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Thermodynamics of the disordered Hubbard model studied via numerical linked-cluster expansions
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The interplay of disorder and strong correlations in quantum many-body systems remains an open question.
That is despite much progress made in recent years with ultracold atoms in optical lattices to better understand
phenomena such as many-body localization or the effect of disorder onMott metal-insulator transitions. Here, we
utilize the numerical linked-cluster expansion technique, extended to treat disordered quantum lattice models,
and study exact thermodynamic properties of the disordered Fermi-Hubbard model on the square and cubic
geometries. We consider box distributions for the disorder in the onsite energy, the interaction strength, as
well as the hopping amplitude and explore how energy, double occupancy, entropy, heat capacity, and magnetic
correlations of the system in the thermodynamic limit evolve as the strength of disorder changes. We compare
our findings with those obtained from determinant quantum Monte Carlo simulations and discuss the relevance
of our results to experiments with cold fermionic atoms in optical lattices.
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I. INTRODUCTION

The interplay between electronic correlations and
quenched (static) disorder is not well understood. From the
experimental point of view, condensed matter experiments
aiming at realizing either the Mott transition or Anderson
localization in real materials have to worry about the presence
of disorder in case of the former, or correlation effects in
case of the latter since Coulomb interaction will always be
present. For example, the expected first-order Mott transition
in phosphorus-doped silicon upon increasing dopants is
found to be continuous due to the random distribution
of dopants in the so-called Mott-Anderson transition [1].
Experiments of disordered two-dimensional (2D) electron
gases done in silicon metal-oxide-semiconductor field-effect
transistors [2] find weak localization, but also find several
other phenomena, such as a region of linear dependence of
resistivity on temperature and a sharp drop in resistivity at
low temperatures that may be explained only if one takes
into account other factors such as the range of scattering
centers, and electronic correlations in cleaner samples. Later
studies [3,4] shed more light on the role of interaction in the
metal-insulator transition and quantum criticality in these
materials.

The presence of quenched disorder in strongly correlated
materials exhibiting unconventional properties also confirms
the need to treat disorder and electronic correlations on the
same footing in order to be able to describe the complex and
competing phases [5,6]. Recent examples are the interplay
of charge density wave order and high-temperature super-
conductivity in cuprates [7] or the spin liquid behavior in
herbertsmithides [8,9].

Encouraged by an unprecedented control and measurement
possibilities in experiments with ultracold atomic gasses [10],
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pure Anderson localization of matter waves was first realized
in 2008, [11,12] using disorder potentials introduced through
laser speckles [13], or a quasi-periodic lattice potential [14] in
Bose-Einstein condensates trapped in one dimension. These
experiments generated a lot of interest in the community and
later inspired the experimental realization of the disordered
Bose-Hubbard model [15–17].

Presently, an exciting new frontier is the exploration of
many-body localization through the simulation of disordered
models in optical lattices [18], and the idea that disorder
may in fact help achieve lower temperatures in experiments
[19]. In a pioneering work, Kondov et al. [20] studied the
Fermi-Hubbard model experimentally in the limit of strong
correlations and found that by increasing the interaction
strength the system undergoes an insulator to metal transition,
and that for larger disorder strengths the onset of the transition
is moved to larger interactions. Consistent with many-body lo-
calization prediction, there is also a lack of thermally activated
conductivity. More recently, out-of-equilibrium properties of
the disordered Fermi-Hubbard model in three dimensions
(3D) has also been studied across a range of disorder and
interaction strengths, where phenomena such as “bad metal”
and a disorder-induced pseudogap were observed [21].

While phenomenological theory and approximations can
describe some of these observations, the need for reliable
exact results of the microscopic model is greater than ever.
In light of the great progress made towards our understand-
ing of spin and charge correlations in the clean 2D and
3D Fermi-Hubbard models emulated in optical lattice ex-
periments through cross comparison of results with exact
numerical solutions in recent years [22–30], the new progress
in preparing and manipulating disordered quantum lattice
models calls for highly precise and readily available numerical
solutions of the corresponding models in temperature ranges
relevant to experiments.
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Among the methods that deal with the disordered Fermi-
Hubbard model are the determinant quantum Monte Carlo
(DQMC) [19,31–36], the Monte Carlo mean-field approxima-
tion [37], the density matrix renormalization group [38,39],
and dynamical mean-field theory (DMFT)-based methods
[32,40,41] extended to incorporate disorder, such as the statis-
tical DMFT [42], the DMFT+Sigma approach [43,44], which
dresses the local Green’s function by an additional approx-
imate self energy due to interactions outside of the DMFT
(here, disorder), or the typical-medium dynamical cluster ap-
proximation [45,46], in which the cluster density of states is
replaced by its typical value, but the local part of the typical
density of states is explicitly separated out and geometrically
averaged over disorder configurations. Exact diagonalization
with disorder averaging has also been used to study the equi-
librium and nonequilibrium properties of the Hubbard models
[47,48].

While these techniques can access low-temperature prop-
erties and even explore quantum phase transitions of the
disordered Hubbard models, each suffers from one or more
limitation that may prevent it from being the ideal candidate
for the characterization of the systems studied in optical lat-
tice experiments in some parameter region. The other major
issue with methods that take the disorder average randomly
is the introduction of statistical errors associated with dis-
order averaging, which can introduce significant fluctuations
in the calculated properties even at intermediate tempera-
tures. The QMC-based methods are also better suited for
systems with only weak- to intermediate-strength interactions;
as we will see later they can run into technical difficulties
in strong-coupling regions of the Hubbard models. More-
over, comparisons to experimental data often requires fast
calculations of thermodynamic properties for a wide range
of model parameters, temperatures, and densities, something
that takes considerable time and computational resources to
achieve with methods that do not have access to the full energy
spectrum.

In this paper, we use the numerical linked-cluster expan-
sion (NLCE) [49,50], extended to treat random disorder [51].
The main advantage of the NLCE is the fact that it yields
exact finite-temperature results for the Hubbard model in
the thermodynamic limit (no finite-size or statistical errors).
Moreover, similar to ED of finite clusters, one can obtain
all the properties for a set of model parameters in a single
run on an arbitrarily dense temperature or density grid. The
process is fast and allows one to perform a systematic study
of thermodynamic properties of the disordered model in 2D
and 3D. While highlighting the effectiveness of these features
here, it should be noted that the main weakness of the NLCE
over most other numerical methods is its limitation in reaching
low temperatures; the convergence of the series expansion is
typically lost at a finite temperature that in general depends on
the model and its parameters.

We separately consider site, interaction, and hopping disor-
ders with a range of strengths and monitor properties such as
the average energy, double occupation fraction, heat capacity,
entropy and spin correlations as a function of temperature. We
find that these properties are much more sensitive to disorder
in the chemical potential than disorder in the onsite interac-
tion strength. At half filling, the former strongly suppresses

the magnetic correlations by suppressing moment formation
and promotes a state in which particles are localized at sites
with significantly lower chemical potential, as evidenced by
the enhancement of the fraction of doubly-occupied sites as
the temperature is lowered. The bond disorder hinders the
NLCE’s ability to access low temperatures, however, we find
evidence for the formation of dimers on strong bonds at low
temperatures. We also present results from the DQMC after
disorder realization averaging, which show good agreement
with our exact NLCE results and expose the strengths and
weaknesses of each method in different parameter regions.

II. MODELS

We study the Fermi-Hubbard model [52,53] with random
box disorder introduced to its various parameters through the
following Hamiltonian:

H = −
∑
〈i j〉σ

ti jc
†
iσ c jσ

+
∑
i

Ui

(
ni↑ − 1

2

)(
ni↓ − 1

2

)

−
∑
i

μini, (1)

where ciσ (c†iσ ) annihilates (creates) a fermion with spin σ on
site i, niσ = c†iσ ciσ is the number operator, and 〈..〉 denotes
nearest neighbors. We consider random onsite Coulomb in-
teractionsU0 − �U < Ui < U0 + �U , hopping integrals, t0 −
�t < ti j < t0 + �t , or onsite energies μ0 − �μ < μi < μ0 +
�μ drawn from a uniform distribution. �U ,�t , and �μ are
strength of disorder for the Coulomb interaction, hopping
amplitude, and the onsite energy, respectively. We set t0 = 1
as the unit of energy, and except when studying the effect
of U0, keep U0 = 8 fixed throughout the paper. In any given
calculation, we choose only one of the three disorder strengths
to be nonzero. We work mostly with the half filled model in
2D on a simple square lattice but also study the model away
from half filling and on the 3D cubic lattice with interaction
and onsite energy disorders.

III. METHODS

We use the NLCE for disordered quantum lattice models as
described in detail in Ref. [51]. In the NLCE, one expresses
an extensive property of the model as a series in terms of
“reduced properties” associated with all connected (linked)
clusters, c, that can be embedded in the lattice L ,

P(L ) =
∑
c

WP(c). (2)

The reduced properties,WP(c), are in turn computed using the
inclusion-exclusion principle:

WP(c) = P(c) −
∑
s⊂c

WP(s), (3)

where s is a cluster that can be embedded in c (a subcluster
of c) and P(c) is the property for the finite cluster c calculated
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at finite temperature exactly using full numerical diagonaliza-
tion.

When L represents an infinite lattice, it is more
straightforward to work with the normalized quantity
limL →∞ P(L )/L (we have taken L to represent the num-
ber of sites in the lattice too). In that case, reduced properties
only for those clusters not related via translational symmetry
need to be included. Moreover, point group symmetries of the
underlying lattice can be used to further optimize the calcu-
lations by considering a multiplicity factor and contributions
from clusters that are topologically distinct and are not related
through point group symmetries.

In the case of the infinite lattice, one is forced to truncate
the series and include contributions from finite clusters only
up to a certain size due to limitations either on the number of
clusters that have to be solved or time and memory require-
ments for diagonalizing the largest clusters in the expansion.
Therefore, in finite-temperature calculations, one typically
loses convergence below a temperature where correlations
in the system grow beyond the order of the largest clusters
considered. This temperature depends on the model, its pa-
rameters and the order of the expansion. Details of the NLCE
algorithm can be found in Ref. [50].

Here, we use the site expansion in which order l means
we have included contributions from all clusters with up to
l sites. Although numerical resummation algorithms can be
used to extend the region of convergence of the NLCE, due
to the relatively small number of terms kept in this study
for the Hubbard model in the presence of disorder, we have
not explored this possibility and have restricted ourselves to
working with the raw expansion.

As described in Refs. [51,54–56], the application of NL-
CEs can be extended to disordered systems by replacing P(c)
for finite clusters in the above equations by their disorder
realization averaged values. However, in Ref. [51], the au-
thors discuss that the straightforward approach of averaging
properties using randomly generated realizations may cause
the NLCE to break down due to the propagation of statistical
errors, unless the error bars can be driven down to the order
of the machine precision [57]. Therefore a more systematic
and statistical-error-free procedure was introduced in which
the limit of random disorder was approached by increasing
the number of disorder modes, m, in a discrete “multimodal”
distribution, allowing finite sums over disorder realizations to
be taken exactly. It was found that with an efficient choice of
mode locations in the box distribution, the convergence in the
number of disorder modes could be fast, typically achieved
with m � 6 at the lowest temperatures the NLCE converges
[51].

Here, we adopt the same algorithm and apply the method to
the disordered Fermi-Hubbard models to obtain exact finite-
temperature results for the thermodynamic quantities in the
limit of an infinite lattice. To compare our results with those
obtained via DQMC simulations of finite clusters, we employ
the QUEST package [58] and, unless stated otherwise, average
expectation values obtained on a 10×10 periodic cluster in
each case over at least a hundred random disorder realizations.
The imaginary time step in DQMC is chosen to be 0.01 at
T � 2 for all U0 and 0.1 (0.05) at T < 2 for U0 = 4 or 8
(U0 = 16). The comparison allows us to gauge any systematic

errors as well as fluctuations due to the disorder that may exist
in the latter. After discussing the convergence in the number
of modes in the NLCE for the case of disorder in the onsite
energies, we present results for a range of disorder strengths
for each of the three types of disorder in the model.

IV. RESULTS

A. Convergence in disorder modes

We first examine the dependence of thermodynamic quan-
tities on the number of disorder modes in the method at
various temperatures. We use the average energy E = 〈H〉,
double occupancy fractionD = 〈n↑n↓〉, spin correlations, heat
capacityCv , and entropy S. The latter two are calculated with-
out performing a numerical derivation or integration, rather,
by using the knowledge of the partition function (Z) and other
correlation functions, which are available in the NLCE within
machine precision for a given cluster and disorder realization
[59]:

S = ln(Z ) + 〈H〉 − μ〈n〉
T

(4)

and

Cv = 1

T 2

[
〈�H2〉 − (〈Hn〉 − 〈H〉〈n〉)2

〈�n2〉
]
, (5)

where ρ = 〈n〉 = 〈n↑ + n↓〉 is the average density, and
〈�H2〉 = 〈H2〉 − 〈H〉2, and similarly 〈�n2〉 = 〈n2〉 − 〈n〉2.
At half filling, where ρ = 1, the expression for Cv reduces
to the more familiar 〈�H2〉/T 2. For magnetic properties, we
study the nearest-neighbor spin correlations along z, Szz =
1
M |〈∑r S

z
i S

z
i+r〉|, where Sz = (n↑ − n↓)/2 and the sum runs

over the M nearest neighbors of site i, and the antiferromag-
netic structure factor SAF = 〈(∑i φiS

z
i )

2〉, where the phase φi

alternates between ±1 on neighboring sites.
Consistent with previous results for magnetic models [51],

we find that the convergence of these properties with increas-
ing the number of modes is fast, and is achieved typically
with four to six modes at temperatures available to the NLCE.
Figure 1 shows the results for a system at half filling (μ0 = 0)
and a disorder in the chemical potential with the strength
�μ = 4t0 from the fourth (dashed lines) and fifth (solid lines)
orders of the NLCE. Up to seven disorder modes (m = 7) are
shown for each case. First, we observe that the NLCE for any
individual m is converged generally for temperatures above t0
with the energy, entropy and the antiferromagnetic structure
factor showing an extended region of convergence down to
T ∼ 0.5t0 for most values ofm. Second, we see that the curves
for m = 5 and m = 7 are almost indistinguishable in the tem-
perature ranges shown for all of the quantities, except for Cv

in Fig. 1(c), where significant differences persist to T > t0.
However, the results suggest that the double-peak structure in
Cv survives at this disorder strength with the high-temperature
peak signaling moment formation and the low-temperature
peak signaling moment ordering.

For the energy, the entropy and the structure factor in
Figs. 1(a), 1(d), and 1(f) the convergence in m seems even
faster. The fact that the double occupancy in Fig. 1(b) does not
show as fast of a convergence to the continuous disorder limit
at T < t0 compared to the other quantities can be understood
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FIG. 1. NLCE results for the (a) average energy, (b) double oc-
cupancy, (c) specific heat, (d) entropy, (e) antiferromagnetic structure
factor, and (f) absolute value of nearest-neighbor spin correlation
vs temperature for the Hubbard model at half filling with onsite
potential disorder and different number of disorder modes in the dis-
crete distribution. The convergence of the series is lost below some
temperature for the shown fourth and fifth orders, with fourth-order
results plotted as dashed lines and fifth-order plotted as solid lines.
The interaction strength is U0 = 8 and the strength of the chemical
potential disorder is fixed at �μ = 4.

based on the fact that double occupancy is a local quantity,
and in this case, the disorder is also on local energies. As we
will see later, the converged values of this property are also
the most affected by increasing the strength of the disorder in
the chemical potential.

Clearly, the convergence in the number of modes depends
on the quantity under investigation, the temperature, and as
one might expect, the strength of the disorder itself. To put
these in perspective, in Figs. 2 and 3, we plot four representa-
tive thermodynamic quantities from Fig. 1 as a function of m
at various temperatures, or at a fixed temperature for various
�μ. Here, we have included both odd and evenm up tom = 8.
As one can see in Fig. 2, after relatively large initial variations
from bimodal to three and four modes, most quantities quickly
saturate to final values at T � t0 while that is not the case for
every quantity at T < t0 [see, e.g., Cv in Fig. 2(c)]. In Fig. 3,
we can see that the fluctuations in properties over different
values of m increases as the disorder strength increases. Nev-
ertheless, these results suggest that if the NLCE is converged,
the approach towards the continuous disorder limit is quite
fast for the energy and several other properties of the Hubbard
model and can be achieved within four to six modes. Care
must be taken when it comes to other properties, such as the
heat capacity, when the disorder strength is relatively large.
We emphasize that converged NLCE results are valid in the
thermodynamic limit and do not contain any finite-size errors.

FIG. 2. Convergence in the number of disorder modes at vari-
ous temperatures. Same (a) average energy, (b) double occupancy,
(c) specific heat, and (d) antiferromagnetic structure factor as in
Fig. 1 plotted here vs m at a few select temperatures above and below
t0. The values are from NLCE results in the fifth order.

B. Disorder in the chemical potential at half filling

Through the evolution of our thermodynamic properties
upon changing the strength of the potential disorder, we find
that the Hubbard system changes character when the disorder
strength exceeds that of the local repulsive interaction. In
Fig. 4, we show the same quantities as in Fig. 1 obtained from
six orders of the NLCE for m = 8 and four different values
of the �μ from 0, representing the clean system, to 12t0.
Increasing �μ causes the fraction of doubly occupied sites to
increase dramatically, even beyond the uncorrelated value of
1/4 as the temperature decreases, while the average energy is
greatly suppressed. The penalty for double occupancy is now
in the range [U0 − �μ,U0 + �μ]. Therefore a strong disorder
in the chemical potential, comparable to, or larger than U0,
means having sites with a negative potential, favoring double
occupancy to lower the overall energy. For weak disorder, the

FIG. 3. Convergence in the number of disorder modes for vari-
ous chemical potential disorder strengths. Same (a) average energy,
(b) double occupancy, (c) specific heat, and (d) entropy as in Fig. 1
at half filling as a function of the number of disorder modes. All
properties are evaluated at T/t0 = 1 and for U0 = 8. The values are
from NLCE results in the fifth order.
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FIG. 4. Comparison of NLCE results for various chemical po-
tential disorder strengths vs temperature. Here, the same quantities
as in Fig. 1 are shown for an eight-mode disordered system at half
filling with an interaction strength of U0 = 8. Shown are the fifth
(dashed lines) and 6th orders (solid lines), except for the clean
system, where eighth and ninth orders are used. Included are DQMC
solutions denoted by colored dots. They are for a 10×10-site lattice
and averaged over at least 100 disorder realizations. Unless shown,
symbol sizes indicate an upper bound for statistical error bars in all
figures. The color mapping for the disorder ranges are the same as
for the NLCE solutions.

enhancement in double occupancy (suppression of moment
formation) broadens the high-temperature peak inCv . It is also
expected to broaden the low-temperature peak as the magnetic
energy scale, J = 4t20 /U0 for the clean system, will assume a
range too [32].

The behavior is similar to what has been previously
seen in QMC simulations of the disordered Hubbard model
[19,32,60], and is also consistent with the observation that re-
pulsive interactions larger than the disorder strength can take
the system out of the disorder-induced insulating phase away
from half filling [20,33]. In the clean �μ = 0 limit, Qin et al.
[61] find ground-state double occupancy values extrapolated
to the thermodynamic limit that are in close agreement with
our NLCE results at the lowest temperatures.

In Ref. [32], it is shown that forU0 = 4, the antiferromag-
netic correlations disappear when �μ ∼ 10 on a 4×4 cluster,
which is also consistent with the trends seen for the magnetic
correlations in Figs. 4(e) and 4(f), as well as in Figs. 9(e) and
9(f) below (U0 = 4), as the disorder strength increases. We
note that our NLCE results are exact and in the thermody-
namic limit, apart from possibly a few percent error for Cv

at the lowest temperatures shown due to the finite number of
disorder modes.

For comparison, we have reproduced DQMC results for the
clean and disordered systems for quantities shown in Fig. 4.

The circles in Figs. 4(a), 4(b), 4(e), and 4(f) are obtained
directly using DQMC for a 10×10 lattice after averaging
expectation values over at least a hundred random disorder re-
alizations. We find a very good agreement between those and
our NLCE results in the thermodynamics limit considering
that there may still be some finite-size and Trotter systematic
errors present in the DQMC results. We find that keeping the
number of realizations fixed, the fluctuations in the DQMC
data increases as �μ increases. It is worth pointing out that
NLCE is a far more efficient method for this problem, in terms
of the computational cost, than the DQMC on the 10×10 clus-
ter. A single run of the latter, sweeping all the temperatures
shown, takes between 6800 and 34000 CPU hours depending
on the imaginary time step, whereas the same calculations
on an arbitrarily fine temperature, or even chemical potential
grid, takes about 600 CPU hours using Intel E5-2680v4 pro-
cessors in our computer cluster.

The circles in Figs. 4(c) and 4(d) are obtained through the
following fit of the DQMC energy [62]

E = E0 +
∑
j>0

c je
− jδ/T , (6)

where E0, c j , and δ are the fitting parameters. The specific
heat is then readily available and the entropy is obtained after
integration as

S = S0 + E0/T −
∑
j>0

c j
1 − e− jδ/T

jδ
, (7)

where S0 = ln 4 is the half filling entropy per site at infinite
temperature. We keep five terms in the series for the energy
and perform a least-square fit using values at 20 temperatures
on a logarithmic grid between T ∼ 0.2t0 and T ∼ 20t0. We
note that the fit, and hence, the estimate for Cv and S can
be systematically improved by increasing the number of grid
points in temperature and/or reducing the statistical errors by
considering more disorder realizations. So, the DQMC results
shown do not necessarily represent the most accurate ones
that can be achieved, rather, those from typical reasonable
calculations at T � 0.2t0. In fact, we find it difficult to obtain
good agreement between NLCE and DQMC for Cv (and also
often for S) below a temperature of the order of t0 due to
poor fits to the energy, although the two methods generally
agree on the trends. A counter example is the DQMC result
in Fig. 4(c) suggesting a double-peak structure in Cv for
�μ = 12t0, which is not supported by the NLCE results.

The change of character of the system as �μ increases
is visible in the transformation of the specific heat and the
entropy as well. We know that Cv for the clean Hubbard
model at half filling has two distinct peaks corresponding
to moment formation at t0 < T < U0 and moment ordering
at T < t0 [63,64]. The blue curve in Fig. 4(c) for the clean
system clearly captures the high-temperature peak and hints at
the appearance of another low-temperatures peak, observed in
previous NLCE studies of the clean model using higher orders
in the expansion [59]. Upon the introduction of a small disor-
der inμwith a strength of 4t0, the high-temperature peak loses
some weight while its location remains largely unaffected;
moment formation remains the dominant physics. The less
prominent peak is a signal for additional structural changes
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FIG. 5. Similar to Fig. 4, but for various disorder strengths in the
interaction potential.

inCv appearing in the low-temperature region associated with
magnetic ordering in the clean system. However, increasing
�μ further increases the weight for the high-temperature
peak again and even creates additional weight at temperatures
above the peak. For�μ � U0, the peak is no longer associated
with moment formation, but instead with particles localizing
at sites with the lowest chemical potentials. Eventually, for a
large enough �μ = 12t0, almost the entire weight seems to
fall under one high-T peak. This is also reflected in the rapid
quench of the entropy at this �μ and signals that the system is
quickly settling into this phase. As can be seen in Fig. 4(e) and
4(f), any magnetic correlations are also greatly suppressed,
a behavior previously shown by Ulmke et al. [65–67] and
Enjalran et al. [60].

C. Disorder in the repulsive interaction at half filling

We find that the effect of disorder in the interaction
strength, which can be seen for our thermodynamic properties
in Fig. 5, is less dramatic than the effect of disorder in the
chemical potential. We have chosen the same four values for
�U as for �μ in Fig. 4. We find that the double occupancy
retains its character for �U as large as 12t0; decreasing as the
temperature decreases. However, its low-temperature values
steadily increase as �U increases as a result of roughly half
of the sites having a smaller penalty for double occupancy
than in the clean system. For �U > U0, a fraction of sites
are even expected to favor the formation of doublons. We
benchmark our results in the case of �U = 0, 4, and 8 against
DQMC and find very good general agreements. We observe
significant fluctuations in D and E from DQMC, which we
attribute to an insufficient number of disorder realizations,
and a systematic deviation from the exact NLCE results in
D at low temperatures for DQMC, beyond the statistical error

FIG. 6. Similar to Fig. 4, but for various disorder strengths in the
hopping integral.

bars, which we attribute to the systematic Trotter error in the
latter [see Figs. 5(a) and 5(b)]. The latter can be mitigated
through extrapolation in the imaginary time step. We note that
DQMC calculations for �U > 8 run into technical difficulties
as the interaction can take a negative sign (become attractive)
on some sites, and so the corresponding results have not been
obtained.

Similarly to the case of disorder in the local potential, the
energy also decreases, yet less rapidly, upon increasing �U ,
here as a result of reduced repulsive, or attractive, interac-
tions on sites that are most likely to be doubly occupied.
The heat capacity and the entropy in Figs. 5(c) and 5(d) see
relatively minor changes upon the introduction of the interac-
tion disorder. The peak in Cv broadens and moves to slightly
higher temperatures with increasing�U , reflecting favoring of
doublons and reduction in moment formation in comparison
to the clean system. At lower temperatures, the peak associ-
ated with moment ordering is also expected to broaden since
disorder in interaction directly results in disorder in J . The
magnetic correlations [see Figs. 5(e) and 5(f)] are suppressed
with �U , especially when �U > 4 as a result of having less
moments available for ordering. We do not find �U affecting
the convergence of the NLCE in significant ways for any of
the properties we have studied.

D. Disorder in the hopping amplitude at half filling

We have also considered the model with bond disor-
der (disorder in the hopping integral t). As can be seen in
Fig. 6, in this case, the convergence of the series worsens
substantially as the disorder strength increases. We attribute
this to the nonlocal nature of this type of disorder and the
sensitivity of the NLCE’s performance to the variation in
the nonlocal correlations of the system. However, already at
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high-temperatures results point to interesting physics. Like in
the case of chemical potential disorder, here the bond disorder
lowers the energy dramatically, but the double occupancy does
not increase as dramatically as in the former case at intermedi-
ate and low temperatures, as can be seen in Figs. 6(a) and 6(b).
This can be explained through the increased tendency to form
singlets on strong bonds that experience larger hoppings as
the disorder increases, consistent with the observations about
the magnetic behavior of the system (see below). Similar
to the case of chemical potential disorder, the faster initial
drop in the entropy [Fig. 6(d)] and the sign of increase in
the high-temperature peak of the heat capacity [Fig. 6(c)],
taking up much of the weight as the disorder increases, also
capture the change in physics of the system, in this case even
for disorder strengths as small as �t = 1.6. Interestingly, for
the bond disorder strengths we have used, we do not see
large statistical errors in the DQMC results, which prove very
useful in completing the picture for the thermodynamics of
the system.

The above observations are consistent with the picture
drawn by the magnetic correlations shown in Figs. 6(e)
and 6(f); while short-range correlations get an early boost
upon lowering the temperature when the disorder strength
increases, the antiferromagnetic structure factor, which en-
compasses long-range correlations, does not experience a big
enhancement. The behavior of Szz is unlike that for the system
with onsite potential or interaction disorder. The latter are
detrimental to any type of magnetic correlations, whereas
hopping disorder can offer weak and strong bonds, favoring
singlet formation on the strong bonds at the expense of long-
range order in the ground state. For this reason, we expect that
in the presence of sufficiently strong bond disorder SAF will
saturate at low temperatures. In Ref. [66], DQMC results for
U0 = 4 show that the normalized structure factor at T = 0.1t0
approaches its uncorrelated value on a 10×10 cluster for
�t ∼ 1.5.

E. Away from half filling

Our method can access thermodynamic properties and cor-
relations functions of the system in the thermodynamic limit
not only at half filling, but also all the other densities in a sin-
gle run. Choosing a fine grid for the chemical potential allows
for the numerical conversion to fixed densities for disordered
systems after the average over realizations is performed. Here,
we present results away from half filling for the two cases
of �μ = 6 and �U = 6 in Figs. 7 and 8. They are similar to
Figs. 4 and 5, except that we have fixed �μ and shown results
at fixed densities of ρ = 1.00, 0.85, and 0.70 in them.

1. Chemical potential disorder

The convergence of the NLCE properties for the clean
Hubbard model away from half filling is typically lost at
higher temperatures than can be achieved at half filling
[68–71]. However, for the disordered systems, we observe
that away from half filling, this temperature is comparable
to, or even lower than, the lowest convergence temperature
at half filling. With the onsite energy disorder (Fig. 7), we do
not find significant changes in the behavior of the quantities
as the disordered system with already suppressed magnetic

FIG. 7. Same properties as in Fig. 4, but at a fixed �μ = 6 away
from half filling. Fourth-order solutions are presented as black lines
and fifth-order as colored.

correlations is doped away from half filling. However, there is
a notable drop in the fraction of doubly occupied sites upon
decreasing the density, which can be expected since having
fewer particles directly translates to fewer double occupancies
[68,69]. This effect is reflected in the energy, and in turn
in the Cv , which starts to develop a high-temperature peak
when ρ = 0.7. The peak is close in height and location to

FIG. 8. Same as in Fig. 7, except for an interaction disorder of
�U = 6.
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that observed for the clean system at the same filling [72] and
shows that effects of moderate site disorder at high temper-
ature are likely minimal for the dilute system. The magnetic
correlations are also slightly weakened as a result of fewer
number of moments in the system.

We are not showing comparisons to DQMC results away
from half filling since the combination of the fermion “sign
problem” [73,74] and the presence of disorder are expected to
introduce large error bars at temperatures lower than t0, espe-
cially around ρ = 0.875, also complicating the search for the
average chemical potentials as a function of temperature that
would yield the correct fixed densities. That would be beyond
the scope of our work given that we have already established
the general agreement of our NLCE results with those of
DQMC for finite clusters at half filling. It also displays an
advantage of using the NLCE; exact information about all
fillings are readily available after a single run. In fact, such
exact results in the thermodynamic limit for the disordered
Fermi-Hubbard model away from half filling, while missing
from the literature to the best of our knowledge, are often
necessary for characterization of fermionic systems in optical
lattices since the existence of the trapping potential leads to a
range of densities.

2. Interaction disorder

A disorder in interactions with the same strength seems to
have a more dramatic effect on the system and its correlations
away from half filling (see Fig. 8). An already suppressed dou-
ble occupancy at half filling is further reduced upon doping,
and unlike the case of disorder in the onsite energies, here,
doping to 30% seems to change the high-temperature charac-
ter of the specific heat from that displaying clear charge peak
to one in which the suppression of charge and spin degrees of
freedom seems intertwined.

We saw in Fig. 5 that the half-filled system is affected
considerably less due to the interaction disorder in comparison
to disorder in the chemical potential. However, Figs. 8(e)
and 8(f) show that the magnetic structure factor and nearest-
neighbor correlations quickly give up this resistance to change
with a finite�U upon doping, leading to values at ρ = 0.7 that
are close to those obtained in Fig. 7 for a finite�μ, even at half
filling.

F. Chemical potential disorder at other interaction strengths

To study the effect of site disorder on the system at other
interaction strengths, we carry out calculations for the disorder
in the chemical potential for U0 = 4.0 and 16.0 too. These
interaction strengths represent the weak-coupling and the very
strongly interacting regions of the clean model, respectively.
Results are shown in Figs. 9 and 10. When U0 = 4.0, the
Coulomb repulsion and the effective nearest-neighbor ex-
change interaction at half filling, J ∼ 4t20 /U0, are of the same
order of magnitude. For smaller U0, not only other higher-
order terms may have to be taken into account, but also the
formation of well-defined moments in the clean system is
largely hindered [63]. This is exacerbated in the presence of
weak disorder, as can be inferred from the trend in the double
occupancy in Fig. 9(b).

FIG. 9. Same as Fig. 4, but for U0 = 4.0. We have taken the
disorder average in DQMC (circles) over 50 realizations in this case.

We find that many of the trends we observed in the ther-
modynamic properties for U0 = 8.0 upon the introduction of
disorder in the chemical potential in Fig. 4 extend to other
values of U0 as well. Most notably, the fact that the system
behaves qualitatively differently as the temperature is lowered
when the strength of the disorder reaches and exceeds the
interaction strength, e.g.,D increasing with T , the suppression
of magnetic correlations, etc. With U0 = 16.0 in Fig. 10(c),
we can also clearly observe that the evolution of the specific

FIG. 10. Same as Fig. 9, but forU0 = 16.0.
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heat as a function of temperature with increasing the disorder
strength follows the same trends as in U0 = 8.0. That is, the
high-temperature peak initially takes less of the overall weight
as �μ increases, and as �μ passes U0, Cv displays one broad
high-temperature peak, signaling the onset of particles settling
at low-energy sites.

We note that, as has been established before for clean
systems [59], NLCE appears to generally converge to lower
temperatures as the interaction strength increases for the dis-
ordered system. As can be seen in Fig. 10(c), more of the
nontrivial trends near the low-temperature peak of Cv can be
recovered in the NLCE results when U0 = 16.0 compared to
when U0 = 8.0 in Fig. 4(c). In turn, the convergence is lost
at higher temperatures for U0 = 4.0 in Fig. 9(c) and NLCE
does poorly even with the high-temperature peak of Cv when
�μ < 6.0. On the other hand, DQMC, while often yielding
reliable results at lower temperatures than what NLCE can
access forU0 = 4.0, does poorly forU0 = 16.0, especially for
larger values of �μ; other than for the energy [Fig. 10(a)], the
trends seen in DQMC results for thermodynamic quantities at
T � 1.0 when �μ = 24 in Fig. 10 cannot be trusted as they
significantly deviate from converged NLCE results. That is
despite reducing the Trotter error and pushing the calculations
to our computational limit in this case. The same can be said
about the specific heat and the entropy for any nonzero �μ

when U0 = 16.0 [Figs. 10(c) and 10(d)]. Hence, the results
in Figs. 9 and 10 demonstrate the complementarity of the
NLCE and DQMC methods, extended to disordered Hubbard
systems.

G. Chemical potential and interaction disorders
in the 3D Hubbard model

By implementing our disorder averaging scheme in the
3D adaptation of the NLCE algorithm [22,71], we have also
explored the effect of disorder in the chemical potential or the
interaction strength on the thermodynamic properties of the
model in 3D.

In Fig. 11, we show the same properties for the 3D model
that are shown for the 2D version in Fig. 4 when disorder
is present in the chemical potential for a range of strengths.
Here, this range is extended to �μ = 16t0 since the nonin-
teracting bandwidth is larger in 3D. We find that the trends
are similar to those seen for the system in 2D, except that
the magnetic correlations in the clean system show a more
rapid increase with lowering the temperature and in turn, are
affected more strongly by disorder. The divergent behavior
of SAF for the clean system in Fig. 11(e) reflects the exis-
tence of a finite temperature magnetic transition to the Neél
phase around T = 0.35t0 for this interaction strength [71,75].
Comparisons to DQMC results are performed considering a
6×6×6 periodic system for the latter.

In Fig. 12, we present results for the effect of the interaction
disorder on the 3D system and find that the same trends we
observed for the 2D system largely hold here as well; despite
a reduction in moments in the disordered system, leading
to smaller magnetic correlations, the effect of this type of
disorder is much less severe, and does not appear to alter
the physics of the system at temperatures we can access, in
comparison to the effect of disorder in the chemical potential.

FIG. 11. Same as Fig. 4, but for the 3D version of the Fermi-
Hubbard model. Symbols represent DQMC results for a 6×6×6
system.

Similarly to the 2D case, we cannot carry out the DQMC
calculations for �U > 8t0 due to technical reasons related
to the algorithm. These results show the robustness of the
NLCEmethod for studying a wide range of circumstances that
include changes in the model parameters and dimensionality
of the system.

FIG. 12. Same as Fig. 11, except that the disorder is in the inter-
action strength.
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V. SUMMARY AND DISCUSSION

In summary, we have applied the extension of the NLCE
method for studying exact finite-temperature properties of
disordered quantum lattice models to perform a systematic
study of thermodynamic properties of the disordered Fermi-
Hubbard models in two and three dimensions. We consider
three different disorder scenarios involving the local chemi-
cal potential, the onsite interaction strength, and the hopping
amplitude and monitor the evolution of finite-temperature
properties as the strength of the disorder is increased. Among
other things, we present arguments, based on the trends seen
in the heat capacity, double occupancy fraction and spin corre-
lations, about the affect of disorder on magnetic correlations
and localization effects in the system. We demonstrate that
the results can be reliably extended to incommensurate fill-
ings. We further compare our results at half filling with those
obtained using the DQMC algorithm after disorder realization
averaging, gauging various systematic and statistical errors in
the latter as well as the temperature limitations of the NLCE
in different regions.

We find that the half-filled system changes its character
frommoment formation and ordering as the temperature is de-
creased to particles localizing at sites with the lowest energies
when the chemical potential disorder strength exceeds that of
the local repulsive interaction. This trend persists in the weak-
and strong-coupling regions as well as in 3D. The effect of
bond disorder is also dramatic, and is driven by the formation
of singlets on strong bonds. However, NLCE’s performance
is significantly affected in that case and we cannot access low
temperatures. Disorder in the interaction, on the other hand,
shows relatively small change in the physics of the system
even for strong disorder strengths, a behavior we observe in
both 2D and 3D.

The algorithm adopted here, enabling the treatment of
disorder within the NLCE can be combined with the imple-
mentation of real-time correlations functions in the NLCE
for systems at equilibrium to calculate dynamical properties,
as were done in Refs. [29,76], or other implementations for
noequilibrium dynamics after a quench [77–84], to extend the
study of those dynamical properties to disordered quantum
lattice models and make better connections to optical lattice
experiments [21]. These experiments have so far operated at
elevated temperatures ranging from 2t0 to tens of t0, well
within the region of convergence of the NLCE. Moreover,
our results, generally available at an order of magnitude lower
temperatures, will be useful for future experiments.

In general, in optical lattice experiments aiming to em-
ulate the disordered Fermi-Hubbard model, such as those
mentioned in the introduction, disorder unavoidably manifests
itself simultaneously in the on-site potential, the interaction
strength, and the hopping amplitude, model parameters that
already lack homogeneity over the sample due to the presence
of the confining potential. This poses great challenges for
parametrizing the experiments through comparisons to theo-
retical results and exposes the need for further development
of reliable and unbiased numerical methods to meet those
challenges.
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