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Noise-induced limits of detection in frequency
locked optical microcavities

Shuang Hao and Judith Su

Abstract—Ultra-high quality (Q) whispering gallery mode
(WGM) optical microcavities have been shown to be sensitive
biomolecular sensors due to their long photon confinement times.
We have previously experimentally demonstrated that a system
known as FLOWER (frequency locked optical whispering
evanescent resonator) can detect single macromolecules.
FLOWER uses frequency locking in combination with balanced
detection and data processing to greatly improve the sensitivity,
stabilization, signal-to-noise ratio (SNR), and the detection limit of
ultra-high-Q microcavities. Here we present the analytical basis
for FLOWER and explore its limits of detection via numerical
simulation. We examine the effects of key parameters such as Q-
factor and frequency modulation depth on the SNR of FLOWER.
We demonstrate that the frequency locked optical microcavity
system is limited by the shot noise from the receiver, as well as the
laser intensity noise. Using median filtering in combination with
step-fitting  algorithms, frequency locked ultra-high-Q
microcavities can detect resonance shifts as small as 0.05
attometers at one millisecond time intervals. Our results can guide
the choice of experimental parameters to achieve better sensing
performance in a variety of target applications, including
fundamental studies of protein-protein interactions and medical
diagnostics and prognostics.

Index Terms—Frequency locked loops, microcavity resonators,
noise cancellation, biosensing.

[. INTRODUCTION

In recent years, there has been a growing need for label-free
ultra-sensitive biochemical sensors for early disease
diagnostics and prognostics, environmental monitoring', public
health monitoring of bacteria and viruses?, and other
applications. Imaging based techniques are mature technologies
for detecting biological analytes, but these methods usually
require labeling of particles with tags, which can be complex,
time-consuming, labor-intensive, and costly.

We have previously developed a system known as FLOWER
(frequency locked optical whispering evanescent resonator),
which can detect single macromolecules in real time?.
FLOWER works by actively tracking the shift in resonance
wavelength caused by particles binding to an optical
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Fig. 1. Frequency Locked Optical Whispering Resonator (FLOWER) system.
(a) A schematic diagram of the FLOWER system. A 2 kHz oscillation dither
signal is used to modulate the laser frequency. A polarization controller (PC)
is used to control the polarization of the laser. A 50:50 beam splitter (BS) splits
the light into the signal and reference arms of an auto-balanced photoreceiver.
The output from the auto-balanced receiver is multiplied by the dither signal
and time averaged, thus generating an error signal, which is proportional to the
frequency difference between the laser and the microcavity resonance. A
proportional-integral-derivative (PID) controller sets the laser frequency to the
microcavity resonance according to the received error signal. (b) Artistic
rendering of a microtoroid optical resonator coupled to a tapered optical fiber
in the presence of binding analyte particles.
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microcavity. Ultra-high Q-factor microcavities* such as
microspheres’® and microtoroids® offer two main advantages for
biochemical sensing: on the one hand, they have narrow
linewidth resonance, which contributes to measuring extremely
small resonance shifts (on the order of attometers)’; on the other
hand, their small mode volume enhances light-matter
interaction, which provides the increased sensitivity needed for
single particle detection®. Bioanalytes, such as viruses’, DNA
oligomers'?, bacteria'!, and proteins’, are challenging to detect
in aqueous solutions as their refractive index is close to water.

Light continuously circulates in the resonator multiple times
based on the principle of total internal reflection®. When
particles adsorb or bind to the surface of a microcavity, they
become polarized and cause the resonance frequency of the
cavity to shift. The magnitude of this shift can be used for
detecting and sizing particles. The resonance frequency shift
may be calculated according to the Bethe-Schwinger cavity
perturbation formula'®. The relative frequency shift Aw /w is
the negative of the energy required to polarize the
nanoparticle |Wp|, divided by the total electromagnetic energy
stored in the unperturbed resonator>'2 W,

Aw _ AL _ |WP| ~ SbEgoa((‘))EpO (1)
wo | Ar We - 2 [ eger|Eg|2dV’

where ¢, is the permittivity of the background media, &, is the
permittivity of free space, &. is the dielectric constant of
silica'3, @(w) is the polarizability tensor of the particle, E is
the spatially-varying complex electric field amplitude for the
WGM, E, is the electric field amplitude for the unperturbed
WGM at the location of the bound particle, and t represents the
conjugate-transpose. The binding of a bioparticle will shift the
resonance wavelength in the WGM resonator a miniscule
amount. Another way to consider the cause of the resonance
shift is that by entering the evanescent field of the WGM, the
bound nanoparticle becomes part of the microcavity, which
increases the effective round-trip path length. This increase in
resonator path length causes the resonance wavelength to shift
to longer wavelengths.

Label-free optical biosensors based on WGM cavities can
detect macromolecules by tracking the resonance shift of the
microcavity. The original method to track the resonance is by
sweeping the wavelength of a tunable laser and measuring the
transmission spectrum®!4. However, this approach is limited by
the wavelength scanning speed, which can be a few nanometers
per second for piezo-tuned laser'®. In the FLOWER system,
Pound-Drever-Hall (PDH) locking technology!'®'® is used to
improve the response time of the biosensor, shortening the
minimum detectable step interval to 1 ms. The PDH technology
also improves the accuracy of tracking the WGM. WGM
sensors have also been enhanced through coupling with
plasmonic nanoparticles. The plasmon resonance provides a
local enhancement of electric field in the numerator of Eq. (1),
potentially leading to orders of magnitude resonance shift
enhancement'®?’. The optical WGM resonators coupled with
single gold nanorod can be utilized as a ultrasensitive

thermometer, which can resolve resonance shift that is smaller
than 100 Hz?'. Here we present the analytical basis for
FLOWER, and construct a numerical simulation. Through the
numerical simulation, we optimize the parameters of FLOWER
and explore its limits of detection by analyzing the different
noise effects.

II. METHODS

A. Overview of FLOWER

Figure 1 shows a schematic of the FLOWER system. An
optical WGM microcavity is evanescently coupled to the
system through a tapered optical fiber'2. A tunable continuous
wave (CW) laser is locked to a WGM resonance using
frequency locking. A frequency modulation dither signal is
applied to the piezoelectric transducer in the tunable laser. Light
is transmitted from the WGM resonator into an auto-balanced
receiver, which can reduce laser intensity noise by 55 — 70 dB?2.
The error signal, which is the time average of the product of the
dither signal and receiver output signal, is proportional to the
difference between the laser wavelength and the WGM
resonance wavelength. A proportional-integral-derivative
(PID) controller is used to control the laser wavelength. The
PID controller receives the error signal and generates feedback
to the laser controller to decrease the absolute value of the error
signal to zero. In this way, the laser wavelength is locked at the
WGM resonance wavelength. Therefore, we can measure shifts
in WGM resonance in real time as particles bind by tracking the
laser wavelength through the PID controller output. For these
experiments, a tunable visible laser with wavelength
approximately 633 nm is used due to the biophotonic diagnostic
window where light absorption in water is minimal.

B. Numerical simulations

FLOWER’s particle detection ability can be evaluated
through numerical simulation. Mode-coupling theory and
analytical modeling of the frequency locking process is used to
generate a Simulink model. The limit of detection of FLOWER
is affected by the spectral lineshape of the WGM resonance
(e.g., Fig. 2a), which also determines the error signal used in the
feedback loop when the resonance shifts (e.g., Fig. 2b). To
derive the lineshape, the WGM resonator in Fig. 1(a) can be
modeled using spatial coupled mode theory?***, When driven at
a resonant wavelength A, = 2mc/w,, the real, time-dependent
electric field can be written as,

E(r,t) = Re[G(t) E(r) e/®ot] = Re[A(t)E(r)], (2)

where G(t) is a slowly-varying amplitude function that
accounts for injection or loss of light into the resonator at time
scales long enough that a monochromatic approximation
remains valid, E(r) describes the spatial variation of the
complex electric field for the resonant mode, and e/®of
accounts for the high-frequency oscillations of the electric field
wave. All time dependent terms are combined in A(t). In
spatial coupled mode theory, the units of electric field are
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partitioned between A and € such that € has unit power:

1
f Sl ar=1, 3)
A

where A is the cross-section of the mode field area, and Z is the
characteristic impedance of the mode. Therefore, € has units of
V m! W2 and A has units of W!2. The power of the travelling
wave within the resonator is |A(t)|?, and thus A is called power
amplitude. We can correspondingly define an energy amplitude
with units J'2,
2mR
at) =A@ |— (4)
Vg

where 2R is the resonator circumference and vy is the group
velocity of the resonant mode. The energy stored within the
resonator is |a(t)]?.

The optical system in Fig. 1b is viewed as a lumped
oscillator, which we assume an energy amplitude decay rate
1/t =1/t + 1/7,, accounting for both intrinsic loss (I) and
external power (e) coupling out from the resonator back into
the fiber. The resonator is being driven by light coupled in from
a tapered fiber carrying optical power |s;|? with a real-valued
mutual coupling coefficient u between the resonator and fiber.
The energy amplitude balance differential equation resulting
from these assumptions is,

%a = (jwo - %) a— jus, (5)

where the jw, term preserves the high-freqency time
dependence in Eq. (2), and the —j coefficient in front of the us;
term is an arbitrary phase factor for the incident light, which is
commonly used in the literature?®. The relationship between u
and 7, is u? = 2/7,. The equation connecting the incident and
transmitted amplitude down the output fiber is :

Se = s — jua, (6)

where s; represents the incident light amplitude and s;
represents the transmitted wave amplitude. Considering a
steady state incident signal s; with time dependency
s;~exp (jwt), which can be at a different frequency w from the
resonance frequency w,, a solution to Eq. (5) is:

.2
2
o 1_—(51.. (7)
Hi(w=wo)

When this is introduced into Eq. (6), we have
2

St Te (8)

Si Hj(w-wo)’

This equation describes the typical Lorentzian lineshape of a
resonance, as plotted in Fig. 2a after taking the complex

magnitude squared.

The quality factor of the resonator can be calculated by its
definition as 2w times the ratio of the time averaged stored
energy to the energy dissipated per optical circulation. We
consider the case in which the microcavity is excited to an
energy of |ay|? and there is no incident light, s; = 0. From Eq.
(5), the microcavity energy decays as

la(®)I? = laol?exp (=), (8)

The intrinsic loss of the microcavity is caused by scattering,
absorption, and radiative process. For the resonator, the
dissipated power caused by the intrinsic loss is

2
Isi(®)1F = Zla®)I*. (9)
In the same case, from Eq. (6), the transmitted power is

Ise (O = () = la@[* (10)

The stored energy in microcavity is given by Eq. (8). The power
coupled out of the resonator is given by Eq. (10), Thus

0=w la@®)I? _ @ot

T 0@ RHsi 012 T 2

(11)

where the stored energy is given by |a|? and the total dissipated
power of the resonator is given by |s.|? + |s;(t)|?. The Q-
factor is inversely proportional to the loss of the WGM
resonator. The high-Q requirement of a biosensor can be
routinely obtained experimentally in water with microtoroids?
or microspheres.’ The Q-factor can also be calculated from the
transmission spectrum of the WGM resonator, shown in Fig. 2a.

Q= i—g, where AA is the full width at half-maximum linewidth

of the resonance. In Fig. 2a, the Q factor calculated from the
transmission spectrum is equal to the Q factor calculated from
Eq. (11).
In the FLOWER system, we modulate the frequency of the
laser. The power amplitude of the laser output is:
Aps(t) = Aoef[wl—ﬂo sin(@t)]t. (12)
where B, is frequency modulation depth, and Q is the dither
signal frequency. The higher the frequency, the better the time
resolution of the system. The frequency modulation bandwidth
is limited by our choice of laser and Q is set as 2 X 2 kHz. The
incident light frequency is w = w; — B, sin(2t), where w, is
the laser’s central frequency without modulation. In the
classical PDH technology, the laser is phase modulated by a
Pockels cell'’. In contrast, in our FLOWER system the tunable
laser is frequency modulated by tuning the mirror position in
the external cavity of the laser!®. The 50:50 beam splitter splits
the laser light into the signal and reference light. Neglecting
losses in the beam splitter, laser coupling, and assuming a
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perfectly adiabatic fiber taper, the incident light power in the
vicinity of the microtoroid is half of the laser power |s;|? =
|Ao|?/2, and the transmitted power is

4 1
X

T
TUTe  —H+(w—wo)?

Isel? = Isi|?[1 —

1. (13)

In the numerical simulation, Eq. (13) is used in the microcavity
block for microcavity transmission. In the FLOWER system,
the laser’s central frequency w, is extremely close to the
microcavity resonance w,. Through Taylor expansion about the
point wy, Eq. (13) becomes

2 2
sl = Ao 2T
2 Tle (14)
4T .
e [w1 — wo — By sin(Qt)]?}.

The auto-balanced receiver converts the transmitted light power

|s|? into electrical voltage
— 2
Vpp = (Tpp + Text) " R - Is¢l%, (15)
where 1pp is the internal resistance of auto-balanced

receiver, 7., is the additional external resistance for the
receiver and R is the responsivity of the photodiode in the
receiver in A W-'. The auto-balanced receiver circuitry can
automatically adjust the gain g to satisfy the balance equation
[s¢|> — g - |s,|* = 0 at direct current (DC). As such, the auto-
balanced receiver removes the DC component of the receiver
output voltage vp,. Then the auto-balanced receiver output
voltage becomes:

_ |Ao|>(rpp + Texe)R ] 4t

Vreceiver = 2

UTe (16)

X [—2((»1 — wg) B, sin(Qt) — ﬂT‘)Zcos(ZQt)],

In the numerical simulation, the receiver block consists of Eq.
(16) and the balance equation. The receiver output voltage is
mixed with the dither signal, sin(Qt). Time averaging the
mixed signal generates the error signal v,,..op:

2

Q Q )
X f Vreceiver * SIN(QL) dt
0

Verror = E

(17)

214
= —|Ao|*(rpp + Text)R e Bo(wy — wo).

This equation represents the central, linear part of the error
signal plotted in Fig. 2b, where the linearization used in the
Taylor expansion in Eq. (14) is valid. The coefficients in front
of (w; — wy) are constant and show that the error signal is
proportional to the difference between the laser frequency and
the WGM resonance. Inputting the error signal to the PID
controller provides a feedback loop to the laser, which can
stabilize the laser’s frequency and lock the laser’s central
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Fig. 2. WGM characterization. (a) WGM transmission near resonance. The
Q-factor of the WGM resonator is 107. (b) The error signal Vg, is generated
by demodulating the 2kHz dither signal from the receiver output. The
frequency modulation amplitude is 60 MHz.

wavelength w; to the resonance of the microcavity w,. Eq.(17)
is used in the average block in the Simulink model.

C. Simulink

Using Simulink, we built a simulation system based on the
schematic of FLOWER shown in Fig. 1a. The full Simulink
model is shown in the Appendix A. The input laser power is set
at 2 mW. Initially, the laser output wavelength is 633 nm plus
the dither signal. The microtoroid in Fig.1b is simulated using
the optical resonator transmission Eq. (13). The receiver is
simulated in Simulink using Eq. (15). Fig. 2a shows an ultra-
high Q microcavity resonance (Q =1.01 x 107) at 633.09826
nm wavelength. In Fig. 2b, the error signal is acquired by
scanning the laser wavelength. This curve shows that the error
signal is proportional to the difference between the tunable laser
wavelength and microtoroid resonance in the range 633.09825
nm — 633.09827 nm. Therefore, the FLOWER system can
remain locked to the microcavity resonance only when the
discrete shifts in resonance wavelength are smaller than 10 fm.
During frequency locking, the microcavity resonance
wavelength can be calculated from the PID output voltage.

III. RESULTS AND DISCUSSION

The closed loop system total noise level and response time
determine the detectable particle size and time resolution of the
system. In the simulation, we optimize the system parameters
for the minimum detectable particle size and resolvable step
interval.

A. Noise level determination

The FLOWER system has three main noise sources: (1) shot
noise from the photodiode in the auto-balanced receiver, (2)
laser intensity noise, which is defined as fluctuations in the
output power of the laser, and (3) laser phase noise, which leads
to a finite laser linewidth.

Shot noise from the photodiode in the auto-balanced receiver
(Nirvana™ Auto-Balanced Optical Receivers 2007%)

The auto-balanced receiver is limited by shot noise. The
mean power of the shot noise for a single photodiode in the
auto-balanced receiver is%°;

aszhot = ZeRPsignalAfr (18)
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Fig. 3. Impact of phase noise on the microcavity transmission spectrum. (a)
Phase noise broadens and reduces the contrast of the resonance dip due to
broadening of the laser linewidth. The red curve neglects phase noise. The
laser linewidths for the other curves are shown in the plot. (b) The observed
extrinsic Q factor of the microcavity as a function of laser linewidth.

where e is the electron charge, Pg;gnq is the power of the
incident light and Af is the 3 dB bandwidth of the photodiode,
which is 125 kHz?. The SNR of the shot noise is the ratio of
the mean power of the electrical signal P, over the mean power
of the shot noise 63,,;:

SNR o (Pe) _ (Rlsc|*)? _R|5t|2
shot noise szhot ZeRlstlef ZeAf

= 121dB.

(19)

Increasing the incident optical power can improve the SNR of
the shot noise. However, the incident optical power is limited
by the saturation power of the auto-balanced receiver. In the
numerical simulation, the signal and reference power of the
auto-balanced receiver are set close to the receiver’s saturation
power (1 mW). As a result, the SNR of the shot noise is 121 dB
in the numerical simulation.

Laser intensity noise

The relative intensity noise (RIN) of the tunable laser
(Velocity TLB-6704) is -117 dB/Hz">. The SNR of the laser
intensity noise measured by the receiver is the ratio of the
receiver electrical signal power (P,) over the receiver electrical
noise power 8P, caused by the laser intensity noise, excluding
any contributions from shot noise and thermal noise?’*

(R @D (s
SNRintensity noise — 6_Pe - @ - W
__1 (20)
RIN X Af

! = 4.0095 x 10°,

T 10-117Hz-1x125000 Hz

where i is the receiver electrical signal current and i, is the
receiver electrical current noise. The SNR of the intensity noise
can be expressed in the logarithmic decibel scale
SNRintensity noise = 66.03dB. Additionally, the auto-balanced
receiver can suppress the laser intensity noise by 55 — 70 dB22.
Therefore, the SNR of the intensity in the FLOWER system is
121.03 — 136.03dB, which is approximately the same level as
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Fig. 4. Individual particles bind to the microcavity at a time interval of 10 ms.
The dither amplitude affects the SNR of the resonance wavelength shift caused
by particle binding. The green curves in (a) and (b) show the true the real
particle binding events. (a) The Q of this microcavity is 10° and the dither
frequency amplitude is 15 MHz (20 fm in wavelength). The step height is set
at 3 am. (b) The dither amplitude is changed to 100 MHz (134 fm in
wavelength) and the step height is 3 am. The difference in noise level is
apparent. (c) The SNR of the resonance wavelength shift response for different
dither frequency amplitudes. The optimal dither amplitude is 15 MHz for this
resonance. (d) Higher quality factor WGMs result in smaller optimal dither
amplitude.

shot noise in the auto-balanced receiver.

Laser phase noise

The origin of the laser phase noise is the quantum noise from
spontaneous emission into the cavity mode’® and some
technical noise, (e.g. vibration of cavity mirrors or temperature
fluctuations). The phase noise leads to a finite linewidth of the
tunable laser. In the numerical simulation, the laser power
spectrum is considered as a normalized Lorentzian shape?!.
Considering the phase noise, the power amplitude of the tunable
laser is changed to:

Aps(w,t) = Ay eJlw1=Bo sin(ﬂt)]t, 21)

7 (0-w1)?+(C)?

where w is the laser optical frequency, and I' is the laser
linewidth. The microcavity transmitted power becomes:

5 400 1 )
[se? = ElAlas(w' )|
y 1 14 (22)
S — - P

X [1- 1
T—2+(w—w0)2

T1Te

In the numerical simulation, Eq.(22) describes the transmission
in the microcavity block when phase noise is considered.
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In Fig. 3a, compared to the resonance without phase noise
(red curve), whose minimum value is 0, the minimum value of
the resonance for a 20 MHz linewidth phase-noise-broadened
laser (green curve) is increased to 0.2226. When the finite
linewidth laser is scanned to the resonance wavelength, the tails
of the laser spectrum are detuned from the resonance
wavelength of the WGM. The transmitted power for this part of
the laser spectrum is greater than zero, reducing the depth of the
transmission dip.

The intrinsic Q factor of the microcavity is 1.01 x 107,
which is calculated from Eq. (11). In Fig. 3b, when the laser
linewidth is greater than 2 MHz, it broadens the microcavity
transmission spectrum, and the extrinsic Q factor of the
resonance begins to drop significantly. However, when the laser
linewidth is smaller than 2 MHz, the Q value remains
approximately at its intrinsic value and phase noise has a
negligible impact on the transmission spectra, and hence a
negligible impact on the response function we use to model the
microcavity in Simulink. In the FLOWER system, the linewidth
of the tunable laser is 200 kHz, which is significantly smaller
than 2 MHz, and therefore, we neglect phase noise in the
remainder of our results presented below.

B. Effect of dither amplitude

Figure 4 shows the relationship between the system SNR and
the dither amplitude. In Fig. 4a, the resonance shift curve
records every step caused by particle binding. In Fig 4b, the
steps input into the Simulink model are the same as in Fig. 4a,
but the dither amplitude is increased from 15 MHz to 100 MHz,
resulting in a greatly reduced SNR. The accuracy for the
measured step positions and heights are correspondingly
reduced. For a microcavity with Q = 108, the SNR in response
to 3 am input steps reaches a maximum value of 30.9 dB when
the frequency modulation depth B, = 2m X 15 MHz . The
relationship between the optimal dither amplitude and
microcavity Q-factor is shown in Fig. 4d. A larger error signal
slope can provide a larger gain for the feedback loop for a given
difference between laser wavelength and microcavity
resonance. For the optimal frequency modulation depth, it is
best to maximize the error signal slope. We find that the ratio
of optimal dither wavelength amplitude over the resonance
linewidth is a constant

Ao
dither _ &Q = 0.03196.

AL AN

(23)

The classical PDH technology uses a phase modulation with
phase modulation depth §,. The experiment setup usually
restricts the Q factor of the cavity and the laser wavelength
choice. For the classical PDH technology, people often adjust
the phase modulation depth f8,, for high sensitivity. The optimal
modulation depth S, is 1.08 for the restricted Q factor of cavity
and laser wavelgnth’?. Instead, the FLOWER introduces a
direct frequency modulation into the tunable laser output. The
optimal frequency modulation f, depends on the laser
frequency and the cavity’s Q factor through the Eq.(23).

— Particle size = 0.1 am
=) —_ A
g = =
g08 t 1‘ 5081 Add median filter |
= > TV
206 "‘ 206 r,.,.]”»-
o Ml‘m V‘N“ 3 -
o M ‘ 151 0 !
£04 W S04 Fﬁ—JJU/*’
g M g ol
172}
&r’)’ 0.2 &2 0.2 pf
0
120 0 30 60 90 120
(a) Tlme (ms) (b) Time (ms)
0.8
. Particle size = 0.05 am P
g g
0.6 E0.6 Add median filter
& & U
= m 2 ad
2 04 m 0.4 A
g ’ g l i P
: wl P
2 0. 3l } 202
o~ o~
0
120 0 30 60 90 120
(c) Tlme (ms) (d) Time (ms)
1 —A—Noise
Random paI‘tiClC Ao i 10 —M— Detectable step height
208 binding N g
g oA =
= TvF 2= |
sz 06 -/‘HJ K =1 A
: " :
504 rﬁ =
=
2 v 5 )
) $0.1
& 0.2 MWﬁJ S
(=4 \=
O " . "
0 20 40 60 80 10* 10° 10° 10
(€) Time (ms) §d) Q

Fig. 5. Limit of detection in small particle sensing. (a)-(e) Step traces in
response to simulated particle binding events. Green curves are the true binding
events input into our model. Blue curves represent raw output data (a), (c) or
data processed using a median filter with a 3 ms window (b), (d), (e). Red
curves are the result of an automated step-finding algorithm operating on the
blue curve. Step heights are either 0.1 am (a), (b), 0.05 am (c), (d), or randomly
drawn e. Step time intervals are either 20 ms (a)-(d) or randomly drawn (e). (f)
Comparison between empirically determined limit of detection and output
noise level for different microcavity quality factors when using an optimal
dither amplitude. The noise level is based on the raw trace data, and the
detectable step height is based on the on the trace after median filtering and
step-fitting algorithm.

C. Effect of data post-processing

The use of step-finding algorithms and a median filter can
enable better single particle resolution’*3*. Figure 5 shows the
simulation results from a microcavity with Q = 107. A step-
fitting algorithm®* is used to find all the steps based on either
the raw data or filtered data. In Fig. 5b, the median filter
removes most of the high-frequency oscillations in the raw data.
The step-fitting algorithm can find the step height and position
precisely. For these 0.1 am steps, the error between the
recovered step heights and those input into the simulation is less
than 10%. When the step height is reduced to 0.05 am (Fig. 5¢),
the step-fitting algorithm finds five steps in the raw data; one
step at time t = 70 ms is missed. However, after median filtering
with a 3 ms window, all six steps are recovered (Fig. 5d).

In a real experiment, the time interval between particle
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Fig. 6. Step time resolution. (a) Four particles bind on a Q~107 microcavity.
In this case, an individual particle causes a 1 am resonance shift. The blue
curve is the resonance shift after a 3 ms median filter has been applied. The
red curve is a step-fit graph based on the blue curve. (b) Step parameters
necessary for accurate detection. Binding events above a curve (larger heights
and/or longer time intervals) can be accurately recovered by a WGM of the
corresponding Q.

binding events is random. Fig. 5e shows 6 particles binding to
a microcavity at random time intervals drawn from a Poisson
distribution with expected value 15 ms. The particle size
(defined here by the step height of the expected resonance shift)
varies from 0.07 am to 0.16 am. In Fig. Se, the step-fitting curve
precisely captures the particle binding events, and the recovered
step heights match the input particle sizes. Fig. 5f demonstrates
the relationship between noise level of the resonance shift data
and minimum resolvable step height. Their values both
decrease as the Q-factor of the microcavity increases. The
minimum resolvable step height is approximately equal to the
noise of the FLOWER system.

D. Time resolution

The time resolution of the system is also important,
especially for measuring discrete binding events in analyte
solutions of high concentration. The minimum resolvable time
interval between steps depends on the step height and Q-factor
(Fig. 6). Our simulations indicate this to be only slightly longer
than the system response time, which is based on the dither
frequency period of 0.5 ms. The median filter window also
affects the time resolution. After trying different median filter
windows, 3 ms is the optimal median filter window for particle
binding event detection.

In Fig. 6a, four particles in total bind on a microcavity over
100 ms. The binding of two particles happens around 30 ms.
The time between these two particle binding events is 1 ms.
Using the step-fitting algorithm, the system is unable to
distinguish the two separate steps and fits them as a single step
of double height. The other two particles bind at around t=60
ms. The time between these two binding events is 3 ms. In this
case, the two separate steps are clearly distinguished after step-
fitting. Fig. 6b demonstrates the relationship between the
minimum distinguishable step time interval and the minimum
detectable step height after median filtering and step-fitting. If
the error between the recovered step time and input step time is
less than 1 ms and the error in recovered step height is less than
35%, we consider the step to be accurately recovered. The
minimum recoverable step height is relatively constant for time
intervals longer than 1 ms, but diverges rapidly for intervals
shorter than 1 ms. We therefore conclude that the response time
of the simulated FLOWER system is 1 ms. This response time

is mainly determined by the dither signal frequency (here 2
kHz) and the PID controller response. In the simulation, the
appropriate P, I, D parameters (P = 0.1, I = 800, D=300) are
applied to the PID controller. This makes the minimum
detectable step interval of the system close to the dither period.
The fast response time reduces the impact of low frequency
noise, such as 1/f noise, mechanical vibration, and thermal
noise. In Fig. 6a, the step height error is the noise accumulation
over the step rise time. For low frequency noise, the
accumulated error is quite small compared to the step height.
Therefore, low frequency noise sources are ignored in the
numerical simulation.

IV. CONCLUSION

In conclusion, our work examines through numerical
simulation the limits of detection of FLOWER in response to
discrete particle binding events. The shot noise from the
receiver and the laser intensity noise both affect the limit of
detection for small particle binding events. The SNR of the
system can be optimized through a choice of dither frequency
amplitude, use of higher quality factor microcavities, and by
increasing the laser power of the system along with a
photodetector capable of handling that power. Based on these
results, using existing commercial equipment, FLOWER is
expected to be capable of detecting 0.05 attometer shifts at time
intervals under one millisecond. The optimal dither amplitude
was found to be 0.032 times the resonance linewidth. Higher
quality factor micro-resonators can reduce the noise level and
lower the minimum resolvable step height. For a fixed Q value
microcavity, acousto-optic modulation can substitute direct
frequency modulation of the laser. The bandwidth of an
acousto-optic modulator can be as high as 27 MHz*. For a wide
range of modulation frequencies, we can adjust the gain
parameter in the PID controller for tight and stable frequency
locking. Use of a broad bandwidth acousto-optic modulator in
FLOWER or a lithium niobite phase modulator could greatly
increase the dither signal frequency. This can also decrease the
response time of the total system and improve the detectable
step time resolution.

APPENDIX A

A. Details of the numerical simulation of FLOWER in
Simulink

To achieve frequency locking, the initial laser wavelength
should approach the microcavity resonance. The initial laser
wavelength is in units of nanometers. This constant value is
added to the PID output signal to set the laser wavelength. This
dynamic wavelength is what FLOWER tracks as particles bind.
The dither signal output voltage is converted to a wavelength
signal. The converter output signal is added to the laser
wavelength to simulate frequency modulation. The power
component sets the laser power to 2 mW. Additive Gaussian
white noise (AGWN) is added to the laser intensity. The power
signal and the frequency signal pass through the microcavity to
yield the transmitted power in mW. The transmitted power
through microcavity can be calculated using Eq. (14) in the
main text. In the microcavity block, the input parameter P is the
incident light power P = |s;|? = |4,|?/2, the w represents the
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Fig. 7. FLOWER Simulink model

incident light angular frequency w, and the w0 stands for the
microcavity resonance angular frequency w,. The resonance
shift signal block sends a signal to change the resonance
frequency w, of the microcavity. The reference signal equals
half of the tunable laser power |s, |2 = |s;|? = |4,]%/2. In the
reference block, the input P represents the reference light power
P =|s.|* and w stands for the reference light angular
frequency w.

The transmitted power and reference power are separately
added with shot noise by the shot noise AGWN components.
Although shot noise a Poisson process, it can be approximated
here as AGWN. For small photon counts, the shot noise is low,
and the system is dominated by other noise sources, making the
error between Gaussian and Poisson distributions insignificant.
For large photon counts, the central limit theorem ensures that
the Poisson distribution approaches a Gaussian distribution.
Therefore, the shot noise is approximately modeled using a
Gaussian distribution.

The Mean 1, 2 and Receiver parts work as the auto-balanced
receiver, which converts the input power to an output voltage
signal in volts. For the receiver, the output voltage is calculated
from Eq. (16) in the paper. The auto-balanced receiver output
voltage is Vreceiver = (Tpp + Text) "R * (lstlz -9 |Sr|2)- The
adjusted reference channel gain g equals to the ratio of signal
to reference power, which can automatically adjust to ensure
the balance equation |s;|? — g - |s,|? = 0. The auto-balancing
is the result of a low frequency fouory feedback loop that
adjusts the reference channel gain g. The gain-compensation
cutoff frequency fi,¢orf must be set below 2 kHz, which
corresponds to the dither frequency. So that noise cancellation
is not degraded. In the receiver block, the input parameter Ps
represents the light power from signal channel, Pr is for the
reference channel light power, Psm stands for the DC
component (time average) of Ps, and Prm stands for the DC
component of Pr. The receiver output signal is mixed with the
dither voltage to generate a voltage signal. The voltage signal is
transformed into an error signal through the averaging

components. The averaging process is described by Eq. (18) in
main text. The error signal is in units of volts. The PID
controller uses the error signal to generate a wavelength signal,
which moves the laser’s wavelength. After the PID block, the
converter block converts the PID output voltage signal to
wavelength signal using the ratio is 2 x 107> ™M/, This
parameter is adjusted based on the frequency locking condition
in the system by observing the resonance shift signal. If the
resonance shift signal has a large oscillation, the parameter P
should be decreased until the resonance shift signal stabilizes to
a constant value. If the resonance shift trace has a small
oscillation near the step, then the parameter I should increase,
and P should decrease to keep P-I constant until the
fluctuation of the resonance shift signal disappears. The
appropriate P, I, D parameters (P = 0.1, I = 800, D =300) are
chosen based on the error signal. When suitable PID parameters
are applied to FLOWER, the error signal can rapidly drop to
zero. We note that for this simulation, the time input into the
microcavity is unnecessary but for other microresonator
applications such as beat signal detection, the phase of the
electric field is necessary, and the time block is needed.

B. Step-fitting algorithm

Finding steps

The step-fitting algorithm®* adds a large step first. The first
large step is positioned is to minimize the y? value of the fit. The
left plateau value equals the average of the data on the left side
of the first step. The right plateau value equals the average of
the data on the right side of the first step. The step size is the
difference between the left plateau value and the right plateau
value. Subsequent steps are found by adding new steps to the
plateaus of the previous steps. Each time, one new step is added
to the previous plateaus. Each new step is positioned to
minimize the ¥* value.

Evaluating step fits

The number of fitting steps is essential. If the fitting step
number is small, the step fit is underfit and there are still some
steps hidden in the data. If the data is fit with more steps than
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the real step number, the step fit is overfit. Some small fake
steps are divided by the real large steps. For the best step fit, the
number of the fitting steps is equal to the number of the real
steps in data. To find the best step fit, a counter-step fit is
generated based on the step fit. Every counter-step is found on
the plateau of the corresponding step fit by minimizing the y?
value of the counter-step fit. In this way, each counter-step fit
has the same step number with the corresponding step fit. A
‘step indicator’ S is defined as the ratio between the ¥ value of
the step fit and the ? value of counter-step fit. The step indicator
S continually increases until the step fit is the best step fit; then
the ratio S decreases slowly to ~1. The best step fit corresponds
to the maximum of the step indicator S.
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