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Abstract

Due to the ubiquitous presence of missing values (MVs) in real-world datasets, the MV
imputation problem, aiming to recover MVs, is an important and fundamental data pre-
processing step for various data analytics and mining tasks to effectively achieve good
performance. To impute MVs, a typical idea is to explore the correlations amongst
the attributes of the data. However, those correlations are usually complex and thus
difficult to identify. Accordingly, we develop a new deep learning model called MIss-
ing Data Imputation denoising Autoencoder (MIDIA) that effectively imputes the
MVs in a given dataset by exploring non-linear correlations between missing values
and non-missing values. Additionally, by considering various data missing patterns,
we propose two effective MV imputation approaches based on the proposed MIDIA
model, namely MIDIA-Sequential and MIDIA-Batch. MIDIA-Sequential imputes the
MVs attribute-by-attribute sequentially by training an independent MIDIA model for
each incomplete attribute. By contrast, MIDIA-Batch imputes the MVs in one batch
by training a uniform MIDIA model. Finally, we evaluate the proposed approaches by
experimentation in comparison with existing MV imputation algorithms. The exper-
imental results demonstrate that both MIDIA-Sequential and MIDIA-Batch achieve
significantly higher imputation accuracy compared with existing solutions, and the
proposed approaches are capable of handling various data missing patterns and data
types. Specifically, MIDIA-Sequential performs better than MIDIA-Batch for data
with monotone missing pattern, while MIDIA-Batch performs better than MIDIA-
Sequential for data with general missing pattern.
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1 Introduction

Due to various uncontrollable factors, e.g., hardware failure, unconscious malfunc-
tion, participants refusal, etc, missing values (MVs) widely exist in various kinds of
real-world datasets, e.g., medical datasets, microarray gene datsets, survey datasets
and sensing datasets. To many algorithms employed in data analytics, data mining and
machine learning (Gharibshah et al. 2020; Dong et al. 2014), data integrity is a pre-
requisite due to the incompetence of these algorithms in handling datasets with MVs.
Moreover, the existence of M Vs resulting in information loss, may cause performance
degradation of the employed algorithms (Anagnostopoulos and Triantafillou 2014).
Therefore, the critical task of missing value imputation (MV imputation), aiming to
replace the MVs with some plausible estimations, attracts much research attention
from the academia and industry.

Over years, various MV imputation methods have been proposed. Several existing
works propose to estimate the missing value on an attribute of a data record by taking a
weighted mean of values on the same attribute of some similar data records, e.g., hot-
deck imputation (Andridge and Little 2010; Joenssen and Bankhofer 2012) and kNN
imputation (Aittokallio 2010; Zhang 2008), which define some similarity functions and
impute MVs by top-k similar data records. However, determining a proper similarity
function and a suitable size of similar record set are very difficult. In a different line of
research on MV imputation, some existing methods explore the correlations amongst
attributes of the same data record. Among them, owing to the low computational cost,
linear regression model (Wang and Rao 2002a) is often proposed to impute MVs by
modeling linear correlations between incomplete attributes (attributes with MVs) and
complete attributes (attributes without MVs). Nevertheless, the correlations amongst
attributes in real-world datasets may be complex and hard to capture precisely using
a linear model, e.g., a strong non-linear correlation has been found in some gene
datasets (Zhou et al. 2003). To the best knowledge of the authors, few works on MV
imputation effectively capture the non-linear correlations amongst attributes. Existing
non-linear regression models are mostly based on kernel functions, e.g., Gaussian
kernel, Uniform kernel and Logistic kernel, guided by experience (Zhu et al. 2011; Qin
et al. 2009). They suffer the same problem with the aforementioned linear regression
models since it is hard to select a proper kernel function to capture the complex
interactions of various factors captured in the data.

Along with the advances in computer hardware, ever-increasing computing power,
and many promising real-life applications, deep learning and neural networks (NN)
have received tremendous attention in recent years. Among the various well-known NN
models, AutoEncoder (AE) first encodes a data record into a low-dimensional latent
vector which in turn is decoded back to the original data record in order to embed the
inherent properties and the (usually non-linear) correlations amongst attributes into
a latent vector. More specifically, by training the network to minimize a distortion
measure between inputs and outputs (both are the input data record itself), an AE
aims to learn a low-dimensional latent vector (called embedding) of the data record, to
obtain a property-preserving representation of the raw input data record. Furthermore,
to achieve a good embedding of the data for handling the issues of noisy data and
data sparsity, denoising AutoEncoder (dAE) (Vincent et al. 2010, 2008), a stochastic
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version of autoencoder is proposed. Specifically, in order to obtain a robust embedding
and avoid simply learning the identity, a dAE takes a partially corrupted input and trains
a model that recovers the original uncorrupted input. Usually, the corrupted input are
generated by setting some values of the input data record to default values generated
based on a user-specified scheme (e.g., zeros or mean values on the corresponding
attributes).

The dAE model seems like a nature fit for the MV imputation problem, as it aims
to restore the corrupted values (i.e., MVs) by learning some intrinsic properties in
uncorrupted values (i.e., non-missing values). However, simply applying a dAE model
for MV imputation is impractical. First of all, a dAE model is originally designed
to learn a good representation of the data, rather than MV imputation. Second, the
objective function of dAE only considers to recover the entire original input rather than
the MVs only, which leads to suboptimal imputation results. Finally, the corruption
process in dAE is only introduced as a training criterion in order to obtain a better and
more robust embedding instead of trying to recover values that are totally missing.
As concluded by Bengio (Vincent et al. 2008), the dAE model is proposed to learn
embeddings of the input that are robust to small irrelevent changes in input. In other
words, the noises introduced in the corrupted input should not destruct the original
data structure seriously. However, the M Vs inherently existed in the real-world datasets
may corrupt the stable structures and regular characteristics of the data, resulting in
misguided learning of non-robust embeddings. Therefore, the performance of MV
imputation by leveraging dAE directly is unsatisfactory (as demonstrated empirically
in Sect. 4.3).

Motivated by the observed deficiencies of applying dAE to the MV imputation
problem, we propose a dAE-based model of Mlssing Data Imputation denoising
Autoencoder (MIDIA, pronounced just like media), tailored for MV imputation. Given
a dataset with MVs, MIDIA aims to capture the hidden correlations between MVs and
non-MVs, and then estimates the MVs for imputation. Additionally, the proposed
MIDIA is an MV-driven model, i.e., the model training processes and MV imputa-
tion strategies are different for various missing patterns. In this paper, we focus on
three common missing patterns (McNeish 2017): univariate missing pattern (where
the MVs occur only on a single attribute), monotone missing pattern (where the MVs
concentrates on several attributes and the attributes can be sorted conveniently based on
the percentage of missing values on each attribute) and general missing pattern (where
the MVs may occur on any attribute). Accordingly, based on the MIDIA model, we
devise two MV imputation approaches, namely MIDIA-Sequential and MIDIA-Batch,
to accommodate data with various missing patterns. Among them, MIDIA-Sequential
trains an individual MIDIA model for each incomplete attribute (attribute with MVs),
and imputes the M Vs on different incomplete attributes based on the corresponding
learnt MIDIA models. Moreover, to further improve the imputation accuracy, MIDIA-
Sequential imputes the MVs on different incomplete attributes sequentially. Similar
to the sequential imputation strategy introduced in Zhang et al. (2008), the imputation
starts from the incomplete attribute which has the least MVs and the imputed MVs
are in turn used for imputing MVs on other incomplete attributes later. On the other
hand, MIDIA-Batch trains a uniform MIDIA model and imputes the MV in one batch.
Moreover, with arigid theoretical analysis (see Sect. 3.5 in detail) and extensive exper-
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iments, we find that MIDIA-Sequential and MIDIA-Batch can be reduced to the same
approach for handling datasets with univariate missing pattern. MIDIA-Sequential is
capable of handling datasets with monotone missing pattern, while MIDIA-Batch is
capable of handling datasets with general missing pattern.

The major contributions made in this paper are summarized as follows.

— We analyze the pitfalls of MV imputation by simply using the dAE model. Accord-
ingly, we propose a new dAE-based learning model, namely MIDIA, tailored for
MYV imputation.

— Considering three commonly discussed data missing patterns, we proposed two
effective MV imputation approaches, namely MIDIA-Sequential and MIDIA-
Batch, to exploit the proposed MIDIA model.

— We present an extensive experimental evaluation on real datasets. The results
demonstrate that the proposed MIDIA and MV imputation approaches achieve
significantly higher imputation accuracy than existing methods, and are competent
to handle data with various data types and missing patterns.

The remainder of this paper is structured as follows. In Sect. 2, we introduce the
preliminaries and related works. In Sect. 3, we present the methodology and then, in
Sect. 4, we report the experiment results. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

In this section, we first formulate the MV imputation problem. Next, we review some
prior works relevant to our research. Finally, we provide some background on denois-
ing autoencoder (dAE) which is the foundation of our research.

2.1 Problem formulation

We start by introducing some notation and definitions used in this paper and state our
research goal.

Definition 1 An observation is a data record describing an object, which consist of d
attributes.

Definition 2 An incomplete observation is a data record where the values on certain
attributes are missing, while a complete observation is a data record where the values
on all attributes exist.

Definition 3 Given a dataset consists of N observations, it can be represented by an
N x d data matrix X = [x[, X2, ..., Xy], where each vector x; (1 <i < N) is an
observation, denoted by x; = (x,-,l,x,-,z, e, x,-,d). Moreover, the dataset consists
of two disjoint subsets: incomplete dataset, denoted by X,,,, and complete dataset,
denoted by X, containing incomplete observations and complete observations in X,
respectively.
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Table 1 Example of data tuples with MVs

co NMHC NO, NO, 03 T RH AH
X 0.088 0.016 0.491 0.079 0.046 0.135 0415 0.084
X, ? 0.017 0.488 0.052 0.031 0.114 0.374 0.060
X3 ? 0.019 0512 ? 0.040 0.129 ? 0.096
X4 0.037 0.022 0.569 0.158 0.051 0.273 0.525 0.231
Xs ? 0.022 0.534 ? 0.036 0.159 0.418 0.099
X6 0.096 0.023 0.545 0.052 0.017 0.123 0.488 0.099
X7 ? 0.023 0.615 0.114 0.035 0.265 0.370 0.147
X3 0.076 0.023 0.528 0.108 0.050 0.189 0.504 0.150
Xo 0.022 0.024 0.614 0.136 0.028 0.245 0.541 0213
X0 ? 0.025 0.612 0.120 0.033 0.271 0.377 0.156

Definition 4 Given a dataset X, the missing indicator matrix is denoted by S =
[s1,s2, ..., sy]toindicate the MVsin X, where the i -th vectors; = (si,l, $i2y ey s,‘,d)
is corresponding to the observation x;. If the value on the j-th attribute of an observa-
tion x; is missing, then s; ; = 1, otherwise s; ; = 0.

Example 1 Table 1 shows a dataset (where each row is an observation) sampled from
the AirQuality' dataset. The dataset contains various hourly averaged responses from
an Air Quality Chemical Multi-sensor device deployed in a significantly polluted area
of Italy (Vito et al. 2008). Each observation has eight attributes that are concentra-
tions for CO, Non Metanic Hydrocarbons (NMHC), Total Nitrogen Oxides (NO),
Nitrogen Dioxide (NO;), Indium Oxide (O3), Temperature (T), Relative Humidity
(RH) and Absolute Humidity (AH). For illustration, we use ‘?’ to indicate the MVs.
As shown, the incomplete observations are { X2, X3, X5, X7, X10} (i.e., the values on
some attributes of these observations are missing) and the complete observations are
{X1, X4, X6, X3, Xo}.

As mentioned above, we aim to facilitate the MV imputation by exploring the non-
linear correlations between MVs and non-MVs. Given a dataset X, the core issue in
this work is to design a proper structure of learning model tailored for MV imputaiton
and return an effective imputed dataset X* based on the proposed model by consid-
ering various missing patterns. To address the issues mentioned above, we propose a
novel dAE-based learning model, namely MIDIA (Mlissing Data Imputation denois-
ing Autoencoder). Moreover, based on the proposed MIDIA model, we devise two
effective MV imputation approaches, namely MIDIA-Sequential and MIDIA-Batch,
for MV imputation of data with various missing patterns.

1 https://archive.ics.uci.edu/ml/datasets/ Air+Quality.
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2.2 Related work

The existing MV imputation methods can be generally categorized into two
classes (Magnani 2004): (i) local imputation which is based on the inter-correlations
amongst observations and (ii) global imputation which is based on the intra-
correlations amongst attributes in the same observation. The local imputation estimates
the MV on an attribute of an observation based on the values on the same attribute of its
neighbors. The global imputation estimates the MV on an attribute of an observation
by modeling the correlations between the incomplete attribute and complete attributes
in the same observation. Existing studies in the iterature show that these two classes
of methods impute MVs from two orthogonal views and no one is absolutely better
than the other. Different solutions fit for different situations.

The kKNN-based imputation (Troyanskaya et al. 2001; Kim et al. 2004; Verboven
etal. 2007; Zhang et al. 2007) which aims to find k nearest neighbors of an incomplete
observation and then takes a distance-weighted mean of the k neighbors for imputation,
is the most well-known local imputation method. In kNN imputation, the parameter
k has a significant effect on the performance of the imputation. However, there is
no theoretically optimal way to determine k properly and the £ may be different
for each dataset. Hot-deck imputation (Joenssen and Bankhofer 2012; Kim et al.
2005; Zhang et al. 2008) is another simple yet effective local imputation method. It
partitions observations into disjoint groups and predicts the MVs by using values from
one or more similar observations (donors) within the same group. Nevertheless, hot-
deck-based procedures make a strong assumption that observations can be organized
in classes with little variation inside a class. This contradicts from the assumption
that data are thought as being independent and identically which is widely make in
statistical methods and more likely to be true in real applications. Additionally, for both
kNN-based and hot-deck-based imputation methods, the proper selection of similarity
functions may be difficult especially for the data with heterogeneous attributes (i.e.,
the attributes are of different data types).

The global imputation methods leverage the correlations between the incomplete
attribute and complete attributes in an observation itself to estimate the MVs. One
such strategy is imputation by employing a regression model taking an observation
as the input to predict the MVs using the non-missing values in the same observa-
tion. The model can be trained from complete observations in the data space based on
EM (Expectation Maximization) algorithm (Dempster et al. 1977). Generally, linear
regression (Wang and Rao 2002a, b; Yuan 2010) is a typical choice as the parameters
of the linear regression model is easy to estimate. A few kernel-based MV imputation
methods (Zhu et al. 2011; Qin et al. 2009) build a non-linear model to depict the
non-linear correlations between incomplete attributes and complete attributes based
on various kernel functions. However, it is notoriously hard to select a proper kernel
function for the datasets with complex interactions and non-linear relation structures.
Only recently, neural network models are developed for MV imputation since the
neural networks have the capability to extract the complex correlations in the data.
MIDA (Lovedeep and Wang 2017), an imputation model with deep denoising autoen-
coders, has been proposed. As MIDA imputes the MVs by directly applying dAE
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Fig. 1 Denoising autoencoder architecture

model, the improvement of imputation accuracy is limited (as introduced in Sect. 1).
In this work, we propose a variant of dAE, named MIDIA, to tackle the problem of
MYV imputation, carry out a grid theoretical analysis and perform a holistic research
on the problem.

2.3 Background—denoising autoencoder

In this section, we will briefly review the traditional denoising autoencoder to provide
some background for our research.

A denoising AutoEncoder (dAE) (Vincent et al. 2010) is a powerful, non-linear
mapping model to learn an effective representation with low dimensionality of the
original data. Without loss of generality, in Fig. 1, we take a one-layer dAE model as
an example for illustration.

First of all, to make the learnt model more robust and avoid overfitting, dAE corrupts
the original input x into X by adding some additive small noises (e.g., isotropic Gaussian
noises) or forcing a fraction of elements in x to some default values (e.g., zeros or mean
values on the corresponding attributes). In this paper, we focus on the later strategy for
generating corrupted input because it can be viewed as removing part of elements in
the original input and replacing their values by some default values which is a common
technique for handling MVs. Next, the corrupted input X is mapped to an 4-dimensional
hidden representation (embedding) y = f (XW + b) by an encoder, where f () is a
user-specified activation function, W is a d * h encoding weight matrix and b is a &
encoding bias vector. Generally, the embedding layer has less dimensionality than the
input, i.e., i < d, which corresponds to the regime where the dAE tries to implement
data compression (Baldi 2012). Finally, the resulting embedding y is mapped back to
reconstruct the original input x through a decoder. The transformation function has a

similar formulation z = g (yW/ + b/), where g (-) is also a user-specified activation

function, W', b’ are the h * d decoding weight matrix and d decoding bias vector
respectively.
The objective function of dAE is to minimize the reconstruction error between the
original input x and the output (reconstruction) z, i.e., arg minL (X, z) where § = {W,
0

W', b, b/} is the parameter to be optimized and L (-) refers to a loss function to measure
the distance between the input x and z. It is notable that the the output z of dAE is a
deterministic function of the corrupted input X rather than the original input x. While
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z is expected to be as close as possible to the original input x. The basic idea of the
parameter optimization is that if the embedding y captures the useful features of the
original input x from its corrupted version X, it allows a good reconstruction z of the
original input x. Therefore, by training the model to minimize reconstruction error
amounts to generating a good embedding which retains much of the information in
the original input.

3 Methodology
3.1 Exploring dAE to MV imputation

As introduced earlier, a dAE handles two things: (1) attempting to encode the cor-
rupted input to obtain a good embedding and (2) attempting to undo the effect of a
corruption process stochastically applied to the original input. In other words, besides
good embedding learning, the dAE performs the denoising which can be used for MV
imputation.

Given a dataset X with MVs, from the perspective of deep learning, we consider
the complete dataset X, € X and the incomplete dataset X,,, € X as training set for
model learning and testing set for MV imputation, respectively. For employing dAE
to MV imputation, there are two phases: (1) model training trains a dAE model based
on the complete dataset X, and (2) MV imputation imputes the MVs in the incomplete
dataset X,,, based on the learned dAE model.

In model training phase, we take the complete dataset X, as the original input. The
corrupted input X, is generated by randomly selecting some values of the original
input X, as synthetic MVs and replacing the ground truth of the MVs with default
values (generated based on a user-specified scheme). Let the embedding and output
(reconstruction) be Y, and Z., respectively. By minimizing the reconstruction error
between X, and its reconstruction Z, the parameter 6 is optimized (i.e., a dAE model
is trained).

Example 2 Figure 2 shows the model training process over a training set consist of
all complete observations in AirQuality dataset introduced in Example 1. In Fig. 2,
we only show the complete observations in Table 1 due to the space limitation. For
corrupted input generation, we randomly select some values in the original input as
MVs, and replace the selected values (MVs) with the mean values of the corresponding
attributes (where the mean values are considered as the default values). For example,
the mean value of the first attribute CO in the dataset is 0.325, and thus we replace all
synthetically generated M Vs on attribute CO with 0.325. Unless noted specifically, we
use the mean values of the corresponding attributes to replace the M Vs in all examples
through the paper. Based on the generated corrupted input, the parameter 6 of the dAE
model is optimized by iteratively learning the mapping functions in encoding and
decoding.

Now given an incomplete dataset X,,, we intend to impute the MVs in X,,, using
the learned dAE model. As the same line of model training, we first generate the
corruption X,,, of X;,, by replacing the MVs in X,,, with the default values. Next, based
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Fig.2 The model training of dAE
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Fig.3 The MVs imputation based on learned dAE

on the corrupted input )N(m and the optimized parameter 6*, the reconstruction Z,, of
the original input is output. Since in training phase, the output is the reconstruction
of the complete dataset (the original input), the output Z,, in testing phase is also the
reconstruction of the true version of X, (MVs are replaced with ground truths). In
other words, the values in Z,, corresponding to the MVs in X, are the imputation
results.

Example 3 For the incomplete dataset X,,, in Example 1, the MV imputation process
based on the learned dAE model in Example 2 is shown in Fig. 3. As shown, the
MVs in X, are first initialized by the mean values of the corresponding attributes
(which is consistent with the data corruption process in model training phase). Then,
the embedding Y, and output Z,, are computed based on the optimized parameter 6*,
respectively. Finally, the imputation results are obtained from the output Z,,,.

Nevertheless, as discussed in the Introduction, the imputation results derived by
simply applying a dAE model are unsatisfactory due to various reasons, which are
demonstrated in the experimental evaluation (see Sect. 4 in detail). Therefore, we
propose a novel dAE-based model, MIDIA (Mlssing Data Imputation denoising
Autoencoder), which primarily focuses on the goal of effectively imputing the MVs
rather than re-constructing the original uncorrupted input. Moreover, we propose two
MYV imputation approaches based on the proposed MIDIA model, namely MIDIA-
Sequential and MIDIA-Batch, to accommodate data with various missing patterns.

3.2 An overview

Figure 4 provides an overview of the system framework for the proposed MIDIA
model and the MV imputation approaches. Given a dataset X with M'Vs as the input, it
is divided into the incomplete dataset X,, and the complete dataset X.. The procedure
of MV imputation consists of six steps as follows:
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Dataset X

rc-—————————————————————— 1
|

MIDIA-Sequential |
Il Model Traing MYV Imputation :

learning multiplg | univariatd
MIDIA| models ! Imonotone|

MIDIA-Batch

learning 4 uniformi[ Model Traing MYV Imputation
MIDIA| model |

general

&
g
| >
=

Fig.4 System framework

Step 1 Identifying the missing pattern of the incomplete dataset X,, based on its
missing indicator matrix S,,.

Step 2 Introducing the synthetical MVs into the complete dataset X, guided by
the missing pattern of the incomplete dataset to generate the corrupted dataset X, for
training.

Step 3 Turning to step 4 if the missing pattern is univariate or monotone, otherwise
turning to step 5.

Step 4 Dividing the incomplete dataset X,, into several subsets where each subset
contains only one incomplete attribute. Then the MVs one each incomplete attribute
are sequentially imputed based on MIDIA-Sequential.

Step 5 Filling the MVs in one batch based on MIDIA-Batch.

Step 6 Returning the imputed dataset X* finally.

Next, we introduce the missing pattern identification, the MIDIA model and the
corresponding MV imputation approaches, i.e., MIDIA-Sequential and MIDIA-Batch,
in detail respectively.

3.3 Missing pattern identification

As introduced earlier, the proposed MIDIA is an MV-driven model. For different
missing patterns, the strategies for model training and MV imputation are different.
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Fig.5 Common missing patterns

Thus given an incomplete dataset X,,,, we first introduce how to identify its missing
pattern.

A missing pattern describes the arrangement of missing and non-missing values in
the data (Jonathan et al. 2009). There are three missing patterns commonly discussed
in the literature, i.e., univariate missing pattern, monotone missing pattern and general
missing pattern, as illustrated in Fig. 5 where we assume there are five attributes
ay ~ as in an observation. With the univariate missing pattern, the MVs in the data
appear only on a single attribute. As shown in Fig. 5a, the MVs only exist on the third
attribute (i.e., az). With the monotone missing pattern, the MVs in the data appear on
several attributes. Moreover, when the value on an attribute a; of an observation is
missing, all values on the subsequent attributes a; (j > i) of the same observation are
also missing. As shown in Fig. 5b, when the value on attribute a, of an observation
is missing, all values on a3z ~ as are also missing, i.e., the proportions of MVs on
incomplete attributes are monotone. With the general missing pattern, the MVs may
occur on any attribute randomly.

Specifically, given an incomplete dataset X,,, we determine its missing pattern
based on the corresponding missing indicator matrix S,,. Based on Definition 4, when
the value on the j-th attribute of the i-th observation x; € X,, is missing, s;; = 1,
otherwise s;; = 0. Therefore, in matrix S,,, the sum of each row is the number of
MVs in each observation, while the sum of each column is the number of MVs on
each attribute. If the sum of a row (column) is zero, there is no MV in the observation
(on the attribute). Since the complete attributes (i.e., the attributes without MVs) do
not affect the missing pattern identification, we remove them (the columns where the
sums are zero) from the missing indicator matrix S, and let S;n be the simplified
missing indicator matrix with d” incomplete attributes. The univariate missing pattern
is easy to determine by examining if there is only one column (attribute) remaining in
S;n. Next, we introduce how to determine if the missing pattern of X,,, is monotone.

We first reorder the incomplete attributes in S;n based on the number of M Vs on each
attribute in ascending order. Afterwards, for each row in S,/n, when the first ‘1’ (i.e., the
first MV) appears, all the values on its later attributes are ‘1’ under the scenario of the
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Missing Pattern

CO  NMHCNO, NO, O3 T RH  AH
X1 0088 0016 0491 0079 0.046 0.135 0.415 0.084 univariate
X» ? 0.017 0488 0.052 0.031 0.114 0.374 0.060
Xy ? 0.019 0512 7 0.040 0120 7 0.096
X 0037 0022 0569 0.058 0.051 0273 0525 0.231 «
X5 ? 0.022 05314 7 0.036 0.159 0.099 monotone
Xe 0096 0.023 0545 0052 0017 0.123 58 0.099
X7 ? 0.023 0615 0.114 0.035 0.265 0.147 Yes
Xs 0076 0023 0528 0108 0.050 0.180 0.504 0.150 No
Xo 0.022 0.021 0611 0.136 0.028 0.215 0511 0.213 general "
X 7 0.025 0612 0120 0.033 0271 0377 0.156
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Fig.6 Missing pattern identification

monotone missing pattern. The criterion is determined based on the definition of the
monotone missing pattern introduced earlier, i.e., when the value on an attribute of an
observation is missing, all values on the subsequent attributes of the same observation
are also missing. Specifically, for the i-th row in S,,n, suppose the index of the first ‘1’
is j (which starts from 0), then the number of ‘1’ in this row should be d’ — j, i.e., the
sum of the i-th row in S,/n should equal to d’ — j. If all rows in S;n satisfy the above
criterion, the missing pattern of the incomplete dataset X,, is monotone; otherwise,
the missing pattern of the incomplete dataset X,, is general.

Example 4 For the incomplete dataset X,,, in Example 1, the process of missing pattern
identification is shown in Fig. 6. First, the simplified missing indicator matrix S;n (with
three incomplete attributes, i.e., d’ = 3) is derived by removing the complete attributes
in the original missing indicator matrix S,,. Next, it is obvious that the missing pattern
of X, is not univariate since there are three incomplete attributes (columns) remaining
in S;n. Then we reorder the incomplete attributes in S;n based on the number of MVs
on each incomplete attribute in ascending order. As shown, the numbers of MVs on
the three incomplete attributes are 5, 2, 1, respectively. Thus after reordering, S,/ﬂ
is flipped. Afterwards, we find the indexes of first ‘1’ appearing in each row (i.e.,
j =2,0,1,2, 27y and compute the results of ' — j = (1,3,2, 1, DT, Finally,
if the sum of each row (i.e., (1,3, 2, 1, l)T) equals to the corresponding d’ — j, the
missing pattern of X, is monotone, otherwise the missing pattern is general.

3.4 MIDIA model

We take a one-layer MIDIA model as an example for illustration, shown in Fig. 7
where the red part in each node of corrupted input represents the synthetically gener-
ated MVs and the yellow part in each node of the output layer is the corresponding
reconstructions.

Given an original input X, the data transformation between each layer in MIDIA is
described as follows.
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original inputx  corrupted input X embedding layery output z
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encoding

Fig.7 The architecture of MIDIA model

(1) Corrupted input generation: MIDIA first generates the corrupted input X by
marking off some values (i.e., synthetic MVs) of the original input x and filling the
sythetic MVs with some default values. Note that to accommodate effective MV impu-
tation, the missing pattern of synthetically generated corrupted input in the training set
needs to be consistent with that of the incomplete dataset to be imputed. We discuss
this issue later.

(2) Encoding: An encoder transforms the corrupted input X into an /#-dimensional
embedding y. Figure 7 shows a simple full-connected layer as the encoder for illus-
tration, i.e., y = f (WX + b).

(3) Decoding: A decoder takes the embedding y learned by the encoder as the
input and transforms it back to z which aims to reconstruct the original input x.
Again, Fig. 7 shows a simple fully-connected layer as the decoder for illustration, i.e.,
z=g (W,y —i—b/).

In the encoding and decoding steps, the encoder f (-) and decoder g (-) are
non-linear activation functions to generate the embedding y and the reconstruction
z, respectively. Various non-linear activation functions have been proposed in the
literature, e.g., Sigmoid (Han and Moraga 1995), TanH (Sinclair et al. 2001), Soft-
sign (Bergstra et al. 2009; Glorot and Bengio 2010), SoftPlus (Glorot et al. 2011),
ReLLU (Nair and Hinton 2010). Since different activation functions fit for different
data and situations, we adopt different alternative activation functions during the MV
imputation based on MIDIA and evaluate the their performance in Sect. 4.

Although the network architecture in MIDIA looks the same as the dAE model,
MIDIA cares more about the reconstruction accuracy of those MV since the goal of
MIDIA is MV imputation. To achieve this goal, we design the objective function of
MIDIA to minimize the reconstruction error of MVs rather than the reconstruction
error of the whole input observations, as derived in Eq. (1) below.

1 n
'—E L(s; -X;,S;-Z; 1
arggmlnm (Si - Xi,Si - 2;) (D

i=1
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where x; = (x,-,l, Xi2souus xi,d) € X, is an original observation (uncorrupted) in the
training set,and z; = (z,-, 152i2s s z,-,d) € Z; is the reconstruction of x; in the output.
The missing indicator vector s; = (s,',l 2 Si2y ey s,;d) corresponding to x; indicates

the MVs occurrence in x;, where s; ; = 11if x; ; is a missing value, otherwise s; ; = 0.
The s; - x; and s; - z; compute the inner product of (s;, X;) and (s;, z;), respectively.
Finally, the parameter & = {W, W', b, b'} is initialized at random, and optimized by
stochastic gradient descent (Bottou 2010). It is notable that the loss function can be
tailored for different data types. For numerical data, we adopt the square error loss
function L (-) [as shown in Eq. (2)], while for categorical data, we adopt the cross-
entropy loss function [as shown in Eq. (3)] with one-hot encoding. Moreover, for the
mixed types of data, above two loss functions are weighted unified together to generate
the final loss function [as shown in Eq. (4)].

L (x;,z;) = Z (x,{’j — z;»,j> 2)

1<j=d
L (X;, z;) = - Z I:xlfyjlogz;_j + —x;.j)log(l — z;-,j)] 3)
1<j<d
L (x;, z;) = wy, Z (xlf_j — z;qj) — we Z [x;‘jlogz;qj +( —x;’j)log(l — Zz,',j)]
1<j<dy dy<j=d

“)
where X; =S5 - X;, z;. = s; - z; and d,, is the number of numerical attributes in the
mixed type of data. In addition, w, and w, are the weights of numerical attributes and
categorical attributes, respectively, and we have w, + w, = 1.

Based on the above introduction, compared with traditional dAE model, there are
mainly two modifications in the proposed MIDIA model. First, the corrupted input in
MIDIA model is generated with the guidance of the missing pattern in the incomplete
dataset to be imputed. Second, the objective function of MIDIA model is to minimize
the reconstruction error of MVs rather than that of the whole input in dAE. The
rationale behind the modifications is two-fold, as illustrated below.

(1) The machine learning models we aim to construct is data-dependent, which
contains two intuitive meanings: (i) The training set and testing set are similar to
each other on the data content. For example, a dAE model trained based on a dataset
(training set) with images about trees does not perform well in compressing a dataset
(testing set) with images about dogs. The reason is that the features learned in the
model training are about trees which obviously cannot describe dogs accurately. (ii)
The distributions of training set and testing set are close to each other. As introduced
in Borovicka et al. (2012), for a reliable future error prediction, we need to evaluate
our model on a different, independent and identically distributed (testing) set that is
different to the (training) set we have used for building the model.

Similar to the intuitions of data-dependency in machine learning, the proposed
MIDIA model in this paper serves to fill MVs in a given incomplete dataset (i.e.,
testing set). Thus the M Vs in the training set and testing set are assumed to follow the
same distribution (with a specific tolerance of deviation), especially when the missing
rate is relatively high.
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(2) As introduced earlier, the proposed MIDIA aims to recover the M Vs accurately.
To achieve this goal, MIDIA is forced to extract correlations between the MV's and non-
MVs for effective MV imputation by only caring about the reconstruction accuracy
of those MVs.

3.5 MV imputation based on MIDIA

Given a dataset X with MVs, our goal is to impute the MVs in the incomplete dataset
X, € X effectively. To achieve this goal, as the same line of employing dAE to MV
imputation, there are two phases, i.e., model training to learn an effective MIDIA
model based on the complete dataset X. and MV imputation to fill the MVs in X,,,
based on the learnt MIDIA model.

In model training phase, as introduced in Sect. 3.4, the corrupted input generation
in MIDIA depends on the missing pattern of the incomplete dataset to be imputed. A
missing pattern describes the arrangement of missing and non-missing values in the
data (Jonathan et al. 2009). There are three missing patterns commonly discussed in
the literature, i.e., univariate missing pattern, monotone missing pattern and general
missing pattern, as illustrated in Fig. 5 where we assume there are five attributes
aj; ~ as in an observation. With the univariate missing pattern, the MVs in the data
appear only on a single attribute. As shown in Fig. 5a, the M Vs only exist on the third
attribute (i.e., az). With the monotone missing pattern, the MVs in the data appear on
several attributes. Moreover, when the value on an attribute a; of an observation is
missing, all values on the subsequent attributes a; (j > i) of the same observation are
also missing. As shown in Fig. 5b, when the value on attribute a, of an observation is
missing, all values on a3 ~ as are also missing, i.e., the proportions of MVs on each
incomplete attributes are monotone. With the general missing pattern, the MVs may
occur on any attribute. For different missing patterns, the imputation strategies are
different. Therefore, we propose two MV imputation approaches based on the MIDIA
model to adapt various missing data patterns.

3.5.1 MIDIA-sequential

The basic idea behind this approach is to impute the MVs on each incomplete attribute
independently and sequentially.

Given a dataset X, suppose there are p incomplete attributes and d — p complete
attributes in an observation. For each incomplete attribute a; (1 <i < p), we aim to
impute the MVs on a; using the observed values on complete attributes by training a
MIDIA model. Moreover, once the MVs on an incomplete attribute a; are imputed,
a; is considered as a complete attribute and used for imputing the MVs on other
incomplete attribute later. To alleviate the effect of inaccuracy in the imputed values,
we start with sequential imputation from the incomplete attribute which has the least
MVs. For example, there are three incomplete attributes CO, NO, and RH in the data
shown in Table 1. The number of MVs on each incomplete attribute is 5, 2 and 1,
respectively. Thus the imputation is performed sequentially on RH, NO; and finally
CO.
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X1 (RH)
NMHC NO, O T RH AH
0.019 0.512 0.040 0.129 ? 0.096]

Xm3(CO)
CONMHC NO, NO, Oy T RH AH

? 0.017 0.488 0.052 0.031 0.114 0.374 0.060

Xz (NOy) ? 0.019 0512 0.031 0.040 0.129 0.374 0.096
NMHC NO, NO, O3 T RH AH ? 0.022 0534 0.031 0.036 0.159 0.418 0.099
0.019 0512 ? 0.040 0.129 0.504 0.096) | ? 0.023 0.615 0.114 0.035 0.265 0.370 0.147
0.022 0534 ? 0.036 0.159 0.418 0.099| | ? 0.025 0.612 0.120 0.033 0.271 0.377 0.156

Fig.8 Subsets of incomplete dataset X;;; in Example 1

It is notable that, in MIDIA-Sequential, we train a MIDIA model for each incom-
plete attribute and impute the MVs on different incomplete attributes sequentially.
Given an incomplete dataset X,,,, corresponding to each incomplete attribute, there
is an incomplete subset X, ; € X, (1 <i < p) which consists of the observations
with values on the i-th incomplete attribute missing. Moreover, the observations in
X,n.i only contains the i-th incomplete attributes and all complete attributes, i.e., the
incomplete attributes except for the i-th attribute are discarded in the training data
preparation.

Example 5 For the incomplete dataset in Example 1, as introduced earlier, there are
three incomplete attributes and the imputation is performed on attributes RH, NO, and
CO sequentially. Thus we partition the incomplete dataset X,,, into three incomplete
subsets as shown in Fig. 8. Each subset represents a target incomplete dataset to
be imputed where MVs (marked by ‘?” in Fig. 8) only occur on a single attribute.
For example, the subset X, 2, corresponding to the second incomplete attribute NO,
to be imputed, contains values from the incomplete attribute NO;, and all complete
attributes NMHC, NO,,, O3, T, RH and AH. Note here that RH is considered as a
complete attribute since the MVs on RH have been imputed.

For each of the incomplete dataset, MIDIA-Sequential trains a specific MIDIA
model and employs it to impute the MVs on the corresponding incomplete attribute.

Model Training For an incomplete subset X,,, ; (1 <i < p), the model training
phase takes the complete dataset X, ; € X, which contains the same attributes with
X,n,; as the input. As introduced earlier, to make the learned model fit for effective
imputation of MVs in the target dataset (i.e., the incomplete subset X, ;), the missing
pattern of synthetically generated MVs in the corrupted input X, ; should be consis-
tent with that in X,,, ;. Since the incomplete subset X,,, ; only contains one incomplete
attribute, and all values on the incomplete attribute are missing, i.e., the missing pattern
of X,,, ; is univariate, we generate the corrupted input )N(c,i by deleting all the observed
values on the i-th incomplete attribute and replacing them with default values (gener-
ated based on a user-specified scheme). Next, based on the generated corrupted input,
a MIDIA model used for imputing MVs in the incomplete subset X,, ; is trained.

Example 6 The model training process of MIDIA for the incomplete dataset X,, in
Example 1 is shown in Fig. 9. By minimizing the reconstruction error between the
reconstructed MVs in Z, | and the ground truth in X, 1, a MIDIA model for imputing
the MVs on the incomplete attribute RH is trained. In the same way, the MIDIA
models for the incomplete subset X, » (where the incomplete attribute is NO7) and
X,n,3 (Where the incomplete attribute is CO) are trained, respectively.
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Fig.9 the model training of MIDIA-Sequential approach

MYV Imputation In this phase, we impute the M Vs in each incomplete subset X, ;
(where the M Vs only occur on the i-th incomplete attribute) by using its correspond-
ing trained MIDIA models. As mentioned ealier, the imputation starts from the the
incomplete attribute having the least M Vs, i.e., the incomplete subset which has the
fewest observations, and the imputed MVs are used for later imputation. For the i-th
incomplete attribute, we first initialize the MVs in X,,, ; by default values adopted in
the training phase. Notice that we only regard MVs on the i-th incomplete attribute as
the MVs to be imputed, the MVs imputed previously on other incomplete attributes
(which are taken as the complete attributes when conducting MV imputation for the
i-th incomplete attribute) are taken as the “ground truth”. Taking the initialized incom-
plete subset X, ; as the corrupted input, through the mapping functions in encoding
an decoding, the imputation results of MVs in X,,, ; can be found in the reconstruction
Z,, ;. After the MVs in all incomplete subsets being imputed sequentially, the final
imputed dataset X* is thus derived.

Example 7 Based on the MIDIA-Sequential approach, the MV imputation for the
incomplete dataset X,, in Example 1 is shown in Fig. 10. First, the subset X, 1,
i.e., the MVs on the incomplete attribute RH is imputed, as it contains the fewest
MVs. Additionally, gle imputeg values are in turn used for later imputation, i.e., in
the corrupted input X,,, » and X,,, 3, the MVs on attribute RH are replaced with the
imputed values. Then the subsets X,,, » and X,,, 3 which have two and five MVs are
imputed sequentially.

3.5.2 MIDIA-Batch

The basic idea behind this approach is to impute the MVs in the incomplete dataset
X, in one batch by training a uniform MIDIA model.
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Fig. 10 MYV imputation process based on MIDIA-Sequential approach

In model training phase, taking the complete dataset X, as the input, the first step is
to generate a corrupted input X, by selecting a fraction of elements in X, as MVs and
replacing them with some default values. To make the missing pattern of )N(c consistent
with that of X,,,, we calculate the ratio of each MV arrangement occurred in X, based
on its missing indicator matrix S,,. In the missing indicator matrix S,,, we define a
vector S, € Sy, as a possible MV arrangement to indicate the occurrence of MVs in
corresponding observation o; € X,,.

Example 8 For the incomplete dataset X,,, in Example 1, there are three MV arrange-
ments, 1.e., [10000000],[10010010],[10010000], and the ratios are
3/5,1/5 and 1/5, respectively.

Next, for each MV arrangement, we randomly select a set of observations based on
its ratio from X, and replace the values on the incomplete attributes by default values
to generate the corrupted input Xc. With the corrupted input, a MIDIA model is trained
for imputing the M Vs in the incomplete dataset X,,,. In the MV imputation phase, we
first initialize the M Vs in X,,, with default values generated based on a user-specified
scheme, and take the initialized X,, as the corrupted input. Via the trained MIDIA
model, the MVs in X,,, are reconstructed through the encoding and decoding steps.

Example 9 The model training and MV imputation processes based on MIDIA-Batch
is shown in Fig. 11. Compared with MIDIA-Sequential, MIIDA-whole only learn a
single MIDIA model for the whole MVs.

As introduced earlier, MIDIA-Sequential focuses on imputing the MVs on a sin-
gle incomplete attribute at a time by splitting the incomplete dataset into several
incomplete subsets. It performs well in MV imputation for datasets where the MVs
concentrate on one or a few attributes, i.e., there are sufficient complete attributes for
use in MV imputation. However, with the general missing pattern, the MVs may occur
on any attribute. Consequently, the number of complete attributes in the data is likely
to be few. As a result, for an incomplete attribute to be imputed early, the imputation
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Fig. 11 The model training and MV imputation based on MIDIA-Batch

deviation may be large due to insufficient complete attributes. On the other hand, in
MIDIA-Sequential approach, the earlier imputed MVs are used for later imputation,
thereby the inaccuracies of the earlier imputed values may be accumulated and ampli-
fied in later imputation. Therefore, the imputation results are unsatisfactory based on
MIDIA-Sequential for incomplete dataset with general missing pattern. In contrast,
MIDIA-Batch imputes the MVs on all incomplete attributes in one batch by training
one uniform MIDIA model. Intuitively it is difficult to incorporate all non-linear cor-
relations between MVs and non-M Vs in a uniform model, so it is reasonalbe to have
the MVs on various incomplete attributes imputed independently if there are suffi-
cient complete attributes to be used. However, with the general missing pattern, the
performance of MIDIA-Sequential deteriorates quickly since the number of complete
attribute is few. Under this circumstance, MIDIA-Batch alleviate the deterioration by
exploring the non-MVs on the incomplete attributes which can be explored for MV
imputation. Moerover, under the scenario of univariate missing pattern, since there is
only one incomplete attribute in the dataset, the model training and MV imputation
processes of MIDIA-Batch is the same with that of MIDIA-Sequential. In summary,
as discussed above, both MIDIA-Sequential and MIDIA-Batch perform well for data
with univariate missing pattern. MIDIA-Sequential is more capable of handling data
with monotone missing pattern, while MIDIA-Batch is more capable of handling data
with general missing pattern (which can be demonstrated in experimental study in
Sect. 4).

4 Experiments
In this section, we report the experimental evaluation on effectiveness of the pro-

posed approaches. All programs are implemented in Python and the experiments are
performed on a PC with 3.4GHz CPU and 16GB RAM.
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4.1 Experimental settings

Datasets We employ three real-world datasets: Air Quality, Adult, and Car, as detailed
below.

— Air Quality: contains the response of a gas multi-sensor device deployed in a
significant polluted area of Italy as introduced in Example 1. It contains 8991
observations where each observation has eight attributes.

— Adult’: is a dataset of census information from UCI Machine Learning Repository.
The dataset contains about 32,000 observations with 14 attributes including age,
workclass, fnlwgt, education, education-num, matital-status, occupation, relation-
ship, race, sex, capital-gain, capital-loss, hours-peer-week and native-country.

— Car’: contains 1782 observations where each observation has six attributes, i.e.,
Buying, Maint, Doors, Persons, Lug_Boot and Safety.

All of the attributes are numerical in the Air Quality, while all of the attributes are
categorical in the Car dataset. For the Adult dataset, each observation has 6 numeri-
cal attributes and 6 categorical attributes, respectively. In the Air Quality dataset, the
MVs naturally exist and the corresponding ground truths are known (provided by a
co-located reference certified analyzer), thus it is one of the most commonly used
real-world dataset in the study of MV imputation. In the Adult dataset, even though
MVs also naturally exist, we cannot evaluate the effectiveness of the proposed algo-
rithms by directly using the real MVs as the ground truths of MVs are unknown.
Instead, we remove the observations with inherent MVs from the dataset and consider
the remaining data as a complete dataset. In the Car datasets, there is no MVs. To
thoroughly evaluate the performance of the proposed MV imputation methods on the
Adult and Car datasets, we take the missing ratio as a variant and present the impu-
tation accuracy of various MV imputation methods by varying missing ratio in the
following evaluation. Therefore, we consider all the above three datasets as originally
clean, and generate different scales of incomplete datasets based on various missing
ratios. For example, if missing ratio is 5%, we select 5% observations from the entire
dataset randomly to constitute the incomplete dataset to report the imputation results,
while the remaining observations constitute the complete dataset to train the learning
models.

Additionally, to generate the incomplete dataset X;,, with various missing patterns,
we introduce the M Vs in different ways detailed below.

— Univariate missing pattern: We choose one attribute a; (1 <i < d) randomly as
the incomplete attribute and mark off all values on the attribute a; of observations
in X,,,.

— Monotone missing pattern: First, we randomly choose half number of attributes as
the incomplete attributes. Next, in X,,,, the proportion of MVs on each incomplete
attribute progressively decreases from 100% with step length 10%. Moreover, the
MVs on incomplete attribute a; is selected randomly from the observations have
been selected by the previous incomplete attribute @; 1 . Finally, the values selected

2 http://archive.ics.uci.edu/ml/datasets/Adult.
3 http://archive.ics.uci.edu/ml/datasets/Car+Evaluation.
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as MVs are marked off. For example, suppose the incomplete attributes randomly
chosen from Air Quality dataset (which has eight attributes) are CO, NMHC, NO,
and O3. Then there are 100%, 90%, 80% and 70% MV's on the incomplete attributes
introduced above, respectively. Additionally, the 70% MV on the attribute O3 are
selected from the observations where the values on incomplete attribute NO, are
missing.

— General missing pattern: For each observation in X,,,, we randomly choose half
number of attributes as the incomplete attributes, and mark off the values on the
incomplete attributes.

Measurements To evaluate the performance of various MV imputation methods,
we adopt the following measurements for numerical and categorical data types:

— RMSE: We adopt the Root Mean Square Error (RMSE) to measure the imputation
deviation between the imputation results and the ground truths for numerical data.
The lower RMSE is, the imputation results are closer to the ground truths and thus
the imputation has better performance.

— Macro-F: For categorical data, we adopt the Micro-F (Sokolova and Lapalme
2009) which is mostly adopted in multi-labeled classification as the performance
measure. Specifically, suppose there are ¢ possible values for categorical data, then
we have macro-F = % Zf: | Fi where F; are the F-measure of the i-th value. A
higher Macro-F indicates the imputation performs better.

Algorithms for comparison We compare the proposed approaches with the fol-
lowing baseline methods which cover a variety of ways to impute MVs.

— Mean/Voting simply imputes the MVs on each incomplete attribute with the mean
value/most frequently occurring value of the corresponding attribute for numerical
and categorical data, respectively.

— KNN (Zhang 2008) uses a distance-weighted average over k neighbors (which
similar to the incomplete observation to be imputed) to estimate the MVs in an
incomplete observation.

— Kernel (Zhu et al. 2011) is similar to the KNN and incorporates various Kernel
functions to formalize the dependencies between the incomplete observation and
its neighbors.

— GBKII (Zhang et al. 2007) imputes MVs through an EM-like iteration imputa-
tion method. It differs from KNN imputation in utilizing grey relational grade to
measure the neighborhood of MVs.

— Hot-deck (Joenssen and Bankhofer 2012) partitions observations into disjoint
groups, and predicts MVs using values from one or more similar complete obser-
vations (donors) within the same group.

— Multivariate Linear regression (MLR) (Raghunathan et al. 2001) argues that there
are linear correlations amongst attributes in an observation and imputes the MVs
by learning a linear regression model.

— SVM (Zhang and Liu 2009; Bertsimas et al. 2017) is a tool of nonlinear regression
and classification. We build an SVM model for each incomplete attribute and
impute the MVs on each incomplete attribute sequentially with the same order of
the proposed MIDIA-Single.
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— Decision Tree (DT) (Rahman and Islam 2011) is another tool of regression and
classification which is similar to the SVM and we implement both SVM and DT
by using the library of sklearn in python.

— Low-rank Matrix Recovery (LMR) (Jing et al. 2016) supposes that a data matrix
X can be factorized into two matrices U and V,ie., X = UVT. By formulating
the problem as a matrix rank minimization problem, the optimal U* and V* can
be estimated by the nuclear-norm minimization. Then the MVs can be estimated
based on the imputed matrix which is computed by X* = U*V*T .

— Bayesian PCA (Audigier et al. 2016) formulates the PCA (Principle Component
Analysis) as a Bayesian model, instead of using the classical method of finding
the covariance matrix of the data. It imputes the MVs by extracting the linear
correlations between the MVs and non-MVs.

— dAE imputes the MVs in a given dataset by learning a traditional dAE model as
introduced in Sect. 2.3.

— MIDA (Lovedeep and Wang 2017) imputes the MVs by employing overcomplete
representation of dAEs, i.e., there are more units in successive hidden layers com-
pared to the input layer.

Model settings For ease of evaluation and to facilitate faster convergence, we nor-
malize the numerical data based on min-max normalization (Jain and Bhandare 2011)
and adopt the one-hot coding to represent the categorical data. Moreover, we repeat
10 times for each test and report the average results to obtain reliable experimen-
tal results. For statistical imputation approaches, i.e., kNN, Kernel and GBKII, the
parameter k is set as 10 since a low imputation error within an acceptable time range
for all three datasets are reached with k£ = 10. For both LMR and Bayesian PCA, the
dimensionality of sub-matrix or latent space is specified as the half of the input dimen-
sionality. For approaches based on deep learning model (including MIDIA-Sequential,
MIDIA-Batch, dAE and MIDA), each model is trained with epochs 1000, learning rate
0.01 and batch size 256. The M Vs synthetically generated are replaced by the mean
values or voting values of the corresponding attributes for numerical and categorical
data, respectively. Moreover, the Sigmoid and ReLU are adopted as activation func-
tions for numerical and categorical data respectively, since we find that the proposed
approaches have the best performances with the above two activation functions (as
illustrated in Sect. 4.2 in detail). Additionally, the MIDIA model in this paper has one
hidden (embedding) layer since the imputation accuracy based on such simple model
is lower than existing MV imputation approaches. Moreover, for the regular datasets
(with low dimensionality), the imputation accuracy of the deep MIDIA model with
multiple hidden layers is almost the same with MIDIA model with one hidden layer (as
illustrated in Sect. 4.4). As introduced in Lovedeep and Wang (2017), MIDA model
has three hidden layers in Encoder,* and the i-th hidden layer has 7 units more than
the (i — 1)-th layer. We adopt the same network structure when we implement the MV
imputation based on MIDA model.

4 We only consider the number of hidden layers in Encoder since the Decoder is symmetric with the
Encoder.
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Fig. 12 Imputation accuracy with various activation functions (Air Quality)
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Fig. 13 Imputation accuracy with various activation functions (Adult-Numerical)

4.2 Selection of activation functions

Since the activation function impacts the performances for different datasets and appli-
cations, we verify the performances of MIDIA-Sequential and MIDIA-Batch with
various activation functions, including Simgoid, TanH, ReLU, Softplus and ELU in
this section. Note that Figs. 13 and 14 are the imputation accuracies of numerical
attributes and categorical attributes over Adult dataset, respectively. Figures 12, 13,
14 and 15 report the imputation performance of MIDIA-Sequential and MIDIA-Batch
with various activation functions by varying missing ratio, respectively. As shown in
Figs. 12 and 13, for numerical dataset, both MIDIA-Sequential and MIDIA-Batch
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Fig. 15 Imputation accuracy with various activation functions (Car)

achive the lowest RMSEs by adopting activation function Sigmoid under various
missing patterns. In the same way, for categorical dataset, it is obvious that both
MIDIA-Sequential and MIDIA-Batch perform best by adopting activation function
ReLU as shown in Figs. 14 and 15. Therefore, we adopt the Sigmoid and ReLU as the
default activation function for numerical and categorical data, respectively.

4.3 Comparison with existing methods

In this section, we compare our proposed methods with existing MV imputation meth-
ods introduced in Sect. 4.1.
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Table 2 summarizes the imputation performance of all compared approaches on Air
Quality dataset with various missing patterns As shown, since the Mean imputation
fills the M Vs on an attribute by the mean of the available observations, where the vari-
ability of the data is ignored, the imputation accuracy is the worst (i.e., the RMSE is the
highest) in most cases. For the neighbor-based imputation methods (i.e., KNN, Ker-
nel, GBKII and Hot-deck), they impute the MVs by employing the inter-correlations
amongst observations, while the proposed MIDIA-based imputation methods impute
the MVs by employing the intra-correlations amongst attributes in the same observa-
tion. Even though there is no theoretical support that one is absolutely better than the
other, the experimental results show that their RMSEs are higher than the proposed
MIDIA-based methods. On the other hand, for the MLR, LMR and Bayesian PCA,
they impute the MVs by exploring the linear correlations between the MVs and non-
MVs, where the complex correlations of the data tend to be underestimated, which
results in unsatisfactory imputation accuracies. Although SMV and DT can explore
the non-linear correlations between the MVs and non-MVs based on kernel functions,
the choice of kernel function is usually guided by experience, thus suffering the same
problem with the linear regression models mentioned above. Finally, the proposed
MIDIA-based approaches achieve the lowest RMSE, as the proposed MIDIA model
effectively captures the non-linear correlations between MVs and non-M Vs in the data,
which is more powerful on MV imputation compared with existing approaches that
explore the linear dependencies between MVs and non-MVs. Moreover, by designing
effective generation strategy for corrupted input and minimizing the reconstruction
error between MVs and ground truths in the training process, the learned MIDIA
model is more effective than dAE and MIDA.

Additionally, under the scenario of univariate missing pattern, the RMSEs of
MIDIA-Sequential and MIDIA-Batch are almost the same. The reason is that there
is only one single incomplete attribute and all values on the incomplete attribute are
missing, which incurs that the model training processes of MIDIA-Sequential and
MIDIA-Batch reduce to be the same. Under the scenario of monotone missing pat-
tern, the RMSE of MIDIA-Sequential is lower than that of MIDIA-Batch, because
with monotone missing pattern, there are enough complete attributes used for MV
imputaiton, and MIDIA-Sequential can avoid the effect of MVs on other incomplete
attributes when it focuses on the imputation for an incomplete attribute. However, if
there is no enough complete attributes, the imputation results of MIDIA-Sequential
are likely to deteriorate, which incurs that the RMSE of MIDIA-Sequential is higher
than that of MIDIA-Batch under the scenario of general missing pattern, as shown in
Table 2. With the same line, similar results are observed in Tables 3, 4 and 5 where the
experimental evaluation conducts on datasets Adult and Car respectively. Moreover,
the results obtained based on the three real-world datasets verify that the proposed
approaches can support both numerical and categorical data.

On the other hand, based on Tables 2, 3, 4 and 5, we can observe that with the
increase of missing ratio, the imputation accuracies of existing neighbor-based impu-
tation methods (including KNN, Kernel, GBKII and Hot-deck) progressively decrease.
With a high missing ratio, there are more incomplete observations and less complete
observations, thereby the number of available neighbors used for MV imputation
becomes small and incurs a low imputation accuracy. Notable that since the data size
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of Adult dataset is large (32,000 observations), the available neighbors used for MV
imputation are sufficient even though the missing ratio is high, thereby the imputation
accuracies of existing neighbor-based imputation methods are stable. By compari-
son, for the remaining imputation methods, the imputation accuracies are stable with
the increase of missing ratio, and the RMSEs of the proposed MIDIA-Sequential and
MIDIA-Batch are significantly lower than baselines, which indicates that the proposed
approaches are effective and capable of handling datasets with small samples.

In summary, as illustrated in Tables 2, 3, 4 and 5 over the Air Quality, Adult and Car
datasets, the proposed MIDIA-based imputation approaches always achieve the best
performance in imputation accuracy. Moreover, both MIDIA-Sequential and MIDIA-
Batch perform well for dataset with univariate missing pattern. MIDIA-Sequential
performs better than MIDIA-Batch for dataset with monotone missing pattern, while
MIDIA-Batch performs better than MIDIA-Sequential for dataset with general miss-
ing pattern.

4.4 Ablation study

As illustrated earlier, the main modifications of the proposed MIDIA mainly focus on
the corrupted input generation and objective function. To evaluate the effectiveness
of each modification in improving the imputation accuracy, we implement the MV
imputation approaches based on the MIDIA model by retaining one aspect of modifi-
cation, including (1) MIDIA-LF, only retaining the modification of objective function;
(2) MIDIA-CI, only retaining the modification of corrupted input generation. More-
over, to evaluate the effectiveness of the neural network model, we implement the (3)
MIDIA-PCA, replacing the non-linear activation functions in MIDIA with the linear
activation function to approximate PCA, and (4) MIDIA-ML, extending the MIDIA
model with one hidden layer to three hidden layers.

Figure 16 illustrates the performance of various algorithms based on MIDIA-
Sequential with three missing patterns over three real-world datasets. As shown, the
imputation accuracies of algorithms with only one aspect of modification are lower
than that of the proposed approach with thorough modifications, which verifies that
each aspect of modification contributes to the improvement of imputation accuracy.
Moreover, with the same model structure, we observe that the imputation accuracy of
MIDIA-PCA is much lower than that of the proposed MIDIA-Sequential (MIDIA-S),
because MIDIA-S imputes the MVs in the data by exploring the non-linear correla-
tions between MVs and non-MVs, which is more competent for the data with complex
and unexplainable structures. Finally, as shown in Fig. 16 (Fig. 16 in response), the
imputation accuracies of MIDIA-ML and MIDIA-S are almost the same. The reason
is that the dimensionality and sample size of datasets adopted in the experiments are
small or moderate.

With low-dimensional data, MIDIA model with one-hidden layer is capable of
deeply exploring the correlations of the data, while the deep MIDIA model cannot
give the rein to its advantages. We believe that deep MIDIA model with multiple
hidden layers is more competent for handling high-dimensional and large-scale sample
dataset, which is an interesting future study. In this paper, we mainly focus on the MV
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Fig. 19 The classification accuracy (Car)

imputation for the regular datasets. In the same line, similar results can be observed
in Fig. 17 where the algorithms are implemented based on the MIDIA-Batch.

4.5 Applications in classification

To further validate the effectiveness of our proposed methods, we consider a real
application of classification (Liu and Yu 2005) on datasets Adult and Car. Based on
the imputed dataset, a softmax classifier is directly implemented. Figures 18 and 19
reports the accuracy of classification over the original dataset (denoted by Original in
the figure), the imputed dataset by dAE, MIDA, MIDIA-Sequential and MIDIA-Batch
(denoted by MIDIA-S and MIDIA-B respectively in the figure), respectively. Note that
we do not show the results of other approaches as the MV imputation accuracies of
them are obviously smaller than dAE, MIDA, MIDIA-Sequential and MIDIA-Batch
in most cases. The classification accuracy of the original data is the best because there
is no MVs in original dataset. It is not surprising that the classification accuracies
of MIDIA-Sequential and MIDIA-Batch are higher than dAE and MIDA, largely
because they have a higher imputation accuracies. The results further demonstrate the
effectiveness of the proposed approaches.

5 Conclusion
In this paper, we propose a new unsupervised learning model, named MIDIA, tailored

for MV imputation. By considering various missing data patterns, we propose two
MYV imputation approaches based on the proposed MIDIA model, namely MIDIA-
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Sequential and MIDIA-Batch, where both approaches perform well for univariate
missing pattern, and MIDIA-Sequential is more competent for monotone missing
pattern while MIDIA-Batch performs better for general missing pattern. Experimental
results on real-world datasets show that the proposed approaches significantly improve
the imputation accuracy compared with existing methods.
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