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Abstract—WedesignshortblocklengthcodesfortheGaussian
wiretapchannelunderinformation-theoreticsecurityguarantees.
Ourapproachconsistsindecouplingthereliabilityandsecrecy
constraintsinourcodedesign.Specifically, wehandlethe
reliabilityconstraintviaanautoencoder,andhandlethesecrecy
constraintviahashfunctions.Forblocklengthssmallerthan16,
weevaluatethroughsimulationstheprobabilityoferroratthe
legitimatereceiverandtheleakageattheeavesdropperofour
codeconstruction.Thisleakageisdefinedasthemutualinfor-
mationbetweentheconfidentialmessageandtheeavesdropper’s
channelobservations,andisempiricallymeasuredviaarecent
mutualinformationneuralestimator.Simulationresultsprovide
examplesofcodeswithpositiveratesthatachievealeakage
inferiortoonepercentofthemessagelength.

I.INTRODUCTION

Thewiretapchannel[1]isabasicmodeltoaccountfor
eavesdroppersinwirelesscommunication.Inthismodel,a
sender(Alice)encodesaconfidentialmessageM intoacode-
wordXnandtransmitsittoalegitimatereceiver(Bob)overn
usesofachannelinthepresenceofanexternaleavesdropper
(Eve).Bob’sestimateofM fromhischanneloutputobserva-
tionsisdenotedbyM̂,andEve’schanneloutputobservations
aredenotedbyZn.In[1],theconstraintsarethatBobmust
beabletorecoverM,i.e.,limn→∞ P[M =M̂]=0,andthe
leakageaboutM atEve,quantifiedbyI(M;Zn),isnottoo
largeinthesensethatlimn→∞

1
nI(M;Z

n)=0.Notethat
thestrongersecurityrequirementlimn→∞ I(M;Z

n)=0can
alsobeconsidered[2],meaningthatEve’sobservationsZnare
almostindependentofM forlargen.Thesecrecycapacityhas
beencharacterizedfordegradeddiscretememorylesschannels
in[1],thenforarbitrarydiscretememorylesschannelsin[3],
andthenforGaussianchannelsin[4].
Codingschemesbasedonlow-densityparity-check(LDPC)
codes[5]–[7],polarcodes[8]–[11],andinvertibleextrac-
tors[12],[13]havebeenconstructedfordegradedandsym-
metricwiretapchannelmodels.Moreover,themethodin[12],
[13]hasbeenextendedtotheGaussianwiretapchannel[14].
Codingschemesbasedonrandomlatticecodeshavealsobeen
proposedfortheGaussianwiretapchannel[15].Subsequently,
constructive[16]–[18]andrandom[19]polarcodingschemes
havebeenproposedtoachievethesecrecycapacityofnon-
degradeddiscretewiretapchannels. Morerecently,acoding
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schemethatcombinespolarcodesandinvertibleextractorshas
alsobeenproposedtoavoidtheneedforapre-sharedsecret
understrongsecrecy[20].
Allthereferencesaboveconsidertheasymptoticregime,
i.e.,thatnapproachesinfinity.However,manypracticalappli-
cationsrequireshortpacketsorlowlatency.Tofulfillthisneed,
non-asymptoticandsecondorderasymptoticsachievability
andconverseboundsonthesecrecycapacityofdiscreteand
Gaussianwiretapchannelshavebeenestablishedin[21]–[25].
Inthispaper, weproposetodesignshortblocklength
codes(smallerthan16)fortheGaussianwiretapchannel
underinformation-theoreticsecurityguarantees.Specifically,
wequantifysecurityintermsoftheleakageI(M;Zn),i.e.,
themutualinformationbetweentheconfidentialmessageand
theeavesdropper’schannelobservations.Ourgoalistodesign
codesthatcanachievealeakageinferiortoonepercentof
themessagelength.Themainideaofourapproachistothe
decouplethereliabilityandsecrecyconstraints.Specifically,
weuseadeeplearningapproachbasedonafeed-forward
neuralnetworkautoencodertohandlethereliabilitycode
constraintandcryptographictools,namely,hashfunctions,
tohandlethesecrecycodeconstraint.Then,toevaluatethe
performanceofourconstructedcode,weempiricallyestimate
theleakageI(M;Zn).Notethatevenforsmallvaluesofn
thisestimationischallengingwithstandardtechniquessuchas
binningoftheprobabilityspace[26],k-nearestneighborstatis-
tics[27],maximumlikelihoodestimation[28],orvariational
lowerbounds[29].Instead,toestimatetheleakage,wewill
usearecentlyproposedestimatorcalledmutualinformation
neuralestimator(MINE)[30],whichisprovablyconsistent
andofferbetterperformancesthanotherknownestimatorsin
highdimension.
Wesummarizethemainfeaturesofferedbyourproposed
codedesignasfollows.i)Amodularapproachthatseparates
thecodedesigninasecrecylayerandareliabilitylayer.
Thesecrecylayeronlydealswiththesecrecyconstraint(and
onlydependsonthestatisticsoftheeavesdropper’schannel),
whereasthereliabilitylayeronlydealswiththereliability
constraint(andonlydependsonthestatisticsofthelegitimate
receiver’schannel).Thismodularapproachallowsasimplified
codedesign,forinstance,ifonlyoneofthetwolayersneeds
tobe(re)designed.ii)Aprecisecontroloftheleakagethrough
theindependent(fromthereliabilitylayer)designofthe
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secrecylayer.Indeed,asdiscussednextinSectionII,code
designsbasedondeeplearningthatseektoachievereliability
andsecrecyjointlydonotseemtoofferagoodcontrolonhow
smalltheleakageis.iii)Auniversalwayofdealingwiththe
secrecyconstraintthroughtheuseofhashfunctions.Thisis
beneficial,forinstance,forcompoundsettings[31]asitthen
becomessufficienttodesignourcodewithrespecttotheworst
caseeavesdropper’schannel.iv)Amethodthatcanbeapplied
toanarbitrarychannelmodelastheconditionalprobability
distributionthatdefinesthechannelisnotneededandonly
inputandoutputchannelsamplesareneededtodesignthe
reliabilityandsecrecylayers.

Theremainingofthepaperisorganizedasfollows.Sec-
tionIIreviewsrelated works.SectionIIIintroducesthe
channelmodel.SectionIVdescribesourproposedcodede-
signandoursimulationresults.Finally,SectionVprovides
concludingremarks.

II.RELATEDWORKS

AchallengingtaskforGaussianwiretapchannelcoding
iscodedesigninthefiniteblocklengthregime.Next,we
reviewknownfinite-lengthcodeconstructionsbasedoncoding
theoretictoolsanddeeplearningtools.

A. Worksbasedoncodingtheory

Inthefollowing,wedistinguishtheworksthatconsidera
non-information-theoreticsecrecymetricfromtheworksthat
consideraninformation-theoreticsecrecymetric.

1)Non-information-theoretic secrecy metric: A non-
information-theoreticsecurity metriccalledsecuritygap,
whichisbasedonanerrorprobabilityanalysisatthe
eavesdropper,isusedtoevaluatethesecrecyperformance
in[32]–[35].Specifically,randomizedconvolutionalcodesfor
Gaussianandbinarysymmetricwiretapchannelsarestud-
iedin[32],andrandomizedturbocodesfortheGaussian
wiretapchannelareinvestigatedin[33].Codingschemes
fortheGaussianwiretapchannelbasedonLDPCcodesare
proposedin[34],[35].Additionally,anothernon-information-
theoreticsecurityapproachcalledpracticalsecrecyisinvesti-
gatedin[36],wherealeakagebetweenAlice’smessageand
anestimateofthemessageatEveisestimated.

2)Information-theoreticsecrecymetric:Next,wereview
worksthatconsidertheleakageI(M;Zn)asinformation-
theoreticsecrecymetric.In[37],puncturedsystematicirregu-
larLDPCcodesareproposedforthebinaryphase-shift-keyed-
constrainedGaussianwiretapchannel,andaleakageaslow
as11percentofthemessagelengthhasbeenobtainedfora
blocklengthn=106.In[38],LDPCcodesfortheGaussian
wiretapchannelhavealsobeendeveloped,andaleakageas
lowas20percentofthemessagelengthhasbeenobtainedfor
ablocklengthn=50,000.Mostrecently,in[39],randomized
Reed-MullercodesaredevelopedfortheGaussianwiretap
channel,andaleakageaslowasonepercentofthemessage
lengthhasbeenobtainedforablocklengthn=16.

B. Worksbasedondeeplearning

Artificialneuralnetworks(NNs)havegainedattention
incommunicationsystemdesignbecausetheirperformance
approachestheoneofthestate-of-the-artchannelcoding
solutions.In[40],[41],neuralnetworks(autoencoder)are
usedtolearntheencoderanddecoderforachannelcod-
ingtaskwithoutsecrecyconstraints.Othermachinelearning
approachesforchannelcodingwithoutsecrecyconstraints
havealsobeeninvestigatedin[42],[43]withreinforcement
learning,in[44] with mutualinformationestimators,and
in[45]withgenerativeadversarialnetworks.
Recently,theautoencoderapproachforchannelcodinghas
beenextendedtowiretapchannelcoding.In[46],[47],a
codingschemethatimitatescosetcodingbyclusteringlearned
signalconstellationsisdevelopedfortheGaussianwiretap
channelunderanon-information-theoreticsecrecy metric,
whichreliesonacross-entropylossfunction.In[48],acoding
schemefortheGaussianwiretapchannelisdevelopunderthe
information-theoreticleakageI(M;Zn)withanautoencoder
approachthatseekstosimultaneouslyoptimizedthereliability
andsecrecyconstraints.Aleakageaslowas15percentofthe
messagelengthisobtainedin[48]forablocklengthn=16.
Itseemsthatpreciselycontrollingandminimizingtheleakage
ischallengingwithsuchanapproach.Bycontrast,inthis
paper,weproposeanapproachthatseparatesthecodedesign
inapartthatonlydealswiththereliabilityconstraint(by
meansofanautoencoder)andinanotherpartthatonlydeals
withthesecrecyconstraint(bymeansofhashfunctions).As
discussedattheendoftheintroductionandsupportedbyour
simulationresults,oneoftheadvantagesofourapproachisa
bettercontrolofhowsmalltheleakageis.

III. MODEL

Notation: Capitallettersrepresentrandom variables,
whereaslowercaselettersrepresentrealizationsofassociated
randomvariables,e.g.,xisarealizationoftherandom
variableX.|X|denotesthecardinalityofthesetX. ·2
denotestheEuclideannorm.GF(2q)denotesafinitefieldof
order2q,q∈N∗.
ConsideramemorylessGaussianwiretapchanneldefinedby

Y X+NY, (1)

Z X+NZ, (2)

whereNY andNZarezero-meanGaussianrandomvariables
withvariancesσ2Y andσ

2
Z,respectively.Asformalizednext,

theobjectiveofthesenderistotransmitaconfidential
messageM toalegitimatereceiverbyencodingitintoa
sequenceXn,whichisthensentovernusesofthechan-
nels(1),(2)andyieldsthechannelobservationsYnandZn

atthelegitimatereceiverandeavesdropper,respectively.

Definition1. LetBn0(
√
nP)betheballofradius

√
nP

centeredattheorigininRnundertheEuclidiannorm.An
(n,k,P)codeconsistsofamessageset{0,1}k,anencoder
e:{0,1}k−→Bn0(

√
nP),andadecoderd:Rn−→{0,1}k.
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Thecodomainoftheencodereexpressesthepowerconstraint
e(m)22≤nP,∀m∈{0,1}

k.

Theperformanceofan(n,k,P)codeis measuredin
terms of(i)theaverage probability oferrorPe
1
2k

2k

m=1P[d(Y
n)=m|m issent],and(ii)theleakageat

theeavesdropperLe I(M;Zn).

Definition2.An(n,k,P)codeissaid-reliableifPe≤
andδ-secureifLe≤δ. Moreover,arate

k
n issaidtobe

(,δ)-achievablewithpowerconstraintPifthereexistsan
-reliableandδ-secure(n,k,P)code.

IV.C
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estimator

ODINGSCHEME

Figure1. Ourproposedcodingschemeconsistsofareliabilitylayerand
asecuritylayer.Thereliabilitylayerisimplementedusinganautoencoder
(e0,d0)describedinSectionIV-B,andthesecuritylayerisimplemented
usingthefunctionsϕsandfsdescribedinSectionIV-C1.Thesecurity
performanceisevaluatedintermsoftheleakageI(M;Zn)viaamutual
informationneuralestimatordescribedinSectionIV-C2.

A.High-leveldescriptionofcodingscheme

Ourcodeconstructionconsistsof(i)areliabilitylayerwith
an-reliable(n,q,P)code,describedbytheencoder/decoder
pair(e0,d0)(thiscodeisdesigned withoutanysecurity
requirement,i.e.,itsperformanceissolelymeasuredinterms
ofaverageprobabilityoferror)and(ii)asecuritylayerimple-
mentedwithhashfunctions. Wedesigntheencoder/decoder
pair(e0,d0)ofthereliabilitylayerusingadeeplearning
approachbasedonneuralnetworkautoencoderasdescribedin
SectionIV-B.WewilldesigntwofunctionsϕsandfsinSec-
tionIV-Ctoperformtheencodinganddecoding,respectively,
atthesecrecylayer.Theencoder/decoderpair(e,d)forthe
encodinganddecodingprocessofthereliabilityandsecrecy
layersconsideredjointlyisdescribedasfollows:
Encoding: Assumethatafixedsequenceofbitss∈

S {0,1}q\{0},calledseed,isknowntoallparties.Alice
generatesasequenceBofq−kbitsuniformlyatrandom
in{0,1}q−k(thissequencerepresentslocalrandomnessused
torandomizetheoutputofthefunctionϕs)andencodesthe
messageM ∈{0,1}kase0(ϕs(M,B)).Theoverallencoding
mapethatdescribestheencodingatthesecrecyandreliability
layersisdescribedbythemape:{0,1}k×{0,1}q−k→
Bn0(
√
nP),(M,B)→e0(ϕs(M,B)).

Decoding:GivenYnands,Bobdecodesthemessageas
fs(d0(Y

n)).Theoveralldecodingmapdthatdescribesthe
decodingatthereliabilityandsecrecylayersisdescribed
bythe mapd:Rn →{0,1}k,Yn → fs(d0(Y

n)).For
agivencodedesign,describedbytheencoder/decoderpair
(e,d),wewillthenevaluatetheperformanceofthiscodeby
empiricallymeasuringtheleakageusingamutualinformation
neuralestimatorasdescribedinSectionIV-C2.Ourproposed
codedesignissummarizedinFig.1.

Remark.Notethatacodingstrategythatseparatelyhandle
thereliabilityandsecrecyconstraintsisalsousedforthe
discretewiretapchannelin[12],[13],andfortheGaussian
wiretapchannelin[14].Intheseworks,anasymptoticregime
isconsidered,i.e.,theblocklengthntendstoinfinity,andthe
securitylayerreliesontherandomchoiceofahashfunction
inafamilyofuniversalhashfunctions.Inthispaper,wealso
considerafamilyofhashfunctionsforthesecuritylayerbut
onlyselectaspecificfunctioninthisfamily.Thischoiceis
partofthecodingschemedesignaselaboratedoninour
simulationresults.Wealsohighlightthatitisnotpossibleto
usetheanalysisin[14]toguaranteesecrecyinoursettingat
finiteblocklengthbecausethereliabilitylayerinourproposed
codingschemedoesnotemployGaussiancodebooks.Instead,
wewillverifythroughsimulationsthatourproposedcoding
schemesatisfiesthesecrecyconstraintinDefinition1.

B.Designofthereliabilitylayer(e0,d0)

Thedesignofthereliabilitylayerconsistsindesigning
an-reliable(q,n,P)codedescribedbytheencoder/decoder
pair(e0,d0)forthechanneldescribedby(1).LetV
{1,2,...,Q}bethemessagesetofthiscodewhereQ 2q.

(e0,d0)isimplementedbyanautoencoderasin[40].The
goaloftheautoencoderisheretolearnarepresentationof
theencodedmessagethatisrobusttothechannelnoise,so
thatthereceivedmessageatBobcanbereconstructedfromits
noisychannelobservationswithasmallprobabilityoferror.
Intuitively,asanyerror-correctingcode,theautoencoderadds
redundancytothemessagetoensurerecoverabilitybyBob
inthepresenceofnoise.Morespecifically,anautoencoderas
in[40]isadeepneuralnetworkthatmodelsacommunication
systemwithAlice’s messageasinputandBob’s message
estimateasoutput.AsdepictedinFig.1,theencoderconsists
of(i)anembeddinglayerwheretheinputv∈Vismapped
toaone-hotvector1v∈R

Q,i.e.,avectorwhosecomponents
areallequaltozeroexceptthev-thcomponentwhichis
equaltoone,followedby(ii)densehiddenlayersthattake
vasinputandreturnann-dimensionalvector,followedby
(iii)anormalizationlayerthatensuresthattheaveragepower
constraint1n e0(v)

2
2≤Pismetforthecodeworde0(v).Note

thatwithoutlossofgenerality,onecanassumethatP=1
becauseonecanrewrite1n e0(v)

2
2≤Pas

1
n ẽ0(v)

2
2≤1,

whereẽ0(v) e0(v)/
√
P.AsdepictedinFig.1,thedecoder

consistsofdensehiddenlayersandasoftmaxlayer. More
specifically,letµ|V|betheoutputofthelastdenselayerin
thedecoder.Thesoftmaxlayertakesµ|V|asinputandreturns
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avectorofprobabilitiesp|V|∈(0,1)|V|,wheretheentries

pv,v∈V,arepv exp(µv)
|V|
i=1exp(µi)

−1

.Finally,the

decodedmessagêvcorrespondstotheindexofp|V|associated
withthehighestprobability,i.e.,v̂ argmaxvpv.Similarto
[40],theautoencoderistrainedoverofallpossiblemessages
v∈Vusingastochasticgradientdescent(SGD)[49]andthe
categoricalcross-entropylossfunctionLloss −log(pv).

C.Designofthesecuritylayer(ϕs,fs)

Theobjectiveisheretodesign(ϕs,fs)suchthatthetotal
amountofleakedinformationabouttheoriginalmessageis
small,i.e.,I(M;Zn)≤ δ,forsomeδ >0.Foragiven
choiceof(ϕs,fs),theperformanceofourcodeconstruction
willbeevaluatedusingamutualinformationneuralestimator
(MINE)[30].Beforewedescribetheconstructionof(ϕs,fs),
wereviewthedefinitionof2-universalhashfunctions.

Definition3. [50]GiventwofinitesetsXandY,afamilyG
offunctionsfromXtoYis2-universalif

∀x1,x2∈X,x1=x2 =⇒ P[G(x1)=G(x2)]≤|Y|
−1,

whereGistherandomvariablethatrepresentsthechoiceof
afunctiong∈GuniformlyatrandominG.

1)Designof(ϕs,fs):LetS {0,1}q\{0}.Fork≤
q,considerthe2-universalhashfamilyoffunctionsF
{fs}s∈S,wherefors∈S,fs:{0,1}

q→{0,1}k,v→
(s v)k,where isthemultiplicationinGF(2q)and(·)k
selectsthekmostsignificantbits.Inourproposedcode
design,thesecuritylayerishandledviaaspecificfunction
fs ∈ F indexedbytheseeds∈ S.Then, wedefine
ϕs:{0,1}

k×{0,1}q−k→{0,1}q,(m,b)→ s−1 (m b),
where(··)denotestheconcatenationoftwostrings.
Whenthesecrecylayeriscombinedwiththereliability

layer,ourcodingschemecanbesummarizedasfollows.
Theinputoftheencodere0 isobtainedbycomputing
V ϕs(M,B),whereM ∈{0,1}kisthemessage,and
B∈{0,1}q−kisasequenceofq−krandombitsgenerated
uniformlyatrandom.AftercomputingV,theencodere0,
trainedasdescribedinSectionIV-B,generatesthecodeword
Xn e0(V),whichissentoverthechannelbyAlice.Bob
andEveobserveYnandZn,respectively,asdescribedby(1)
and(2).Thedecoderd0,trainedasdescribedinSectionIV-B,
decodesYnasV d0(Y

n).Then,thereceiverperformsthe
multiplicationofVands,whichisfollowedbyaselectionof
thekmostsignificantbitstocreateanestimateofM ofM,
i.e.,M fs(V).
2)LeakageevaluationviaMutualInformationNeuralEs-

timator(MINE)[30]:LetF {Tθ}θ∈Θbeasetoffunctions
paramaterizedbyadeepneuralnetwork withparameters
θ∈Θ.Definetheneuralinformationmeasure

IΘ(pMZn) sup
θ∈Θ
EpMZ nTθ(M,Z

n)−logEpM pZne
Tθ(M,Z

n),

wherepMZn isthejointprobabilitydistributionof(M,Zn).
By[30],theneuralinformation measure IΘ(pMZn)can

approximatethe mutualinformationI(M;Zn)witharbi-
traryaccuracy.NotethatbecausethetruedistributionpMZn

isunknown,onecannotdirectlyuseIΘ(pMZn)toesti-
mateI(M;Zn).However,byestimatingtheexpectationsin
IΘ(pMZn)withsamplesfrompMZn andpM andpZn,one
canrewriteIΘ(pMZn)as

I(M;Zn) sup
θ∈Θ

1

k

k

i=1

[Tθ(mi,z
n
i)]−log

1

k

k

i=1

[eTθ(̄mi,̄z
n
i)],

wheretheterm1
k

k
i=1[Tθ(mi,z

n
i)]representsasamplemean

usingksamples(mi,z
n
i)i∈{1,...,k}frompMZn,andtheterm

1
k

k
i=1[e

Tθ(mi,z
n
i)]representsasamplemeanusingksamples

(̄mi,̄z
n
i)i∈{1,...,k}frompMpZn.

Thegoalof MINEistodesignTθsuchthatI(M;Z
n)

approachesthemutualinformationI(M;Zn).By[30],the
estimatorI(M;Zn)convergestoI(M;Zn)whenthenumber
ofsamplesissufficientlylarge[30].Guidelinestoimplement
theestimatorI(M;Zn)areprovidedin[30].

D.Simulationsandexamplesofcodedesigns

Wenowprovideexamplesofcodedesignsthatfollowthe
guidelinesdescribedinSectionsIV-B,IV-C,andevaluatetheir
performanceintermsofaverageprobabilityoferroratBob
andleakageatEve.Theneuralnetworksareimplementedin
Python3.7usingtheKeras2.3.1libraryandTensorflow2.2.0.
1)Autoencodertrainingforthedesignofthereliability
layer(e0,d0):Weconsiderthechannel model(1) with
σ2Y =10

−SNRB/10andSNRB =10dB,where,withoutloss
ofgenerality(seeSectionIV-B),wechoseP =1.The
autoencoderistrainedforq=n−1usingSGDwiththeAdam
optimizer[49]atalearningrateof0.001over200epochsof
40,000randommessageswithabatchsizeof500.Toevaluate
Pe(e0,d0),wefirstgeneratetheinputV∈{0,1}

q.Then,V
ispassedthroughthetrainedencodere0,whichgeneratesthe
codewordsXnandthechanneloutputYn.Finally,thetrained
decoderd0formsanestimateofVfromY

n.Fig.2shows
Pe(e0,d0)versustheblocklengthn.
2)Designofthesecrecylayerandleakageevaluation:
TheseedsselectedforthesimulationsaregiveninTableI.
Theseedsarepickedatrandomforthevaluesofngreater
thaneight,andmultipleseedshavebeentestedforthevalues
ofnsmallerthaneighttominimizetheleakage.Theleakage
isevaluatedusing MINEasfollows. Wehaveusedafully
connectedfeed-forwardneuralnetworkwith4hiddenlayers,
eachhaving400neuronsandusingrectifiedlinearunit(ReLU)
asactivationfunction.Theinputlayerhask+nneurons,and
theAdamoptimizerwithalearningrateof0.001isusedfor
thetraining.ThesamplesofthejointdistributionpMZn are
producedviauniformgenerationofmessagesM ∈{0,1}k

thatarefedtotheencodere=ϕs◦e0,whoseoutputX
n

producesthechanneloutputZnatEve.Thesamplesofthe
marginaldistributionsaregeneratedbydroppingeithermor
znfromthejointsamples(m,zn).Wehavetrainedtheneural
networkover10000epochsof20,000messageswithabatch
sizeof2500.Fig.3showsanexampleofleakageestimation
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TableI
SELECTEDSEEDSFORTHESECURITYLAYER

n seeds seeds
(k=1) (k=2)

2 1 -
3 11 11
4 010 010
5 0111 0111
6 01000 01000
7 001001 010010
8 1011100 0000001
9 00000001 00001001
10 000000001 000000001
11 0000000011 0000000011
12 10000000000 10000000000
13 100000000000 000000000001
14 1000000000000 0000000000001
15 10000000000000 00000000000001

fork=1andn=7atSNRE=−5dB,andFig.4showsthe
leakageversustheblocklengthnfordifferentvaluesofkand
SNRE.
3)Averageprobabilityoferroranalysis: Toevaluate
Pe(e,d),thetrainedencodere0encodesthemessageM ∈
{0,1}kase0(ϕs(M,B)),asdescribedinSectionIV-C,where
M ∈{0,1}kisthemessage,andB∈{0,1}q−kisasequence
ofq−krandombitsgenerateduniformlyatrandom.The
traineddecoderd0formsM fs(d0(Y

n)),asdescribedin
SectionIV-C.Fig.2showsPe(e,d)versustheblocklength
n.NotethatweonlyplottedPe(e,d)whenk=2asan
example,asonewillalwayshavePe(e,d)≤Pe(e0,d0)for
anyvalueofk

2 3 4 5 6 7 8 9 10 11 12 13 14
10-6

10-5

10-4

10-3

10-2

10-1

.

Figure2. Averageprobabilityoferrorversusblocklengthnwhenq=n 1
andSNRB =10dB.

4)Discussion:Asexpected,Fig.4showsthattheleakage
decreasesasSNRE decreases(forafixedn,q,andk)and
increasesasthelengthofthemessagekincreases(forafixed
n,q,andSNRE

0 2000 4000 6000 8000 10000
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

).FromFig.2and4,we,forinstance,seethat

Figure3. ExampleofleakageI(M;Zn)versusepochswhenq=n 1.
Theyellowcurverepresentsthe100-samplemovingaverageofI(M;Zn)

2 3 4 5 6 7 8 9 10 11 12 13 14

10-3

10-2

10-1

10
0

.

Figure4. LeakageI(M;Zn)versusblocklengthnwhenq=n 1.

forSNRB =10dBandSNRE =−5dB,wehavedesigned
codesthatshowthattherateR= 1

10is(=1.19·10
−3,δ=

8·10−3)-achievablewithblocklengthn=10,andtherate
R= 2

13is(=4.07·10
−3,δ=6.73·10−3)-achievablewith

blocklengthn=13.Asanotherexample,fromFig.2and4,
wealsoseethatforSNRB =10dBandSNRE=−7dB,we
havedesignedcodesthatshowthattherateR= 1

8is(=
5.35·10−4,δ=10−2)-achievablewithblocklengthn=8.

V.CONCLUDINGREMARKS

Wehighlightthatourcodedesignmethodcanbeapplied
toanychannelmodelanddoesnotrequiretheknowledgeof
thechannelmodelbutonlytheknowledgeofinputandoutput
channelsamples.Unreportedresultsalsoshowthatourcode
designisapplicabletosettingswhereuncertaintyholdsonthe
channelstatistics,e.g.,compoundwiretapchannels[31],and
arbitrarilyvaryingwiretapchannels[51].
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[27] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physical Review E, vol. 69, no. 6, p. 066138, 2004.

[28] T. Suzuki, M. Sugiyama, J. Sese, and T. Kanamori, “Approximating
mutual information by maximum likelihood density ratio estimation,”
in New challenges for feature selection in data mining and knowledge
discovery, 2008, pp. 5–20.

[29] D. Barber and F. Agakov, “The im algorithm: A variational approach to
information maximization,” in Int. Conf. Neural Inf. Processing Systems,
2003, pp. 201–208.

[30] M. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A. Courville,
and R. Hjelm, “Mine: Mutual information neural estimation,” 2018,
https://arxiv.org/abs/1801.04062.

[31] Y. Liang, G. Kramer, H. Poor, and S. Shamai, “Compound wiretap
channels,” EURASIP J. Wirel. Commun. Netw., no. 142374, 2009.

[32] A. Nooraiepour and T. Duman, “Randomized convolutional codes for
the wiretap channel,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3442–
3452, 2017.

[33] ——, “Randomized turbo codes for the wiretap channel,” in IEEE
Global Commun. Conf., 2017, pp. 1–6.

[34] D. Klinc, J. Ha, S. McLaughlin, J. Barros, and B. Kwak, “LDPC
codes for the Gaussian wiretap channel,” IEEE Trans. Inf. Forensics
and Security, vol. 6, no. 3, pp. 532–540, 2011.

[35] M. Baldi, M. Bianchi, and F. Chiaraluce, “Non-systematic codes for
physical layer security,” in IEEE Inf. Theory Workshop, 2010, pp. 1–5.

[36] W. Harrison, E. Beard, S. Dye, E. Holmes, K. Nelson, M. Gomes, and
J. Vilela, “Implications of coding layers on physical-layer security: A
secrecy benefit approach,” Entropy, vol. 21, no. 8, p. 755, 2019.

[37] C. Wong, T. Wong, and J. Shea, “LDPC code design for the bpsk-
constrained Gaussian wiretap channel,” in IEEE GLOBECOM Work-
shops, 2011, pp. 898–902.

[38] M. Baldi, G. Ricciutelli, N. Maturo, and F. Chiaraluce, “Performance
assessment and design of finite length LDPC codes for the Gaussian
wiretap channel,” in IEEE Int. Conf. Commun. Workshop, 2015, pp.
435–440.

[39] A. Nooraiepour, S. Aghdam, and T. Duman, “On secure communications
over Gaussian wiretap channels via finite-length codes,” IEEE Commun.
Letters, vol. 24, no. 9, pp. 1904–1908, 2020.

[40] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cognitive Commun. Networking, vol. 3,
no. 4, pp. 563–575, 2017.

[41] S. Dörner, S. Cammerer, J. Hoydis, and S. Brink, “Deep learning based
communication over the air,” IEEE J. Selected Topics Signal Processing,
vol. 12, no. 1, pp. 132–143, 2018.

[42] F. Aoudia and J. Hoydis, “End-to-end learning of communications
systems without a channel model,” in Asilomar Conf. Signals, Systems,
and Computers, 2018, pp. 298–303.

[43] M. Goutay, F. Aoudia, and J. Hoydis, “Deep reinforcement learning au-
toencoder with noisy feedback,” 2018, arXiv preprint arXiv:1810.05419.

[44] R. Fritschek, R. Schaefer, and G. Wunder, “Deep learning for channel
coding via neural mutual information estimation,” in IEEE Int. Workshop
Signal Processing Advances Wirel. Commun., 2019, pp. 1–5.

[45] H. Ye, G. Li, F. Juang, and K. Sivanesan, “Channel agnostic end-to-end
learning based communication systems with conditional GAN,” in IEEE
Globecom Workshops, 2018, pp. 1–5.

[46] R. Fritschek, R. Schaefer, and G. Wunder, “Deep learning for the
Gaussian wiretap channel,” in IEEE Int. Conf. Commun., 2019, pp. 1–6.

[47] ——, “Deep learning based wiretap coding via mutual information
estimation,” in ACM Workshop on Wireless Security and Machine
Learning, 2020, pp. 74–79.

[48] K. Besser, P. Lin, C. Janda, and E. Jorswieck, “Wiretap code design by
neural network autoencoders,” IEEE Trans. Inf. Forensics and Security,
vol. 15, pp. 3374–3386, 2020.

[49] D. Kingma and J. Ba, “A method for stochastic optimization,” 2014,
arXiv preprint arXiv:1412.6980.

[50] J. Carter and M. Wegman, “Universal classes of hash functions,” J.
Computer and System Sciences, vol. 18, no. 2, pp. 143–154, 1979.

[51] E. MolavianJazi, M. Bloch, and J. Laneman, “Arbitrary jamming can
preclude secure communication,” in Annual Allerton Conf. Commun.,
Control, and Computing, 2009, pp. 1069–1075.

2021 IEEE Information Theory Workshop (ITW)

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on November 28,2021 at 02:59:43 UTC from IEEE Xplore.  Restrictions apply. 


