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 
Abstract—Ultra-high quality (Q) whispering gallery mode 

(WGM) optical microcavities have been shown to be sensitive 
biomolecular sensors due to their long photon confinement times. 
We have previously experimentally demonstrated that a system 
known as FLOWER (frequency locked optical whispering 
evanescent resonator) can detect single macromolecules. 
FLOWER uses frequency locking in combination with balanced 
detection and data processing to greatly improve the sensitivity, 
stabilization, signal-to-noise ratio (SNR), and the detection limit of 
ultra-high-Q microcavities. Here we present the analytical basis 
for FLOWER and explore its limits of detection via numerical 
simulation. We examine the effects of key parameters such as Q-
factor and frequency modulation depth on the SNR of FLOWER. 
We demonstrate that the frequency locked optical microcavity 
system is limited by the shot noise from the receiver, as well as the 
laser intensity noise. Using median filtering in combination with 
step-fitting algorithms, frequency locked ultra-high-Q 
microcavities can detect resonance shifts as small as 0.05 
attometers at one millisecond time intervals. Our results can guide 
the choice of experimental parameters to achieve better sensing 
performance in a variety of target applications, including 
fundamental studies of protein-protein interactions and medical 
diagnostics and prognostics.  
 

Index Terms—Frequency locked loops, microcavity resonators, 
noise cancellation, biosensing. 
 

I. INTRODUCTION 

n recent years, there has been a growing need for label-free 
ultra-sensitive biochemical sensors for early disease 

diagnostics and prognostics, environmental monitoring1, public 
health monitoring of bacteria and viruses2, and other 
applications. Imaging based techniques are mature technologies 
for detecting biological analytes, but these methods usually 
require labeling of particles with tags, which can be complex, 
time-consuming, labor-intensive, and costly. 

We have previously developed a system known as FLOWER 
(frequency locked optical whispering evanescent resonator), 
which can detect single macromolecules in real time3. 
FLOWER works by actively tracking the shift in resonance 
wavelength caused by particles binding to an optical 
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I
Fig. 1. Frequency Locked Optical Whispering Resonator (FLOWER) system. 
(a) A schematic diagram of the FLOWER system. A 2 kHz oscillation dither 
signal is used to modulate the laser frequency. A polarization controller (PC) 
is used to control the polarization of the laser. A 50:50 beam splitter (BS) splits 
the light into the signal and reference arms of an auto-balanced photoreceiver. 
The output from the auto-balanced receiver is multiplied by the dither signal 
and time averaged, thus generating an error signal, which is proportional to the 
frequency difference between the laser and the microcavity resonance. A 
proportional-integral-derivative (PID) controller sets the laser frequency to the 
microcavity resonance according to the received error signal. (b) Artistic 
rendering of a microtoroid optical resonator coupled to a tapered optical fiber 
in the presence of binding analyte particles. 
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microcavity. Ultra-high Q-factor microcavities4 such as 
microspheres5 and microtoroids6 offer two main advantages for 
biochemical sensing: on the one hand, they have narrow 
linewidth resonance, which contributes to measuring extremely 
small resonance shifts (on the order of attometers)7; on the other 
hand, their small mode volume enhances light-matter 
interaction, which provides the increased sensitivity needed for 
single particle detection8. Bioanalytes, such as viruses9, DNA 
oligomers10, bacteria11, and proteins7, are challenging to detect 
in aqueous solutions as their refractive index is close to water. 

Light continuously circulates in the resonator multiple times 
based on the principle of total internal reflection6. When 
particles adsorb or bind to the surface of a microcavity, they 
become polarized and cause the resonance frequency of the 
cavity to shift. The magnitude of this shift can be used for 
detecting and sizing particles. The resonance frequency shift 
may be calculated according to the Bethe-Schwinger cavity 
perturbation formula13. The relative frequency shift ∆𝜔/𝜔଴ is 
the negative of the energy required to polarize the 
nanoparticle ห𝑊௣ห, divided by the total electromagnetic energy 
stored in the unperturbed resonator5,12 𝑊௖, 

 
∆ఠ

ఠబ
= −

∆ఒ

ఒೝ
= −

หௐ೛ห
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≈ −

ఌ್𝐄೛బ
಩

ఈ⃖ሬ⃗ (ఠ)𝐄೛బ

ଶ ∫ ఌబఌೝ|𝐄బ|మௗ௏
 , (1) 

  
where 𝜀௕ is the permittivity of the background media, 𝜀଴ is the 
permittivity of free space,  𝜀௥  is the dielectric constant of 
silica13, 𝛼(𝜔) is the polarizability tensor of the particle, 𝐄଴ is 
the spatially-varying complex electric field amplitude for the 
WGM, 𝐄௣଴ is the electric field amplitude for the unperturbed 
WGM at the location of the bound particle, and † represents the 
conjugate-transpose. The binding of a bioparticle will shift the 
resonance wavelength in the WGM resonator a miniscule 
amount. Another way to consider the cause of the resonance 
shift is that by entering the evanescent field of the WGM, the 
bound nanoparticle becomes part of the microcavity, which 
increases the effective round-trip path length. This increase in 
resonator path length causes the resonance wavelength to shift 
to longer wavelengths. 

Label-free optical biosensors based on WGM cavities can 
detect macromolecules by tracking the resonance shift of the 
microcavity. The original method to track the resonance is by 
sweeping the wavelength of a tunable laser and measuring the 
transmission spectrum9,14. However, this approach is limited by 
the wavelength scanning speed, which can be a few nanometers 
per second for piezo-tuned laser15. In the FLOWER system, 
Pound-Drever-Hall (PDH) locking technology16–18 is used to 
improve the response time of the biosensor, shortening the 
minimum detectable step interval to 1 ms. The PDH technology 
also improves the accuracy of tracking the WGM. WGM 
sensors have also been enhanced through coupling with 
plasmonic nanoparticles. The plasmon resonance provides a 
local enhancement of electric field in the numerator of Eq. (1), 
potentially leading to orders of magnitude resonance shift 
enhancement19,20. The optical WGM resonators coupled with 
single gold nanorod can be utilized as a ultrasensitive 

thermometer, which can resolve resonance shift that is smaller 
than 100 Hz21. Here we present the analytical basis for 
FLOWER, and construct a numerical simulation. Through the 
numerical simulation, we optimize the parameters of FLOWER 
and explore its limits of detection by analyzing the different 
noise effects.  

II. METHODS 

A. Overview of FLOWER 

Figure 1 shows a schematic of the FLOWER system. An 
optical WGM microcavity is evanescently coupled to the 
system through a tapered optical fiber12. A tunable continuous 
wave (CW) laser is locked to a WGM resonance using 
frequency locking. A frequency modulation dither signal is 
applied to the piezoelectric transducer in the tunable laser. Light 
is transmitted from the WGM resonator into an auto-balanced 
receiver, which can reduce laser intensity noise by 55 – 70 dB22. 
The error signal, which is the time average of the product of the 
dither signal and receiver output signal, is proportional to the 
difference between the laser wavelength and the WGM 
resonance wavelength. A proportional-integral-derivative 
(PID) controller is used to control the laser wavelength. The 
PID controller receives the error signal and generates feedback 
to the laser controller to decrease the absolute value of the error 
signal to zero. In this way, the laser wavelength is locked at the 
WGM resonance wavelength. Therefore, we can measure shifts 
in WGM resonance in real time as particles bind by tracking the 
laser wavelength through the PID controller output. For these 
experiments, a tunable visible laser with wavelength 
approximately 633 nm is used due to the biophotonic diagnostic 
window where light absorption in water is minimal. 
 

B. Numerical simulations 

FLOWER’s particle detection ability can be evaluated 
through numerical simulation. Mode-coupling theory and 
analytical modeling of the frequency locking process is used to 
generate a Simulink model. The limit of detection of FLOWER 
is affected by the spectral lineshape of the WGM resonance 
(e.g., Fig. 2a), which also determines the error signal used in the 
feedback loop when the resonance shifts (e.g., Fig. 2b). To 
derive the lineshape, the WGM resonator in Fig. 1(a) can be 
modeled using spatial coupled mode theory23,24. When driven at 
a resonant wavelength 𝜆଴ = 2𝜋𝑐/𝜔଴, the real, time-dependent 
electric field can be written as,  

 
𝐸(𝑟, 𝑡) = 𝑅𝑒[𝐺(𝑡) ℰ(𝑟) 𝑒௝ఠబ௧] = 𝑅𝑒[𝐴(𝑡)ℰ(𝑟)], (2) 
 

where 𝐺(𝑡)  is a slowly-varying amplitude function that 
accounts for injection or loss of light into the resonator at time 
scales long enough that a monochromatic approximation 
remains valid, 𝓔(𝐫)  describes the spatial variation of the 
complex electric field for the resonant mode, and 𝑒௝ఠబ௧ 
accounts for the high-frequency oscillations of the electric field 
wave. All time dependent terms are combined in 𝐴(𝑡) . In 
spatial coupled mode theory, the units of electric field are 
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partitioned between 𝐴 and 𝓔 such that 𝓔 has unit power: 
 

න
1

2𝑍
|ℰ(𝑟)|ଶ 𝑑ଶ𝑟 = 1

𝒜

, (3) 

 
where 𝒜 is the cross-section of the mode field area, and 𝑍 is the 
characteristic impedance of the mode. Therefore, 𝓔 has units of 
V m-1 W-1/2, and 𝐴 has units of W1/2. The power of the travelling 
wave within the resonator is |𝐴(𝑡)|ଶ, and thus 𝐴 is called power 
amplitude. We can correspondingly define an energy amplitude 
with units J1/2,  

𝑎(𝑡) = 𝐴(𝑡)ඨ
2𝜋𝑅

𝑣௚

, (4) 

 
where 2𝜋𝑅 is the resonator circumference and 𝑣௚ is the group 
velocity of the resonant mode. The energy stored within the 
resonator is |𝑎(𝑡)|ଶ. 

The optical system in Fig. 1b is viewed as a lumped 
oscillator, which we assume an energy amplitude decay rate 
1/𝜏 = 1/𝜏௟ + 1/𝜏௘, accounting for both intrinsic loss (𝑙) and 
external power (𝑒) coupling out from the resonator back into 
the fiber. The resonator is being driven by light coupled in from 
a tapered fiber carrying optical power |𝑠௜|ଶ with a real-valued 
mutual coupling coefficient 𝜇 between the resonator and fiber. 
The energy amplitude balance differential equation resulting 
from these assumptions is,  

 
ௗ

ௗ௧
𝑎 = ቀ𝑗𝜔଴ −

ଵ

ఛ
ቁ 𝑎 − 𝑗𝜇𝑠௜, (5) 

 
where the 𝑗𝜔଴  term preserves the high-freqency time 
dependence in Eq. (2), and the −𝑗 coefficient in front of the 𝜇𝑠௜  
term is an arbitrary phase factor for the incident light, which is 
commonly used in the literature24.  The relationship between 𝜇 
and 𝜏௘ is 𝜇ଶ = 2/𝜏௘. The equation connecting the incident and 
transmitted amplitude down the output fiber is： 

 
𝑠௧ = 𝑠௜ − 𝑗𝜇𝑎, (6) 

 
where 𝑠௜  represents the incident light amplitude and 𝑠௧ 
represents the transmitted wave amplitude. Considering a 
steady state incident signal 𝑠௜  with time dependency 
𝑠௜~exp (𝑗𝜔𝑡), which can be at a different frequency 𝜔 from the 
resonance frequency 𝜔଴, a solution to Eq. (5) is: 
  

𝑎 =
ି௝ට

మ

ഓ೐
భ

ഓ
ା௝(ఠିఠబ)

𝑠௜. (7) 

 
When this is introduced into Eq. (6), we have 

௦೟

௦೔
= 1 −

మ

ഓ೐
భ

ഓ
ା௝(ఠିఠబ)

. (8) 

 
This equation describes the typical Lorentzian lineshape of a 
resonance, as plotted in Fig. 2a after taking the complex 

magnitude squared. 
 

The quality factor of the resonator can be calculated by its 
definition as 2𝜋  times the ratio of the time averaged stored 
energy to the energy dissipated per optical circulation. We 
consider the case in which the microcavity is excited to an 
energy of |𝑎଴|ଶ and there is no incident light, 𝑠௜ = 0. From Eq. 
(5), the microcavity energy decays as 

 

|𝑎(𝑡)|ଶ = |𝑎଴|ଶexp (
ିଶ௧

ఛ
), (8) 

 
The intrinsic loss of the microcavity is caused by scattering, 
absorption, and radiative process. For the resonator, the 
dissipated power caused by the intrinsic loss is   

 

|𝑠௟(𝑡)|ଶ =
ଶ

ఛ೗
|𝑎(𝑡)|ଶ. (9) 

 
In the same case, from Eq. (6), the transmitted power is 

 

|𝑠௧(𝑡)|ଶ = 𝜇ଶ|𝑎(𝑡)|ଶ =
ଶ

ఛ೐
|𝑎(𝑡)|ଶ. (10) 

 
The stored energy in microcavity is given by Eq. (8). The power 
coupled out of the resonator is given by Eq. (10), Thus 

 

𝑄 = 𝜔଴
|௔(௧)|మ

|௦೟(௧)|మା|௦೗(௧)|మ =
ఠబఛ

ଶ
, (11) 

 
where the stored energy is given by |𝑎|ଶ and the total dissipated 
power of the resonator is given by |𝑠௧|ଶ + |𝑠௟(𝑡)|ଶ . The Q-
factor is inversely proportional to the loss of the WGM 
resonator. The high-Q requirement of a biosensor can be 
routinely obtained experimentally in water with microtoroids3 
or microspheres.5 The Q-factor can also be calculated from the 
transmission spectrum of the WGM resonator, shown in Fig. 2a. 

𝑄 =
ఒబ

୼ఒ
, where Δ𝜆 is the full width at half-maximum linewidth 

of the resonance. In Fig. 2a, the 𝑄 factor calculated from the 
transmission spectrum is equal to the Q factor calculated from 
Eq. (11).  

In the FLOWER system, we modulate the frequency of the 
laser. The power amplitude of the laser output is: 

 

𝐴୪ୟୱ(𝑡) = 𝐴଴𝑒௝[ఠభିఉబ ୱ୧୬(ஐ௧)]௧, (12) 
 

where 𝛽଴  is frequency modulation depth, and Ω is the dither 
signal frequency. The higher the frequency, the better the time 
resolution of the system.  The frequency modulation bandwidth 
is limited by our choice of laser and Ω is set as 2𝜋 × 2 kHz. The 
incident light frequency is 𝜔 = 𝜔ଵ − 𝛽଴ sin(Ω𝑡), where 𝜔ଵ is 
the laser’s central frequency without modulation. In the 
classical PDH technology, the laser is phase modulated by a 
Pockels cell17. In contrast, in our FLOWER system the tunable 
laser is frequency modulated by tuning the mirror position in 
the external cavity of the laser15. The 50:50 beam splitter splits 
the laser light into the signal and reference light. Neglecting 
losses in the beam splitter, laser coupling, and assuming a 
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perfectly adiabatic fiber taper, the incident light power in the 
vicinity of the microtoroid is half of the laser power |𝑠௜|ଶ =
|𝐴଴|ଶ/2, and the transmitted power is 

 

|𝑠௧|ଶ = |𝑠௜|ଶ[1 −
ସ

ఛ೗ఛ೐
×

ଵ
భ

ഓమା(ఠିఠబ)మ
]. (13) 

 
In the numerical simulation, Eq. (13) is used in the microcavity 
block for microcavity transmission. In the FLOWER system, 
the laser’s central frequency 𝜔ଵ  is extremely close to the 
microcavity resonance 𝜔଴. Through Taylor expansion about the 
point 𝜔଴, Eq. (13) becomes 

 

|𝑠௧|ଶ ≈
|𝐴଴|ଶ

2
{1 −

4𝜏ଶ

𝜏௟𝜏௘
 

+
ସఛర

ఛ೗ఛ೐
[𝜔ଵ − 𝜔଴ − 𝛽଴ sin(Ω𝑡)]ଶ}. 

(14) 

 
The auto-balanced receiver converts the transmitted light power 
|𝑠௧|ଶ into electrical voltage 

 
𝑣௉஽ = (𝑟௉஽ + 𝑟௘௫௧) ∙ 𝑅 ∙ |𝑠௧|ଶ, (15) 

 
where 𝑟௉஽  is the internal resistance of auto-balanced 
receiver,  𝑟௘௫௧  is the additional external resistance for the 
receiver and 𝑅  is the responsivity of the photodiode in the 
receiver in A W-1. The auto-balanced receiver circuitry can 
automatically adjust the gain 𝑔 to satisfy the balance equation 
|𝑠௧|ଶ − 𝑔 ∙ |𝑠௥|ଶ = 0 at direct current (DC). As such, the auto-
balanced receiver removes the DC component of the receiver 
output voltage 𝑣௉஽ . Then the auto-balanced receiver output 
voltage becomes: 

 

𝑣௥௘௖௘௜௩௘௥ =
|𝐴଴|ଶ(𝑟௉஽ + 𝑟௘௫௧)𝑅

2
∙

4𝜏ସ

𝜏௟𝜏௘
 

× ቂ−2(𝜔ଵ − 𝜔଴)𝛽଴ sin(Ω𝑡) −
ఉబ

మ

ଶ
cos(2Ω𝑡)ቃ, 

(16) 

 
In the numerical simulation, the receiver block consists of Eq. 
(16) and the balance equation. The receiver output voltage is 
mixed with the dither signal, sin(Ω𝑡) . Time averaging the 
mixed signal generates the error signal 𝑣௘௥௥௢௥: 

 

𝑣௘௥௥௢௥ =
Ω

2𝜋
× න 𝑣௥௘௖௘௜௩௘௥ ∙ sin(Ω𝑡)  𝑑𝑡

ଶగ
ஐ

଴

 

  = −|𝐴଴|ଶ(𝑟௉஽ + 𝑟௘௫௧)𝑅 ∙
ଶఛర

ఛ೗ఛ೐
∙ 𝛽଴(𝜔ଵ − 𝜔଴). 

(17) 

 
This equation represents the central, linear part of the error 
signal plotted in Fig. 2b, where the linearization used in the 
Taylor expansion in Eq. (14) is valid. The coefficients in front 
of (𝜔ଵ − 𝜔଴)  are constant and show that the error signal is 
proportional to the difference between the laser frequency and 
the WGM resonance. Inputting the error signal to the PID 
controller provides a feedback loop to the laser, which can 
stabilize the laser’s frequency and lock the laser’s central 

wavelength 𝜔ଵ to the resonance of the microcavity 𝜔଴. Eq.(17) 
is used in the average block in the Simulink model. 

C. Simulink 

Using Simulink, we built a simulation system based on the 
schematic of FLOWER shown in Fig. 1a. The full Simulink 
model is shown in the  Appendix A. The input laser power is set 
at 2 mW. Initially, the laser output wavelength is 633 nm plus 
the dither signal. The microtoroid in Fig.1b is simulated using 
the optical resonator transmission Eq. (13). The receiver is 
simulated in Simulink using Eq. (15). Fig. 2a shows an ultra-
high Q microcavity resonance (Q =1.01 × 10଻) at 633.09826 
nm wavelength. In Fig. 2b, the error signal is acquired by 
scanning the laser wavelength. This curve shows that the error 
signal is proportional to the difference between the tunable laser 
wavelength and microtoroid resonance in the range 633.09825 
nm – 633.09827 nm. Therefore, the FLOWER system can 
remain locked to the microcavity resonance only when the 
discrete shifts in resonance wavelength are smaller than 10 fm. 
During frequency locking, the microcavity resonance 
wavelength can be calculated from the PID output voltage.  

III. RESULTS AND DISCUSSION 

The closed loop system total noise level and response time 
determine the detectable particle size and time resolution of the 
system. In the simulation, we optimize the system parameters 
for the minimum detectable particle size and resolvable step 
interval.  

A. Noise level determination 

The FLOWER system has three main noise sources: (1) shot 
noise from the photodiode in the auto-balanced receiver, (2) 
laser intensity noise, which is defined as fluctuations in the 
output power of the laser, and (3) laser phase noise, which leads 
to a finite laser linewidth.  

 
Shot noise from the photodiode in the auto-balanced receiver 
(Nirvana™ Auto-Balanced Optical Receivers 200725) 

The auto-balanced receiver is limited by shot noise. The 
mean power of the shot noise for a single photodiode in the 
auto-balanced receiver is26: 

 
𝜎௦௛௢௧

ଶ = 2𝑒𝑅𝑃௦௜௚௡௔௟Δ𝑓, (18) 

Fig. 2.  WGM characterization. (a) WGM transmission near resonance. The 
Q-factor of the WGM resonator is 10଻. (b) The error signal 𝑣௘௥௥௢௥  is generated 
by demodulating the 2kHz dither signal from the receiver output. The 
frequency modulation amplitude is 60 MHz.   
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where 𝑒 is the electron charge,  𝑃௦௜௚௡௔௟ is the power of the 

incident light and Δ𝑓 is the 3 dB bandwidth of the photodiode, 
which is 125 kHz25. The SNR of the shot noise is the ratio of 
the mean power of the electrical signal 𝑃௘ over the mean power 
of the shot noise 𝜎௦௛௢௧

ଶ : 
 

𝑆𝑁𝑅௦௛௢௧ ௡௢௜௦௘ =
〈𝑃௘〉

𝜎௦௛௢௧
ଶ  =

(𝑅|𝑠௧|ଶ)ଶ

2𝑒𝑅|𝑠௧|ଶΔ𝑓
=

𝑅|𝑠௧|ଶ

2𝑒Δ𝑓
 

                           = 121 dB. 
(19) 

 
Increasing the incident optical power can improve the SNR of 
the shot noise. However, the incident optical power is limited 
by the saturation power of the auto-balanced receiver. In the 
numerical simulation, the signal and reference power of the 
auto-balanced receiver are set close to the receiver’s saturation 
power (1 mW). As a result, the SNR of the shot noise is 121 dB 
in the numerical simulation.  

 
Laser intensity noise 

The relative intensity noise (RIN) of the tunable laser 
(Velocity TLB-6704) is -117 dB/Hz15. The SNR of the laser 
intensity noise measured by the receiver is the ratio of the 
receiver electrical signal power 〈𝑃௘〉 over the receiver electrical 
noise power 𝛿𝑃௘  caused by the laser intensity noise, excluding 
any contributions from shot noise and thermal noise27–29 

 

𝑆𝑁𝑅௜௡௧௘௡௦௜௧௬ ௡௢௜௦௘ =
〈𝑃௘〉

𝛿𝑃௘

=
〈𝑖௦

ଶ〉

〈𝑖௡
ଶ〉

=
〈|𝑠|ସ〉

〈(Δ|𝑠|ଶ)ଶ〉

=
1

𝑅𝐼𝑁 × Δ𝑓
 

=
ଵ

ଵ଴షభభ.ళୌ୸షభ×ଵଶହ଴଴଴ ୌ୸
= 4.0095 × 10଺, 

(20) 

 
where 𝑖௦  is the receiver electrical signal current and 𝑖௡  is the 
receiver electrical current noise. The SNR of the intensity noise 
can be expressed in the logarithmic decibel scale 
𝑆𝑁𝑅௜௡௧௘௡௦௜௧௬ ௡௢௜௦௘ = 66.03𝑑𝐵. Additionally, the auto-balanced 
receiver can suppress the laser intensity noise by 55 – 70 dB22. 
Therefore, the SNR of the intensity in the FLOWER system is 
121.03 – 136.03dB, which is approximately the same level as 

shot noise in the auto-balanced receiver. 
 

Laser phase noise 
The origin of the laser phase noise is the quantum noise from 

spontaneous emission into the cavity mode30 and some 
technical noise, (e.g. vibration of cavity mirrors or temperature 
fluctuations). The phase noise leads to a finite linewidth of the 
tunable laser. In the numerical simulation, the laser power 
spectrum is considered as a normalized Lorentzian shape31. 
Considering the phase noise, the power amplitude of the tunable 
laser is changed to: 

 

𝐴୪ୟୱ(𝜔, 𝑡) = 𝐴଴ඨ
ଵ

గ

భ

మ
୻

(ఠିఠభ)మା(
భ

మ
୻)మ

𝑒௝[ఠభିఉబ ୱ୧୬(ஐ௧)]௧, (21) 

 
where 𝜔  is the laser optical frequency, and Γ  is the laser 
linewidth. The microcavity transmitted power becomes: 

 

 
In the numerical simulation, Eq.(22) describes the transmission 
in the microcavity block when phase noise is considered.  

|𝑠௧|ଶ = න
1

2
|𝐴୪ୟୱ(𝜔, 𝑡)|ଶ

ାஶ

ିஶ

  

                    × [1 −
4

𝜏௟𝜏௘

×
1

1
𝜏ଶ + (𝜔 − 𝜔଴)ଶ

]𝑑𝜔 
(22) 

Fig. 3.  Impact of phase noise on the microcavity transmission spectrum. (a)
Phase noise broadens and reduces the contrast of the resonance dip due to 
broadening of the laser linewidth. The red curve neglects phase noise. The 
laser linewidths for the other curves are shown in the plot. (b) The observed 
extrinsic Q factor of the microcavity as a function of laser linewidth. 
 

Fig. 4. Individual particles bind to the microcavity at a time interval of 10 ms. 
The dither amplitude affects the SNR of the resonance wavelength shift caused 
by particle binding. The green curves in (a) and (b) show the true the real 
particle binding events. (a) The Q of this microcavity is 10଺ and the dither 
frequency amplitude is 15 MHz (20 fm in wavelength). The step height is set 
at 3 am. (b) The dither amplitude is changed to 100 MHz (134 fm in 
wavelength) and the step height is 3 am. The difference in noise level is 
apparent. (c) The SNR of the resonance wavelength shift response for different 
dither frequency amplitudes. The optimal dither amplitude is 15 MHz for this 
resonance. (d) Higher quality factor WGMs result in smaller optimal dither 
amplitude. 
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In Fig. 3a, compared to the resonance without phase noise 
(red curve), whose minimum value is 0, the minimum value of 
the resonance for a 20 MHz linewidth phase-noise-broadened 
laser (green curve) is increased to 0.2226. When the finite 
linewidth laser is scanned to the resonance wavelength, the tails 
of the laser spectrum are detuned from the resonance 
wavelength of the WGM. The transmitted power for this part of 
the laser spectrum is greater than zero, reducing the depth of the 
transmission dip.  

The intrinsic Q factor of the microcavity is 1.01 × 10଻ , 
which is calculated from Eq. (11). In Fig. 3b, when the laser 
linewidth is greater than 2 MHz, it broadens the microcavity 
transmission spectrum, and the extrinsic Q factor of the 
resonance begins to drop significantly. However, when the laser 
linewidth is smaller than 2 MHz, the Q value remains 
approximately at its intrinsic value and phase noise has a 
negligible impact on the transmission spectra, and hence a 
negligible impact on the response function we use to model the 
microcavity in Simulink. In the FLOWER system, the linewidth 
of the tunable laser is 200 kHz, which is significantly smaller 
than 2 MHz, and therefore, we neglect phase noise in the 
remainder of our results presented below. 

B. Effect of dither amplitude 

Figure 4 shows the relationship between the system SNR and 
the dither amplitude. In Fig. 4a, the resonance shift curve 
records every step caused by particle binding. In Fig 4b, the 
steps input into the Simulink model are the same as in Fig. 4a, 
but the dither amplitude is increased from 15 MHz to 100 MHz, 
resulting in a greatly reduced SNR. The accuracy for the 
measured step positions and heights are correspondingly 
reduced. For a microcavity with 𝑄 = 10଺, the SNR in response 
to 3 am input steps reaches a maximum value of 30.9 dB when 
the frequency modulation depth 𝛽଴ = 2𝜋 × 15 MHz . The 
relationship between the optimal dither amplitude and 
microcavity Q-factor is shown in Fig. 4d. A larger error signal 
slope can provide a larger gain for the feedback loop for a given 
difference between laser wavelength and microcavity 
resonance. For the optimal frequency modulation depth, it is 
best to maximize the error signal slope. We find that the ratio 
of optimal dither wavelength amplitude over the resonance 
linewidth is a constant  

 

 
𝜆ௗ௜௧௛௘௥

Δ𝜆
=

𝛽଴

𝜔଴

𝑄 = 0.03196.  (23) 

 
The classical PDH technology uses a phase modulation with 
phase modulation depth 𝛽௣ . The experiment setup usually 
restricts the Q factor of the cavity and the laser wavelength 
choice. For the classical PDH technology, people often adjust 
the phase modulation depth 𝛽௣ for high sensitivity. The optimal 
modulation depth 𝛽௣ is 1.08 for the restricted Q factor of cavity 
and laser wavelgnth32. Instead, the FLOWER introduces a 
direct frequency modulation into the tunable laser output. The 
optimal frequency modulation 𝛽଴  depends on the laser 
frequency and the cavity’s Q factor through the Eq.(23). 

C. Effect of data post-processing 

The use of step-finding algorithms and a median filter can 
enable better single particle resolution33,34. Figure 5 shows the 
simulation results from a microcavity with Q = 10଻. A step-
fitting algorithm34 is used to find all the steps based on either 
the raw data or filtered data. In Fig. 5b, the median filter 
removes most of the high-frequency oscillations in the raw data. 
The step-fitting algorithm can find the step height and position 
precisely. For these 0.1 am steps, the error between the 
recovered step heights and those input into the simulation is less 
than 10%. When the step height is reduced to 0.05 am (Fig. 5c), 
the step-fitting algorithm finds five steps in the raw data; one 
step at time t = 70 ms is missed. However, after median filtering 
with a 3 ms window, all six steps are recovered (Fig. 5d).  

In a real experiment, the time interval between particle 

 
Fig. 5. Limit of detection in small particle sensing. (a)-(e) Step traces in 
response to simulated particle binding events. Green curves are the true binding 
events input into our model. Blue curves represent raw output data (a), (c) or 
data processed using a median filter with a 3 ms window (b), (d), (e). Red 
curves are the result of an automated step-finding algorithm operating on the 
blue curve. Step heights are either 0.1 am (a), (b), 0.05 am (c), (d), or randomly 
drawn e. Step time intervals are either 20 ms (a)-(d) or randomly drawn (e). (f) 
Comparison between empirically determined limit of detection and output 
noise level for different microcavity quality factors when using an optimal 
dither amplitude. The noise level is based on the raw trace data, and the 
detectable step height is based on the on the trace after median filtering and 
step-fitting algorithm. 
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binding events is random. Fig. 5e shows 6 particles binding to 
a microcavity at random time intervals drawn from a Poisson 
distribution with expected value 15 ms. The particle size 
(defined here by the step height of the expected resonance shift) 
varies from 0.07 am to 0.16 am. In Fig. 5e, the step-fitting curve 
precisely captures the particle binding events, and the recovered 
step heights match the input particle sizes. Fig. 5f demonstrates 
the relationship between noise level of the resonance shift data 
and minimum resolvable step height. Their values both 
decrease as the Q-factor of the microcavity increases. The 
minimum resolvable step height is approximately equal to the 
noise of the FLOWER system. 

D. Time resolution 

The time resolution of the system is also important, 
especially for measuring discrete binding events in analyte 
solutions of high concentration. The minimum resolvable time 
interval between steps depends on the step height and Q-factor 
(Fig. 6). Our simulations indicate this to be only slightly longer 
than the system response time, which is based on the dither 
frequency period of 0.5 ms. The median filter window also 
affects the time resolution. After trying different median filter 
windows, 3 ms is the optimal median filter window for particle 
binding event detection.          

In Fig. 6a, four particles in total bind on a microcavity over 
100 ms. The binding of two particles happens around 30 ms. 
The time between these two particle binding events is 1 ms. 
Using the step-fitting algorithm, the system is unable to 
distinguish the two separate steps and fits them as a single step 
of double height. The other two particles bind at around t=60 
ms. The time between these two binding events is 3 ms. In this 
case, the two separate steps are clearly distinguished after step-
fitting. Fig. 6b demonstrates the relationship between the 
minimum distinguishable step time interval and the minimum 
detectable step height after median filtering and step-fitting. If 
the error between the recovered step time and input step time is 
less than 1 ms and the error in recovered step height is less than 
35%, we consider the step to be accurately recovered. The 
minimum recoverable step height is relatively constant for time 
intervals longer than 1 ms, but diverges rapidly for intervals 
shorter than 1 ms. We therefore conclude that the response time 
of the simulated FLOWER system is 1 ms. This response time 

is mainly determined by the dither signal frequency (here 2 
kHz) and the PID controller response. In the simulation, the 
appropriate P, I, D parameters (P = 0.1, I = 800, D=300) are 
applied to the PID controller. This makes the minimum 
detectable step interval of the system close to the dither period. 
The fast response time reduces the impact of low frequency 
noise, such as 1/f noise, mechanical vibration, and thermal 
noise. In Fig. 6a, the step height error is the noise accumulation 
over the step rise time. For low frequency noise, the 
accumulated error is quite small compared to the step height. 
Therefore, low frequency noise sources are ignored in the 
numerical simulation. 

IV. CONCLUSION 

In conclusion, our work examines through numerical 
simulation the limits of detection of FLOWER in response to 
discrete particle binding events. The shot noise from the 
receiver and the laser intensity noise both affect the limit of 
detection for small particle binding events. The SNR of the 
system can be optimized through a choice of dither frequency 
amplitude, use of higher quality factor microcavities, and by 
increasing the laser power of the system along with a 
photodetector capable of handling that power. Based on these 
results, using existing commercial equipment, FLOWER is 
expected to be capable of detecting 0.05 attometer shifts at time 
intervals under one millisecond. The optimal dither amplitude 
was found to be 0.032 times the resonance linewidth. Higher 
quality factor micro-resonators can reduce the noise level and 
lower the minimum resolvable step height. For a fixed Q value 
microcavity, acousto-optic modulation can substitute direct 
frequency modulation of the laser. The bandwidth of an 
acousto-optic modulator can be as high as 27 MHz35. For a wide 
range of modulation frequencies, we can adjust the gain 
parameter in the PID controller for tight and stable frequency 
locking. Use of a broad bandwidth acousto-optic modulator in 
FLOWER or a lithium niobite phase modulator could greatly 
increase the dither signal frequency. This can also decrease the 
response time of the total system and improve the detectable 
step time resolution. 

APPENDIX A 

A. Details of the numerical simulation of FLOWER in 
Simulink 

 
To achieve frequency locking, the initial laser wavelength 

should approach the microcavity resonance. The initial laser 
wavelength is in units of nanometers. This constant value is 
added to the PID output signal to set the laser wavelength. This 
dynamic wavelength is what FLOWER tracks as particles bind. 
The dither signal output voltage is converted to a wavelength 
signal. The converter output signal is added to the laser 
wavelength to simulate frequency modulation. The power 
component sets the laser power to 2 mW. Additive Gaussian 
white noise (AGWN) is added to the laser intensity. The power 
signal and the frequency signal pass through the microcavity to 
yield the transmitted power in mW. The transmitted power 
through microcavity can be calculated using Eq. (14) in the 
main text. In the microcavity block, the input parameter P is the 
incident light power 𝑃 = |𝑠௜|ଶ = |𝐴଴|ଶ/2, the w represents the 

Fig. 6. Step time resolution. (a) Four particles bind on a Q~10଻ microcavity. 
In this case, an individual particle causes a 1 am resonance shift. The blue 
curve is the resonance shift after a 3 ms median filter has been applied. The 
red curve is a step-fit graph based on the blue curve. (b) Step parameters 
necessary for accurate detection. Binding events above a curve (larger heights 
and/or longer time intervals) can be accurately recovered by a WGM of the 
corresponding Q. 
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incident light angular frequency 𝜔, and the w0 stands for the 
microcavity resonance angular frequency 𝜔଴ . The resonance 
shift signal block sends a signal to change the resonance 
frequency 𝜔଴ of the microcavity. The reference signal equals 
half of the tunable laser power |𝑠௥|ଶ = |𝑠௜|ଶ = |𝐴଴|ଶ/2. In the 
reference block, the input P represents the reference light power 
𝑃 = |𝑠௥|ଶ  and w stands for the reference light angular 
frequency 𝜔.  

The transmitted power and reference power are separately 
added with shot noise by the shot noise AGWN components. 
Although shot noise a Poisson process, it can be approximated 
here as AGWN. For small photon counts, the shot noise is low, 
and the system is dominated by other noise sources, making the 
error between Gaussian and Poisson distributions insignificant. 
For large photon counts, the central limit theorem ensures that 
the Poisson distribution approaches a Gaussian distribution. 
Therefore, the shot noise is approximately modeled using a 
Gaussian distribution.  

The Mean 1, 2 and Receiver parts work as the auto-balanced 
receiver, which converts the input power to an output voltage 
signal in volts. For the receiver, the output voltage is calculated 
from Eq. (16) in the paper. The auto-balanced receiver output 
voltage is 𝑣௥௘௖௘௜௩௘௥ = (𝑟௉஽ + 𝑟௘௫௧) ∙ 𝑅 ∙ (|𝑠௧|ଶ − 𝑔 ∙ |𝑠௥|ଶ). The 
adjusted reference channel gain 𝑔 equals to the ratio of signal 
to reference power, which can automatically adjust to ensure 
the balance equation |𝑠௧|ଶ − 𝑔 ∙ |𝑠௥|ଶ = 0. The auto-balancing 
is the result of a low frequency 𝑓௖௨௧௢௙௙  feedback loop that 
adjusts the reference channel gain 𝑔. The gain-compensation 
cutoff frequency 𝑓௖௨௧௢௙௙  must be set below 2 kHz, which 
corresponds to the dither frequency. So that noise cancellation 
is not degraded. In the receiver block, the input parameter Ps 
represents the light power from signal channel, Pr is for the 
reference channel light power, Psm stands for the DC 
component (time average) of Ps, and Prm stands for the DC 
component of Pr. The receiver output signal is mixed with the 
dither voltage to generate a voltage signal. The voltage signal is 
transformed into an error signal through the averaging 

components. The averaging process is described by Eq. (18) in 
main text. The error signal is in units of volts. The PID 
controller uses the error signal to generate a wavelength signal, 
which moves the laser’s wavelength. After the PID block, the 
converter block converts the PID output voltage signal to 
wavelength signal using the ratio is 2 × 10ିହ  𝑛𝑚

𝑉ൗ .  This 
parameter is adjusted based on the frequency locking condition 
in the system by observing the resonance shift signal. If the 
resonance shift signal has a large oscillation, the parameter P 
should be decreased until the resonance shift signal stabilizes to 
a constant value. If the resonance shift trace has a small 
oscillation near the step, then the parameter I should increase, 
and P should decrease to keep 𝑃 ∙ 𝐼  constant until the 
fluctuation of the resonance shift signal disappears. The 
appropriate P, I, D parameters (P = 0.1, I = 800, D =300) are 
chosen based on the error signal. When suitable PID parameters 
are applied to FLOWER, the error signal can rapidly drop to 
zero. We note that for this simulation, the time input into the 
microcavity is unnecessary but for other microresonator 
applications such as beat signal detection, the phase of the 
electric field is necessary, and the time block is needed. 

B. Step-fitting algorithm 

Finding steps 
The step-fitting algorithm34 adds a large step first. The first 
large step is positioned is to minimize the χ2 value of the fit. The 
left plateau value equals the average of the data on the left side 
of the first step. The right plateau value equals the average of 
the data on the right side of the first step. The step size is the 
difference between the left plateau value and the right plateau 
value. Subsequent steps are found by adding new steps to the 
plateaus of the previous steps. Each time, one new step is added 
to the previous plateaus. Each new step is positioned to 
minimize the χ2 value. 
Evaluating step fits 
The number of fitting steps is essential. If the fitting step 
number is small, the step fit is underfit and there are still some 
steps hidden in the data. If the data is fit with more steps than 

Fig. 7. FLOWER Simulink model 
 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9

the real step number, the step fit is overfit. Some small fake 
steps are divided by the real large steps. For the best step fit, the 
number of the fitting steps is equal to the number of the real 
steps in data. To find the best step fit, a counter-step fit is 
generated based on the step fit. Every counter-step is found on 
the plateau of the corresponding step fit by minimizing the χ2 
value of the counter-step fit. In this way, each counter-step fit 
has the same step number with the corresponding step fit. A 
‘step indicator’ 𝑆 is defined as the ratio between the χ2 value of 
the step fit and the χ2 value of counter-step fit. The step indicator 
𝑆 continually increases until the step fit is the best step fit; then 
the ratio 𝑆 decreases slowly to ~1. The best step fit corresponds 
to the maximum of the step indicator 𝑆.  
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