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Abstract—We design short blocklength codes for the Gaussian
wiretap channel under information-theoretic security guaraniees.
Our approach consists in decoupling the reliability and secrecy
consiraints in our code design. Specifically, we handle the
reliability constraint via an autoencoder, and handle the secrecy
constraint via hash functions. For blocklengths smaller than 16,
we evaluate through simulations the probability of error at the
legitimate receiver and the leakage at the eavesdropper of our
code construction. This leakage is defined as the mutual infor-
mation between the confidential message and the eavesdropper’s
channel observations, and is empirically measured via a recent
mutual information neural estimator. Simulation results provide
examples of codes with positive rates that achieve a leakage
inferior to one percent of the message length.

I. INTRODUCTION

The wiretap channel [1] is a basic model to account for
eavesdroppers in wirless communication. In this model, a
sender (Alice) encodes a confidential message M into a code-
word X™ and transmits it to a legitimate receiver (Bob) over n
uses of a channel in the presence of an external eavesdropper
{Ewve). Bob's estimate of M from his channel output observa-
tions is denoted by M, and Eve’s channel output observations
are denoted by Z". In [1], the constraints are that Bob must
be able to recover M, ie., limy_, o P[M # M] =0, and the
leakage about M at Eve, quantified by I({M;Z™), is not too
large in the sense that limg ... %I(M; Z™) = 0. Note that
the stronger security requirement limg ., J(M; Z™) =0 can
also be considered [2], meaning that Eve's observations Z™ are
almost independent of M for large n. The secrecy capacity has
been characterized for degraded discrete memoryless channels
in [1], then for arbitrary discrete memoryless channels in [3],
and then for Gaussian channels in [4].

Coding schemes based on low-density parity-check (LDPC)
codes [5]-[7], polar codes [8]-[11], and invertible extrac-
tors [12], [13] have been constructed for degraded and sym-
meiric wiretap channel models. Moreover, the method in [12],
[13] has been extended to the Gaussian wiretap channel [14].
Coding schemes based on random lattice codes have also been
proposed for the Gaussian wiretap channel [15]. Subsequently,
constructive [16}-[18] and random [19] polar coding schemes
have been proposed to achieve the secrecy capacity of non-
degraded discrete wiretap channels. More recently, a coding
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scheme that combines polar codes and invertible extractors has
also been proposed to avoid the need for a pre-shared secret
under strong secrecy [20].

All the references above consider the asymptotic regime,
i.e., that n approaches infinity. However, many practical appli-
cations require short packets or low latency. To fulfill this need,
non-asymptotic and second order asymptotics achievability
and converse bounds on the secrecy capacity of discrete and
Gaussian wiretap channels have been established in [21]-[25].

In this paper, we propose to design short blocklength
codes (smaller than 16) for the Gaussian wiretap channel
under information-theoretic security guarantees. Specifically,
we quantify security in terms of the leakage I(M; Z™), ie.,
the mutual information between the confidential message and
the eavesdropper’s channel observations. Our goal is to design
codes that can achieve a leakage inferior to one percent of
the message length. The main idea of our approach is to the
decouple the reliability and secrecy constraints. Specifically,
we use a deep learning approach based on a feed-forward
neural network autoencoder to handle the reliability code
constraint and cryptographic tools, namely, hash functions,
to handle the secrecy code constraint Then, to evaluate the
performance of our constructed code, we empirically estimate
the leakage I{M;Z™). Note that even for small values of n
this estimation is challenging with standard techniques such as
binning of the probability space [26], k-nearest neighbor statis-
tics [27], maximum likelihood estimation [28], or variational
lower bounds [29]. Instead, to estimate the leakage, we will
use a recently proposed estimator called mutual information
neural estimator (MINE) [30], which is provably consistent
and offer better performances than other known estimators in
high dimension.

We summarize the main features offered by our proposed
code design as follows. i) A modular approach that separates
the code design in a secrecy layer and a reliability layer.
The secrecy layer only deals with the secrecy constraint (and
only depends on the statistics of the eavesdropper’s channel),
whereas the reliability layer only deals with the reliability
constraint (and only depends on the statistics of the legitimate
receiver’s channel). This modular approach allows a simplified
code design, for instance, if only one of the two layers needs
to be (re)designed. ii) A precise control of the leakage through
the independent (from the reliability layer) design of the
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secrecy layer. Indeed, as discussed next in Section II, code
designs based on deep learning that seek to achieve reliability
and secrecy jointly do not seem to offer a good control on how
small the leakage is. iii) A universal way of dealing with the
secrecy constraint through the use of hash functions. This is
beneficial, for instance, for compound settings [31] as it then
becomes sufficient to design our code with respect to the worst
case eavesdropper's channel. iv) A method that can be applied
to an arbitrary channel model as the conditional probability
distribution that defines the channel is not needed and only
input and output channel samples are needed to design the
reliability and secrecy layers.

The remaining of the paper is organized as follows. Sec-
tion II reviews related works. Section III introduces the
channel model. Section IV describes our proposed code de-
sign and our simulation results. Finally, Section V provides
concluding remarks.

II. RELATED WORKS

A challenging task for Gaussian wiretap channel coding
is code design in the finite blocklength regime. Next, we
review known finite-length code constructions based on coding
theoretic tools and deep learning tools.

A. Works based on coding theory

In the following, we distinguish the works that consider a
non-information-theoretic secrecy metric from the works that
consider an information-theoretic secrecy metric.

1) Non-information-theoretic secrecy metric. A non-
information-theoretic security metric called security gap,
which is based on an error probability analysis at the
eavesdropper, is used to evaluate the secrecy performance
in [32]-[35]. Specifically, randomized convolutional codes for
Gaussian and binary symmetric wiretap channels are stud-
ied in [32], and randomized turbo codes for the Gaussian
wiretap channel are investigated in [33]. Coding schemes
for the Gaussian wiretap channel based on LDPC codes are
proposed in [34], [35]. Additionally, another non-information-
theoretic security approach called practical secrecy is investi-
gated in [36], where a leakape between Alice's message and
an estimate of the messape at Eve is estimated.

2) Information-theoretic secrecy metric: Next, we review
works that consider the leakage I(M;Z™) as information-
theoretic secrecy metric. In [37], punctured systematic irregu-
lar LDPC codes are proposed for the binary phase-shift-keyed-
constrained Gaussian wiretap channel, and a leakage as low
as 11 percent of the message length has been obtained for a
blocklength n = 105, In [38], LDPC codes for the Gaussian
wiretap channel have also been developed, and a leakage as
low as 20 percent of the message length has been obtained for
a blocklength n = 50, 000. Most recently, in [39], randomized
Reed-Muller codes are developed for the Gaussian wiretap
channel, and a leakage as low as one percent of the message
length has been obtained for a blocklength n = 16.

B. Works based on deep learning

Artificial neural networks (NNs) have gained attention
in communication system design because their performance
approaches the one of the state-of-the-art channel coding
solutions. Im [40], [41], neural networks (autoencoder) are
used to learn the encoder and decoder for a channel cod-
ing task without secrecy constraints. Other machine learning
approaches for channel coding without secrecy constraints
have also been investigated in [42], [43] with reinforcement
learning, in [44] with mutual information estimators, and
in [45] with generative adversarial networks.

Recently, the autoencoder approach for channel coding has
been extended to wiretap channel coding. In [46], [47], a
coding scheme that imitates coset coding by clustering learned
signal constellations is developed for the Gaussian wiretap
channel under a non-information-theoretic secrecy metric,
which relies on a cross-entropy loss function. In [48], a coding
scheme for the Gaussian wiretap channel is develop under the
information-theoretic leakage I'(M; 2™) with an autoencoder
approach that seeks to simultaneously optimized the reliability
and secrecy constraints. A leakape as low as 15 percent of the
message length is obtained in [48] for a blocklength n = 16.
It seems that precisely controlling and minimizing the leakage
is challenging with such an approach. By contrast, in this
paper, we propose an approach that separates the code design
in a part that only deals with the reliability constraint (by
means of an autcencoder) and in another part that only deals
with the secrecy constraint (by means of hash functions). As
discussed at the end of the introduction and supported by our
simulation results, one of the advantages of our approach is a
better conirol of how small the leakage is.

I1I. MoDEL

Notation: Capital letters represent random variables,
whereas lowercase letters represent realizations of associated
random variables, e.g., r is a realization of the random
variable X. |A'| denotes the cardinality of the set A. || - ||a
denotes the Euclidean norm. GF(27) denotes a finite field of

order 29, g = W™,

Consider a memoryless Gaussian wiretap channel defined by
Y £ X + Ny, (1
Z2X +Ng, (2)

where Ny and Nz are zero-mean Gaussian random variables
with variances o5 and o2, respectively. As formalized next,
the objective of the sender is to transmit a confidential
message M to a legitimate receiver by encoding it into a
sequence X ™, which is then sent over n uses of the chan-
nels (1), (2) and yields the channel observations Y™ and 2"
at the legitimate receiver and eavesdropper, respectively.

Definition 1. Let BZ(/nP) be the ball of radius 'nP
centered at the origin in B™ under the Euclidian norm. An
(n,k, P) code consists of a message set {0,1}*, an encoder
e : {0,1}* — BE(vVnP), and a decoder d : R™ — {0,1}*.
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The codomain of the encoder e expresses the power constraint
le(m)||3 < nP, ¥m € {0,1}*.

The performance of an (n, k, P) code is measured
terms *of (i) the average probability of error P,
L 52 Pld(Y™) # m|m is sent], and (ii) the leakage at
the eavesdropper Le £ I(M; Z™).

Definition 2. An (n, k, P) code is said e-reliable if Po < ¢
and §-secure if Le =< 8. Moreover, a rate % is said to be

(e, &)-achievable with power constraint P if there exists an
e-reliable and &-secure (n, k, P) code.
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IV. CODING SCHEME
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Figure 1. Our proposed coding scheme consists of a reliability layer and
a security layer. The reliability layer is implemented using an autoencoder
{m,dnlzﬁdmibed in Section IV-B, and the security layer is implemented
using functions 4, and f, described in Section IV-Ci. The sacurity
performance is evaluated in terms of the leakage I{M; Z™) via a mutual
information newral estimator described in Section IV-CL

A. High-level description of coding scheme

Our code construction consists of (i) a reliability layer with
an e-reliable (n, g, P) code, described by the encoder/decoder
pair (eg,dp) (this code is designed without amy security
requirement, i.e., its performance is solely measured in terms
of average probability of error) and (ii) a security layer imple-
mented with hash functions. We design the encoder/decoder
pair (ep,dy) of the reliability layer using a deep learning
approach based on neural network autoencoder as described in
Section IV-B. We will design two functions -, and f; in Sec-
tion IV-C to perform the encoding and decoding, respectively,
at the secrecy layer. The encoder'decoder pair (e,d) for the
encoding and decoding process of the reliability and secrecy
layers considered jointly is described as follows:

Encoding: Assume that a fixed sequence of bits s <
S £ {0,1}9\{0}, called seed, is known to all parties. Alice
generates a sequence B of g — k bits uniformly at random
in {0,1}9~* (this sequence represents local randomness used
to randomize the output of the function ,) and encodes the
message M € {0, 1}* as eg(s(M, B)). The overall encoding
map e that describes the encoding at the secrecy and reliability
layers is described by the map e : {0,1}* x {0,1}9% —
BE(VnP), (M, B) ~ eo(ps(M, B)).

Decoding: Given Y™ and s, Bob decodes the message as
faldg(¥™)). The overall decoding map d that describes the
decoding at the reliability and secrecy layers is described
by the map d : R* — {0,1}*, Y™ — fi(do(Y™)). For
a given code design, described by the encoder/decoder pair
(e, d), we will then evaluate the performance of this code by
empirically measuring the leakage using a mutual information
neural estimator as described in Section IV-C2. Our proposed
code design is summarized in Fig. 1.

Remark. Note thar a coding strategy that separately handle
the reliability and secrecy constraints is also used for the
discrete wiretap channel in [12], [13], and for the Gaussian
wiretap channel in [ 14]. In these works, an asymptotic regime
is considered, ie., the blocklength n tends to infinity, and the
security layer relies on the random choice of a hash function
in a family of universal hash functions. In this paper, we also
consider a family of hash functions for the security layer but
only select a specific function in this family. This choice is
part of the coding scheme design as elaborated on in our
simulation results. We also highlight that it is not possible to
use the analysis in [14] to guarantee secrecy in our setting at
finite blocklength because the reliability layer in our proposed
coding scheme does not employ Gaussian codebooks. Instead,
we will verify through simulations that our proposed coding
scheme satisfies the secrecy constraint in Definition 1.

B. Design aof the reliability layer (ep, dn)

The design of the reliability layer consists in designing
an e-reliable (g, n, P) code described by the encoder/decoder
pair (eg,dp) for the channel described by (1). Let V £
{1,2,...,Q} be the message set of this code where ¢ £ 29,

{ep,dp) is implemented by an autoencoder as in [40]. The
goal of the autoencoder is here to learn a representation of
the encoded message that is robust to the channel noise, so
that the received message at Bob can be reconstructed from its
noisy channel observations with a small probability of error.
Intuitively, as any error-correcting code, the autoencoder adds
redundancy to the message to ensure recoverability by Bob
in the presence of noise. More specifically, an autoencoder as
in [40] is a deep neural network that models a communication
system with Alice’s message as input and Bob's message
estimate as output. As depicted in Fig. 1, the encoder consists
of (i) an embedding layer where the input v = V' is mapped
to a one-hot vector 1, € R?, ie., a vector whose components
are all equal to zero except the v-th component which is
equal to one, followed by (ii) dense hidden layers that take
v as input and return an n-dimensional vector, followed by
(iii) a normalization layer that ensures that the average power
constraint 1 ||eg(v)||3 < P is met for the codeword ep(v). Note
that without loss of generality, one can assume that P = 1
because one can rewrite [leo(v)[3 < P as Ll|&(v)|3 < 1,
where ég(v) £ ep(v)/+/P. As depicted in Fig. 1, the decoder
consists of dense hidden layers and a sofimax layer. More
specifically, let u'¥! be the output of the last dense layer in
the decoder. The softmax layer takes u!"! as input and returns
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a vector of probabilities p'V'! € (0,1)!V], where the entries

-1
Por v € V, are py 2 expluo) (I} exp(ua)) . Finally, the
decoded message # corresponds to the index of p/¥' associated
with the highest probability, i.e., ©# £ arg max, p,. Similar to
[40], the autoencoder is trained over of all possible messages
v € V' using a stochastic gradient descent (SGD) [49] and the
categorical cross-entropy loss function Lige 2 — log(py ).

C. Design of the security layer (ps, fo)

The objective is here to design (w;, f:) such that the total
amount of leaked information about the original message is
small, ie., I{M;Z™) < 4, for some § = 0. For a given
choice of (g, f:), the performance of our code construction
will be evaluated using a mutual information neural estimator
({MINE) [30]. Before we describe the construction of (., f:),
we review the definition of 2-universal hash functions.

Definition 3. [50] Given two finite sets X and ¥, a family G
af functions from X to ¥ is 2-universal if

Vri,za € X, 11 # 10 = P[G(z1) = G(za)] = v,

where G is the random variable that represents the choice of
a function g € G uniformly at random in G.

1) Design of (s, fs): Let § 2 {0,1}9\{0}. For k <
g, consider the 2-universal hash family of functions F £
{fs}ses, where for s € S, f, : {0,1}7 = {0,1}*,v —
(2 @ v)g,where @ is the multiplication in GF(29) and (-)&
selects the & most significant bits. In our proposed code
design, the security layer is handled via a specific function
f: € JF indexed by the seed s & &. Then, we define
ws 1 {0,1}* x {0,1}97% — {0,1}4, (m,b) = s~' @ (ml|b),
where (-||-) denotes the concatenation of two sirings.

When the secrecy layer is combined with the reliability
layer, our coding scheme can be summarized as follows.
The input of the encoder ey is obtained by computing
V & u,(M,B), where M € {0,1}* is the message, and
B € {0,1}7% is a sequence of ¢ — k random bits generated
uniformly at random. After computing V', the encoder eg,
trained as described in Section IV-B, generates the codeword
X™ £ £4(V), which is sent over the channel by Alice. Bob
and Eve observe Y™ and £™, respectively, as described by (1)
and (2). The decoder dy, trained as described in Section IV-B,
decodes Y™ as Vﬁ% dg(¥Y' ™). Then, the receiver performs the
multiplication of V' and s, which is followed by a selection of
the k& most significant bits to create an estimate of M of M,
ie, M2 f(V).

2) Leakage evaluation via Mutual Information Neural Es-
timator (MINE) [30]: Let F £ {T;}sce be a set of functions
paramaterized by a deep neural network with parameters
# € 8. Define the neural information measure

o (parz=) & sup By, To(M, Z") — log Bpyyp,n €057,

where pysz~ is the joint probability distribution of (M, Z™).
By [30], the peural information measure [g(pprz=) can

approximate the mutual information I{M;Z") with arbi-
trary accuracy. Note that because the true distribution py; -
is unknown, one cannot directly use Ig(pprz-) to esti-
mate I{M;Z™). However, by estimating the expectations in
la(prrz-) with samples from ppsz- and pyy and pz., one
can rewrite Ig(pyrz-) as

E k
-~ 1 1 .
F(M; 2%) £ sup 2. 3 Ta(m,27)] — log 1 D _[€" ™)),
i=1

i=1

where the term % ELI [To(rmq, =) represents a sample mean
using k samples (mq,=7).e(1, _x) from pasz-, and the term
L5%  [eT#(m:=0)] represents a sample mean using k samples
(M4, 27" Vg (1,... k) from paspza.

The goal of MINE is to design T such that T(M;Z™)
approaches the mutual information I(M; Z"). By [30], the
estimator I{M; Z™) converges to I (M; £™) when the number
of samples is sufficiently large [30]. Guidelines to implement
the estimator I{M; Z™) are provided in [30].

D. Simulations and examples of code designs

We now provide examples of code designs that follow the
guidelines described in Sections IV-B, IV-C, and evaluate their
performance in terms of average probability of error at Bob
and leakage at Eve. The neural networks are implemented in
Python 3.7 using the Keras 2.3.1 library and Tensorflow 2.2.0.

1) Autoencoder training for the design of the reliability
layer (ep,dp): We consider the channel model (1) with
oy = 10~5NRu/10 apd SNRp — 104B, where, without loss
of generality (see Section IV-B), we chose P = 1. The
autoencoder is trained for g = n—1 using SGD with the Adam
optimizer [49] at a learning rate of 0.001 over 200 epochs of
40, 000 random messages with a batch size of 500. To evaluate
P.(ep, dp), we first generate the input V' < {0,1}9. Then, V
is passed through the trained encoder e;, which generates the
codewords X™ and the channel output ¥™. Finally, the trained
decoder dy forms an estimate of V' from ¥Y™. Fig. 2 shows
P.(ep, dp) versus the blocklength n.

2) Design of the secrecy layer and leakage evaluation:
The seeds selected for the simulations are given in Table L
The seeds are picked at random for the values of n greater
than eight, and multiple seeds have been tested for the values
of n smaller than eight to minimize the leakage. The leakage
is evaluated using MINE as follows. We have used a fully
connected feed-forward neural network with 4 hidden layers,
each having 400 neurons and using rectified linear unit (ReLLU)
as activation function. The input layer has & + n neurons, and
the Adam optimizer with a learning rate of 0.001 is used for
the training. The samples of the joint distribution ppyz- are
produced via uniform generation of messages M € {0,1}*
that are fed to the encoder £ = 5 o ey, whose output X™
produces the channel output £™ at Eve. The samples of the
marginal distributions are penerated by dropping either m or
z™ from the joint samples (m, z™). We have trained the neural
network over 10000 epochs of 20, 000 messages with a batch
size of 2500. Fig. 3 shows an example of leakage estimation
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Table 1
SELECTED SEEDS FOR THE SECURITY LAYER

soed =

n soed =

k=1) (k=2)
] 1 -
3 11 11
4 [ [1] [ [1]
1 0111 (iK1
[i] [ LIIEN] DT
i [CAT (] OT00T0
] TOTT 100 [CiEAEI]]
g [CEEECII]] 001001
11 DRRRRO0T T [CEICCITH]
12 TODDTOO0HD TOTTORD
13 TOTRRRRO000 [CLEETCTCIIET!
14 TODDROOOTRND [CIEEELELT]
15 [ TOODRROOO000 | DORO0DINN000T

for k=1 and n = 7 at SNRx = —5dB, and Fig. 4 shows the
leakage versus the blocklength n for different values of k and
SNRE.

3) Average probability of error analysis: To evaluate
P.(e,d), the trained encoder ey encodes the message M <
{0,1}* as ep(yws(M, B)), as described in Section IV-C, where
M € {0,1}* is the message, and B < {0,1}9* is a sequence
of g — k random bits generated uniformly at random. The
trained decoder dg forms M 2 falda(¥ ™)), as described in
Section IV-C. Fig. 2 shows P.(e,d) versus the blocklength
n. Note that we only plotted P.(e,d) when & = 2 as an
example, as one will atways have P.(e, d) < P.(eg,dp) for
any value of k.

1 T T T T T T T T T T T
—s—Pe(eo i), g=n — 1, SNRg = 1048 3
—&5—Ped), k=2, g=n— 1, SNRs = 10d8 | ]

Average probability of error

T B 9% 10 11 12 13 14
Blocklength n

(=]
i
.
Ln
=3

Figure 2. Average probability of emor versus blocklength n when g=n 1
and SNEg = 10dB.

4) Discussion: As expected, Fig. 4 shows that the leakape
decreases as SNRy decreases (for a fixed n, ¢, and k) and
increases as the length of the messape & increases (for a fixed
n, g, and SNRg). From Fig. 2 and 4, we, for instance, see that

0.05 T

F=1,n=7, SNRg — —5dB, s — D01001] |

0045 n

004 -

0.035

-

Leakage [{M; Z™)

0.03 -

0.025 f b

0.2 b

0015 ! ! !
0 4000 00 BOD0
Epochs

10000

Figure 3. Example of leakage T{M; Z™) versus epochs when g = n 1.
The yellow curve represents the 100-sample moving average of F{M; Zm).
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- 1. —e—k = 2, SNRy = —5dB
&
= 10l
= E
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i=
g
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ERl:
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g
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Figure 4. Leakage T{M;Z™) versus blocklength n when g =n 1

for SNRy = 10dB and SNR; = —5dB, we have designed
codes that show that the rate R = & is (e = 1.19- 107,48 =
8 . 10~*)-achievable with blocklength n = 10, and the rate
R= 19—3 is (e = 4.07-1073,§ = 6.73 - 10~*)-achievable with
blocklength n = 13. As another example, from Fig. 2 and 4,
we also see that for SNRp = 10dB and SNR; = —7dB, we
have designed codes that show that the rate R = 1 is (e =

5.35-10~4,4 = 10~ ?)-achievable with blocklength n = &.

V. CONCLUDING REMARKS

We highlight that our code design method can be applied
to any channel model and does not require the knowledge of
the channel model but only the knowledge of input and output
channel samples. Unreported resulis also show that our code
design is applicable to settings where uncertainty holds on the
channel statistics, e.g., compound wiretap channels [31], and
arbitrarily varying wiretap channels [51].
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