T, 𝑔(𝑿𝑖; 𝜽))

T.
Step 3. We obtain the proposed estimator 𝜽 by

𝜽 = 𝜽 +

⎛⎜⎜⎜⎝
𝟎2×2

{
𝑛−1

∑𝑛

𝑖=1
𝒔̇𝜽𝜽(𝑿𝑖; 𝜽)

}−1

×
{
𝑛−1

∑𝑛

𝑖=1
𝒈̇𝜽(𝑿𝑖; 𝜽)

}T

⎞⎟⎟⎟⎠
×

{
𝑛−1

𝑛∑
𝑖=1

𝑨(𝑿𝑖; 𝜽)

}−1{
𝑛−1

𝑛∑
𝑖=1

𝒍(𝑿𝑖; 𝜽)

}
.

Here, a simplified version of (4) is used because the
model is parametric and no additional parameter
𝝅 is introduced by the auxiliary information.

Step 4. We calculate the variance estimator by

⎡⎢⎢⎣
(
𝑰2×2 𝟎2×1

){
𝑛−1

𝑛∑
𝑖=1

𝑨(𝑿𝑖; 𝜽)

}−1⎤⎥⎥⎦
×

{
𝑛−1

𝑛∑
𝑖=1

𝒍(𝑿𝑖; 𝜽)
⊗2

}

×
⎡⎢⎢⎣
(
𝑰2×2 𝟎2×1

){
𝑛−1

𝑛∑
𝑖=1

𝑨(𝑿𝑖; 𝜽)

}−1⎤⎥⎥⎦
T

.

Remark 5. In parametric model settings, the proposed
approach is asymptotic equivalent to the approach in Qin
(2000) that directlymaximizes the likelihood function sub-
ject to moment constraints based on the auxiliary infor-
mation. Even though Qin (2000) is conceptually easier to
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TABLE 1 Simulation results for the parametric model with known mean

MLE Proposed
Setting Bias SE Bias SE SEE CP RE
(a) 𝜃0 −0.001 0.100 −0.001 0.078 0.078 0.950 1.65

𝜃1 0.001 0.071 0.001 0.071 0.071 0.949 1.00
(b) 𝜃0 <0.001 0.117 0.006 0.118 0.115 0.938 0.98

𝜃1 0.001 0.191 0.007 0.143 0.141 0.947 1.79
(c) 𝜃0 −0.004 0.071 0.007 0.061 0.060 0.939 1.34

𝜃1 <0.001 0.071 0.007 0.061 0.061 0.950 1.35

Note: SE, SEE, and CP are the empirical standard error, mean standard error estimator, and empirical coverage probability of the 95% confidence interval, respec-
tively. RE is the relative efficiency defined as the ratio of the variances.

understand, it is more computationally intensive to imple-
ment because numerical differentiation is needed if one
would like to avoid deriving of the derivatives of the objec-
tive function.On the other hand, the proposed noniterative
method requires the correct derivation of derivatives but
has less computational burden. A reviewermentioned that
the requirement of derivative calculation or not is analo-
gous to the comparison of likelihood ratio and score tests.
Table 1 shows the simulation results with sample size

𝑛 = 200 and 10,000 replicates. The results are similar to
those of the composite likelihood estimator in Qin (2000).
In particular, the proposed estimators for 𝜃0 in settings (a)
and (c) and 𝜃1 in settings (b) and (c) have substantial effi-
ciency gain over the initial estimators. The proposed stan-
dard error estimator is accurate, and the 95% confidence
interval has a proper coverage probability.
We also evaluate the simulation results and computa-

tional speed of the proposed algorithm compared to the
composite likelihood estimator inQin (2000) usingR pack-
age glmc and the GMM estimator using R package gmm.
The results are shown in Web Table 1 of Web Appendix
E. The proposed algorithm gives estimators with similar
precision, whereas the computation speed is much (∼ 10
times) faster.

3.2 Covariate-specific disease
prevalence in case-control studies

We consider another example of incorporating covariate-
specific disease prevalence in case-control studies, which
has been considered in Qin et al. (2015) and Chatterjee
et al. (2016). Based on the case-control data, the effects
of multiple risk factors and their interactions are stud-
ied under a logistic regression model, and the disease
prevalences at various levels of one of the risk factors are
incorporated. Due to the case-control sampling scheme,
specialized methodologies were developed. Here, we show
that our unified framework covers case-control stud-
ies, which can be formulated as independent but not

identically distributed observations, such that the gener-
alized estimation procedure in the end ofWeb Appendix A
is applicable.
Let 𝐷 indicate, by the values of 1 versus 0, whether the

disease is present, and 𝒁 be a set of risk factors. Suppose
that the disease status follows a logistic regression model,
with

Pr(𝐷 = 1|𝒁, 𝛼∗, 𝜷T) = exp{𝛼∗ + exp(𝜷T𝒁)}

1 + exp{𝛼∗ + exp(𝜷T𝒁)}
, (6)

where 𝛼∗ and 𝜷 are regression parameters. Write 𝛼 = 𝛼∗ +

log{(1 − 𝜋)∕𝜋}, where 𝜋 = Pr(𝐷 = 1) is the (unknown)
disease prevalence in the general population.
For a case-control study of 𝑛1 cases and 𝑛0 controls, let

𝑿𝑖 ≡ (𝐷𝑖, 𝒁𝑖) (𝑖 = 1, … , 𝑛) be the observed data, where 𝑛 =

𝑛0 + 𝑛1. It is well known that based on the case-control
data, we are only able to identify 𝜽 ≡ (𝛼, 𝜷T)T, but not 𝛼∗.
Themaximum likelihood estimator 𝜽 solves the estimating
equations

∑𝑛

𝑖=1
𝒔(𝑿𝑖; 𝜽) = 𝟎, where

𝒔(𝑿; 𝜽) =

{
𝐷 −

𝜌 exp(𝜽T𝒁)

1 + 𝜌 exp(𝜽T𝒁)

}
𝒁,

𝜌 = 𝑛1∕𝑛0 and 𝒁𝑖 = (1, 𝒁T
𝑖
)T.

Suppose that the effects of part of 𝒁 on 𝐷 have been
well studied, such that the disease prevalence at various
levels of 𝒁 is available based on published information,
that is, Pr(𝐷 = 1|𝒁 ∈ 𝛀𝑘) = 𝑐𝑘 for 𝑘 = 1,… , 𝐾, where 𝑐𝑘 is
the known covariate-specific disease prevalence. We show
in Web Appendix B that the auxiliary information can be
summarized as

∑𝑛

𝑖=1
𝒈(𝑿𝑖; 𝜽, 𝜋) = 𝟎, where 𝒈(𝑿; 𝜽, 𝜋) =

(𝑔1(𝑿; 𝜽, 𝜋), … , 𝑔𝐾(𝑿; 𝜽, 𝜋))
T and

𝑔𝑘(𝑿; 𝜽, 𝜋) = 𝐼(𝒁 ∈ 𝛀𝑘)

𝜋 exp(𝜽T𝒁) − (1 − 𝜋)
𝑐𝑘

1 − 𝑐𝑘

1 + 𝜌 exp(𝜽T𝒁)
.

We then apply the estimator (5), where an initial estima-
tor for 𝜋 is obtained by solving

∑𝑛

𝑖=1
𝑔1(𝑿𝑖; 𝜽, 𝜋) = 0. The
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TABLE 2 Simulation results for the case-control studies with covariate-specific disease prevalence

MLE Proposed
(𝒏𝟎, 𝒏𝟏) Bias SE Bias SE SEE CP RE
(1000,2000) 𝛼 −0.008 0.026 −0.004 0.019 0.019 0.948 1.89

𝛽1 0.004 0.056 −0.002 0.025 0.025 0.950 4.94
𝛽2 <0.001 0.050 −0.001 0.049 0.049 0.950 1.04
𝛽3 0.001 0.048 −0.001 0.019 0.019 0.953 6.35
𝜋 0.001 0.003 0.003 0.952

(2000,2000) 𝛼 −0.008 0.023 −0.006 0.016 0.016 0.942 2.09
𝛽1 0.002 0.046 −0.002 0.021 0.021 0.953 4.91
𝛽2 0.001 0.042 −0.001 0.040 0.040 0.948 1.07
𝛽3 <0.001 0.040 <0.001 0.016 0.016 0.952 6.50
𝜋 0.001 0.003 0.003 0.942

Note: SE, SEE, and CP are the empirical standard error, mean standard error estimator, and empirical coverage probability of the 95% confidence interval, respec-
tively. RE is the relative efficiency defined as the ratio of the variances.

asymptotic variance of 𝜽 is given in Web Appendix B, and
is the same to that of the empirical likelihood estimator in
Qin et al. (2015).
We examined the performance of the proposed proce-

dure in simulation studies. In particular, we generated two
covariates 𝑍1, 𝑍2 that are standard normal distributed with
correlation 0.5 and the disease status 𝐷 from (6) with 𝒁 =

(𝑍1, 𝑍2, 𝑍1𝑍2)
T, 𝛼∗ = −1.5, and 𝜷 = (1, 0.08, 0.05)T. For

each simulated replicate, 𝑛1 cases and 𝑛0 controls were
randomly generated. Suppose that the (population) disease
prevalences for 𝑍1 in the intervals (−∞,−0.67], (−0.67, 0],
(0,0.67], and (0.67,∞) are known.
Table 2 shows the simulation results based on 10,000

replicates. The proposed estimators for 𝛼, 𝛽1, and 𝛽3 have
substantial efficiency gain over the corresponding initial
maximum likelihood estimators. The proposed estimator
for 𝜋 has small bias. The proposed variance estimator is
accurate, with reasonable coverage probability of the 95%
confidence intervals.
We also evaluated the performance of the proposed

approach under different covariate distributions. Specifi-
cally, we generate 𝑍∗

2 = 𝐼(𝑍2 > 0), 𝑍3 = Φ(𝑍1) − 0.5, and
𝑍4 = Φ(𝑍2) − 0.5, where Φ is the cumulative distribution
function for standard normal. That is, 𝑍∗

2 is a binary vari-
able (correlated with 𝑍1) with success probability 0.5, and
𝑍3 and 𝑍4 are correlated Unif(−0.5,0.5) random variables.
We considered two additional simulated settings with 𝒁 =

(𝑍1, 𝑍
∗
2 , 𝑍1𝑍

∗
2 )

T and 𝒁 = (𝑍3, 𝑍4, 𝑍3𝑍4)
T. For the setting

with variables (𝑍3, 𝑍4), we suppose that the (population)
disease prevalences for 𝑍3 in the intervals [−0.5, −0.25],
(−0.25, 0], (0,0.25], and (0.25,0.5] are known. The simula-
tion results are shown in Web Table 2 of Web Appendix
E. The general conclusion of simulation results is similar,
suggesting that the performance of the proposed approach
is not sensitive to covariate distributions.

3.3 Survival regression models with
𝒕-year survival constraints

Cancer registries often publish survival probabilities for
various cancer sites and subgroups. Here, we consider a
semiparametric setting, where the auxiliary information of
subgroup 𝑡-year survival probabilities is available for the
analysis of right-censored data under the proportional haz-
ards or proportional odds model. The setting with the pro-
portional hazards model has been studied in Huang et al.
(2016), where a special structure of the proportional haz-
ards model was exploited. Their method does not have a
straightforward extension to other semiparametricmodels.
To illustrate our general methodology, we provide specific
derivations for the proportional hazards model, whereas
some results for the proportional odds model are given in
Web Appendix D.
Let 𝑇 denote the survival time that follows the propor-

tional hazards model, with cumulative hazard function
given by

Λ(𝑡|𝒁) = Λ(𝑡) exp(𝜽T𝒁), (7)

where Λ(⋅) is an unspecified nondecreasing function and
𝜽 is a 𝑝-vector of regression parameters. Let 𝐶 be a cen-
soring time that is conditional independent of 𝑇 given the
covariates 𝒁, such that we observe 𝑌 ≡ min(𝑇, 𝐶) and Δ ≡

𝐼(𝑇 ≤ 𝐶). For a random sample of 𝑛 subjects, the observed
data include 𝑿𝑖 ≡ {𝑌𝑖, Δ𝑖, 𝒁𝑖} for 𝑖 = 1, … , 𝑛. The nonpara-
metric maximum likelihood estimator (NPMLE) (𝜽, Λ̂)

maximizes the objective function
∑𝑛

𝑖=1
𝑚(𝑿𝑖; 𝜽, Λ) with

𝑚(𝑿; 𝜽, Λ) = Δ{𝜽T𝒁 + logΛ{𝑌}} − Λ(𝑌) exp(𝜽T𝒁), where
Λ{𝑡} is the jump size of Λ at 𝑡. The NPMLE (𝜽, Λ̂) can be
easily obtained using common software, for example, the
R package survival or SAS procedure phreg.
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TABLE 3 Simulation results for the proportional hazards model with auxiliary survival probabilities

MLE Proposed (𝝅 = 𝟏) Proposed (𝝅 estimated)
(𝒏, 𝝅) Bias SE Bias SE SEE CP RE Bias SE SEE CP RE
(100,1) 𝜃1 −0.024 0.215 −0.006 0.069 0.075 0.956 9.7 0.004 0.065 0.066 0.933 11.0

𝜃2 0.030 0.284 −0.026 0.203 0.198 0.942 2.0 0.007 0.275 0.259 0.937 1.1
𝜃3 −0.010 0.290 −0.008 0.212 0.201 0.939 1.9 −0.030 0.217 0.202 0.934 1.8
𝜋 0.080 0.313 0.293 0.939

(400,1) 𝜃1 −0.004 0.097 −0.002 0.028 0.029 0.954 12.1 0.001 0.027 0.028 0.947 13.0
𝜃2 0.004 0.132 −0.009 0.097 0.096 0.952 1.9 −0.002 0.130 0.127 0.944 1.0
𝜃3 −0.004 0.130 −0.002 0.096 0.096 0.942 1.8 −0.008 0.098 0.097 0.944 1.8
𝜋 0.017 0.136 0.134 0.948

(100,1.5) 𝜃1 −0.024 0.215 0.013 0.077 0.104 0.983 7.8 0.002 0.064 0.066 0.938 11.2
𝜃2 0.030 0.284 −0.281 0.189 0.205 0.733 2.3 0.007 0.275 0.259 0.937 1.1
𝜃3 −0.010 0.290 0.038 0.206 0.214 0.952 2.0 −0.029 0.217 0.202 0.934 1.8
𝜋 0.115 0.468 0.440 0.939

(400,1.5) 𝜃1 −0.004 0.097 0.021 0.028 0.046 0.988 11.6 0.001 0.027 0.028 0.948 13.0
𝜃2 0.004 0.132 −0.284 0.089 0.099 0.154 2.2 −0.002 0.130 0.127 0.944 1.0
𝜃3 −0.004 0.130 0.047 0.092 0.102 0.942 2.0 −0.007 0.098 0.097 0.944 1.8
𝜋 0.025 0.204 0.200 0.948

Note: SE, SEE, and CP are the empirical standard error, mean standard error estimator, and empirical coverage probability of the 95% confidence interval, respec-
tively. RE is the relative efficiency defined as the ratio of the variances.

Suppose that we obtain the 𝑡𝑘-year survival prob-
ability for the 𝑘th subgroup of subjects (𝑘 = 1,… , 𝐾)

as auxiliary information. Write 𝛀𝑘 as the collection
of covariate values for subjects in subgroup 𝑘 and
𝑐𝑘 as the corresponding 𝑡𝑘-year survival probability.
Then, the additional estimating equations are given by
𝒈(𝑿; 𝜽, Λ) = (𝑔1(𝑿; 𝜽, Λ), … , 𝑔𝐾(𝑿; 𝜽, Λ))

T, with

𝑔𝑘(𝑿; 𝜽, Λ) = 𝐼(𝒁 ∈ 𝛀𝑘)
[
exp

{
−Λ(𝑡𝑘) exp(𝜽

T𝒁)
}
− 𝑐𝑘

]
.

In some cases, the auxiliary survival information may
not be consistent with the original individual-level data
due to inclusion or exclusion criteria of the clinical study.
Huang et al. (2016) accommodated the inconsistency by
the inclusion of an unknown parameter 𝜋 such that the
auxiliary information is summarized as

𝑔𝑘(𝑿;𝜽,𝜋,Λ) = 𝐼(𝒁 ∈ 𝛀𝑘)[exp {−𝜋Λ(𝑡𝑘) exp(𝜽
T𝒁)} − 𝑐𝑘]

(8)

for 𝑘 = 1,… , 𝐾. We provide the derivatives of the functions
and the least favorable directions, which are essential to
calculate the proposed estimator (4) or (5), in Web
Appendix C. We also derive the asymptotic variance of
𝜽, which is the same as that of the double empirical
likelihood estimator in Huang et al. (2016).
We illustrate the performance of the proposed esti-

mators in simulated settings. In particular, we gener-

ated two independent covariates 𝑍1 ∼ 𝑁(0, 1) and 𝑍2 ∼

Bernoulli(0.5). The survival time 𝑇 was generated from
model (7) with 𝒁 = (𝑍1, 𝑍2, 𝑍1𝑍2)

T, 𝜽 = (−0.5, 1, −0.5)T,
and Λ(𝑡) = 𝑡2. We generated the censoring time 𝐶 ∼

Uniform(0, 2.52) to have a 30% censoring rate. We consid-
ered two forms of auxiliary information with 𝜋 = 1 and
𝜋 = 1.5. The auxiliary information concerns the survival
probabilities at 𝑡1 = 𝑡2 = 0.5 with 𝛀1 = {𝑍1 ≤ 0, 𝑍2 = 0}

and𝛀2 = {𝑍1 > 0, 𝑍2 = 0}.
We considered sample sizes 𝑛 = 100 or 400 with 10,000

replicates. Table 3 summarizes the results for the max-
imum likelihood estimator and the proposed estimators
with known 𝜋 = 1 or estimated 𝜋. When the auxiliary
information is consistent with the individual-level data
(𝜋 = 1), the proposed estimator with known 𝜋 = 1 has
substantial efficiency gain over the initial maximum like-
lihood estimators, especially for 𝜃1. The proposed estima-
tor with estimated 𝜋 has similar efficiency gain for 𝜃1
and 𝜃3, but has less efficiency gain for 𝜃2. The proposed
variance estimators are accurate, with reasonable cover-
age probability of the 95% confidence intervals. When the
auxiliary information is inconsistent with the data, the
proposed estimator with 𝜋 = 1 is biased, especially for 𝜃2.
The proposed estimator with estimated 𝜋 is virtually unbi-
ased when 𝑛 = 400, and has demonstrated substantial effi-
ciency gain over the initial maximum likelihood estimator.
A similar simulation setting has been considered by

Huang et al. (2016). In Web Table 3 of Web Appendix
E, we show the simulation results and computation time
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based on the approach in Huang et al. (2016). The per-
formance of the double empirical likelihood estimator in
Huang et al. (2016) is similar to the proposed estimator,
whereas the computation time is much longer, especially
for large sample sizes, because an iterative algorithm was
applied.

4 APPLICATION

Weapplied the proposedmethods to a chemotherapy study
for Stage III colon cancer that was originally described in
Laurie et al. (1989). We considered the open-source dataset
that is included in the R package survival (Therneau
et al., 2021) and is closest to that of the final report in
Moertel et al. (1995). In the study, patients diagnosed with
stage III colon cancer were enrolled between March 1984
and October 1987. The subjects were randomized such that
315, 310, and 304 patients received observation (Obs), lev-
amisole alone (Lev), and levamisole combined with fluo-
rouracil (Lev+ 5FU) treatments, respectively. The patients
were followed for up to 9 years for the outcomes of can-
cer recurrence and death. The analysis with both outcomes
was considered in Lin (1994) using a different version of the
data with a shorter follow-up period. For the purpose of
illustration, wemodeled death using the proportional haz-
ards model and associate the survival rate with the treat-
ments, gender, and diagnosis age.
As introduced in the introduction, The SEER Program

collects and publishes cancer incidence and survival data
from population-based cancer registries covering approx-
imately 34.6 % of the U.S. population. Starting 1973, the
SEER Program registries routinely collect data on patient
demographics, primary tumor site, tumormorphology and
stage at diagnosis, first course of treatment, and follow-up
for vital status. It publishes annual report, the SEER Can-
cer Statistics Review, on the most recent cancer incidence,
mortality, survival, prevalence, and lifetime risk statistics.
The SEER Cancer Statistics have been used by thousands
of researchers, clinicians, public health officials, policy
makers, community groups, and the public for cancer inci-
dence and survival statistics in the United States (Huang
et al., 2016).
Here, we analyze the data from the chemotherapy study

combining with the 5-year gender-specific survival infor-
mation reported in SEER. In particular, the 5-year survival
rates among regional colon cancer patients are 66.7% for
males and 66.6% for females among those diagnosed from
1986 to 1992, based on the SEER Cancer Statistics Review,
1973–1993 (National Cancer Institute, 1997). The popula-
tions in the chemotherapy study and the SEER Program
may be different; however, the conditional effect of the
covariates may bemore generalizable. Therefore, we apply

the proposed method with estimated 𝜋 as in (8) to accom-
modate potential inconsistency.
Table 4 shows the results from the colon cancer study

and those combined with the SEER statistics. Using the
proposed approach, the effect of gender is estimated with
a substantial improvement in accuracy. The Wald test
for 𝜋 = 1 gives a 𝑝-value of < 0.0001, indicating that
there is significant difference among the population of the
chemotherapy study and the SEER population. Based on
the proposed approach, the effects of the diagnosis age and
the treatments were estimated with slightly larger stan-
dard errors.
For comparison, we analyzed the data using the double

empirical likelihoodmethod inHuang et al. (2016). As they
estimated the standard errors by a bootstrapping approach,
we also compared a bootstrapped standard error of the pro-
posed estimator. The results in Table 4 are based on 1000
bootstrapping samples. The main conclusion based on the
double empirical likelihood method in Huang et al. (2016)
is similar; however, the proposed estimation procedure is
much faster (over 300 times faster in this example) than
the double empirical likelihood approach.
If the parameter 𝜋 is not sufficient to capture the het-

erogeneity of the chemotherapy study and SEER program
populations, the difference of the original estimator 𝜽

and the proposed estimator 𝜽 would diverge. Otherwise,√
𝑛(𝜽 − 𝜽) converges in distribution to a zero-mean mul-

tivariate normal distribution. Therefore, we test the ade-
quacy of applying the auxiliary information based on the
SEER program by a Wald test on the difference 𝜽 − 𝜽. In
particular, the test statistic for the difference of the effects
of gender takes value 0.003with a𝑝-value of 0.96, such that
the application of the auxiliary information based on the
SEER program may not lead to bias in estimation.

5 DISCUSSION

The conventional empirical likelihood approach assumes
the same population for the original study and the auxil-
iary information. This assumption may be relaxed in mul-
tiple ways. In Section 3.3, an unknown parameter 𝜋 is
included to accommodate the potential inconsistency in
the 𝑡-year survival probabilities in the analysis of survival
data. Another approach is to directly model the density
ratio between auxiliary data and the sample to reweight
the auxiliary information. This idea is similar to the syn-
thetic likelihood in Chatterjee et al. (2016). The proposed
method can also be applied to handle additional nuisance
parameters in the density ratio model. In addition, the dif-
ference of 𝜽 and 𝜽 would diverge if the original study and
the auxiliary information are not compatibility. That is, a
test on population compatibility can be formulated based
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TABLE 4 Parameter estimates for the regression analysis in colon cancer study

PLE Proposed Huang et al. (2016)
Covariate Est SEE Est SEE BSE Est BSE
Gender: male −0.0004 0.094 −0.006 0.005 0.008 −0.006 0.006
Diagnosis age 0.002 0.004 0.002 0.005 0.004 0.002 0.003
Lev −0.027 0.110 −0.027 0.118 0.109 −0.027 0.113
Lev + 5FU −0.374 0.119 −0.374 0.129 0.115 −0.374 0.112
𝜋 0.699 0.059 0.079 0.627 0.047

Note: PLE, SEE, and BSE are the partial likelihood estimator, standard error estimator, and bootstrapped standard error, respectively.

on the estimator difference. We have illustrated such test
in the application of chemotherapy study in Section 4.
In some cases, the auxiliary information is either precise

or comes from a large separate study, where the variation
can be ignored. However, we must take the variation into
account when the auxiliary information comes from an
independent source with a limited sample size. When the
auxiliary information comes from the cohort from which
the data are drawn, the correlation between the auxiliary
information and the data should also be considered.
For example, bootstrap procedures were proposed to
address the variation and correlation that arise from the
overlapping samples in Qin et al. (2015). Recently, Zhang
et al. (2020) proposed an analytical modification of the
empirical likelihood objective function to jointly model
the uncertainty distribution of the parameter estimates.
Extending our current methodology to accommodate such
cases is not straightforward, and it is especially difficult for
semiparametric models with infinite-dimensional param-
eters. Exploring such extensions would be important
future research.
In some cases, the auxiliary information may not be in a

form of equality but rather be presented as inequality con-
straints. For example, when the auxiliary information is
on baseline hazard function from a proportional hazards
model, people are often reluctant to assume a precise value
for the baseline feature, but interval constraints may be
more reasonable (Zhou, 2006). However, this type of infor-
mation may not be useful when sample size goes to infin-
ity and the constraints are inactive, that is, the true expec-
tation lies within the interior of the interval constraints.
When the interval constraints are active in large samples,
the statistical properties will be equivalent to the case with
equality constraints.
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