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Abstract—Pose guided synthesis aims to generate a new image
in an arbitrary target pose while preserving the appearance
details from the source image. Existing approaches rely on either
hard-coded spatial transformations or 3D body modeling. They
often overlook complex non-rigid pose deformation or unmatched
occluded regions, thus fail to effectively preserve appearance
information. In this article, we propose a pose flow learning
scheme that learns to transfer the appearance details from the
source image without resorting to annotated correspondences.
Based on such learned pose flow, we proposed GarmentNet and
SynthesisNet, both of which use multi-scale feature-domain align-
ment for coarse-to-fine synthesis. Experiments on the DeepFash-
ion, MVC dataset and additional real-world datasets demonstrate
that our approach compares favorably with the state-of-the-art
methods and generalizes to unseen poses and clothing
styles.

Index Terms—Pose guided synthesis, pose correspondence,
optical flow learning.

I. INTRODUCTION
OSE guided synthesis aims to generate a realistic person
image that preserves the appearance details of the source
image given an arbitrary target pose. As a central task in virtual
reality [46], online garment retail [10], and game character
rendering, realistic pose guided synthesis will have a crucial
impact on numerous applications.

Despite the recent successes of conditional image synthesis
[11], [41], pose guided synthesis still faces many unsolved
challenges. Among them, the main challenge is the complex,
part-independent pose deformation, with garment, from the
source pose to an arbitrary target pose. As a result, models
[4], [10], [22], [30] built on the plain U-Net [33] network
structure often fail to generate precise details or textures due
to the lack of a robust spatial alignment component.

Recently, several approaches [3], [29], [36], [45] have been
proposed to address spatial alignment. Specifically, Siarohin
et al. [36] apply deformable skip connections for spatial
alignment. However, the oversimplified affine transformation
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Fig. 1. Images generated by different methods. The first column contains
source images, while the second column contains ground truth images with
target poses. We compare our results (last column) with the state-of-the-art
methods (rows 3-7). The odd rows display the entire images, and the even
rows display the corresponding texture details. In comparison, our method
clearly produces the most visually plausible and pleasing effects.

on the predefined rectangles does not necessarily capture the
non-rigid deformation. Different from Neverova et al. [29] and
Wu et al. [45] resort to a pre-trained pose estimator, DensePose
[1], to perform non-rigid alignment on 3D-model. Since such
model-level alignment is not capable of handling occluded
regions caused by drastic pose changes, inpainting is then
applied to fill the occluded region. Nonetheless, the results
are usually blurry in occluded regions.

A later work [3] relies on the combination of affine transfor-
mation and thin-plate splines (TPS) transformation to perform
spatial alignment. However, the TPS transformation is inflex-
ible to model the highly non-rigid human pose deformation.
In addition, their matching module is trained on simplified
synthetic transformations [32]. Therefore, the human pose
deformation is not properly handled. Most recently, Li et al.
[18] use the 3D human model [21] to generate human pose
flow ground-truth for training a flow estimator. However,
similar to other 3D-modeling approaches [29], [45], the issue
of large occluded regions is not well addressed due to the
lack of correspondence. Moreover, the 3D human modeling
is computationally expensive, and it is not always precise
on loose clothes, as 3D human modeling focus on body
reconstruction rather than the clothes surface reconstruction.
Recently, Siarohin et al. [35] propose a general image ani-
mation model that learns optical flow without correspondence
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annotation. However, the issue of texture preservation under
large occlusion for pose-guided synthesis is not sufficiently
addressed by [35].

In this article, we present i) a novel pose flow learning
scheme (Stage-I) that does not require correspondence ground-
truth to tackle the pose guided transfer task. Next, we pro-
pose ii) a coarse-to-fine garment-to-image synthesis pipeline
(Stage-II) using feature domain alignment based on the learned
flow. Without using affine or TPS transformation [3], [36]
or resorting to explicit 3D human modeling [18], [29], [45]
to extract correspondence, our method utilizes learned pose
flow to capture the complex pose deformation. Our pose
flow learning scheme effectively addresses the issue of the
occlusion caused by drastic pose changes as our scheme can
learn to transfer appearance to occluded regions. In contrast
to [18], our approach avoids the computationally inefficient
flow ground-truth generation step.

To enable our pose flow learning scheme, we propose
in Stage-I a novel texture preserving objective to improve
the quality of the learned flow, which is shown to be
crucial for the pose-guided synthesis task. We also propose
augmentation-based self-supervision to stabilize the flow train-
ing. Based on the trained pose flow predictor, we proposed in
Stage-II a coarse-to-fine garment-to-image synthesis pipeline
using our proposed GarmentNet and SynthesisNet. Garment-
Net and SynthesisNet share a unified network structure that
utilizes the learned pose flow for multi-scale feature domain
warping. Furthermore, we propose a novel gated multiplicative
attention module for misalignment-aware synthesis.

Finally, to synthesize more realistic images, we design
masking layers in GarmentNet and SynthesisNet to better
preserve the image background and person identity. Finally,
we use DensePose parsing [1] instead of person keypoints as
pose inputs. DensePose parsing contains body segmentation
and mesh coordinates, which provide richer information for
realistic pose-guided synthesis.

Our main contributions as follows:

o A pose flow learning scheme that learns to transfer the
appearance from target images without correspondence
annotations. To enable such a learning scheme, a novel
texture preserving objective and an augmentation-based
self-supervision strategy are proposed, which improve the
quality of the transferred appearance.

o A coarse-to-fine synthesis pipeline that consists of Gar-
mentNet and SynthesisNet. GarmentNet and Synthesis-
Net utilize the trained pose flow predictor for multi-scale
feature domain alignment. Furthermore, a novel gated
multiplicative attention module is proposed to address the
misalignment issue.

o Several design improvements to facilitate more realistic
pose-guided synthesis. Specifically, we design masking
layers that better preserve person identities and back-
ground information. Furthermore, we use DensePose
parsing as the pose representation to provide richer pose
details for pose-guided synthesis.

The remainder of the paper is organized as follows. Sec. II

introduces related work on (pose guided) image synthesis
and optical flow learning. The proposed approach is detailed

1899

in Sec. IIl. Experiments are described in Sec. IV. Sec. V
concludes the paper.

II. RELATED WORK
A. Image Synthesis

Generative Adversarial Network (GAN) [8] has been widely
used for image synthesis tasks. Conditional GAN [26] aims to
synthesize an image from a given conditional input content.
Based on conditional GAN, Isola et al. propose Pix2Pix [11]
for image style transfer tasks. Later on, many techniques
have been proposed to improve both the synthesis quality and
resolution of the generated images. Specifically, Johnson et al.
[14] use distance on feature vectors yield by layers of VGG
network [37] to measure the perceptual similarities. The Gram
matrix loss [6] is proposed by Gatys et al. for texture synthesis.
To improve the image synthesis resolution, Zhang et al. [47]
propose a two-stage network for generating images from
coarse to fine scales. Likewise, Sun et al. [39] propose a
multiple-stage synthesis model that generates face landmarks
for person head inpainting. PatchGAN discriminator [17] is
used by Li ef al. to penalize unrealistic patches. Wang et al.
[41] and Chen and Koltun [2] propose new generator structures
for realistic image synthesis. In addition, techniques such
as Wasserstein distance [9] and Spectral Normalization [27]
are proposed to stabilize GAN training. Those approaches
have improved the synthesized image quality. However, these
approaches are limited to spatial deformation as their networks
are built on local convolution. In this work, we present a
flow-based approach to address the spatial alignment problem
in pose-guided synthesis.

B. Pose Guide Synthesis

Ma et al. [22] use the source image and target pose
landmarks as the conditional input and the UNet [33] struc-
ture for pose guided synthesis. Later, Siarohin et al. [36]
utilize skip connections with hard-coded part-level affine trans-
formation to transform feature maps for new pose image
synthesis. Dong et al. [3] use the thin-plate spline (TPS)
transform trained on synthetic transformations [32] to warp
the source domain content. Additionally, Han et al. [10] and
Wang et al. [40] use the TPS transformer for virtual try-on.
To handle pose deformations, Neverova et al. [29] use Dense-
Pose [1] to transfer appearance patterns and utilize inpainting
to fill occluded regions. In addition, pose guided synthesis
is formulated as a pose-appearance disentanglement problem.
Specifically, Esser et al. [4] use variational autoencoder [16] to
capture the latent space of pose and appearance for appearance
manipulation under given poses. Ma et al. [23] learn disen-
tangled pose-appearance representation using a multi-branch
encoding and decoding scheme. However, the plain UNet
structure [4], [22], predefined transformation [29], [36] or TPS
transformer [3], [40] are insufficient for handling the complex
human pose deformation and occlusion caused by drastic pose
changes. Recently, Li et al. [18] uses 3D human model [21] to
correspondence annotation, then fit a flow estimator to speed
up inference. However, generating the correspondence super-
vision is computationally exhausted. Furthermore, the ground-
truth correspondence cannot effectively transfer appearance to
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Our two-stage framework for pose-guided person image synthesis. In stage-I, a flow estimator is trained using our proposed texture-preserving

objective. In stage-1I, GarmentNet and SynthesisNet use the trained flow estimator to sequentially estimate garment parsing and image output, following a

coarse-to-fine pipeline.

occluded regions. In contrast, our flow-training scheme learns
to transfer appearance under complex pose deformation and
occlusion without using explicit correspondence annotation.

C. Unsupervised Optical Flow Learning

Recently, several approaches have been proposed to learn
optical flow in the absence of the ground-truth annotation.
Specifically, Jason et al. [13] optimize a predictive model using
a combination of photometric and smoothness objectives to
predict flow. Meister et al. [25] utilize left-right consistency
to filter out occluded regions. Wang et al. [42] further propose
an occlusion-aware objective function for unsupervised flow
learning. Different from these works, we focus on learning
a flow that better preserves the appearance information. Fur-
thermore, our optical flow is estimated using only the source
image and pose information. Recently, Siarohin et al. [35]
apply optical flow learning in an unsupervised fashion for
deformed image synthesis. Different from [35], we address
the issue of preserving complex garment patterns under large
deformation and occlusion.

III. APPROACH

In this section, we present a flow-based approach to the
pose-guided synthesis task that does not require additional
correspondence annotations. To this end, we adopt a two-stage
pipeline, as illustrated in Fig. 2. In Stage-I, a flow estimator

is trained using our proposed texture-preserving objective.
In Stage-II, we present GarmentNet and SynthesisNet to
sequentially generate garment parsing and image output, using
the flow obtained from the previous stage.

In Sec. ITI-A, we first define the notations that are required
by our model. In Sec. III-B, we propose our texture-preserving
objective and other details for training a flow estimator for
pose-guided alignment. In Sec. III-C, we propose GarmentNet
and SynthesisNet to respectively estimate garment parsing and
image output.

A. Notations

Given a pair of images Iy and I; from the source and
target domains respectively, pose-guided synthesis aims to
generate a image I, that preserves the appearance of /; and
the pose of I;. To this end, we respectively generate pose
representation Py, Py and garment parsing Gg, G; from I
and [;, to capture useful information from the source and
target domains. In addition, we extract image residue /; from
I; and garment residues Gj from garment G;, in the hope
to capture target identity (i.e., face, hair, and background
regions). Fig. 3 illustrates (Ps, P;), (G, Gy), (I, I;) and
residues (1], G7). In fact, P;, G; and I; form a hierarchical
structure that gradually provide richer information of the target
person. We leverage this hierarchical structure in Sec. III-C
to design our coarse-to-fine synthesis pipeline. We note that
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Fig. 3. Notation illustrations for the required data for training and testing.
We use subscripts s and ¢ to represent source and target domains, respectively.
The notions of 7, G and P represent images, garment parsing and pose
representation, respectively. (I, G}) denote image residue and garment
residue from the target person. The output of our approach is denoted by
I;. Please refer to Sec. III-A for more details.

during training, I; and I; are from the same outfit of the same
person. In testing phase, however, Iy and I; can be arbitrary
person with arbitrary outfits.

To be more specific, the pose representations Py and P; are
the concatenation of the one-hot pose parsing and the mesh
coordinate map from Densepose [1]. Likewise, the garment
representations Gy and G, are the one-hot garment parsing
generated using the method by Gong et al. [7]. The image
residue r! are generated by first removing person region from
I; then perform inpainting [28]. Then, hair and face regions are
appended on the inpainted results.! Finally, garment residue
r$ are generated by setting values of one-hot parsing G, to 0
for background, face and hair channels.

Although our approach can adapt key-point heat maps as
an alternative human pose representation, we argue that sparse
key-points do not provide sufficient pose information for accu-
rate person image generation. By contrast, DensePose parsing
and mesh coordinates provide dense, pseudo-3D information,
which is informative to represent pose detail.

B. Stage-I: Texture Preserving Pose Flow Training

With the extracted pose representations Py and P,
we present a flow training scheme to generate adaptive,
texture-preserving alignment without resorting to pseudo flow
ground-truth that is generated by the computationally ineffi-
cient SMPL model [21] or oversimplified affine [36] or TPS
transformation [3], [40].

As shown in Fig. 2, our flow estimator takes the source
image, pose and target pose as inputs to generate multi-scale
flow-fields to indicate the pose deformation. Formally, let
Flow(-, -) denote our flow estimator, which takes [Iy; Ps] and
Py from source and target domains as inputs and outputs flow
fields at multiple scales:

{Wt((i)n“awt(l—)nw wt(5—)>s} ZFIOW([IS‘v Ps‘]an) (1)

where notation W,(ILS denotes the backward flow field from

the target image to the source images at scale [ € {0, --- , 5}.
We employ FlowNetS [5] as the baseline structure to
implement Flow([Is; Ps], P;). Note that, unlike a normal

IWe use the garment parsing G; to generate the regions of human body,
hair and face.
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flow estimator, Flow(-, -) leverages pose information for flow
estimation. Meanwhile, we have also modified FlowNetS to
improve the flow-field definition and to reduce memory usage.
Please refer to Appendix A for more details.

Unsupervised flow training on natural images has been
explored in several recent works. These approaches mainly
rely on the photometric loss [13]

Loy, I, w0,y = Hp (It—warp(ls,w,ﬂ )H )

to measure the difference between the target image and
the backward-warped source image using the predicted flow.
Here, warp(-; -) denotes the image domain backward warping
operation implemented by a bilinear sampler [12] and p(x) =
(x2 + 62)(X is a robust loss function [38]. Furthermore, total
variation-based (TV) spatial smoothness loss is also utilized
to regularize the flow prediction [31]:

0}

o
»CTV(Wt%s A 9

t—s
0x

0}

1—s

3)

1 * ’ ay 1
Due to the complexity of person images and the large displace-
ment from source pose to target pose, the warping-based pho-
tometric term is highly non-convex. As as result, the gradient
descendent training with the naive photometric loss and spatial
smoothness loss will lead to difficulty in convergence. To solve
this issue, we use multi-scale strategy, where photometric
losses and spatial smoothness losses summed at multiple scales
le{0,---,5}.

In our experiment, we found that the multi-scale training
will still suffer from damaged local textures for the warped
images warp(/;; wt(ols), and the learned flow fails to transfer
realistic details from source images (see Fig. 8 for details).
We attribute this deficiency to the poor ability of £, and L7y
in preserving the high-frequency texture. In order to preserve
realistic details and textures for better pose- gu1ded synthe-
sis, we propose a texture-preserving objective E,e)xm,e that
enforces texture similarity between the I; and warp(/y; w,(is)
at scale [:

0
£§exture(1ta I, Wfis
= HG (féi,)g(lt)) -G (flgi,)g(warp(ls; Wz—>s)))

where fifi,)g (-) represents the I’th VGG [37] feature map
from layer {relul_2, relu2_2, relu3_2, relud_2,
relu4d_3} of the given input image, and G(-) denotes the
Gram matrix [6] to capture the second-order statistic of the
given feature map. Although the objective E;mere is widely
used in style transfer tasks, we are the first to show that the
texture loss is crucial for learning a reasonable flow estimator
for pose-guided synthesis tasks (see Fig. 8 for details).

Finally, we use a multi-scale version of the three losses,
which are then weighted summed to compute the final loss.
Let I " and I D denote the resized i images of Iy and I; at scale
1 €{0,---,5}, the overall objective is given by:

“)

£Stagel = Zsl(£ (I(l) I(l) t(is

=0

! 0
+ ﬁlﬁge)xture I, I, Wt(ls
+pLrv(w ). (5)
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Fig. 4. The network structure of GarmentNet. Given the generated flow from
Stage-I, GarmentNet encodes information from the source and target domains
using a Source Domain Encoder (yellow) and a Target Domain Encoder (blue),
respectively. After warping-based alignment, the source domain features are
aggregated with the target domain features at multiple scales by our Decoder
(red). Finally, the generated foreground is alpha-blended with the residue
garment to synthesize garment parsing. In the testing stage, the source and
target image are from different persons.

To further stabilize training, an augmentation-based
self-supervision strategy is employed to regularize the learned
flow. Specifically, we apply random augmentation on r ratio of
source inputs to generate the target pose and pseudo ground-
truth. Formally, we use the following update rules to transform
the original data before an iteration of flow estimator training:

a ~ Bern(r),
Py < Aug(aPs + (1 —a)P;,0)
Il‘ < Aug(aIS + (1 - a)1t59)9 (6)

where Aug(-,0) denotes an augmentation transformation
based on cropping, affine transformation and flipping with a
random control parameter 8, and a denotes a binary random
variable generated by a Bernoulli distribution Bern(r). We set
the ratio of the Bernoulli distribution r to a small value such
that a small proportion of training samples are generated from
random synthetic transformation. This procedure can help
stabilize the flow model training as the flow estimator can
learn from simple affine transformations in the initial stage of
training before learning the complex pose deformation.

C. Stage-II: Coarse-to-Fine Synthesis

Based on the learned flow estimator in Stage-I, we propose
GarmentNet and SynthesisNet to sequentially synthesize gar-
ment parsing and image output following a coarse-to-fine
pipeline (Fig. 2 bottom). As illustrated in Fig. 4 and Fig. 5,
GarmentNet and SynthesisNet share a unified network struc-
ture, which utilize the learned flow in stage-I for feature
alignment. Afterwards, U-Net decoder serves to fuse infor-
mation from both the source and target domains. On top of
the decoder, an alpha blending layer is applied to preserve
background information and to generate final outputs.

Formally, GarmentNet utilizes [Gy, Ps] to encode source
domain information, P; to encode target domain information,
{wt(ﬁ 5 wt(l_l PR w,(5_)> s} from stage-I for alignment, and G}
to keep the shape of target hair and face. The notation [-, -]
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Fig. 5. The network structure of SynthesisNet. Given the generated flow
from Stage-I and the synthesized garment parsing, GarmentNet encodes
information from the source and target domains using a Source Domain
Encoder (yellow) and a Target Domain Encoder (blue), respectively. After
warping-based alignment, the source domain features are aggregated with
the target domain features at multiple scales by the Decoder (red). Finally,
the generated foreground is alpha-blended with the residue image to synthesize
image output. In testing stage, the source and target image are from different
persons.

denotes channel-wise concatenation. The output target garment
of GarmentNet is denoted by Gjy:

G, = GarmentNet([Gy, P;], P;,

0 1 5
{wt(~)>sa w[(~)>s, Y wt(~)>s >

.

Similarly, SynthesisNet (see Eq. 8) utilizes [I;, Ps] to
encode source domain information, [ét, P;] to encode target
domain information, {Wt(ols, wfis, <o+, W} from stage-I
for alignment, and I/ to keep the background, hair and face
of target image. The output of SynthesisNet is the synthesized
image I:

I, = SynthesisNet([Is, Ps], [Gy, P.],
{wt(zsa wt(]—)>s’ T wt(5—)>s > Itr)~ (8)

Since the two networks share the similar inputs format
and network structure, we elaborate on the shared network
structure in the next section.

Network Structure: As shown in Fig. 4 and 5, our model
relies on a source encoder Encg(+) and a target encoder Enc; (+)
to respectively generate multi-scale feature maps from source
and target domains inputs INg, IN;:

{fS(O)’ cee fS(S)} = EI]CS(INs)»
{ft(o)’ o ft(s)} = Enc;(IN). (C))

For GarmentNet, inputs are set to INg; = [Gy, Ps], IN, = P;.
Fgr SynthesisNet, inputs are set to INg = [[, Ps], IN; =
(G, Pi].

We use six stacked strided convolutional layers to imple-
ment Enc,(-) and six stacked strided convolutional layers
following seven residue blocks to implement Encg(-). The
additional residue blocks serve to increase feature represen-
tation capacity.

To perform spatial alignment, the source domain features
£ at all scales [ € {0, - -, 5} are warped to the target domain

by a bilinear sampler [12] according to the flow fields w,(is

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on November 28,2021 at 01:59:28 UTC from IEEE Xplore. Restrictions apply.



ZHENG et al.: POSE FLOW LEARNING FROM PERSON IMAGES FOR POSE GUIDED SYNTHESIS

for layers [ € {1, ---, 5}, formally:

£, = warpE?D; w ). (10)

After spatial alignment, a U-Net fusion decoder is used
for feature aggregation. However, instead of directly con-
catenating feature maps for aggregation, we propose a gated
multiplicative attention module to filter the misaligned source
domain features. Specifically, the gated multiplicative attention
filtering at scale / is defined as:

£, =2, 0 o (2T WOED), (11)

where o (-) represents the sigmoid function, © represents
element-wise multiplication and W is a learnable matrix
that measures dot product similarities between fs(l) and f,(l) on
to-be-learned linear space. The gated multiplicative attention
filtering can be efficiently implemented on the 2D feature
maps using 1 x 1 convolution, element-wise multiplication and
summation. Please refer to Appendix B for details. Building
on top of the gated multiplicative attention filtering operation,
our decoder uses the following equations to generate the
aggregated feature maps f[flle)cz

fa(yg)c = Deconv([fs(%,; f,(o) D,
£ = Deconv((£l ;£ 80, 1eq1,---.5). (12)

Afterwards, our network simultaneously generates fore-
ground content fg along with a mask M that ranges from 0
to 1 to avoid changing the residue content of the target r;.
Speciﬁcally,flgse)c is passed to two independent convolutional
layers to respectively generate foreground content fg and a

corresponding foreground mask M:
5
fg = Conv(f(E, e)c),

M = Conv(t})). (13)

Finally, the output content our is generated by
alpha-blending the foreground content fg with the residue
content r:

out=MOfg+(1—-M)Or. (14)

For GarmentNet, softmax function is applied after out to
generate the garment parsing, i.e. Gy = softmax (out). For
SynthesisNet, tanh function is applied after out to generate
the normalized image, i.e. fs = tanh(out).

Training Objective: For GarmentNet training, we use the
cross entropy loss between the target garment G; and predic-

tion G;:

LGarmentNet = — z Z (Gt)i,j,n log((ét)i,j,")’

o

5)

where i, j enumerate pixel positions and n enumerates
channals of garment parsing.

For SynthesisNet training, we use a combination of ¢ pixel
domain loss, VGG feature loss, texture loss, and GAN loss.
The training objective is represented as:

»CSynthesisNet =M L1+22Lv66+ A3 Liexture + A4 LGAN P (16)
I — 1
the synthesized image and the ground-truth,

where £ = computes the ¢ differences between

Lvce =

1903

vac,c,(ft) — fVG(;(I,)H computes feature map differences on
the relud_2 layer of the VGG network of the two image.

|6 (veatin) -G (fvc;c,u,))T\1
(Eq. 4) computes the texture-level differences of the two
images, and Lgan = (D(I;) — 1)* + D(IA,)2 measures how
well the synthetic image can fool a trained discriminator
D(-). Similar to CycleGAN [49], we use least-square dis-
tance [24] rather than negative log likelihood to compute the
LcaN, whereas the discriminator is implemented using the
PatchGAN architecture [11] with spectrum normalization [27].
The hyper-parameters A1, 12, A3, A4 are set to A1 = 1.0,
A2 = 0.1,A43 = 0.002,14 = 0.5 respectively in our
experiments.

Additionally, we use a similar augmentation-based self-
supervision strategy as described in Sec. III-B to regularize
SynthesisNet. During training, 25% percent of the source
domain samples come from the augmented target domain
samples to help SynthesisNet to learn from simple tasks first.

Similar to Eq. 4, Liexture =

IV. EXPERIMENTS
A. Dataset

We train and evaluate our method on the DeepFashion
[20] dataset, which contains 52,712 person images of sizes
256 x 256. Images that only contain trousers are removed
using DensePose [1], resulting in 40,906 valid images.
We randomly divide the dataset into 68,944 training pairs and
1,000 testing pairs. Additionally, we evaluate our DeepFashion
trained model on other datasets to understand how well our
model can generalize to unseen poses, clothing styles or
background.

As detailed in Section III-A, pose representation is
generated using DensePose, while garment representation is
generated using the method of [7]. Finally, we additionally
use keypoint heatmap [22] as pose representation to test our
algorithm.

B. Implementation Details

In Stage-I and Stage-II, we set the learning rate to
0.0001 for the flow estimator and the generator. Follow-
ing [27], the learning rate for the discriminator is 0.0004.
We adopt Adam [15] optimizer (f; = 0.9 and S> = 0.999)
in all experiments. Random cropping, affine transformation
and flipping are used to augment data. The flow estima-
tor, GarmentNet and SynthesisNet are trained for 20, 20
and 40 epochs, respectively. In Stage-I, we set the ratio
from Eq. 6 to r = 0.25 and the parameters from Eq. 5
to (so, S1,82,583,84) = (1,1,0.5,0.25,0.125), (Bo, f1, P2,
B3, pa) = (0.002,0.002, 0.002, 0.002, 0), (0, Y1, 72, 73, V4)
= (0.1,0.1,0.1, 0.1, 0).

Since our approach can adopt keypoint heatmap [22] as
pose representation by simply altering P, P;, we additionally
train our model using the key point representation while
maintaining other inputs unchanged.

C. Quantitative Evaluation

To quantitatively evaluate the synthesis results, low-level
metrics like Structural Similarity (SSIM) [43], Multi-scale
Structural Similarity (MS-SSIM) [44] and perceptual-level
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TABLE I

QUANTITATIVE COMPARISON OF DIFFERENT METHODS IN TERMS OF BOTH THE MASKED SSIM/MSSSIM/INCEPTION SCORE (IS) AND THE LEARNED
PERCEPTUAL IMAGE PATCH SIMILARITY (LPIPS) AT 256 x 256 AND 128 x 128 RESOLUTION. HIGHER SCORES ARE BETTER FOR METRICS WITH

UPARROW (1), AND VICE VERSA

Methods SSIM-1287 | msSSIM-1287 | SSIMT | msSSIMT IS-128T ST LPIPS] | LPIPS-128]
PG2 [22] 0.864 0911 0.857 0.891 3455 £ 0.226 | 4.266 = 0371 | 0.192 0.190
BodyROI7 [23] 0.842 0.882 0.837 0.865 3282 £ 0.173 | 3.855 £ 0.158 | 0.193 0.201
DSCF [36] 0.856 0.902 0.851 0.884 3.458 £ 0.198 | 4.226 &£ 0326 | 0.159 0.157
Vunet [4] 0.822 0.830 0.827 0.827 3424 £ 0.143 | 4.176 £ 0320 | 0.226 0.258
Soft-gate [3] 0.860 0.908 0.853 0.888 3.270 £ 0219 | 3.868 & 0.387 | 0.140 0.135
IF [18] 0.877 0.926 0.865 0.906 3262 &+ 0.293 | 3.809 & 0360 | 0.128 0.128
full model 0.854 0.905 0.843 0.884 3540 £ 0294 | 4.197 £ 0291 | 0.124 0.124
Ours-kp 0.831 0.870 0.831 0.852 | 3.646 + 0.285 | 4.295 + 0.296 | 0.163 0.169

Source Pg2 BodyROI Vunet

Fig. 6.

Stag—l Stage-ll Ours

warping  foreground

Stage-Il
mask

Comparison with the state-of-the-art approaches. The last four columns depict the warped source image, foreground prediction in stage-II, mask

prediction in stage-II, and our final output. In comparison, our method clearly produces the most visually plausible and pleasing effects.

metrics like Inception Score (IS) [34] and the Perceptual
Image Patch Similarity Distance (LPIPS) [48] are measured
on different approaches, including PG2 [22], BodyROI [23],
Vunet [4], DSCF [36], Soft-gated GAN (Soft-gate) [3] and
Intrinsic Flow (IF) [18]. For LPIPS, we use the linearly
calibrated Alex model, please refer to [48] for details. Since
our approach relies on the background information, we report
the masked version of all the metrics for fair comparisons. The
masks are generated by running [7] to exclude background,
hair, and face region. We additionally test all the metrics at
resolution 128 x 128 to measure similarities at a global scale.

From Table I, our methods (ours) substantially outperforms
the remaining methods in IS-based measurements and LPIPS
distances, as our texture-preserving flow is able to preserve
texture patterns form source images. In terms of the low-level
SSIM-based measurements, our method achieves competitive
performance compared to the other approaches. When trained
using keypoint heatmap (ours-kp), we observe similar high
IS scores for both models and better LPIPS scores for our
model. It suggests both models (ours and ours-kp) preserve
realistic texture. However, with the help of the DensePose pose
representation, our model (ours) generates better global shape.

D. Qualitative Evaluation
We conduct a subjective assessment to evaluate our method
qualitatively. Specifically, we ask 15 subjects to rank image

T
— . Best

M very good
M Good

sol- W Fair

Not good
Worst

Occurrences of Evaluated Scores
8
T

Vunet PG2 DSCF

BodyROI7

Soft-gate Ours

Fig. 7.  Subjective quality assessment of different algorithms. For each
algorithm, the bar depicts the number of occurrences of scores, while blue to
yellow colors represent the scores from the best to the worst.

qualities among the 6 algorithms ( [3], [4], [22], [23], [36] and
ours). The subjects are instructed to rank the six images, based
on the realism of the generated garments as well as global
garment structures. The subjects are then asked to provide
a score from 1 to 6 for each image, representing the best
quality to the worst quality, respectively. We plot the ranking
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RESOLUTION. HIGHER SCORES ARE BETTER FOR METRICS WITH UP ARROWS (1), AND VICE VERSA

TABLE II

QUANTITATIVE COMPARISON OF DIFFERENT FLOW TRAINING SCHEMES AND SYNTHESISNET TRAINING SCHEMES IN TERMS OF BOTH THE MASKED
SSIM/MSSSIM/INCEPTION SCORE (IS) AND THE LEARNED PERCEPTUAL IMAGE PATCH SIMILARITY (LPIPS) AT 256 x 256 AND 128 x 128

1905

Flow training schemes SSIM-1281 | msSSIM-1281 | SSIMT | msSSIM?T IS-1281 IST LPIPS] | LPIPS-128]
w/o multi-scale 0.822 0.853 0.825 0.839 4.115 £ 0.211 | 4.689 + 0.327 0.240 0.240
w/o texture 0.837 0.880 0.837 0.861 3.843 + 0.246 | 4.204 £ 0.245 0.217 0.217
w/o semi 0.835 0.880 0.834 0.861 3.978 + 0.348 | 4.412 £+ 0.223 0.196 0.196
full training scheme 0.836 0.882 0.835 0.863 3.934 £+ 0.274 | 4.404 £+ 0.331 0.193 0.193
SynthesisNet training schemes | SSIM-1287 | msSSIM-1281 | SSIM{ | msSSIM? 1S-1281 IST LPIPS| | LPIPS-128]
w/o flow 0.849 0.898 0.844 0.877 3.421 £ 0.177 | 3.952 £ 0.291 0.141 0.141
w/o att 0.853 0.904 0.848 0.883 3.391 £ 0.161 | 3.946 &+ 0.374 0.128 0.128
w/o semi 0.851 0.903 0.846 0.882 3.480 + 0.273 | 3.995 £ 0.333 0.128 0.128
full model 0.854 0.905 0.848 0.884 3.540 £ 0.294 | 4.197 £ 0.291 0.124 0.124
full model w/ joint 0.859 0.910 0.849 0.888 3.618 £+ 0.233 | 4.002 £ 0.458 0.123 0.123

I

w/o
Source

texture

multi-scale

Source w/o w/o w/o Full
multi-scale  texture semi objective
Fig. 8. Comparisons of different pose flow training schemes. Our full

flow training objective (Eq. 5) generates more visually plausible and pleasing
textures and more consistent flow.

histogram of different algorithms in Fig. 7. From the figure,
our method is most frequently chosen as the best due to
structurally consistent texture. DSCF [36] achieves the second
place due to its ability to maintain texture structure from
the source image using rigid transformations. The qualitative
results of different approaches, the warped source image and
foreground/mask prediction from stage-II are shown in Fig. 6.
It can be noticed that the existed approaches generate blurry
results or incorrect textures. By contrast, our method can
preserve texture details from source images. Notably, our
approach generates better warping results in comparison with
IF, especially under large pose changes.

e
Ry
Source w/o flow

Target
semi
Fig. 9. Visual comparisons of different SynthesisNet training schemes. Our
full model generates more visually plausible and pleasing texture details with
more coherent global structures.

E. Ablation Study

Pose Flow Training: To evaluate the effectiveness of each
component in the flow training scheme, we separately train
three variants of the proposed flow estimators: i) w/o multi-
scale, only computing loss at the finest scale, ii) w/o texture,
removing texture 10ss Lsexsure, and iii) w/o semi, removing
the augmentation-based self supervision. Table II compares
the three models with our full model by computing the SSIM,
IS, and LPIPS-based scores of the inversely warped images
using the trained flow at the finest scale. The inversely warped
images are also visualized in Fig.8. It is observed that our
full model outperforms w/o semi and w/o multi-scale in terms
of LPIPS scores. It is consistent with the visualization from
Fig. 8, showing that our full model can generate flow with
more visually plausible and pleasing details. The w/o multi-
scale performs well in IS scores, and it is possibly because w/o
multi-scale tends to retain the realistic original source image.
However, w/o multi-scale does not preserve the semantics
of the target pose. In terms of SSIM-based measurement,
the full flow training scheme achieves the best ms-SSIM
scores, suggesting that the full model is better at preserving
global structures.

SynthesisNet Design: To evaluate the effectiveness of each
component in training SynthesisNet, ablation studies are
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TABLE III

QUANTITATIVE COMPARISON OF VARIOUS APPROACHES ON THE MVC DATASET USING THE MODELS TRAINED ON THE DEEPFASHION DATASET.
PERFORMANCES ARE MEASURED IN TERMS OF THE MASKED SSIM/MSSSIM/IS SCORES AT 256 x 256 RESOLUTION AND 128 x 128 RESOLUTION.
HIGHER SCORES ARE BETTER FOR METRICS WITH UP ARROWS (1), AND VICE VERSA. TOP TWO SCORES ARE IN BOLD

Methods SSIM?T | SSIM-1281 | msSSIM?T | msSSIM-12871 IST 1S-1281

PG2 [22] 0.817 0.806 0.851 0.840 3.401 £ 0.269 | 3.662 £ 0.361
BodyROI7 [23] 0.798 0.792 0.828 0.823 3.043 £+ 0.250 | 3.039 £ 0.152
DSCEF [36] 0.816 0.810 0.846 0.841 3.358 £ 0.229 | 3.151 £ 0.229
Vunet [4] 0.806 0.794 0.840 0.833 3.294 £+ 0.190 | 2.871 £+ 0.222
Ours 0.836 0.839 0.857 0.853 3.603 £ 0.300 | 3.451 £ 0.426
Ours-MVC-finetuned 0.839 0.840 0.863 0.859 3.737 + 0415 | 3.365 + 0.273

7

BodyROI7

Pg2

Fig. 10.
depict our DeepFashion trained model and our MVC finetuned model.

performed in the following ways: i) we remove the flow
estimator for alignment, resulting in w/o flow, a UNet-like
structure that does not perform feature alignment, ii) we
replace the gated multiplicative attentive fusion modules with
concatenation operations, which is called w/o art, iii) we
replace the semi-supervised data generation scheme with
only the supervised data, which is called w/o semi. Table II
compares the qualitative scores in terms of SSIM, ms-SSIM,
IS and their masked versions. From the table, we observe that
the SSIM-based performances substantially deteriorate with-
out the flow-based alignment module. Meanwhile, the gated
multiplicative attentive fusion helps to improve the inception
scores of the generated images. Also, semi-supervised train-
ing improves performance marginally. Visualization is also
shown in Fig. 9. From the figure, we observe that our full
model is able to retain the global structure due to flow-based
alignment. Comparing w/o att and full, we see that with the
gated multiplicative attention module, our model generates
globally consistent texture details. In addition to the following
ablation models, we perform a joint fine-tuning on the trained
GarmentNet and SynthesisNet, which is called full model
w/ joint. From Table II, joint fine-tuning can further improve
the synthesis performance.

F. Generalization

To understand the generalization ability of our trained
model and how well our model can perform on real-world

i

B ‘ 1 - . 2
[ ey | |
Vunet DSCF Ours Ours

(trained on (finetuned on
DeepFashion) MVC)

Comparison with the state-of-the-art approaches on the MVC dataset. Patches are zoomed in to visualize detailed textures. The last two columns

datasets, we evaluate our trained model on three additional
datasets:

Multi-View Clothing Dataset: The Multi-view Clothing
dataset (MVC) [19] contains 161,260 person images and
645,040 pairs in total. We report the results on the MVC
dataset using various models that are trained on the DeepFash-
ion dataset. We also report the performance of our fine-tuned
model using 120,000 pairs selected from the MVC training set.
Table III shows the evaluation of our approach in comparison
to other approaches. The generated new-person images are
visualized in Fig. 10.

Amazon Fashion Video Data: We evaluate our approach on
a set of online video data. Specifically, we crawl clothing
item demo videos from the Amazon Fashion website. The
initial frame from various source video is used as the source
images to synthesize each frame from the target video. The
synthesized videos are shown in the supplementary materials.
In Fig. 11, the top row shows the target video, while the resting
rows show the synthesized video with different clothing styles
from source images. As demonstrated in Fig. 11, our approach
generates temporal-consistent frames with distinctive texture
details, suggesting that our method can effectively generalize
to unseen poses and clothing styles.

Garment Transfer to Real Person: To examine the applica-
bility of our approach in real-world scenes, we collect videos
of people in real scenes with various poses using a typical
smartphone. Fig. 12 visualizes consecutive frames of our
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Garment transfer on the Amazon Fashion videos. The top row shows the target frames, while the resting rows show the synthesized frames. The

horizontal axis represents the time step. Our approach can generate temporally consistent frames with distinctive texture details.

target

source

Fig. 12.
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Garment transfer on our self-collected real-world videos. The top row shows the target frames, while the remaining rows show the synthesized

frames. The horizontal axis represents the time step. Our approach can generate temporally consistent frames with distinctive texture details.

captured video and our transferred video, showing that our
approach can generate visually plausible and pleasing new
clothing styles under challenging real-world environments.

V. CONCLUSION

To better model person appearance transformation for
pose-guided synthesis, we propose a novel pose flow learning
scheme that learns to transfer appearance from target images
without using generated pseudo correspondence ground-truth.
Furthermore, we propose a texture preserving objective and an
augmentation-based self-supervision scheme, which are shown
to be effective for learning appearance-preserving pose flow.
Based on the learned pose flow, we propose a coarse-to-fine
synthesis pipeline using a carefully designed network structure
for multi-scale feature domain alignment. To address the mis-
alignment issue, we propose a gated multiplicative attention
module. In addition, masking layers are proposed to preserve
target identities and background information. Experiments on
the DeepFasion, MVC, and other real-world datasets have
validated the effectiveness and robustness of our approach.

APPENDIX A
ADAPTATION OF FlowNetS

To implement
from Eq. 1,

the flow estimator function Flow()
we use the FlowNetS network structure.

Algorithm 1 Gated Multiplicative Attention Filtering

l
Input: £,

Output: £

compute filter U(fﬁ(z—EW(Z)fta)) :
I: att = torch.sum(conv_W(f;",) *ft(l), 1)
2: att = torch.sigmoid(att)

perform filtering :
3: f = torch mul(fs_n,
4: return f

f(l)

f(l)

att)

However, several adaptations are made. First, we reduce the
channel of each convolution/deconvolution layer to 64 for
memory efficiency. Second, to improve the flow definition at
scale 0, the x4 bilinear upsampling layer at the end of the
original FlowNetS is replaced by two x2 U-Net upsampling
modules.

APPENDIX B
CODE FOR GATED MULTIPLICATIVE ATTENTION
FILTERING
We show that the gated multiplicative attention filtering

f(l)/t — f(l) V.00 (f(l)TW(l)ft(l)),

§—> §—>1
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from Eq. 11 can be implemented using 3 lines of code
in PyTorch in Algorithm 1, where function conv_W()
defines a 1 x 1 convolutional operation with its trainable
parameters wo,
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