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Abstract—The recursive projection–aggregation (RPA) decod-
ing algorithm for Reed–Muller (RM) codes was recently intro-
duced by Ye and Abbe. We show that the RPA algorithm is
closely related to (weighted) belief-propagation (BP) decoding
by interpreting it as a message-passing algorithm on a factor
graph with redundant code constraints. We use this observation
to introduce a novel decoder tailored to high-rate RM codes.
The new algorithm relies on puncturing rather than projections
and is called recursive puncturing–aggregation (RXA). We also
investigate collapsed (i.e., non-recursive) versions of RPA and
RXA and show some examples where they achieve similar
performance with lower decoding complexity.

I. INTRODUCTION

Reed–Muller (RM) codes were introduced by Muller [1]

and a bounded-distance decoding algorithm was given by

Reed [2]. Under maximum-likelihood (ML) decoding, RM

codes achieve capacity on the binary erasure channel [3] and

they also provide excellent performance at low to medium

block lengths over the additive white Gaussian noise (AWGN)

channel [4], [5]. Due to the intractability of ML decoding,

an important question is how to approach ML performance

with reasonable decoding complexity in practice. Many recent

approaches exploit the symmetry of RM codes by making use

of their large automorphism group1 [4], [5], [7], [8]. This typi-

cally results in code representations with many redundant code

constraints, e.g., overcomplete parity-check matrices where

the number of rows is much larger than the rank [7], [9].

Other options for decoding RM codes include the recursive

list decoder introduced by Dumer and Shabunov [16] and the

successive-cancellation list decoder for polar codes [8], [10].

These will be discussed further in Section V.

This paper focuses on the recursive projection–aggregation

(RPA) algorithm that was recently introduced in [4], [5]. RPA

decoding achieves excellent performance on low-rate (2nd-

and 3rd-order) RM codes. It also significantly outperforms

comparable polar codes under successive-cancellation list de-

coding. In this work, we show that the RPA algorithm has a
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1The automorphism group of a code C is defined as {π ∈ SN |xπ ∈
C, ∀x ∈ C}, where SN is the symmetric group on N elements, i.e., π ∈ SN

is a bijective mapping (or permutation) from [N ] to itself, and x
π denotes a

permuted vector, i.e., xπ
i
= xπ(i).

natural interpretation on a factor graph with generalized check

constraints and can be seen as a version of (weighted) belief-

propagation (BP) decoding using many redundant code con-

straints. We use this observation to introduce a new decoding

approach tailored to high-rate codes. For a detailed comparison

between RPA and previous decoding approaches, such as [11]–

[13] and [14]–[16], see [5, Sec. V-B].

To begin, we provide a simple overview of RM codes

that illustrates how their recursive structure and their large

automorphism group together imply that they satisfy a very

large set of code constraints. We then give a high-level

description of the algorithms and contributions in this paper

with the help of the RM code table shown in Fig. 1. To that

end, let RM(r,m) ⊆ F
N
2 denote the set of codewords in the

r-th order RM code of length N = 2m. The well-known

recursive definition of RM(r,m) [17, p. 374] is given by

{(u,u+ v) |u∈RM(r,m− 1),v∈RM(r − 1,m− 1)} , (1)

where (u,w) denotes vector concatenation. For u,w ∈ F
N/2
2

with (u,w) ∈ RM(r,m), this implies that (i) u ∈ RM(r,m−
1), i.e., puncturing the second half of the codeword gives a

shorter RM codeword of the same order, and (ii) v = u+w ∈
RM(r − 1,m − 1), i.e., summing the two codeword halves

projects onto a shorter RM code with reduced order. Of course,

these statements remain true even after reordering the code bits

using a permutation in the code’s automorphism group. Thus,

there are in fact many different puncturing and projection

patterns that result in RM subcodes. In RPA decoding, these

subcodes are decoded recursively until one reaches a 1st-

order (i.e., augmented Hadamard) code, for which there exist

efficient decoders based on the fast Hadamard transform (FHT)

[17]. The schematic decoding path taken by RPA is illustrated

by the solid red line in Fig. 1.

The complexity of RPA increases significantly with each

additional recursion stage and RPA decoding is thus limited

to low-rate codes in practice. To alleviate this problem, we

propose a new algorithm, which is similar in spirit to RPA, that

relies on puncturing instead of projection. The new algorithm

is called recursive puncturing–aggregation (RXA). It uses all

possible RM(r,m− 1) subcodes and traverses upwards in the

RM tableau, as illustrated by the solid blue line in Fig. 1.

The base case for RXA is the RM(r, r + 2) (i.e., extended

Hamming) code which also has a FHT-based decoder [18].

We further investigate collapsed, i.e., non-recursive, ver-

sions of RPA and RXA. We provide a theoretical justifica-
42978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020
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Fig. 1: Standard tableau of Reed–Muller (RM) codes and schematic illustration
of all algorithms considered in this paper. (SPC: single parity-check)

tion for using collapsed algorithms by showing that multiple

recursive stages result in reuse of the same subcodes. We

then propose two new algorithms, called collapsed projection–

aggregation (CPA) and collapsed puncturing–aggregation

(CXA), and show that they can achieve similar performance as

their recursive counterparts with lower complexity. CPA and

CXA correspond to the dashed lines in Fig. 1 and directly

project or puncture onto the base codes.

Lastly, we connect the decoding algorithms in this paper

to previous approaches based on overcomplete parity-check

matrices that contain all minimum-weight dual codewords as

rows [7], [9]. In particular, we show that the factor graph for

CXA with one additional stage of puncturing (i.e., to single

parity-checks instead of extended Hamming codes, see the

blue dotted line in Fig. 1) is equivalent to the factor graph

that contains all minimum-weight parity-checks (MWPCs).

In summary, the contributions in this paper are as follows:

• We show that RPA is closely related to BP decoding by

interpreting it as a message-passing algorithm on a highly

redundant factor graph representation of the code.

• We propose a new algorithm, called RXA, which allows

for efficient decoding of high-rate RM codes.

• We propose collapsed versions of RPA and RXA, called

CPA and CXA, and show that they sometimes achieve

similar performance with lower complexity2.

• We highlight the connections between this work, RPA,

and previous approaches based on using all MWPCs.

II. FACTOR GRAPHS FOR REED–MULLER CODES

In order to compare RPA and BP decoding, we start by

reviewing a few factor graph representations of RM(r,m). For

an introduction to factor graphs, see [19].

In general, the factor graphs in this paper contain four

distinct node types, which are collected in the sets V, C,Vh, Cg:

2The journal version [5] of [4] appeared after this paper was submitted and
also considers a simplified decoder that partially collapses the RPA recursion.

• V: variable nodes (VNs), corresponding to the code bits

of RM(r,m), where |V| = 2m,

• C: check nodes (CNs), corresponding to projections, i.e.,

the summation of code bits,

• Vh: hidden VNs (of degree 2), corresponding to the code

bits of RM(r − 1,m− 1) subcodes,

• Cg: generalized CNs, corresponding to RM(r,m− d) or

RM(r−d,m−d) subcode constraints for 1 ≤ d ≤ r−1.

The number of nodes of each type and the graph connec-

tivity (including the node degrees) depend on the particular

code representation. As an example, the factor graph that can

be inferred from the (u,u+v) construction in (1) is shown in

Fig. 2(a). It consists of one generalized CN corresponding to

RM(r,m− 1) for the first codeword half and one generalized

CN corresponding to RM(r−1,m−1) that constrains the sum

of the two codeword halves. Moreover, one may use the fact

that RM(r − 1,m) ⊂ RM(r,m) [17, p. 377] to see that the

second half of the codeword also forms a valid codeword in

RM(r,m− 1), leading to one additional subcode constraint.

A. Redundant Factor Graphs

Redundant code constraints can be obtained by exploiting

the code’s automorphism group. Fig. 2(a) shows the implicit

factor graph for RPA decoding, which is based on projecting

onto the 2m − 1 different RM(r − 1,m − 1) subcodes. Note

that, for factor graphs with generalized CNs, the ordering of

edges corresponding to the subcode bits is important. Here, we

neglect this issue to allow for a concise high-level description

of all decoding algorithms. A precise definition of the factor

graph connectivity, including proper indexing of subcode bits,

can be found in the extended version of this paper [20].

B. Belief-Propagation Decoding

Once the factor graph is defined, many decoding algorithms

are defined automatically by standard variations of BP update

rules. For example, assume VN messages are updated with

λ(t)
v→c = ℓv +

∑

c′∈∂v\c

λ̂
(t)
c′→v, (2)

and outgoing CN messages are updated with

λ̂(t)
c→v = 2 tanh−1





∏

v′∈∂c\v

tanh

(

λ
(t)
v′→c

2

)



 , (3)

where t refers to the iteration number and ℓv corresponds to

the channel log-likelihood ratio (LLR). For hidden (degree-2)

VNs in Vh, we have ℓv = 0 and (2) corresponds to a simple

message forwarding. Outgoing messages for generalized CNs

are updated by computing the corresponding extrinsic bit-wise

posterior LLRs. This is generally intractable for r > 1, which

motivates the use of recursive approaches.

III. RECURSIVE DECODING ALGORITHMS

In this section, we revisit RPA decoding as a message-

passing algorithm and highlight the differences compared

to standard BP decoding. We then describe the new RXA

decoding algorithm.
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Fig. 2: Factor graphs for RM(r,m). Circled numbers and arrows indicate message-passing schedules for the decoding algorithms.

Algorithm 1: RPA [4] and CPA

Input: LLRs ℓ, params r,m, flags E,C ∈ {0, 1}
Output: (binary) output LLRs ℓ̂ where ℓv ∈ {±∞}

1 if r = 1 then

2 ℓ̂ = FHT decode ℓ: hard-ML to ±∞ (E=0) or extrinsic (E=1)
3 else
4 construct the RPA or, if C = 1, the CPA factor graph for

RM(r,m) with node sets V,Vh, C, Cg (see Figs. 2(b) and 2(d))

5 initialize λ
(0)
v→c = ℓv ∀v ∈ V

6 for t = 1, . . . , Tmax do
// projection, step (1) in Fig. 2(b)

7 update λ̂
(t)
c→v via (3) ∀c ∈ C and λ

(t)
v→c via (2) ∀v ∈ Vh

// subcode decoding, step (2)

8 if C = 0 then

9 (λ̂
(t)
c→v)v∈∂c = RPA

(

(λ
(t)
v→c)v∈∂c, r − 1,m− 1

)

∀c ∈ Cg

10 else // jump to line 2 and apply FHT decoding

11 (λ̂
(t)
c→v)v∈∂c = RPA

(

(λ
(t)
v→c)v∈∂c, 1,m− r + 1

)

∀c ∈ Cg

// backward update, step (3)

12 update λ
(t)
v→c via (2) ∀v ∈ Vh and λ̂

(t)
c→v via (3) ∀c ∈ C

// VN update, step (4)

13 update λ
(t)
v→c via (4) (E=0) or (6) (E=1) for all v ∈ V

14 compute ℓ̂v via (5) and map to ±∞ ∀v ∈ V

15 return ℓ̂

A. Recursive Projection–Aggregation

The message-passing version of RPA is defined in Algo-

rithm 1. The inputs to the algorithm are the channel LLRs ℓ,

the RM parameters r and m, and the flags E,C ∈ {0, 1}.

The flag E indicates if intrinsic (E = 0) or extrinsic updates

(E = 1) should be used and the flag C indicates if the original

(C = 0) or the collapsed version (C = 1) should be used. On

line 2, the base codes (r = 1) are decoded via FHTs using

either (E = 0) intrinsic hard-ML decoding with LLR decisions

mapped to ±∞ or (E = 1) extrinsic soft decoding [21]. If

r 6= 1, then the decoding starts by constructing the factor

graph shown in Fig. 2(b) (line 4) and initializing all outgoing

VN messages to the channel LLRs (line 5). The algorithm

then iterates Tmax times over the following four steps:

1) Projection: All CNs update their outgoing messages

according to the standard CN update rule (3). Afterwards, the

hidden VNs forward these messages to the generalized CNs.

One can also show that (3) is equivalent to the projection-

step update equation in the original RPA algorithm because

ln(ea+b + 1)− ln(ea + eb) = 2 tanh−1
(

tanh a
2 tanh

b
2

)

[20].

2) Subcode decoding: The incoming messages for each

generalized CN c ∈ Cg are collected into a vector (λ
(t)
v→c)v∈∂c

which serves as the input for the recursive RPA decoding of

the subcodes (line 9). The output vector is used to update the

outgoing messages of the generalized CNs. Note that, if r 6= 1
or E = 0, then the outgoing messages are binary (±∞).

3) Backward update: The hidden VNs forward the mes-

sages from the generalized CNs and the standard CNs are

updated according to (3). If r 6= 1 or E = 0, then the messages

from generalized CN are ±∞ and the message received by a

given VN equals the LLR from the other connected VN, but

perhaps with a flipped sign. In this case, the result matches the

aggregation function in the original RPA algorithm [4, Alg. 4].

4) VN update: If E = 0, then the outgoing VN messages

for v ∈ V are computed like the original RPA algorithm with

λ(t)
v→c =

1

2m − 1

∑

c′∈∂v\c

λ̂
(t)
c′→v, (4)

where the If E = 1, then (6) is used instead. Then, after Tmax

iterations, the hard-decision outputs are formed by computing

ℓ̂v =
1

2m − 1

∑

c∈∂v

λ̂(t)
c→v, (5)

for all v ∈ V , and then mapping the output to ±∞.

The VN update rule (4) can be seen as an intrinsic version of

a weighted BP update rule where the channel message has zero

weight and the 2m−1 incoming messages are simply averaged.

Indeed, a known problem with the standard BP decoder is

that it only tends to work well for sparse factor graphs with

tree-like neighborhoods. However, redundant factor graphs

generally have many cycles. A standard technique in this case

is to add weights to reduce the overconfidence induced by

correlated messages [22]. For example, weighted BP decoding

using a single weighting factor for scaling incoming VN

message gives good performance when decoding RM codes

based on overcomplete parity-check matrices, even though the

factor graph has many cycles [7]. More generally, it can be

beneficial to introduce and optimize general weighting factors

for each edge in the factor graph [23], [24].
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Algorithm 2: RXA and CXA

Input: input LLRs ℓ, RM parameters r,m, collapsed C ∈ {0, 1}
Output: output LLRs ℓ̂

1 if r = m− 2 then

2 ℓ̂ = decode ℓ using extended Hamming FHT decoder [18]
3 else

4 construct the RXA or, if C = 1, the CXA factor graph for
RM(r,m) with node sets V, Cg

5 initialize λ
(0)
v→c = ℓv ∀v ∈ V

6 for t = 1, . . . , Tmax do
// subcode decoding, step (1) in Fig. 2(c)

7 if C = 0 then

8 (λ̂
(t)
c→v)v∈∂c = RXA

(

(λ
(t)
v→c)v∈∂c, r,m− 1

)

∀c ∈ Cg

9 else // jump to line 2 and apply FHT decoding

10 (λ̂
(t)
c→v)v∈∂c = RXA

(

(λ
(t)
v→c)v∈∂c, r, r + 2

)

∀c ∈ Cg

// VN update, step (2)

11 update λ
(t)
v→c via (6) ∀v ∈ V

12 compute ℓ̂v via (5) ∀v ∈ V

13 return ℓ̂;

B. Recursive Puncturing–Aggregation

The factor graph for the (u,u+v) construction in Fig. 2(a)

has two RM(r,m−1) constraints based on puncturing the two

codeword halves. Similar to RPA, additional RM(r,m − 1)
constraints can be obtained by exploiting the code’s automor-

phism group. Fig. 2(c) illustrates the resulting factor graph

that is used for RXA decoding. A precise definition of the

factor graph connectivity3 is given in [20]. Since there are

no projections, the factor graph consists only of standard VNs

(contained in V) and generalized CNs (contained in Cg). There

are |Cg| = 2(2m − 1) subcode constraints in total—twice as

many as for RPA.

The RXA algorithm is shown in Algorithm 2. The base

codes are decoded using an extended Hamming FHT decoder

[18] that produces bit-wise posterior LLRs. Thus, RXA works

entirely with extrinsic (i.e., E = 1) message passing. Other-

wise, the algorithm follows a simple “flooding” scheduling,

alternating between recursive decoding (line 8) and a VN

update (line 11). For RXA, we observed that the update rule

in (4) does not give good results and we instead use the

weighted extrinsic VN update rule given by

λ(t)
v→c = ℓv + wr,m

∑

c′∈∂v\c

λ̂
(t)
c′→v, (6)

where wr,m can be optimized separately for each algorithm

(i.e., RPA, RXA, CPA, and CXA) and each channel condition.

IV. NON-RECURSIVE (COLLAPSED) ALGORITHMS

To decode RM(r,m) using RPA, the number of RM(1,m−
r + 1) base codes is

∏r−2
d=0(2

m−d − 1). On the other hand,

any RM(1,m− r+1) subcode can be obtained by projecting

RM(r,m) via an (r − 1)-dimensional subspace in F
m
2 [4,

Lem. 1]. The number of distinct (r−1)-dimensional subspaces

in F
m
2 is given by the Gaussian binomial coefficient

(

m
r−1

)

2
,

∏d−1
l=0

2m−l−1
2d−l−1

, where r − 1 ≤ m. When r − 1 ≥ 2, the ratio

3RXA exploits the same 2m−1 distinct one-dimensional subspaces in F
m
2

as RPA, but each subspace is used to partition V into two ordered sets.

between
∏r−2

d=0(2
m−d − 1) and

(

m
r−1

)

2
is
∏r−1

d=1(2
d − 1) > 1.

This means that RPA with more than one stage of recursion

reuses the same RM(1,m− r + 1) base code multiple times.

A similar argument can be made for RXA decoding.

To avoid this reuse of base codes, we investigate collapsed

algorithms based on factor graphs whose generalized CNs are

only for the base codes RM(1,m−r+1) or RM(r, r+2). We

note that the idea of using other RM subcodes was mentioned

briefly in [6, Sec. VI] but no results were provided. The journal

version [5] (which appeared after this paper was submitted)

does present results for a simplified decoder using this idea.

A. Collapsed Projection–Aggregation

The factor graph for CPA is shown in Fig. 2(d). There are

B =
(

m
r−1

)

2
different RM(1,m − r + 1) subcodes and each

VN in V has degree B. The CNs correspond to projections

involving 2r−1 code bits, i.e., their degree is 2r−1 + 1. The

CPA algorithm is obtained by calling Algorithm 1 with the

C = 1 flag. The corresponding steps mimic those of RPA

except that the recursion in line 9 is replaced with the decoding

of the RM(1,m−r+1) subcodes (line 11) and the combining

weight in (6) is wr,m = α/B for some optimized α ∈ (0, 1].

B. Collapsed Puncturing–Aggregation

Similar to CPA, the CXA algorithm collapses the recursion

in RXA and directly decodes RM(r, r+2) subcodes. The factor

graph is a bipartite graph similar to Fig. 2(c). The VN degree

is B =
(

m
m−r−2

)

2
and there are 2m−r−2B different subcodes

based on the distinct (m−r−2)-dimensional subspaces in F
m
2 .

The RXA algorithm uses 2m−r−2
∏m−r−2

d=0 (2m−d − 1) base

codes and, in comparison, the number of base codes used by

CXA is divided by
∏m−r−2

d=1 (2d − 1). The CXA algorithm

is obtained by calling Algorithm 2 with the C = 1 flag. It

follows the same steps as RXA except that the recursion in line

7 is replaced with the extended Hamming FHT decoder which

performs the base decoding. Also, the combining weight in (6)

is chosen to be wr,m = α/B for some optimized α ∈ (0, 1].

C. Connection to Minimum-Weight Parity Checks

In [7] (see also [9]), weighted BP decoding of RM codes

is considered based on parity-check matrices that contain all

minimum-weight dual codewords as rows. This can be seen

as CXA decoding with one additional stage of puncturing.

In particular, puncturing RM(r, r + 2) leads to RM(r, r + 1)
which are single parity-check codes, see Fig. 1. The number

of subcodes for CXA assuming an additional puncturing stage

is 2m−r−1
(

m
m−r−1

)

which is exactly the number of minimum

weight codewords of RM(m − r − 1,m) [17, p. 381]. Thus,

there is a common thread between these new methods and

prior work on overcomplete decoding.

V. SIMULATION RESULTS

A. Performance

The described decoding algorithms are tested on some

RM codes with lengths N ∈ {128, 256} over the AWGN

channel. The iteration number is set to Tmax = 15 in all
45
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Fig. 3: Simulation results

cases. A convergence-based stopping criterion according to

‖ℓ̂old − ℓ̂new‖ < 0.01‖ℓ̂old‖, where ‖x‖ =
√

∑N
i=1 x

2
i , was

implemented to reduce simulation time, similar to [4]. Ordered

statistics decoding (OSD) is used as a benchmark, whose

performance is close to ML [25].

The self-dual RM(3, 7) code is used to compare the per-

formance between the different projection and puncturing

approaches. The results in Fig. 3(a) show that RPA, RXA,

CPA, and CXA all perform similarly and the gap to OSD in

all cases is around 0.3 dB at a word error rate (WER) of

10−3. The performance degradation of RXA when using the

RPA-style VN update (4) instead of (6) is also shown. As a

reference, we compare to weighted BP decoding assuming an

overcomplete parity-check matrix Hoc that contains all 94 488
minimum-weight dual codewords as rows, where the weight-

ing factor for incoming VN messages is 0.05 [7, Fig. 1(b)].

Weighted BP has higher WER compared to the considered

algorithms which highlights the advantage of using more

powerful base codes (i.e., extended Hamming or augmented

Hadamard codes) compared to single parity-checks. Following

[4], we also consider list decoding [26] in combination with

the proposed algorithms. For a list size of 16, the resulting

performance of both CPA and CXA approaches the OSD curve

within < 0.1 dB at a WER of 10−3.

Lastly, we consider the codes RM(2, 8) and RM(5, 8). For

RM(2, 8), the results in Fig 3(b) show that CPA performs

within 0.2 dB of OSD at a WER of 10−3, and this gap becomes

almost negligible once the list decoder is used. Note that CPA

and RPA are equivalent for second-order RM codes. For CXA

on RM(5, 8), Fig 3(c) shows a similar 0.2 dB gap from OSD,

and a reduced gap of < 0.1 dB once the list decoder is used.

Note that CXA is equivalent to RXA for this code.

B. Complexity

In terms of computational complexity, the same number of

projection/puncturing stages are required for self-dual codes.

In general, however, approaches based on projections have

fewer subcodes than those based on puncturing. They also

work well with hard-decision decoding of base codes, whereas

soft-decisions are required for RXA and CXA. On the other

hand, projections require evaluating the standard CN update

equation, which is not required for puncturing.

Comparing the recursive and collapsed approaches, both

CPA and CXA reduce the number of base codes for RM(3, 7)
by a factor of 3. Moreover, the number of base decodings

is limited to at most Tmax for collapsed algorithms, whereas

the recursion entail a potentially much higher number of base

decodings: up to T 2
max in the case of RM(3, 7).

While all of these algorithms are interesting from a theo-

retical perspective, their computational complexity is actually

quite high. For example, the CPA algorithm for RM(3, 7)
decodes 2667 different RM(1, 5) codes per iteration and has a

complexity of roughly 2667·32·(5+4) ≈ 768K operations per

iteration. The simplified RPA approach in [5] reduces this but

it is unclear if these methods can match list-based approaches

(e.g., [8], [10], [16]) in performance versus complexity.

For example, it is known that SCL decoding with a list size

of 16 already achieves very good performance for RM(3, 7)
at high SNR [8]. Also, the simulation code for the method

in [16] was recently posted to GitHub (see https://github.com/

kshabunov/ecclab). We tested this code and found that a list

size of 32 was sufficient to achieve near-ML performance for

RM(3, 7). The decoding speed, with list size 32, is also much

faster than our simulation code for RPA, RXA, CPA, and CXA

without a list. Of course, these algorithms are quite new and

it remains to be seen if program optimization and algorithm

development can make this approach competitive in practice.

VI. CONCLUSIONS

This paper connects the RPA decoding of RM codes to

message-passing and BP decoding on a redundant factor graph.

Based on this, the RXA algorithm is introduced to decode

high-rate RM codes. It is analagous to RPA decoding but it is

based on puncturing up to RM(m − 2,m) codes rather than

projection down to RM(1,m) codes. To reduce complexity,

we also propose collapsing the recursions and projecting (or

puncturing) directly to the base codes. More work is needed

to fully understand the complexity trade-off between these

algorithms and previous approaches based on lists.
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R. Urbanke, “Reed-Muller codes achieve capacity on erasure channels,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4298–4316, 2017.

[4] M. Ye and E. Abbe, “Recursive projection-aggregation decoding of
Reed-Muller codes,” in Proc. IEEE Int. Symp. Information Theory (ISIT),
Paris, France, 2019.

[5] ——, “Recursive projection-aggregation decoding of Reed-Muller
codes,” IEEE Trans. Inf. Theory, Mar. 2020.

[6] ——, “Recursive projection-aggregation decoding of Reed-Muller
codes,” arxiv:1902.0147v2, 2019.

[7] E. Santi, C. Häger, and H. D. Pfister, “Decoding Reed-Muller codes
using minimum-weight parity checks,” in Proc. IEEE Int. Symp. Infor-

mation Theory (ISIT), Vail, CO, 2018.
[8] S. A. Hashemi, N. Doan, M. Mondelli, and W. J. Gross, “Decoding

Reed-Muller and polar codes by successive factor graph permutations,”
in Proc. IEEE Int. Symp. Turbo Codes and Iterative Information Pro-

cessing (ISTC), Hong Kong, Hong Kong, Dec. 2018.
[9] M. Bossert and F. Hergert, “Hard- and soft-decision decoding beyond the

half minimum distance—An algorithm for linear codes,” IEEE Trans.

Inf. Theory, vol. 32, no. 5, pp. 709–714, Sept. 1986.
[10] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.

Theory, vol. 61, no. 5, pp. 2213–2226, 2015.
[11] V. M. Sidel’nikov and A. S. Pershakov, “Decoding of Reed-Muller codes

with a large number of errors,” Problemy peradichi informatsii, vol. 28,
no. 3, pp. 80–94, 1992.

[12] P. Loidreau and B. Sakkour, “Modified version of Sidel’nikov-Pershakov
decoding algorithm for binary second order Reed-Muller codes,” in Proc.

Int. Workshop Algebraic and Combinatorial Coding Theory (ACCT),
Kranevo, Bulgaria, 2004.

[13] B. Sakkour, “Decoding of second order Reed–Muller codes with a large
number of errors,” in Proc. IEEE Information Theory Workshop (ITW),
Rotorua, New Zealand, 2005.

[14] I. Dumer, “Recursive decoding and its performance for low-rate
Reed–Muller codes,” IEEE Trans. Inf. Theory, vol. 50, no. 5, pp. 811–
823, May 2004.

[15] ——, “Soft-decision decoding of Reed-Muller codes: a simplified al-
gorithm,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 954–963, March
2006.

[16] I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller
codes: Recursive lists,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp.
954–963, March 2006.

[17] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting

Codes. Elsevier, 1977.
[18] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information

transfer functions: model and erasure channel properties,” IEEE Trans.

Inf. Theory, vol. 50, no. 11, pp. 2657–2673, Nov. 2004.
[19] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the

sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

[20] M. Lian, C. Häger, and H. D. Pfister, “Decoding Reed-Muller codes
using redundant code constraints,” to appear on arXiv, 2020.

[21] A. Ashikhmin and S. Litsyn, “Simple MAP decoding of first-order
Reed–Muller and Hamming codes,” IEEE Trans. Inf. Theory, vol. 50,
no. 8, pp. 1812–1818, 2004.

[22] R. Palanki, M. P. Fossorier, and J. S. Yedidia, “Iterative decoding of
multiple-step majority logic decodable codes,” IEEE Trans. Commun.,
vol. 55, no. 6, pp. 1099–1102, June 2007.

[23] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE J. Sel. Topics Signal Proc., vol. 12, no. 1, pp. 119–131,
Feb. 2018.

[24] M. Lian, F. Carpi, C. Häger, and H. D. Pfister, “Learned belief-
propagation decoding with simple scaling and SNR adaptation,” in Proc.

IEEE Int. Symp. Information Theory (ISIT), Paris, France, 2019.

[25] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block
codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41,
no. 5, pp. 1379–1396, Sept. 1995.

[26] D. Chase, “A class of algorithms for decoding block codes with channel
measurement information,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp.
170–182, Jan. 1972.

[27] I. Dumer and K. Shabunov, “Recursive list decoding for Reed-Muller
codes and their subcodes,” in Information, Coding and Mathematics.
Springer US, 2002, pp. 279–298.

47


