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Abstract

We consider the problem of estimating a vector of discrete variables 6 = (01, -- - , 6,),
based on noisy observations Y,, of the pairs (6,,6,) on the edges of a graph
G = ([n], E). This setting comprises a broad family of statistical estimation prob-
lems, including group synchronization on graphs, community detection, and low-rank
matrix estimation. A large body of theoretical work has established sharp thresholds
for weak and exact recovery, and sharp characterizations of the optimal reconstruction
accuracy in such models, focusing however on the special case of Erdos—Rényi-
type random graphs. An important finding of this line of work is the ubiquity of
an information-computation gap. Namely, for many models of interest, a large gap
is found between the optimal accuracy achievable by any statistical method, and the
optimal accuracy achieved by known polynomial-time algorithms. Moreover, it is
expected in many situations that this gap is robust to small amounts of additional side
information revealed about the 6;’s. How does the structure of the graph G affect this
picture? Is the information-computation gap a general phenomenon or does it only
apply to specific families of graphs? We prove that the picture is dramatically dif-
ferent for graph sequences converging to amenable graphs (including, for instance,
d-dimensional grids). We consider a model in which an arbitrarily small fraction of
the vertex labels is revealed, and show that a linear-time local algorithm can achieve
reconstruction accuracy that is arbitrarily close to the information-theoretic optimum.
We contrast this to the case of random graphs. Indeed, focusing on group synchro-
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nization on random regular graphs, we prove that local algorithms are unable to have
non-trivial performance below the so-called Kesten—Stigum threshold, even when a
small amount of side information is revealed.

Keywords Statistical estimation - Local algorithms - Processes on graphs -
Information-computation tradeoffs.

Mathematics Subject Classification 62F15 - 82B20 - 82B44

1 Introduction

Classical statistics focuses on problems in which a small number of parameters needs
to be estimated from data. As a consequence, it is mostly unconcerned with com-
putational complexity considerations. Fundamental limits to statistical estimation are
proven on the basis of information-theoretic considerations. On the contrary, in modern
high-dimensional applications, it is not uncommon to come across statistical models
that require estimating simultaneously thousands or even millions of parameters. In
this setting, a large gap is often observed between information-theoretic limits and what
is achieved by the best known polynomial-time algorithms. Indeed, it is expected that
no polynomial-time algorithm can achieve optimal statistical performance in general.
In specific classes of models, a precise information-computation gap has been conjec-
tured on the basis of current knowledge (see, e.g., [14,18,21,38,43,45] and references
therein).

As explained below, most of our understanding of this information-computation
gap was developed by analyzing probabilistic models with a high degree of exchange-
ability. This suggests a natural question: s the same gap present in models with other
type of structures?

Statistical estimation on graphs provides a rich and interesting setting to study this
question. Let G, = (V;,, E,) be a graph on n vertices, V,, = [n]. Edges are assumed to
be directed in an arbitrary way, i.e., they are ordered pairs (u, v) € V,, x V,,. We asso-
ciate to the vertices u € V, random variables 8 = (6,),cv, ~iid Unif(X), uniformly
distributed on a finite alphabet X. For each edge (u, v) € E,, we observe Y, € ),
where ) is also a finite alphabet. The observations are conditionally independent with
Y@ ~ Q(-16,,6,), where Q is a probability kernel from X' x X'to ). Given the edge
observations Y (and, possibly, additional side information, see below), the purpose is
to estimate the vertex assignment 6.

This model is general enough to include a broad variety of examples studied in the
literature, including group synchronization, community detection, low-rank matrix
estimation, and so on. As an example consider the Z,-synchronization problem (further
examples are presented in Sect. 3.1). The unknown variables (8, ) ,cv, arei.i.d. uniform
in X =274, ={0,---,q — 1}, which we identify with the cyclic group Z/qZ with
additive structure. Observations are noisy measurements of the difference between 6,
and 6, for each edge (u,v) € Ej;:
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6, — 0 d ith probability 1 — p,
Y,, = { y b (mod ¢g) with probability p (.

Wiy with probability p,

where (Wyy) (u,v)eE, 1 a collection of independent random variables wy,, ~ Unif (&),
independent of (6,),ecv, .
In addition to the observations Y, we consider independent observations (Eés))ue A
on the vertices of G,;:
(o) {eu with probabiliy ¢, 12
*  with probability 1 — ¢,

where * is a symbol not belonging to &, so that with probability ¢ the value of 6,
is directly observed. We will write &, := XU {x}. Following the information theory
literature, we refer to this noise model as the Binary Erasure Channel, and denote it by
BEC(¢). (It is customary to parametrize the BEC by its erasure probability € = 1 —¢.)
The parameter ¢ will be considered very small (eventually going to zero as n becomes
large). The purpose of this side information is to break the occasional group symmetry
(sign symmetry or cyclic shifts in the case of Z;) that would otherwise be preserved
by the observations Y.

We consider two metrics for the estimation accuracy. In our first definition, the goal
is to estimate the n x n rank-one matrix X  whose entries are

X Puw = fONf(O), u,veVy, (1.3)

where f : X — Risagivenreal-valued function. For instance by setting f(0) = 19—,
and then considering all values of x € X this allows to estimate whether 6,, = 6, for
each pair of vertices u, v € V,,. An estimator is a map X: yE” x X," = R™" je.,
a function of the observations ¥ and the side information £®). We evaluate its risk
under the square loss

-~ 1 -
Ru(X; f) = ;E[”Xf ~X[3] (1.4)

We denote by Ranes( f) the minimal achievable error, i.e., the one achieved by the
posterior expectation

< Bayes

X% = (B[ r@areavs)]) (1.5)

u,veVy
(We have made use of the following notation: for a graph G = (V, E), we denote by
Yée) the union of the vertex and edge observations over G: Y((f) = {Yu : (u,v) €
E, .§,,(8) :u € V}.) Our second metric for estimation accuracy is the ‘overlap’, and will
be introduced in Sect. 4, see Eq. (4.7).
Statistical estimation on graphs has motivated substantial amount of work. In this
context, the first example of a statistical model with a large information-computation
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gap is probably the planted clique problem [8,34]. This can be recast in the general
framework described above, with G, the complete graph over n vertices (see Sect. 3.1).
Despite more than a quarter century of research, and the study of increasingly powerful
classes of algorithms [13,24,27], no known polynomial-time algorithm comes close
to saturate the information-theoretic limits for this problem.

In recent years, a much more refined picture of the information-computation gap
has emerged, mainly through the careful analysis of a variety of models on sparse
random graphs (as well as models on dense graphs in a different noise regime than the
hidden clique model). We refer to Sect. 2 for a brief summary of this vast literature.
In most of these models an information-computation gap is observed, and has been
precisely delineated. This gap is generally conjectured to remain unchanged if a small
amount of side information is revealed,! as in Eq. (1.2). As mentioned above, most
of the theoretical work has focused however on random graphs (Erdos—Rényi random
graphs, random regular graphs and their relatives). This motivates the following key
question:

Does an information-computation gap exist for statistical estimation on other types
of graphs?

In this paper, we consider the case of graph sequences that converge locally to amenable
graphs. Roughly, these are graphs for which the boundary of large sets of vertices is
negligible compared to their volume. We refer to Sect. 3 for a reminder on the relevant
definitions. Our results are already interesting for the simplest example of such graphs,
namely large boxes [1, L] x - - - x [1, L] in the d-dimensional grid z? (with L = nl/d).

Our main finding is that no information-computation gap exists for such graphs
(as long as the gap is defined in terms of polynomial- versus non-polynomial time
algorithms). A specific formalization of this finding is given below, and proved in
Sect. 4.

Theorem A Let f : X — R be a function with E[ f(0)] = 0 for 6 ~ Unif(X). Let
G, = (Vy, Ey) be a sequence of finite graphs (with |V,,| = n) converging locally-
weakly to a random rooted graph (G, o) which is infinite, locally-finite, almost surely
anchored-amenable and tame. Then for each | € N there exists an estimator x" .

VEr 5 XV — RN with runtime On?) (for € fixed), such that the following holds.
For almost every ¢ > 0, we have

lim lim {R,(X"; )~ RE“ ()} = 0.

[—o00n—>00

The notions of local-weak convergence, anchored-amenability and tameness will be
defined in Sect. 3.
More in detail, we present the following contributions:

! The careful reader will notice that this statement does not apply to the planted clique problem. If the
label of en random vertices is revealed (i.e., whether or not they belong to the clique), then it is easy to find
planted cliques of size k > (1/¢) logn, i.e., far below the best known polynomial algorithms for ¢ = 0.
This behavior is however related to the fact that, in the planted clique problem, the underlying graph is
the complete graph. Hence a small amount of vertex side information can have large impact even on local
algorithms.
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No information-computation gap on amenable graphs Theorem A provides a con-
crete formalization of the general statement that statistically optimal estimation can be
performed using polynomial time algorithms on (asymptotically) amenable graphs. In
fact, we will prove that this follows from a more fundamental result, establishing that
the vertex marginals of the posterior ]P’(O | an)) can be computed to arbitrary accuracy
in polynomial time, for almost all values of &, on asymptotically amenable graphs, cf.
Sect. 4.

Note that approximating the Bayes estimator X Bayes, Eq. (1.5), requires to approx-
imate the joint distribution of pairs of well separated vertices. However, we will use a
decoupling argument to reduce ourselves to the case of vertex marginals.

Local algorithms.  Our proof that vertex marginals can be computed efficiently fol-
lows from an even stronger, and somewhat surprising fact (as above, holding for almost
all ¢). The marginal at a vertex v can be well approximated by computing the marginal
with respect to the posterior given observations in a large constant-size ball centered at
v. In other words, the marginal can be approximated by a local algorithm. The reason
for this phenomenon can be explained in information theoretic terms. We will prove
that the average conditional mutual information between a random vertex in a region
S € V, and the boundary of S, I(6,; 635|Y§8)) is upper bounded by |3S|/|S|. Hence,
for amenable graphs, the effect of the boundary information is generally negligible.

Robust information-computation gap on random regular graphs We provide a
counter-example, by showing that the conclusions at the previous points do not hold
for random regular graphs, converging locally to k-regular trees, which are non-
amenable. As mentioned above, several cases of statistical estimation problems have
been observed to present an information-computation gap, when the underlying graph
is random. While this gap is often expected to be robust to side information about
the vertices (see Sect. 2), we are not aware of any result that explicitly establishes
robustness—in the setting of the present paper. We consider the Z,-synchronization
problem on random k-regular graphs. We prove that, for a large range of the model
parameters and all ¢ small enough: (i) There exists a statistical estimator that achieves
non-trivial reconstruction accuracy uniformly as ¢ — 0; (ii) Local algorithms can
only achieve accuracy that vanishes as ¢ — 0.

2 Related literature

As mentioned in the introduction, large information-computation gaps were observed
in a number of statistical estimation problems, when the underlying structure is a
random graph, the complete graph, or close relatives. An incomplete list includes
community detection in the stochastic block model [1,21,41,46], high-dimensional
linear regression and generalized linear models [14,18], low-rank matrix estimation
and sparse principal component analysis [9,16,36,38,40], tensor principal component
analysis [29,31,45], tensor decomposition, and so on.
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In many of these models, two types of results are established. On one hand an
‘information-theoretic’ analysis allows to characterize the optimal statistical accuracy
that is achieved by an ideal estimator. On the other, specific classes of polynomial-
time algorithms are analyzed. A gap is observed between the accuracy achieved by
known polynomial-time algorithms and the optimal statistical accuracy. Sometimes
the resulting statistical estimation limits are stated in terms of specific goals such as
‘weak recovery’ (the goal in this case is to outperform the trivial estimator) or ‘exact
recovery’ (the goal is to reconstruct exactly @, with high probability). In the present
paper we consider the general goal of estimation with certain expected accuracy, or
risk.

The most frequently analyzed classes of algorithms have been spectral methods,
local algorithms, and convex relaxations in the sum-of-squares hierarchy. A remark-
able dichotomy has emerged from these works. Roughly speaking, in all the examples
we know of, either highly sophisticated semidefinite programming hierarchies fail, or
simple combinations of spectral methods and local algorithms succeed.

In the context of problems on random graph converging locally to trees with
bounded average degree (in particular, the stochastic block model, the censored block
model, the group synchronization problem for Z,), this observed dichotomy can be
formalized rather precisely. Consider belief propagation with a small amount ¢ of
side information, run in parallel for £ iterations, and denote by R, (B PO, ) the cor-
responding error. This is well known to be the optimal error achieved by any local
algorithm. Let?

RIC(0+) = 11%1+R};§(s), Rlo%c(s)zglim lim R,(BPY;¢). .1
e—

— 00 n—> 00

(The order of limits is crucial here.) The results of [1,5,12,19,21,23,41,46] indicate
that, in a number of cases, the error Rgﬁ (0+) can be achieved in polynomial time
even without side information (i.e. for ¢ = 0). Further, this can be strictly larger than
the optimal statistical error (also for ¢ = 0).

A number of works establish that in several cases, broad classes of algorithms
(sum-of-squares relaxations, low-degree testing) cannot outperform RL%C (0+) [26,29,
30,32,37]. These finding suggest that the gap between optimal accuracy and R‘;;f 0+)
is a fundamental one. Also, as a consequence of the very definition of RL"OC (0+), this
gap is robust to a small amount of side information, for problems on random graphs.
Notice that while the analysis of sum-of-squares relaxations and low-degree testing
typically assume ¢ = 0, they concern algorithms that are robust to small perturbations
of the problem.

Unfortunately, none of earlier works fits precisely with the setting of our paper. This
motivates our analysis of Z,-synchronization on random regular graphs (Sect. 5). We
establish that a large gap exists between Rg%c (¢) and the optimal statistical accuracy
for all & small enough.

2 In the physics literature, see e.g. [21], the BP accuracy is not formally defined in this way, but rather by
considering an initialization that is slightly biased towards the true parameters vector. The two definitions
are expected to coincide generically.
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Let us stress that our main focus is statistical estimation on amenable graphs.
Versions of this problem have been studied in a few recent papers [2—4,50,51]. In par-
ticular, [4] proved the existence of a weak recovery threshold for Z,, -synchronization?
on grids in d > 3 dimensions. However, in contrast with random graphs, no explicit
characterization exists (or is likely to exist) for the optimal statistical accuracy nor, in
general, for the location of weak recovery thresholds. This poses a clear challenge to
us: we want to prove that the optimal statistical accuracy can be achieved by polyno-
mial time algorithms, but we do not have an explicit characterization for the target
accuracy. Indeed, our proof will be purely conceptual.

Let us finally mention that it is well understood that certain algorithmic tasks are
easy on graphs that can be embedded well in R (e.g., on grids). For instance, approx-
imate optimization of a function that decomposes as a sum of edge terms over a grid is
easy, by partitioning the grid into large boxes. Unfortunately, these ideas do not have
direct implications on the questions addressed in this paper. Even if we can find an
approximate-maximum likelihood assignment of the unknown variables 6;, this is not
guaranteed to have any good statistical properties, let alone achieve optimal estimation
error. Inference and estimation do not reduce to optimization.

3 Background
3.1 Further examples

Itis interesting to check that the framework defined in the introduction is broad enough
to encompass a variety of models of interest.

Spiked Wigner and Wishart models Low-rank plus noise models are ubiquitous in
statistics and signal processing [35], and can be recast in the language of the present
paper. As an example, consider the case of a signal vector # € R", with i.i.d. compo-
nents, and assume we observe the rank-one-plus-noise matrix ¥ = 00" + o, W.Here
W is a noise matrix, with—for instance—W,,, ~ A(0, 1) and o,, controls the noise
level.

We take G, to be the complete graph, and (6,),cv, bei.i.d. random variables® from
a distribution Py on R. Observations on the edges are given by

Yuv ~ Q- 164, 6y) = N(Buby; 0.2, 3.1

where NV(1t, 0%) denotes the Gaussian distribution.
This example can be easily generalized. For instance, higher rank models can be
produced by taking 6, € R", r > 1 fixed. Rectangular (non-symmetric) random

3 For grids in d = 2 dimension, the situation is expected to be similar, although the proof is more compli-
cated. Indeed, [4] proves that a threshold exists in the case ¢ = 2, and indeed the same is expected to hold
for ¢ > 3 as well. For d = 1 no non-trivial threshold exists and weak recovery is always impossible.

4 Unlike for the model described in the introduction, the variables ;s typically take any value in R, and
their distribution is non-uniform. However, it is easy to reduce from one case to the other. For instance, we
can let Y,y = N(h(0,)h(0y), o,%). We can choose the nonlinear function 7 : R — R so that 2(6y) ~ Py
when 6, ~ Unif ([0, 1]).
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matrices of dimensions nj X nj, can also be produced by setting n = n| + n>. In this
case 0, = (&, by) where ¢, € R" and b, € {1, 2} depending whether v belongs to
the first n vertices (left factor) or the last n, ones (right factor).

Community detection The stochastic block model is a popular model for community
detection in networks. The model is parametrized by a symmetric ‘connectivity’ matrix
(crs)1<r,s<q> Whereby ¢, s € [0, 1] is the expected edge density between vertices in
communities 7 and s. (For the sake of simplicity, we consider here the ‘balanced’
case in which the ¢ communities have all equal expected size.) Each vertex v € V,, is
assigned a label 6, € [¢] independently and uniformly at random. Conditional on 6,
we generate a graph G, = (V,, E,) by connecting vertices u, v independently with
probability P((u, v) € E,|0) = cg, 6,

We can encode this model in our general framework as follows. The graph G,
is the complete graph, and observe Y, € {0, 1} on every edge, where Q(Y,, =
116, = r, 0, = s) = cr . The connection with the standard description is given by
the correspondence {Y,,, = 1} < {(u,v) € Em)}. The same encoding can be used
for the planted clique problem.

Let us note that although the above models are special cases of our framework,
we will focus in the rest of the paper onto graphs whose local-weak limit (to be
defined shortly) is locally finite. This rules out graphs with diverging typical degree
(in particular the complete graph).

3.2 Local-weak convergence and amenability

For the reader’s convenience, we collect here some relevant graph-theoretic defini-
tions, referring to [7,15,39] for more details. In this paper, all graphs have a finite or
countably infinite vertex set, are connected, and are locally finite; i.e., all vertices have
finite degree. A rooted graph (G, o) is a graph G together with a choice of a vertex
o € V(G), called the root of G. We say that two rooted graphs (G, o) and (G’, 0’)
are isomorphic—and we write (G, 0) = (G’, 0o')—if there exists an edge-preserving
and root-preserving bijective map ¢ : V(G) — V(G'), ie., (u,v) € E(G) &
(¢(u), p(v)) € E(G'), and ¢(0) = o'. For an integer [ > 0, define [G, 0]; to be
the rooted subgraph spanned by a ball of radius / around the root o on G: this is the
rooted graph ((V;, E), o) where V; = Bg(o,1) :== {u € V(G) : dg(o,u) <1}, and
E; = {(u,v) € E : u,v € V;}. Here, dg is the graph distance in G.

Definition 1 A sequence of rooted graphs (G, 0,),>1 is said to converge locally to

a rooted graph (G, o), and we write (G, 0,,) lic—> (G, 0), if for every radius [/ > 0,
there exists ng > 0 such that [G,,, 0,,]; = [G, o]; for all n > ny.

This notion of convergence endows the set G, (of =-equivalence classes) of rooted
graphs with a metrizable topology, called the topology of local, or Benjamini—
Schramm, convergence [15]. This gives G, the structure of a complete separable
metric space. Now we can define Z(G,), the space of probability measures on G,
when endowed with its Borel o -algebra. Then we endow Z(G,) with the usual topol-
ogy of weak convergence.
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From a finite deterministic graph G, we can construct a random rooted graph (G, o)
by choosing the root o uniformly at random from V(G). We denote the law of this
random rooted graph by pg € Z(G,).

Definition 2 A sequence of finite graphs (G,),>1 is said to converge locally-weakly
to a random rooted graph (G, o) if the sequence of probability measures (o, )n>1
converges weakly to a probability measure p € ?(G,), which is the law of (G, 0).

In other words, the definition requires that given a fixed finite connected rooted graph
(H, o) and a fixed radius [, the probability IP’([G,,, onli = (H, 0’)) converges to
P([G, ol = (H, 0/)) asn — oo.

Probability measures p € Z(G,) that are local-weak limits of sequences of finite
graphs as per Definition 2 (such measures are called sofic in the literature) inherit
a important stationarity property which roughly expresses the intuition that the ran-
dom graph G should “look the same" when viewed from any of its vertices. A formal
definition takes the form of a mass-transport principle termed unimodularity [7]: Sim-
ilarly to G, we define G, the space of =-equivalence classes of doubly-rooted graphs
(G, 0, 0") where the isomorphy relation = and local convergence as per Definition 1
are both extended in the natural way.

Definition 3 A measure p € £(G,) is unimodular if for every Borel function f :
G — Ry,

E[ Y fGow|=E| Y fG.uo)

ueV(G) ueV(G)
when (G, 0) ~ p.

It is clear that if G is finite then p¢ is unimodular, since the root is chosen uniformly
at random. Furthermore, the property of unimodularity is closed in the topology of
local-weak convergence [7], hence all local-weak limits of sequences of finite graphs
are unimodular.

Next, we define the key concept of anchored-amenability.

Definition 4 An infinite rooted graph (G, o) where G = (V, E) is said to be anchored-
amenable if its Cheeger constant anchored at o is zero:

inf {|aS|/|S| . § C V finite, 0 € S} —o.

Here, 0S ={u e S:3v ¢ S, (u,v) € E} is the vertex-boundary of the set § C V.

We will informally use the phrase ‘asymptotically amenable’ to refer to graph
sequences that converge locally-weakly to almost surely anchored-amenable graphs.

Observe that if G is vertex-transitive, the above statement does not depend on the
root o0, and anchored-amenability reduces to the more classical notion of amenability of
(non-rooted) graphs. For instance, the Euclidean lattice 7% is amenable, the k-regular
tree is not (both graphs being transitive).
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824 A. El Alaoui, A. Montanari

Observe that if (G, 0) ~ p is almost surely anchored-amenable, there exists a
sequence of finite sets Sy C V such that o € S; and which ‘witnesses’ the amenability
of G: |08k|/1Sk] —> 0 as k — oo. Moreover, this random sequence can be chosen in
ameasurable way as a function of the rooted graph (G, o). Indeed, we can for instance
label the vertices of G by N, the root being labelled by 0, and for every k > 1, choose
the first finite set Sy € V(G) (among countably many) in the lexicographic ordering
such that [3Sk|/|Sk| < 2% and o € S. For clarity we make this dependence explicit:
Sr = Sk (G, 0). We require a technical condition regarding such sets S.

Definition5 We say that p € Z(G,) is tame if it is supported on anchored-
amenable rooted graphs, and there exists a sequence {Si}r>1 of sets that witnesses
anchored-amenability (i.e., such that S; (G, 0) is a measurable function of (G, 0), and
[0Sk]/|Sk] — O almost surely) such that the following holds. For every > 0 there
exists § > 0 such that

) Loes,G,
hmsupp((G,O) Y ﬁ < 8) <. (3.2)
k=00 wev(G) DK

By extension, we say that the random rooted graph (G, o) is tame if its law p is tame.

Intuitively, tameness is satisfied when the size of the neighborhoods Si (G, u) of
each vertex u around the root is comparable with S (G, 0). To discuss it further, it is
useful to introduce the random variables

Loes, (G.u)
G,o0) = —_— 3.3
(G0 = ) 1S4(G, ) G-
uev(G)

The tameness condition requires a uniform upper bound on the lower tail of
(ak (G, 0))k>1. An equivalent way to express this condition is to say that the sequence
of random variables (1/ox (G, 0))x>1 is tight when (G, o) ~ p.

Note that E,[ax (G, 0)] = 1 whenever p is unimodular. Indeed, by a direct appli-

loeSk(G,u))
[Sk(Gu)]

cation of the mass-transport principle (for the function f(G, o, u) =

1
Eplen(G. o)1 =Ey | Y loesiGuy e
&) 1Sk(G, )|

1 ISk (G, 0)|
=E, Z lLiesi G | =Ep [—] =1
| ueviG) ISK(G, 0| 1SK(G. 0)]

Moreover, tameness is satisfied if p is supported on vertex-transitive graphs, and in this
case ax (G, 0) = 1 almost surely. Indeed, assume p is supported on a single vertex-
transitive graph. Then p is unimodular whence E,[ox (G, 0)] = 1, but ax (G, 0) is
non-random and therefore oy (G, 0) = 1. In the general case where p is not an atom,
since ox (G, 0) = | almost surely conditional on (G, 0), we have o (G, 0) = 1 almost
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surely unconditionally as well. We next provide two examples of non-transitive graphs
which are anchored-amenable and tame.

Example 1 (Percolation clusters) Consider the d-dimensional grid LY, i.e., V (LY) =
74, and edges connect vertices at distance one ELY) = {(x, y) € 74 |x— yll=1}.
Remove edges independently with probability 1 — p and let G = G (o) be the
connected component of the origin o = 0. We consider p > p,, the percolation
threshold on LY so that G is infinite with positive probability, and condition on the
event that G is indeed infinite. In this case we can take S; (G, x) to be the subset of
vertices contained in the £, ball of radius ¢; around x: Sx(G,x) = {y € V(G) :
ly — x|loc < £k}, for a deterministic sequence of radii £ 1 co. A classical result
of Newman and Schulman [48] implies |Si (G, 0)| /ZZ — ¢o almost surely for some
non-random constant ¢y > 0. Further 9S; C {x € 7% -1 < IXlloo < €i}
whence |05k < cléz_l. Hence, there exists a random ky < oo such that almost
surely |9Sk|/|Sk| < (2¢1/co) Ek_l — 0, for all k > ko.

Further, |Sx (G, 0)| < 204 ando € S (G, x)ifandonlyifx € S (G, 0). Therefore

1
@ (G.0) = > loes Gy — Y
€2ty

er(G)

— Y LesGo = |Sk(G 0)l.
2t k xeV(G)

Therefore likminf(xk(G, 0) > co/ca > 0 a.s., whence ,o(ak(G, 0) < 8) — 0 for all
—> 00

8 < co/ca.
Example 2 (Random geometric graph) In this case the vertices are the points of
a Poisson point process on RY with constant intensity y. Any two vertices x, y are
connected by an edge if and only if ||x — y||» < r for a fixed radius » > 0. We choose
the root 0 € V(G) as the closest vertex to the origin 0 and let G be the connected
component of o € V. This graph is infinite with positive probability provided y is
larger than the percolation threshold y, for this model [49].

The calculations for Bernoulli bond percolation on Z¢ can be applied almost ver-
batim to the random geometric graph. In particular, letting Sy (G, 0) = {x € V(G) :
Ix|loc < €x} witnesses anchored-amenability and satisfies the tameness assumption.

4 Results for asymptotically amenable graphs

Recall that Y(E) refers to the union of the vertex- and edge-observations over G:

(S) ={Yp:(u,v) € E, E,EE) :u € V}. A natural way to construct an estimator 6 is

to ﬁrst estimate the posterior marginals of 8 given Yéi) at every vertex:

16, u(x) == IP’(GM = x|Y((;n>), foru € V, and x € X. @.1)
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826 A. El Alaoui, A. Montanari

Letting (%, )ueG, be such estimates of the posterior marginals, we can construct 9, for
instance, by independently sampling from the marginals: B ~ind Tu, for all u € V.

Of course, computing the exact posterior probabilities (g, ,(x) is in general
intractable. As a tractable alternative, we can compute a local version of the ver-
tex marginals by using only observations in a ball of radius / around each vertex. For
ucV,and x € X, let

a9 = (0 = 2175 1) @2

(Recall that Bg, (u,!) = {v € V : dg, (u, v) <[} denotes the set of vertices within
graph distance / form u in G,.) The local marginals jZg, ,.;(x) can be computed with
complexity at most | X]!B6» @Dl per vertex. The complexity of estimating all the vertex
marginals is linear or nearly linear, under additional assumptions. In particular:

e If G, has degree bounded by knax independently of n, then |Bg, (1, [)| < kﬁg}(
e If G, converges to a locally finite unimodular graph, then

lim lim P(|Bg, (on, )| > M) = 0.

M— o0 n—00

In other words, for each §, there exists M (§) such that, for all n large enough, all
but a fraction § of the vertices u have neighborhood of size bounded by M (9).
Hence g, . (x) can be estimated for all but a fraction § of the vertices in linear
time.

Notice that we can safely neglect o(n) atypical vertices for our purposes. For instance,
the matrix estimation risk (1.4) is bounded away in the present setting (unless the
channel Q is noiseless), and therefore ignoring o(n) vertices has a negligible impact
on the asymptotic risk.

Do the local estimates g, .; provide good approximations of the actual marginals
1G,,u? Our first result shows that this is the case for asymptotically amenable graphs,
for almost all ¢ > 0, and on average over vertices in G,,. This is a consequence of the
stronger fact that the state of a vertex becomes independent of a receding boundary
around it in the limit of a large graph.

We state this result in terms of the mutual information. To this end let us briefly recall
some notions form information theory. Given a discrete random variable (or random
vector) X, we denote by H(X) the Shannon entropy of the law of X, namely—
with a slight abuse of notation—H (X) = H(Px) = — Y, Px(x)log Px(x). The
conditional entropy is defined by H(X|Y) = H(X,Y) — H(Y), and the mutual
information by I (X;Y) = H(X) — HX|Y)=HY) - HY|X) =dxer(P(X, Y €
9, P(X € ) x P(Y € -)), where dk. is the Kulback-Liebler divergence, or relative
entropy. Similarly, the conditional mutual information is defined as I(X; Y|Z) =
H(X|Z)—HX|Y,Z)=Ezdxg, P(X,Y € -12),P(X € -|Z) x P(Y € -|2)).

TheoremB Let G, = (V,, E,) be a sequence of finite graphs (with |V,| = n) that
converges locally-weakly to random rooted graph (G, o) ~ p which is almost surely
anchored-amenable and tame. Then for almost every ¢ > 0,
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L] . ©
uev,
Consequently,
lim lim > Eldry (@G, i 146,u)] =0 (4.4)
l—»oon—>o0 n mi it ' '

ueV,

The proof to this theorem is presented in Sect. 6.

Remark 1 While Theorem B is stated in non-quantitative form, the main technical
lemma in its proof, Lemma 2, is entirely non-asymptotic. Its statement implies that, for
most ¢’ € [0, £], and most vertices u € S, we have I (6,; 935|Y§8/)) < Cl3S|/(e]S)).

While this lemma allows to control the dependence upon ¢, determining the tradeoff
between ¢ and n would requite stronger asusmptions about the vanishing of the ratio
[0S]/]S], i.e. the rate at which the infimum in Definition 4 is achieved by bounded
regions.

Note that Theorem B is not sufficient to establish Theorem A about the optimal-
ity of polynomial-time algorithms to estimate the pairwise correlations (X 7)., =
f(6y) f(0y). Indeed, the latter requires to approximate the joint distribution of ,,, 9,
foru, v € V,, two arbitrary vertices. In order to achieve this goal, we define a decoupled
estimator:

R =E| 1@0|YS) |- B[ £@0|rS)]
(Zﬂcn,u(X)f(x)> . (Zucn,v(x)f(x)), u,v eV, 4.5)

xeX xeX

<(d . . .
Note that X ¢! may a priori have suboptimal accuracy. This is however not the case
for almost all ¢.

Proposition 1 Ler X x 0

e >0,

€ R"™ " be defined as per Eq. (4.5). Then for almost every
lim {R,(X'“; 1) = RE¥(H)} =0
n— o0

The proof of the above proposition can be found in Sect. 10.
Given Theorem B and Proposition 1, it is natural to consider the following low

complexity version of X199
X0 = (X Bt @) - (Yo A6, 0a0 (). (46)
xeX xeX

Since we can compute iig, ,.;(x) for all but o(n) vertices in time O(1), the overall
complexity of X x? is O(n?). (Setting X f,’,j = 0 for a sublinear fraction of vertices

produces a negligible error.) We can now prove Theorem A.
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Proofof Theorem A Since Proposition 1 yields R, (X' “”; £) — RE¥S(£) = 0 for

almost all ¢ > 0, we only need to compare the risks of X 70 and X, We have

2 ) p(deo)
—SEXT - X “Xy)

= =(d
RaXY: ) = RuXC 1) =
1 =) 2 S(dec) 12
+ 3 BIXTIF —EIXT0E).
We have

EXY - X" X )= 3 B[(Blr@1YS) o0 JELF OIS )]

u,veV,

—E[£OYETELF O)IYE) £ 00 £ 0]

By consecutive triangle inequalities, this is bounded in absolute value by

]

1% > E[\E[f(euwg’; wnJELFOIYE) ()] —E[fO)IYE TE[f 61V

u,vev,

<2l 1% D B[ [ELF @)1V (]~ E[FOIYE)]

ueVy,

<2nllf1I% Y Y E[|G, w1 (X) = 16, ()]
ueV, xeX

=dnlfl > Eldrv(@c,.ui- 16,a)]-
ueVy,

Here, || f||oo denotes the supremum norm of f.
On the other hand, and following a similar strategy,

B[RS - EIX 7% <201 01% Y E[[ELr@01YE) (] - ELr@01rE]

ueVy,

<4nllf11% Y Eldrv@a,ui. 16,

ueV,

Invoking Theorem B concludes the proof. O

We briefly mention that Theorem B allows to control other metrics for the estimation
errors beyondR (X s forexample the ‘overlap’ (or ‘agreement’) metric that applies
to estimators @ : yE" X X — XY» which assign labels to vertices. We define

1 ~
overlap(, Z 16, = o (64)}, 4.7)
€8, | Vil el

where 8, is the set of permutations on &, with g = |X]. The overlap between a sample
from the local marginals and @ can be lower-bounded in a nontrivial way:
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~( N A R )
Corollary 1 For each let | > 1, let 0() = (QM(Z))uevn where QLSZ) ~ WG,.u,l indepen-
dently for all u € V,,. Then for almost every ¢ > 0,

liminf lim [overlap(é([),())] > ZE[MGJ)(X)Z].

[—o00 n—>0
xeX

In the above, ug.,(x) = PO, = x|(G,0),7Y, é‘g)) where an observation model
(0, Y, £®) is defined on the infinite random graph (G, 0). We refer to Sect. 6.2 for
the precise definition. The proof of the above corollary can be found in Sect. 10.

Notice that, while Theorem A guarantees that there exists a polynomial-time algo-
rithm that achieves the Bayes risk, Corollary 1 only provides a lower bound. The
challenge is that the definition of overlap in Eq. (4.7) includes a maximization over
permutations o, which is not needed for the definition of matrix estimation risk The-
orem A. The lower bound of Corollary 1 corresponds to a specific choice of such
permutation.

Remark 2 Theorem A and Corollary 1 have algorithmic implications also for the case
in which no vertex information is available. A possible approach is as follows:

1. Fix asmall ¢ > 0 let m ~ Binom(n,¢). If m > 2ne, return a fixed vector.
Otherwise, select m vertices U € V uniformly at random.

2. Enumerate all | X]™ assignments of variables of those vertices 8}, = (6,),ev.

3. For each such assignment, run the local algorithm for estimating 6, using 67, as

the vertex observations, i.e. setting ELES) =6, foru € U and éf = x otherwise.

This algorithm has complexity of order exp{Cne} and returns a list of at most

N = |X]¥" estimates ()? (')) i<m» one of which achieves the guarantees of Theorem A.
Since ¢ can be taken arbitrarily small, this yields a sub-exponential algorithm returning
a list of sub-exponential size. This is in general not achieved on non-amenable graphs.

It is an interesting open question whether, given such a list, it is possible to select
efficiently a single estimate.

5 Results for random regular graphs

The assumption of anchored-amenability is crucial in the proofs of Theorems A and
B. While we do not know whether a weaker condition is sufficient, we show that these
results do not hold for at least one non-amenable case, namely, when G, is a random
k-regular graph with constant degree k. For the case of Z,-synchronization we show
that in a certain regime of signal-to-noise ratio (SNR), the local estimates of vertex
marginals provide no information about the hidden assignment @, while in the same
regime, it is information-theoretically possible to estimate # non-trivially.

As mentioned in the introduction, an information-computation gap has been
observed in several statistical models. However, none of the rigorous results in the
literature matches the setting of Theorems A and B. To the best of our knowledge,
the closest example is the case of the stochastic block model with ¢ communities on
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sparse random graphs (see [1] for a comprehensive survey and references therein).
As explained in Sect. 3.1, this example fits our framework, although with G,, being
the complete graph. In particular, G, does not converge to a locally finite graphs. In
contrast, the example treated in this section satisfies all the assumptions of Theorems
A and B except amenability (and tameness).

Notice indeed that random k-regular tree converge locally to the infinite k-regular
rooted tree 7. The latter is the prototypical non-amenable graph. Indeed, for any
connected subset of vertices S C V (Ty), it is easy to see that [9S| = (k — 2)|S| + 2.

Proofs for this section are deferred to Appendices 7 and 8.

5.1 Information-theoretic reconstruction: an exhaustive search algorithm

Given a graph G = (V, E) on n vertices, 6 € X and Y € yE, we define the edge
empirical distribution

1
~G .
Uo’Y = m Z 8(914'91’5Yuv) * (5'1)

(u,v)eE
This is a probability distribution on X x X x YV f)g y € P(Xx X x)). (Recall

that &2(S) denotes the simplex of probability distributions over the set S.) Define
v € Z(X) to be the uniform distribution on X and Ve € Z(X x X x ) via

Ve(01, 02, y12) = v(01) V(62) Q(y1261, 62) -
We then define the set of ‘typical’ assignments of node variables by
. o V. G =
Om; G,Y) = {0 € X" 1 drv(Vgy,Ve) < 77} .

We then consider the reconstruction algorithm that outputs a typical configuration

logn
Vi

0(G,Y) e ®n; G,Y), npi= (5.2)

If ©(n,; G,Y) is empty, we define 0(G,Y) arbitrarily (for instance 0(G,Y) = 0,
for a fixed reference configuration 0, € X’ V). If ©(n,; G, Y) contains more than one
element, then 9(G, Y) selects one arbitrarily, e.g., the first one in lexicographic order.
We note that we do not use the additional side information égn) in this procedure (we
can equally assume that ¢ = 0 for the remainder of Sect. 5.1.) In fact our proofs
apply to any algorithm that satisfy condition (5.2) with high probability. As discussed
below (see Remark 3) this condition is also satisfied by the randomized estimator
6 ~ IP’( 1Y Gn) that samples from the posterior.

It is immediate to show that the typical set is non-empty with high probability.
(Throughout this section, we use 0 for the ground truth, in order to distinguish it
from a generic vector € A".)
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Lemma 1 Let G, be a random k-regular graph on n vertices, and let (0, Y) be
distributed according to the random observation model described in the Introduction.
Then, there exists co = co(|X], |Y]) > 0 such that

IP’(O() € O(ny; Gy, Y)) >1-— co_1 exp{ — co(logn)z}.

Remark 3 As mentioned above, one might consider a randomized estimator 9 that out-
puts a sample from the posterior: 9 ~ ]P( - Y, Gn)' Note that this satisfies the condition
0 Oy, Gy, Y) (cf. Eq. (5.2)) with the same probability 1 — cal exp{—co(log n)?2}.
Indeed this follows simply by noting that, with this definition, the pair (é, Y) is
distributed as (0, Y). Therefore all the results to follow apply to this randomized
estimator as well.

Given two assignments 0, 0 € XV, we define their joint empirical vertex distribution
as

R 1
g0 == Wi Z 360.10.64 - (5.3)

ueV
This is a probability distribution on X x X: &g, 9 € L (X x X).

Theorem C Assume there exists cpy > 0 such that cpy < Q(y|xy, x2) forall x1, x) €
X,y € Y, and let (01,05, Y) have joint distribution v, (recall that v,(x1, x2,y) =
V(x1)V(x2) X Q(y|x1, x2) where Vv is the uniform distribution over X). If

k
51(91,92; Y)>=H(61)+3, (5.4)
for some § > 0, then there exists ' = §'(8, cyy) > 0 and a constant ¢y > 0 such that
IP’(dTV(&)é by T XT) 2 5/) > 1 —¢; " expl—co(logn)?}.

The proof of this theorem relies on a truncated first moment method, where we count
the expected number of typical assignments § € ®(n,; G,, Y) having a given value of
the empirical overlap distribution @y g,,, conditioned on certain typicality constraints
on the instance (G, 0, Y). The full argument is deferred to Sect. 7.2. This type of
approach is standard in information theory [28]. Abbé and Sandon used it to analyze
the stochastic block model, and called it “typicality sampling" see [5]. We also refer
to [6,22] for similar calculations in somewhat simpler contexts.

Remark 4 For the sake of comparison, Sect. 9 presents an analogous of Theorem C for
a version of the stochastic block model with on regular graphs. The model we study
is essentially equivalent to the equitable stochastic block model of [10] (see also [11])
with the only difference that we allow for O (1) self-loops and multi-edges, which
appear with probability bounded away from 0.
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For this version of the stochastic block model, the sufficient condition for weak
recovery in Eq. (5.4) is replaced by a similar one which we briefly spell out here. Let
7 € A9 ! be the distribution on g colors on the n vertices of the graph and M € R(fq
be the Markov transition matrix dictating how colors propagate across edges. Then
reconstruction is possible if %I(Gl; 6h) > H(6)) where0; ~ wand6, |6 ~ M (6, -).
This condition reduces to the upper bound in [ 12, Theorem 1] for the special symmetric
case considered in that paper. We refer to Sect. 9 for more details.

The next corollary applies the result of Theorem C to Z,-synchronization.

Corollary 2 Consider the Z,-synchronization problem. If

2loggqg
l—p+§)log(p+q(1 —p))+ (1 — %)plogp

k> ki(p;q) =
(

then there exists 5, co > 0 depending on k, p, q such that, with probability at least
1 — ¢y " exp{—co(logn)?}, drv (@ 6oV X V) = 6.
Furthermore, as p — 1, we have

4loggq

ko(piq) = — 84
)= D=

+0 ((1 - p)_1> .

This corollary follows from Theorem C simply by computing 1 (61, 65; Y) in the case
of Z,-synchronization. We omit the details. Finally, we deduce from Theorem C the
possibility of weak recovery.

Corollary 3 Under the assumptions of Theorem C, if%I(QI, 62;Y) > H(61) + ¢, then
there exists a constant § = §(¢) > O such that

A 1
liminf E[overlap(@, 09)] > — + 6. (5.5)
n—oQ q

Moreover, there exists a function f : X — R with zero mean, unit variance, and a
constant § = §(e, |X], cypr) > O such that

limsup REYS(f) < 1 — 8. (5.6)

n— oo

In particular, the conclusions (5.5) and (5.6) hold in the Z,-synchronization model if
k > k«(p; q)-

5.2 Performance of the local algorithm

In this section we examine the asymptotics of the local marginals

ﬁGn,u,l(x) = P<9u = X|Y;66)n (u,l))’
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when G, is a random k-regular graph, in the special case of Z,-synchronization with
side information from BEC(g).

We have seen in the previous section that weak recovery is possible (albeit non-
efficiently) when (1 — p)zk > 4qlnglq +O(1— p) even in the absence of side information
(Corollary 3). We show on the other hand that the local marginals are approximately
uniform if (1 — p)z(k — 1) < 1. The latter condition is known as the Kesten-Stigum
threshold for the problem of robust reconstruction on the tree [33].

Theorem D Consider Zy-synchronization with side information from BEC(g) on a
random k-regular graph G ,,. There exist constants ¢ = c¢(k, p,q) and C = C(k, p, q)
such that the following holds. If (1 — p)*>(k — 1) < 1 and & < ¢ then

1
lim sup lim sup — Z E[dTV(,TIGn,uJ,i)z] < Ce. 5.7

— n
00 n—>0o0 uev,

~( ~ P
The above theorem implies that all estimators (0( ))121 where 9,51) ~ L1 indepen-
dently for all u € V,,, have almost trivial performance. Recall the definition of the

matrix f(l):

S(\L(tlg = E[f(eu”Yt(;G)n(M,])] : E[f(@u)|yé2n(v,l)], u,v €V,

Corollary 4 In the setting of Theorem D, if (1 — p)z(k — 1) < 1, then there exists
constants c1, co > 0 depending on k and q such that

lim sup lim sup E[overlap(é(l), 00)] <

1
l-00 n—>o0 q

Moreover, for all f : Z4 — R with zero mean and unit variance,

liminf liminf R, (X*; £) = 1 — call 11 %e.

[—>00 n—>00 -

Remark 5 The above implies that no local algorithm can estimate X ; with non-trivial
accuracy. Indeed, the estimator of f(6,) f(6,) of minimal risk based on the infor-
mation contained is the balls of radius / centered around u and v respectively is
E[f(64) f(ev)|Y§G)n (w.yUBg, (v.p]- The latter quantity is equal to XU if the two balls
are disjoint, which is the case for 1 — 0, (1) fraction of pairs of vertices (u, v) when /
is held constant.

The proof of Theorem D is deferred to Sect. 8.1, but we give here an outline. We use
local-weak convergence to first lift the problem to the infinite k-regular tree, in which
the study of the local marginals reduces to the study of a certain distributional recursion.
Then we prove that below the Kesten—Stigum threshold, the uniform distribution v is
a stable fixed point of this recursion. The argument proceeds as follows. Let o be the
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root of infinite (k — 1)-ary tree 7 and denote by 7 (/) the subtree consisting of the first
[ generations of T rooted at 0. Now let 1, (x) :=P(6, = x|Y}f21)) forall x € Z, and
consider the sequence z; := E[u,,1(0,)|&, = *] — é which measures the deviation
from uniformity of the local marginal at the root. We use the recursive structure of the
tree to show that for ¢ small enough and « = (1 — p)z(k — 1), the sequence (z;);>0
satisfies the approximate recursion

qg—1

|zi41 — (1 — e)kz — e | < C(q)l(z(zl2 + 82), (5.8)

where C(q) is constant depending only on ¢g. Since zog = 0, this implies that if k < 1
then the sequence stays within an interval of size C’(g, «)¢ around the origin. This,
in turn, can be converted to the claim of Theorem D. The analysis of this recursion
originates in the study of the robust reconstruction problem on the tree. In this problem,
a spin at the root (an X-valued r.v.) is broadcast through noisy channels along edges
of the tree. The statistician observes a noisy realization of this process on the leaves of
T (1) for large [, and is tasked with inferring the value at the root (see e.g., [25,33,47]).
In particular, our analysis builds on ideas from [42,52].

6 Proof of Theorem B
6.1 Proof of Eq. (4.4)

We first deduce the statement about the average total distance between [, ,,; and
UG,.us BEQ. (4.4) from the statement about the mutual information, Eq. (4.3). Since

P(6, = x1Y)) = E[P(6u = 10980, w0 YE)IVE
= E[P(6u = 10980, Yy )1V |

where the last line follows from the spatial Markov property satisfied by the model
(i.e., conditionally on the boundary variables 65, (u.1), 0 is independent of Y, U(fu) for
all (v, w) € E such that either v or w is outside the ball Bg, (u,1)), we have by the
triangle inequality (letting S = Bg, (1, [) for ease of notation),

- 1
Edry (16, G,u1) = 3E Y [P0, = xI¥S)) = B(8, = x1¥{")|
xekX

1
= EEQ% = x[655. Y{") = P(6 = xI¥{")|

1
=3E > Ples= olv$). )P(eu = x|0ps = 0, Y) = P(6, = x|YS(‘9>)’
xeX,anaS

= Edry (P(6u: 635) € - 1Y), P(6, € - 1Y) x Pegs € -17{"))
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< 1(6u; 02517 /2,

where the last line follows from Pinsker’s inequality. Therefore Eq. (4.4) follows from
Eq. (4.3) via Jensen’s inequality.

6.2 Proof of Eq. (4.3)

Now we prove Eq. (4.3). We define an observation model (8, Y, £(®)) on the infinite
random graph G exactly as for the finite graphs G,. We then let

16.006) i=P(6, = x[(G. 0), ),

where we condition on the realization of the rooted graph and on o -algebra generated
by the sequence of random variables (¥ I(;c) (0.))1=0- Equivalently, we can also define

G,0(x) as the almost-sure limit of the sequence (P(6, = x|(G, o), Y;Z)(U l)))1>0’
where convergence is guaranteed by Lévy’s upward theorem. -
Let [ > 1. The functions f, g : G, — [0, log | X]] defined respectively by

F(G.0) = H@O,Y5,,,) and g(G.0) = HOlbac.01- Yisy,)

are continuous in the topology of local convergence. Indeed for (G, 0,,) h)—c) (G, o),

let ng > 1 such that [G,,, 0,]; = [G, o]; for all n > ng. Then f(Gy, 0,) = f(G,0)
foralln > ng, and similarly for g. Since the entropy is bounded between 0 and log | ],
we obtain by local-weak convergence under uniform rooting that

1
- Y 1(0u3 0036, )| Y )

ueV,

= LS HOIYE )~ HOrse, 0 VS )
n Bg, (u,l) Gn ;1) 2 B, (u,l)

ueVy
= Epcn [f(Gn’ On)] - EpG” [g(Gns On)]
—— E,[f(G.0)] - E,[8(G. 0)]
= E,|1(60: 6 vy
1Y 0, Y9Bg(0,.) |1 Bs(0,1) ) |*
Furthermore, since conditioning reduces the entropy, we have for allo € §; C S, C
V(G),
1(00; 9352\Y§j)) < 1(90; 9351\Y§f)). 6.1)

Therefore the map [ — [ (90; 03B¢ (0,1 |Y 1(;(;)(0 l)) is non-increasing. Let

o . ©)
19(G.0) i= lim 1(00: 036000 Y )))- 6.2)
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It remains to prove thatE, [I,fg) (G, 0)] = Ofor almost all ¢ > 0. We use the following
generic lemma which allows to control the dependency under the posterior between
variables 6, associated to vertices in the interior of a set S C V(G) and variables 03
associated to the boundary of this set. Our first lemma bounds the mutual information
between 6, and 3. This result is inspired by Lemma 3.1 in [44].

Lemma2 Let G be a graph, and S C V(G) finite and non-empty. For all ¢ > 0, we
have

€ 4
Zf I(Gu;eag‘Ys(g))de/ <log |X] - 3S].
0

ueS

Proof The argument relies on differentiating the conditional Shannon entropy of 0y
given Ys(g) with respect to ¢. Let us first replace the single parameter ¢ (the probability
of non-erasure) by a set of parameters ¢ = (&,),es: for each vertex u, 6, is revealed
with probability ¢,. We also replace the notation Y S@ by (Y, &), omitting an explicit
reference to & and to the ball S. We finally denote £\ = {&, : v € S, v # u} with &,
removed. We have

H(OyslY, &) = e H (6s|Y, \", 6,) + (1 — e,) H (BasY, §\).

Taking a derivative w.r.t. &, yields:

d
5 HOslY, 2) = H(0sY, £\, 6,) — H(05517,6\®)
u

= —1(0u; O9s|Y, £\,

where the latter is the conditional mutual information of 6, and 63 given (Y, é\(")).
Now we set ¢, = ¢ for all u € S. We obtain

d
S H OV, &) == 1(0u: 0s1Y, £\).
ueS
We now integrate w.r.t. &:

&
|3 1o sty £ ) = H@asy. £ — Heously . £©)
0

uesS

< H(0ys|Y,£¢70)

< H(%s)

<Y H®)
ueads

= log|A] - |05].
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The second line is by positivity of entropy, the third line follows from the fact that
conditioning reduces the entropy, the fourth line is by sub-additivity, and the last line
is since 6, is marginally uniform on X. Now we finish the proof by observing that
1(0u; 0951Y , €) = (04 Ops|Y, E\W, &,) < I(6u; Oys]Y, £\™) because the left-hand
side vanishes whenever &, #~ . m|

Now we are in a position to prove Eq. (4.3).

Assume (G, o) is almost surely anchored-amenable and tame. Let (S =
Sk (G, 0))i>1 be the sequence of finite measurable random subsets of V(G) satis-
fying the conditions of Definition 5 (recall in particular that o € S.) We use Lemma 2
with this choice of sequence (Si)r>1, and then average over the realization of the
rooted graph (G, o) ~ p:

1

€ /
E / 1<9 095Gy |YE )de’
P |Sk(G, 0)| MES](Z(G ) 0 u ik ( 0)| Sk (G,0)

< E, [ Viog|¥ - 105:(G. 0)l/[5:(G. o) |

< log |4 Ay,

where Ay — 0 by an application of dominated convergence (since [0Sk (G, 0)|/|Sk
(G, 0)| — 0almostsurely by assumption). Now, fora given k, let L > diam(Sx (G, 0))
be such that Sx (G, 0) € Bg(u, L) for all u € Sx(G, o). By the inequality (6.1) we
have for all u € S (G, o),

I(eu; ef)Bg(u,L) |Y§EG)(M’L)> < I(eu; 93Sk(G,0)|Y§§()(;’0))v

so we obtain
1 € /
Ep| e . / 1(@,; Oagc(u,L)|Yl(;2)(u’L)>ds’ < Vlog |X] Ag. (6.3)
ISk(G, 0| | _¢ 0
«(G,0)
Now we let fi : Gy — R defined by

1 € p
S (G,0,u) = mluesk(ao) /() I(Qu; 933@(M,L)|Yl(;(;)(u’]‘)>d8/-

With this notation, expression (6.3) is equal to Ep[ ZueV(G) Jr(G, o, u)]. By uni-
modularity of p, this is also equal to

E,[ Y fi(G.u0)]

ueVv(G)

Liesic\ [¢ )
—F ( k—)/ 1(9;9 y )d/ vy
8 MEVZ(G) |Sk(G, M)| 0 o 8B(;({),L))| Bg(o,L) & ( )
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Taking the limit L — oo and using Eq. (6.3) and Eq. (6.4) we obtain

&
E, |:ak(G,0) / Ifs)(G,o)ds/} < log |X] Ay, (6.5)
0

where o (G, 0) = ZueV(G) 1oes, (6,u) Sk (G, u)|~! and I, is defined in (6.2). Now
we use the tameness assumption: the sequence (1/ax (G, 0))i is tight. Let Z(G, 0) =
J2 187 (G, 0)de’ For > 0let § > 0 such that

lim sup p (o, (G, 0) < §) < n.

k— 00

Since all involved quantities are nonnegative, we have

Ep[oék(G, 0)-Z(G, 0)] > ‘SEp[lak(G,o)>8 - Z(G, 0)]
= 8(E,[Z(G. 0)] = Ep[ley(G.0<s - Z(G. 0)]).

Since Z(G, 0) < elog|A] a.s., we obtain

E,[Z(G,0)] <67 'E,[ar(G, 0)Z(G, 0)] + e log |X] - p(ax(G, 0) < &)
< 57 1/log [X] Ag + log |X] - p(ax(G,0) <),

where we have used (6.5) to obtain the last display. Letting k — oo and then n — 0

we obtain for all ¢ > 0,
& ’
E, [/ 188G, o)ds’] =0,
0

and this concludes the proof. O

7 Information-theoretic reconstruction on random graphs: Proofs
7.1 Proof of Lemma 1

This is a consequence of McDiarmid’s bounded differences inequality. For (u, v) €
E and (x1,x2,y12) € X x X x Y, we let X,,(x1,x2,y12) = HOou =
X1, 60,0 = x2, Yo = y12}, and let Z(xy, x2, y12) = ﬁ > wwyee Xuv(x1, X2, y12) —
E[X,y(x1, X2, y12)]). Since

)

. _ 1
dTV(VGGO’jY, Ve) = 3 Z | Z(x1, x2, y12)

X1,X2,Y12
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we have

“Gn — 2n

P(dTV(Vg)'fy, Ve) > 1) < Z ]P’(|Z(X1JC2, )| = m)

X1,X2,)12

We associate to each edge (7, j) € E an independent random variable U;; ~
Unif ([0, 1]). We can then construct a function f : X x X x [0,1] — ), such
that Q(y12|61,02) = P(f (01,02, U12) = y12161, 62). Hence we can define Y, 6 by
letting Yy, = f(6o.u, 00,0, Uyy) for each (u, v) € E, and we view Z(x1, x2, y12) as a
function of the independent random variables {6 ,,, Uyy}-

Moreover, if we change the value 6y, at vertex u to Héyu and call Z'(x1, x2, y12)
the resulting value of Z(xy, x2, y12), we have |Z — Z'| < kal = % (recall that k is the
degree of u and |E| = @). If we further change Uy, to U}, at an edge (u, v) € E, we
have |Z — Z’| < 1/|E|. Applying the bounded differences inequality conditionally on
Gp, we get

2 2 2
2\2 ! 1\2 = Ze_”nT
()" +1EIGED)

P(\Z(M,xz, yi2)| > n’) < 2exp{ —

logn

N

’_ n —
Now we let ' = 2_|X\2|yl and n

7.2 Proof of Theorem C: a truncated first moment method

Instead of working directly with the ensemble of random regular graphs, we will use
the configuration model [17] for our moment computations. Let kn be even and let
M,k be the set of perfect matchings on nk vertices. For m € M,,; we define the multi-
graph G (m) on n vertices where a vertex i’ € [nk] in m is sent to a vertex i in G (m)
through the mapping i’ — i = i’ (mod) n. The resulting multi-graph may contain
multiple edges and self-loops. The configuration model is the probability measure P}
on multi-graphs induced by the uniform measure on perfect matchings through the
above mapping. The measure IP’,Cln}{ conditioned on the multi-graph G (m) being simple
(i.e., not having self-loops nor multiple edges) is the uniform measure on k-regular
graphs P'*7. The probability that G (m) is simple under P} is (1 — O(k3/n))e'! —k%) /4
for large n by a formula of McKay and Wormald [53]. Therefore, for any event A and
sequence &, — 0, PS(A) = 1 — g, implies P, 3.(A) = 1 — c(k)e, with c(k) > 0
depending only on k.

Let G, = (V,,, E,,) be from the configuration model with V,, = [r]. We will assume
edges to be directed, and the direction to be chosen uniformly at random. Assigning
directions is useful for book-keeping when counting tuples (G, 6, Y). The number of
graphs G,, = (V,, E,), (counting edge directions) is

nk =

(nk)! nk 2nk
= nk/2)! T exp{ (

2 log 7) + (9(1)} . 7.1)
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Indeed, N, i is the number of ordered pairings of the nk half-edges. Such a pairing
can be constructed by ordering the nk half-edges (which can be done in (nk)! possible
ways), and then pairing consecutive half edges following this ordering. Each pairing
can arise in (nk/2)! possible ways.

We next state a standard counting lemma that will be useful in what follows. Given
finite alphabets X, ), and integers n, k with nk = 2m even, let Z,(X x X x ))) C
P (X x X)) be the subset of probability distributions v € (X x X x )) such that
v(x1,x2,y) € N/m forall xi, x2 € X,y € Y,and 3¢ (v(x, %, y) + v(X, x, ) €
N/n forall x € X.

Given v € (X x X x ), we let mjv(x) = Ziej{’yeyv(x,i, y), mpv(x) =
Zie?\:yey v(X, x, y). We further let v (xy, x3) = Zyej} v(xy, x2, y).

Recall that Shannon entropy of a probability distribution p on the finite set X is
H(p) =— ers p(x)log p(x), and the joint empirical edge distribution of (@, Y) on
a graph G is

A 1
VOG,Y = 1E| Z 80,.00.Y,0) € P(XX Xx D).
(u,v)eE

Lemma3 Forsuch v, let Ny i (v) be the number of triples (G, 0,Y) where G = (V =

[n], E) is a graph from the configuration model, 6 € ?V, Y e j}E with edge empirical
distribution equal to v. Let v, = (m1v + mv) /2. Then

N k() = (ex/m) ¥ - exp {”A(v) + nk log (%” ,
2 e

k
AW) =S HW) = (k= DHW).

Proof Recall that m = nk/2 is the number of edges in G. Note that mmv(x) is the
number of edges (u, v) such that 8, = x, and mmov(x) is the number of edges (u, v)
such that 6, = x. Therefore m(mw1v(x) + mv(x))/k = n(mv(x) + mav(x))/2 is the
number of vertices u such that 6, = x. Further mmov(x1, x2) is the number of edges
(u, v) such that 6, = x| and 6, = x;.

Given a non-negative integer vector (b(x))yes With bgym =Y
the corresponding multinomial coefficient by

<bsum> _ bsum!
b())  Tliesb™!

We then obtain the following exact counting formula (where vy(x) = (mv(x) +
mov(x))/2 and vip = mov):

ces b(x), we denote

n [nkvy, (x)]!
Nn = = =
A) (m( : )) 11 e cdmvna @, DN Lodmn @ 0l
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1—[ (ml)n()(,)?))
- \mv(x, %, )]’
X

X, xe

X 1_[ [mvia(x, X)]!
x,ieX

The first factor account for the number of ways of choosing 6. The second corresponds
to the ways of giving a matching type to half-edges. The third factor counts the number
of ways of matching half-edges, and the last one the number of ways of assigning labels
in ) to edges.

Equation (7.2) follows by using the following elementary bounds (that hold for any
N € Nand any p € Z(S) [20]):

NAN N N H )
N!fe«/ﬁ(?> , (Np(.)>§e P (7.2)

Now recall the joint empirical distribution of two assignments ¢, § € X":

N 1
wey.0 = m 28901’“9“ € (X x X).

ueV

Further, let Ve (x1, x2, y) = v(x1) v(x2) Q(y|x1, x2), v being the uniform distribution
on X, and

O G,Y) = {0 e XV dv(y. o) < n}-

Given a graph G, a true assignment 6, observations Y, and a closed set S C
P (X x X) we define

Z(S:. G, 00, Y) = Ho €O G.Y): gy € SH , (1.3)

where 1, = (logn)/+/n. We denote by G, the set of instances, i.e., triples (G, 8¢, ¥),
where G, is a graph over n vertices, ¢ € XVnand Y € YEn.

Lemma4 Assume there exists cyy > 0 such that c;,ll < Q|x1,x2) < cp for all
x1,x2 € X, y € Y. Define the map S : Z(X* x X* x )) — R by

k k
S(Q2) = EH(Q) — (k— I)H((mSZ +n252)/2) - EH(Ve) +k-1)H®W). (74)

(Here 11, o are defined as in Lemma 3, with X = Xz, and H denotes the Shannon
entropy.) Further define S, : (X x X) — R by

S¢(w) = max S(2),
subj.to (mQL+mR)/2 =w,
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Z Q(x1, X1, x2, X2, y) = Ve(x1, X2, ¥),

)'6'1 ,fzeX

Z Q(-xlvilsx2v-i2’ Y) Zve(il9~£2v Y) (75)

X1,x€X

There is a set G, G, of ‘good’ instances such that the following happens. For
S C A(X x X) aclosed set, we have

IP’((Gn, 00,Y) € Q;) >1-— co_l exp {—co(logn)z} ,

E[Z(S; Gu, 00, Y) 1(G, 09 y)eg] < X {n sup Sy (@) + cﬁlogn}. (1.6)

weS

Proof Givenatuple (G, 8¢, 0, Y),where G = (V, E)isagraph,0, 0, € XYy e VE,
we define its joint edge empirical distribution ng gy €E Z(XXx Xx Xx Xx])as

~ 1
QoG(),a,Y = E Z 800,147014790,L”9U7YML‘ . (77)
(u,v)eE
In other words ﬁoco,o, y &1, X1, X2, X2, y) is the probability that, sampling an edge
(#,v) € E uniformly at random, we have 6y, = x1, 0, = X1, 6o,y = X2, 6y = X2,
Yo = v. Let (X x )) € P2(X* x ) be the subset of probability distributions

with entries that are integer multiples of 1/|E| = 2/(nk). For Q € Py (X4 x )), we
let N, x(€2) denote the number of tuples with edge empirical distribution equal to €2:

Ny 1 (2) = H(G, 00.0,Y): QF 4y = sz” (1.8)

Notice that setting X =Xx L'V, we can view (0¢, ) as a vector in 7(V and Q as a
probability distribution in Z(X x X x )). Applying Eq. (7.1) and Lemma 3, we get

Nk (§2) _ C MA@ +Clog(n) (7.9)
Nn,k -

We define
G ={(G.00.1) Gy drv(d .70 = ma.

Then Eq. (7.6) follows immediately from Lemma 1.
We also define Bty (Ve; ) = {v € (X x X x)): drv(v,Ve) < n,}. With
this notation

Z(5:G.00.Y) = Z lﬁgyeBTv(ve:nn> Loy pes
fexV
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and therefore, using Eq. (7.9),
E[Z(S: Gu. 00.Y) 1(G, 60 v)e0: ]

1
= 2 T 00l bolsg cprvin,

G yeYE 9y.0exV (w,v)EE
(7.10)

lﬁgYeBTV(Uemn) 10300.965'

Recall the definition of ﬁoGO ¢ y from Eq. (7.7). We observe that this empirical measure
has the following marginals:

1 0 )
5 (T182,.9.y + 7282, 9.y) = @000,

856G - - INe;
Z Qg gy (X1, X1, X2, X2, y) = Vg' (X1, X2, ¥),
X1,%eX

856G . - N
and Z Qg 0.y (X1, X1, X2, X2, ) = g’y (X1, X2, ¥).
x1,x2€X

Moreover, if Q does not vanish, we have
[T 2ulbo 6o =exp{ D" log 0¥l b00)
(u,v)eE (u,v)€E
= exp {11 [ oz 0011 12048, 4y (1. 1.2 2 )|
. (&6
= F(Qoo,o,y)-

Therefore the summand in the formula (7.10) depends only in the empirical edge
distribution Qg),o,y of the instance (G, 09, 0, Y). Now let 2(n,) C f@(ék“ x ) be

the setof @ € 2(X* x ) satisfying the constraints
%(mQ +mR) e S,
(Z;I;QEJ(Q(XI, X1, x2, X2, y))xl,xz,y € Brv(Ve; M) , (7.11)

(Zmex @@ fix 82.9) € Bry(ei ).

X1,X2,Y

We have

E [2(87 Gns 009 Y) I(G,,,OO,Y)EQZ]

—1 oG
B Ny x| X" Z F) Z 1{900,0,Y = Q}
’ QE2)N P (X* %)) (G.,00,0.Y)€G,
1
=X vin F(Q) N, (2
Ny k| X" Z (§2) Np i (€2)

QED ()N Pt (X <))
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cn€

< F() "

< X r@
QE2Mm)NPu (X <))

We applied the bound (7.9) in the last line above. Due to the second constraintin (7.11),
we can upper bound F(£2) as follows

F(2) <exp [%/log O(y|x1, x2)dve + Cnnn}
— exp {%( — H(e) + 2H®)) + Cnnn].

Therefore, letting

S(§2) = A(Q) — I%H(Ve) + (*k—1DH®)

= ]%H(Q) — (k — l)H((mQ +n2§2)/2) — gH(Ve) + (k—1)H(®),
we arrive at

E[Z(S: Gn, 00, Y) 1G,.00.v)e0:] < cn® Z exp {nS(Q) + Cnny |
Qe2(m)N P (X*xY)

< CnC | Zu(X* x )| exp {n sup Sy (w) + Cﬁlogn}
weS

< CnSexp {n sup Sx(w) + Cﬁlogn} ,

weS
which implies the claim. O

The next result provides a sufficient condition for weak recovery using the estimator
0 satisfying Eq. (5.2); this is a more general version of Theorem C.

Theorem E Assume there exists cpyy > Osuchthatcy < Q(y|xy, x2) forallxy, x € &,
y € Y. Assume S, (V x V) < —& < 0. Then there exists 5 = §(g, cpr) > 0 such that,
with probability at least 1 — CO_1 exp{—co(log n)?}, the following happens

dv (@5 9.V X V) = 6. (7.12)

Proof Recall that By (v xV; §) denotes the set of probability distributions w € & (X'x
X) such that drv(w, v x V) < §. We claim that, under the stated assumptions there
exists 8, c; > 0 such that, setting Ss = By (v x v; §), and G, as in Lemma 4, we
have

E[Z(Ss; Gn, 00.Y) 1((;,1,00,y)eg;] <e ", (7.13)
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Hence applying Lemma 4, it follows that with probability at least 1 — ¢, lg=collogm)?
(possibly adjusting the constant cg), Z(Ss; G, 60, Y) = 0. Hence c?)é 9 ¢ S5 by

construction of 9, and therefore the claim follows.

We are left with the task of proving Eq. (7.13), which will follow from Lemma 4 and
S.(V x V) < —e once we show that w — S, (w) is continuous. For o € (X x X),
define K (w) C & (Xz x X% x Y) the set of constraints of the optimization problem
in Eq. (7.5), i.e.,

K(w) = |sz e PXEXXEXY) : (MQ+mY)/2=w,

D QG ELx, B2, y) = Velxr, X2, ),

551 ,)EzEX

Z Q(x1, X1, X2, X2, ¥) = Ve(X1, X2, ¥) } (7.14)

X1,X2€X

Since 2 — S(£2) is a uniformly continuous function (the entropy function is Holder),
it suffices to show that the map w +— K (w) is continuous in the Gromov—Hausdorff
metric: Fix » > 0 and w € Z(X x X). We will show that there exists a § > 0 such
that for all " € Bry(w, §) we have K (w) € [K ()], and K (') € [K (®)],. Here,
[A], denotes the r-enlargement of the set A in dty distance: [A], = Uyea BTv(x, 7).
The smallest r such that B € [A], and A C [B], is the Gromov-Hausdorff distance
between A and B.

LetQ € K (w).Forw' € Z(Xx X)let Q' = argmindgy (Q"]|R2) s.t. Q" € K (o).
We want to show that Q' is close to 2 when «’ is close to w. It is possible to write an
expression for ' using Lagrange multipliers:

Q' (x1, %1, %2, %) = Z71 - Q(x1, 1, x2, )
cexp{(u(x1, X1) + p(x2, ¥2))/2 + A1 (x1, x2, y) + A2(X1, X2, ¥)},

where Z is the normalizing constant and {u(x,x’), A1(x, x’, y), A2(x, x’, y)
x,x',y € &% x Y} are uniquely determined by the system of equations defining
K (o), cf. (7.14), and we have

1 ~ - -~
(S 1192) = Bg [ 5.1(X1, X0) + (X, X)) + 20 (X1, X2, ¥) + 22Ky, Ko, V)]

— log Eg I:e(ll(Xlle)‘FM(XZ»XZ))/z‘H»I(X1~X2»Y)+7\2()~(1,)~(2’Y)]’

where (X1, f(l, X, )?2, Y) ~ Q. We remark that w, A1, A, are continuous functions
of @', and that for o = @ we have © = 0 and A; = A, = 0 by strict convexity
of the KL divergence. Therefore, there exists § > 0 such that if dyy(w, @) < §
then dip (Q']|2) < 2r2, which by Pinsker’s inequality implies dvy (€2, ) < r and
hence K (w) € [K(w')],. Switching the roles of the pairs (w, ) and («’, Q') in
this construction, we also obtain that K (o") C [K ()], when drv(w, w’) < § for a
possibly smaller value of §. This implies that the Gromov-Hausdorff distance between
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K (w) and K (@) is smaller than r whenever dry (w, ') < 8, showing that the map
w +— K (w) is continuous. O

The condition S, (v x V) < —e might be hard to verify in practice because it requires
solving the optimization problem (7.5). We provide a simpler sufficient condition,
which is the content of Theorem C:

Lemma5 Let (61,602, Y) ~ Ve, withv,(x1, X2, ¥) = V(x1)v(x2) Q(y|x1, x2) . We have
S«(Vx V) < =51(61,62;Y) + H®)).

Proof Let 2, € Z(A% x A2 x ) be any distribution achieving the maximum in
(7.5) for o = v x v, and let (X1, X1 X>, X2, Y) have distribution €2,. Note that
(X1, X2, Y) ~ Ve, (X1, X2, ¥) ~ Ve, (M1 Qi + m22)/2 =V x ¥ = Law(X1, X2),
whence

S (V X V) = S(£24)

k ~ ~ k
= EH(XI,XLXZ,XZ,Y) —(k—=DH(Xy, X2) — 5H(X1,X2,Y)+(k— DH(X1)

k - - k k
= EH(XI,XI,Xz,leY)-i— ~HY)—-2(k—-1)H(X) — fH(Xl,Xz,Y)-l-(k— DH(Xy)

(a) k k k
<§H(X1,X2|Y)+ H(X1, X2|Y) + = H(Y)_*H(XLXLY) (k= 1DH(Xy)

k
= 5 H(X1, Xa|¥) — (k = DH(X1)

k
= _EI(XI,X% Y)+ H(Xy).

Step (a) follows by sub-additivity of entropy. O

Hence, if %I(@l ,00;Y) > H(0))+¢,then S, (Vv xV) < —e < 0, and the claim follows
by applying Theorem E.

7.3 Proof of Corollary 3

Let B, x4 is the set of all ¢ x g non-negative doubly stochastic matrices (withg = |A]).
It holds that

overlap(d,8y) = max Zwo g, (X, 0 (X)) = nnga;iq Z n(x,x/)c?)é’ao(x,x’).
x,x'eX
(7.15)
Indeed, since the right-most expression in the above display is a linear program, the
objective value is maximized at the extreme points of the polytope B, 4, which by
Birkhoff’s theorem are permutation matrices: 7 (x, y) = 1,—5(x) for o € §,, hence
the equality.
Since qc?)@’ 0 € By xq (We abused notation and identified the joint distribution c?)é’ 9
on X x X' with a g x ¢ matrix), we have

overlap(8,8y) > g Z (62)9’90(36, x,))z.

x,x’
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A - = A INY 1 82
Now, on the event dTV(wé,()O’ V X V) > §, we have Zx’x,(a)é’oo(x, x> e + 7

Hence overl ap(é, 0p) > % + 82 on the same event.
Next, we prove the second statement. For two functions f, g : X — R, we let
6)9’00 (f,g) := le,)rz “A)é,oo (x1,x2) f(x1)g(x2). Theorem C implies

IP’(EIf,g X Rt @, (f,0)] = .

ﬁ) >1—- cal exp{—co(logn)z}.

Indeed, if d1v (c?)é 8y’ D x V) > § then there exist x1, xp € Xsuch that |c?)é 9 (x1, x2) —

1= 5 Nowtake f = (8, — gy and g = (81, — )7

On the other hand, letting F := {f = (6; — Cll)qu], x € X}, aunion bound implies

. 8
IP(EIf,g X Rsit. |a)é’00(f,g)| > m)

8
< zmaxIP’(c?)A (f, 9 >—>.
=4 feer 95,0,/ )| 2 q(qg —1)
Therefore, there exists a (deterministic) pair f, g € JF such that IP(lc?)é 00( f, el >

q(q‘s_l)) > IL’Z’“) > co > 0. By Markov’s inequality, this in turn implies that for this

specific pair f, g € F we have

2

g — D2 @ 7o

E[a 4,(f» )] = co

Now consider estimating the matrix X ; (recall that (X r),u = f(6.) f(6,)) with the
matrix X @ having entries X ,(4),}) =Ag (éu) g(év), with

b =nElay , (F. 9] /E[IXV 3],

Since

1 = A A ~
&YX =5 Y 00050080 = 2dg 4, (f. ).

u,veVy

the loss R, incurred is

2
A(M 1 N )L A(l)
Ru(X™5 ) = —BIX 71T = 20E[@54,(f, )°] + SEIX 7

E[d o, (f- )]

1
= SE|X,% - —2% 2" -
2 FF =
n EI1X )12 /n2)
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We have

EIXI: = Y ELf©00)2F(0:)% = Z 3 F@* 40— 1),

u,vevVy X€Zq

So lim niz]E||Xf||%, = 1. Furthermore, since ||g]lcc = 1,

EIXVI% = > Elg@n?s9) < n?.

u,veV,
Combining these estimates with the lower bound (7.16) implies lim sup R,, (X ®. r ) <
1-— c(q)82. Since Rfayes(f) <Rnu (im; f) this concludes the proof.
8 Local algorithms on random graphs: Proofs
8.1 Proof of Theorem D
8.1.1 Preliminaries

Let (T, o) denote the infinite k-regular tree rooted at o. (Except the root o, every
vertex has k — 1 offsprings.) By expanding the square, we get

E[dtv (g, us. V)] <

PN

—~ _ —~ 1
E[de, @6,.00: 7] = T [ 3 Effl,u0(0%) = .

X€Zq

(Here, dy, is the £, distance in R?.) Since the graph sequence (G, ),> almost surely
converges locally-weakly to (a Dirac delta on) (T, 0), we have

I o I
lim > E[de @609 = 3 E[B(6, = 1Y) )] - ;@D

ueVy, XEZLy

Ho.1(x) = ]P’(GO = x|YI(;T)k(0J)) forall x € Z,.

Let O = Law(uo,1160 = x, 5(58) = %) be the conditional law of 1, ; given the value at
the root being x and no information revealed by the side channel. This is a probability
distribution on the simplex A9~ = P(Ly): Ox € P (A1), Furthermore, let
0= Law(,u,,ﬂéo(g) = %) = %erzq Q. The following simple lemma from [42] is
quite useful.

Lemma6 Forevery x € Zy, Qy has a density w.r.t. Q, and %QQX (n) = qu(x) for all
we AL
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Proof Let v : A?~! — R be bounded measurable. We let ¥ = {Y l(;r) (©. [)} Then

E[Y (o)l = x. 67 = x| = qE[Y (o) 10y = x}155" = +]
= qE[E[Y (o) 10, = x}|Y, £ = +]I6) = 4]
= GE[Y (oD E[1{8, = x}|Y, 68 = #]16{) = +]
= qE[V (o) o1 (0IES = #].

Therefore dQ, /dQ(n) = gu(x). O

With the above lemma in hand, the right-hand side in (8.1) can be written as

) 1 ~ _
ngrgom Z E[de, (TG, .1, V)z]
uev,

1
= DB = 0l £ #1+ (1= 6) 3 Blytos (00716 =+ -

1—¢ 1
=e+—— Y Elpos()|fy =x.& =+ — —
9 = q

q—

(Blnoslts =21 - 2).

The first equality follows by conditioning on 558) as noting that conditional on Eo(g) # %,

Ho(x) = 1{x = S(ES)}. Lemma 6 was used to obtain the second equality.
In light of the above expression, we will track the evolution of the sequence

o 1
Zo = Eluo,1(00) 160 = *] — ;, >0,

which measures the deviation from uniformity of the local marginal at the root. In
order to exploit the recursive structure of the tree, we will need to work at the level of
the first offsprings of o. For every offspring u of o, we denote by TV (u, [) the first [
generations of the subtree rooted at # not containing o; this is a (k — 1)-ary tree. Now,
(with a slight notation override) we redefine

ol — y®
[t () = P(Gu =av? )) for all x € Z,,

and consider the auxiliary sequence

1
2] = ]E[H/u,l(eu)Eu =x*] — 57 [>0.

Note that the above definition does not depend on u since w, (6,) have the same
distribution for all u ~ o. In the next proposition, we relate the two sequences (Z,.7);>0
and (z;)1=0, and establish a recursion for the latter.
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Proposition 2 Let k = (k — 1)(1 — p)? and &k = k(1 — p)>. There exists constants
¢, C > 0 depending only on q such that the following holds. If for some | > 1,
Klzi—1| < cand ke < c, then

~ A _1 > K
2ol — erd —(1 - 8)/(21—1‘ < CR*(zly + &%),

—1
and ‘zz — exq —(1 - 8)1(21_1‘ < CKz(le_l + &%).

The proof of this proposition is presented in Sect. 8.1.2 Theorem D follows directly
from Proposition 2, as shown in the next Corollary.

Corollary5 If k < 1 and ke < c for a constant ¢ = c(q, k) then there exists L =
L(q, k) such that |Z, | < Le foralll > 0.

Proof We only need to prove that |z;| < Le, which we will achieve by induction.
Since zg = 0, let’s assume that |z;| < Le for a fixed [ > 0. Then we obtain from
Proposition 2 that

+kLe 4+ Ck>(L? + 1)&2.

q
|zi41]| < ek

It suffices to find an L (independent of &) such that the above upper bound is smaller
than Le for all €. This is equivalent to the quadratic inequality « "q;l +Ci%e — (1 —

K)L+C k2eL? < 0. The smallest solution to this inequality is Ly = I_KZE‘/K, with

a = Ci2e,and A = (1 — )% — da(a + "q;llc). Latter is non-negative provided

that ¢ < ¢ (q)(% — 1)2 for constant some co(q) > 0. Moreover, for ¢ small enough
we can write VA = (1 — k)(1 — 2a (o + qq;l/c)/(l —a)?) + O(?), so that L, =

(a+qq;lx)/(4(l—fc))+(9(82).Therefore, we cantake L = (C+[1({;1K)/(4(1—K))+1.
O

8.1.2 Proof of Proposition 2: analysis of the recursion on the tree

Here, we prove Proposition 2. The two statements can be treated in exactly the same
way; the only difference being that the root o has k children, while every other vertex
has k — 1 children. For this reason we only write a detailed proof for the first statement;
the second one is obtained merely by replacing k by k — 1.

Observe that conditional on f;‘[fg) = * the marginal at o is obtained from the
marginals at its offsprings u ~ o by a sum-product relation which, in the case of

Z4-synchronization, has the form

1
Hot(¥) = o— [T Moo ptui-1(y)

TuU~o yely

1

=3, I1 (5 + (I = p)pui-1(x — You)). (8.2)

u~o
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where ¥, is the normalizing constant, and My y(Yoy) = P(6, = x160, =y, You) =
g—i— (1—p)1{Y,, = x—y}isthe Markov transition matrix associated to a ‘broadcasting
process’ on the tree according to the Z,-synchronization model.

The recursion (8.2) induces a deterministic recursion over probability distributions
over the simplex A9~ = P (Zg). Namely, if we define Q,(f) = Law(uo, 10, = x) €
P (A?~1), we obtain a recursion that determines Q)(Cl) in terms of Q)(Cl_l) (notice that,
by Lemma 6, once Q)(Cl) is given for one value of x, it is determined for the other values
as well.) The laws of 1, ;1 are given by Law (14, 1—1|6, = x) = Q)(f_l) forallu ~ o.
Note that this law does not depend on u since w,, ;— are i.i.d. given 6,. Then Q;l) can

be obtained from Q,(Cl_l) as follows:

Draw 6, and 6,, Yu ~ o independently and uniformly at random from Z,.
Construct {Y,y,, u ~ o} according to the Z,-synchronization model (1.1).
Draw i, ;—1 from Qg“*l) independently for each u ~ o.

Construct a distribution u according to (8.2).

Then, given 5(58) = %, [Lo, has the same law as .

M NS

We now analyze the map described above. Define

Zox) =[] (p+ (1 = P)gru(x — You)).

u~o

SO o (x) = Zy(x)/ Zy Z,(y), where we have dropped the indices / for convenience.
Following the analysis of [52], we use the identity ;- = § — {5 + Z—ibiﬂ with
a=Z,x),b=qgandc= Zy Z,(y) — g to write

1 1 1 2 Z,(x)
o) = - Zy(0) = ;zo(w(; zZo—a)+(; 270 ) WAL
(8.3)
Next we compute the conditional expectations of Z,(y) and Z,(y)Z,(y) (given 6, =
x and &, = «) in order to control E[u,(6,)|&, = *].

Lemma7 Letd, = py — éforu ~o. Forallx,y,y" € Zg, we have

1
EIZ,(0)10) = % & =1 = (1+e(1 = pPg(1ye — )

k
+ (1= &)1 = p)Y2gEI8, (v — ¥ + 6,6, = +1) .
(8.4)

and
/ _ _ _ )2 _ l _ l
B0 20010 = 5. & =+ = (14 ep( = pPa((lyme = ) + (Ly= = )
1
+e(l - 1’)2‘1(1.\:)" - ;)
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1
+e(l - P)3q21y:y’(1y:x - 5)

+ (1 =) (1 — p)*qE[S,(y — x + 6,)|&, = #]
+ (1 =) (1 — p)*qE[S, (Y — x + 6,)|E0 = #]
+A=e)p(l = p)?q Y B8, (y — )8,y — 2)l&u = #]

k
+ (1= o)1 = PP I8,y = x + 08,0 = x + )l = 1) .
(8.5)

Proof We start with the first identity (8.4). Since the distributions {(t,, Yo,) : u ~ 0}
are conditionally independent given 6,, we have

E[Zo(0)10 = x.& =*1 = [ [ (p + (1 = pP)gEI1u(y — You) |0 = x. & = +]).

u~o

Moreover,

Elpu(y — You)lOo = x, 60 = *] = EE[ly—You=$u 100 = x,&0 = *, &, # %]
+ (I = E[u(y — You)lOo = x, & = %, &, = *].

The first term in the right-hand side is P(y — Yo, = 041600 = x) = (1 — p)1,—y + g.
The second term is

(1= PElfu(y — x + 6,50 = 2] +§Zﬁ[uu(y — X+ Dl =]
= (1 = PEu(y — x + 6,)1E = ] + S

Therefore
p
Elpwy(y = You)lOo = x, & = x] = 8((1 - p)lx:y + 5)

+ (1= e)((1 = PE[a(y — x + 0|60 = +] + g)

1 1
=—+e&(— p)(1x=y - =)
q q
+ (1 —=&)d = pE,(y — x + 0,)|6 = *].
So we obtain

E[Z,())0s = x, &, = *]
=[] (+e0 = p)*(@liy = D + (1 = &)(1 = p)*qEI8,(y — x + 0,) &4 = *])

u~o

k
= (1460 = P Lizy = D+ (1 = &)(1 = PGB — 3 +6,)16 = 1) ,
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where u is an arbitrary offspring since terms participating in the product are all equal.
Now we deal with the second identity (8.5):

ELZo() Zo()160 = x, & = *1 = [T E[ (P + (1 = p)apa & = You))

u~o

(p+ (1= Py’ = You))lo = x, & = *]

= (1 + p(1 = P (Bl (s = Yo)|6, = 3,6 = 4]
+ Eliu (¥ = You) |00 = x, & = *])

k
+ (1 - p)2q2E[Mu(y - You),uu(y/ —Yo)lbo =x,8, = *]) .

Similarly to a previous computation, we have

e (- »
Blpa(y = Yolty = 5.6 = #1 = ¢((1 = Loy + 7))

+ (1 =o)((1 = PEL (= x + 66 =+ + =),
q
and

E[Mu(y_you),uu(y/ —Yo)lbo =x,60 =x] =eP(y — You = y/ — You = 0416, = x)
+ (1 - o)E[u,(y — You)lu«u(y/ = Yo)lbo = x,8p = %, & = #]

_ _ r
- 81y=y’((1 p)l}‘:x + q)
+ 1 - 8)((1 — PElpu(y = x + 0t (¥ — x + 6,) 164 = #]

+ LY B~ oty — 2l = ).
Z

Combining and rearranging terms we obtain the desired result. O

Now we use the expressions just obtained to produce Taylor estimates for each term
in the decomposition (8.3).

Lemma8 Ler X = E[5,(0,)|5, = x| and k = k(1 — p)z. There exists constants ¢, C
depending only on q such that if €| X| < c and k& < c, then

E[Zy(x)|0p = x, 6 =% — 1 —ek(qg — 1) — (1 — 8)/26]X‘ < CRY*(X* + &),

(8.6)

B[ 200 (D Zo) = q) [0 = 3.6 = ]| = CR2X? + &),
y

(8.7)
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and B[( Y 2,0 ~a)

YEZy

6, =x, £ = *] < CR2(X? +2).
(8.8)

Proof We use |(1 4+ x)? —1 — x| < e“d?x? for all x such that d|x| < c. Applying this
to (8.4) yields (8.6). For k(1 — p)?q|X| < 1/2 and k(1 — p)*(g — 1)e < 1/2 we have

BIZo(0)16, = x,& = *] — 1 —ek(g — ) — (1 — )& X|
< ek?(s(g — D)+ (1 — )gX)” < 2eR%¢*(s* + X?).

Next, we use (8.5), combined with the fact Zy 8,(y) = Otoobtain thatif k (| X|Ve) <
c(q) for some constant c¢(q) then

| Y B[220 160 =x, 8y =41 =g — ekqlq — 1) = (1 - e)kg*X| = C@K*E2,
y

where X gathers all the terms other than 1 in the expression (8.5), and the constant C
depends on c. We use the inequality (3/_; x)? <n xl.z to obtain

K252 < C@R* (2 + EI8,0) |6, =+

+ Y EIS( —x 4006 = 1 + max LS, (216, =+1*).  (89)
vez, 7€Zy

The last term was obtained by using Cauchy-Schwarz on the term ) _E[6,(y —
2)8, (¥’ — 2)|&, = ] in (8.5) and then replacing sums over y, z by maxima. Now it
remains to show that the last two terms in (8.9) are bounded by X?. Starting with the
last term, we have

2
max E[5,(2)" £ = 1 < (0 Bl @1 = +1)” = Elbu @)l = +1* = X*.

€24
As for the remaining term,
Lemma9 We have 3~y E[8,(y — x + 6u)|6u = x> < g X%

This implies k%2 < C(q)k>(¢®> + X?). This, combined with (8.6), allows us to
deduce (8.7). Now we treat the last term (8.8):

E[(322o0) = 0)%100 = x.6 = x| = Y BIZo(0)ZoG )0 = ¥, & = +]
y

.y

—29 Y EIZo)l0p = x,£ =1+ ¢°.
y
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Similarly to our treatment of the quantity X, we use expression (8.5) and perform a
Taylor expansion to obtain

| Y EIZo0Zo60 = .8 = +1 = 47| = C@R3 >+ X,
v,y

Using (8.4) the cross term can be estimated as

| Y BIZ)I6, = x.& = 41— q| = C@RPE + X2,
YEZq

Now we conclude

E[( 3 Zo0) = a)160 = x. & = x| < C@)R*E + X,
YEZy

O

Proof (Lemma 9) For y € Z,, using Lemma 6 we have E[5,(y + 0,6, = *] =
13z, B8y + D160 = 2,80 = #1 = Y.z, B8y + Dpu (@l = #] =
ZzeZq E[6,(y +2)8,(2)|&, = «]. The last equality follows from Zz 84(z) = 0. Then

DB +0)lE =+ = Y (D Bl + 08,6 = *])2

YE€Zy VE€Ly z€Z4

(a)
<q Y Bl +28()& =+

V.2€2Z4
(b)
<q E[8,(y + 2)%16 = *E[84(2)*|E4 = #]
v.2€Zq4
2
=q( > BBl =)
YEZy

Inequality (a) follows from (Z;’: 1 x): <n > xi2, and (b) follows from Cauchy-
Schwarz. Lastly, we have ZyEZq E[S, (Y)2|5u =x] =E[6,0,)& =*] = X. O

Now we plug the estimates of Lemma 8 in (8.3). Using the fact 0 <
Z,(x)/ 3_, Zo(y) < 1, we obtain

20 — €K —(1—8&)kz—1| < C(q)/%z(zﬁl +&2).

where C(q) is a constant that depends only on g.
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8.2 Proof of Corollary 4

We first prove the result concerning the overlap with 8y. Let 0 € §, be a fixed
permutation. We have

o 1 1
PO =00.)) — = = > E[f6,u1(00))nc, . (x)] - "

xX€lq
—~ 1
= > E[(@,ui@ @) = ~)n6,u(x)]
X€ZLq q
1
< Y E[|fg,ui(o @) - 51]
xX€lq

~ — 1/2
< VaE[de, (TG, V)] 2,

The last line follows by Cauchy-Schwarz and then Jensen’s inequality. Averaging over
u € Vy, applying Jensen’s inequality once more, and then using Theorem D yields the
first statement.

Next, let f @ Zg = Rwith 3,7 f(x) = 0and ;3,7 f(x)> = 1. The loss

off((l)is
ORI 2 2 s U
Rn(X ,f)—;]EIIXfIIF—n—ZE(X ,Xf)+;EIIX I
2

1 2 o~
> E]Enxfn%p - n—IEl(X( X ).

We have B[ X /17 = 3, ey, ELf (0 f(0)*] = 5 X ez, f(O)* +n(n = 1). So
lim nizEHXf ||% = 1. On the other hand, since erZq f(x) =0, we have

. - 1
E[f(eu)}yl(gG)n(uJ)] = Z (,U«G,,,u,l(x) - c_])f(X)

X€Zq
=Y Bu1.6, () f (),

X€Zq

where ;S\M,I,Gn (x) = LG, .u1(x) — é, X € Zg. On the other hand we have

EX", x,) = ]E[( 3 f(eu)]E[f(Gu)|Y1§2n W)])z]

ueVy
=E[( X r@( X fura, (x)f(6u>))2]-
X€EZLy ueVy,
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We use Cauchy-Schwarz inequality and the fact erz,, f(x)? = q to obtain

EX".X/) =B 3 (D s, (x)f(e”))z]

X€ZLq UEVy

= qE[( X £©0%)( Y dea(@ic,ur 77)]

ueV, uevy

<nqllf% Y Bde, (G, ui D)

ueV,

We apply Theorem 5.7 to obtain lim sup; lim sup,, n]—ZIE(i(l), Xf> < C||f||g08, and
this yields the desired result.

9 Reconstruction for the Stochastic Block Model

Here we define a version of the stochastic block model and sketch the proof of an
analogue of Theorem C in this context. Let 7 € A9~ be a distribution on ¢ colors
and M € Rixq be a Markov transition matrix, i.e., the rows of M are elements of
A%~ and assume 7 and M satisfy the detailed balance condition

w(x1)M(x1, x2) = w(x2)M(x2,x1) VY x1,x2 € [q].

As before we let i, k such that nk = 2m. We first draw an assignment 6 € [¢]" uni-
formly at random among the (M"(. )-many color assignments with proportions given by
. We then draw a graph G,, = (V,,, E,) with V,, = [n] from the configuration model
[P as described in Sect. 7.2 conditioned on the following edge-color proportions

Vxi,x2 € lql, H(u, v) e E, : 0py =x1,00, = xz}’ =mm(x1)M(x1,x2). (9.1)

Remark 6 We note that the model is only defined when nw(x) and mm (x)M (x, x”)
are integers for every x, x’ € [q¢], which we assume throughout. Dispensing with
these restrictions requires putting error bounds on dTV(ﬁoG , TM) where Gg) the joint
empirical distribution of the pair (G, 6) (see below) which would reflect an error
term in (9.1), and doing a truncation in the first moment computation (i.e., restricting
the computation to a notion of a ‘good instance’), exactly in the same way done in
Sect. 7. We forgo those details and work with equalities.

We observe the graph G, and we are asked to infer the hidden coloring €¢. As
before, for any graph G = (V = [n], E) and any pair (89, 0) € [¢]" x [¢]" we
define the joint edge-empirical distribution of (G, @) and the joint vertex-empirical
distribution of (0, @) respectively as follows:

1 1
AG . § ~ - E
U(;‘ : |E| SQM,HU ’ ('()0090 . |V| 890,us9u .

(u,v)€E uev
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Define ve(x1, x2) = m(x1)M(x1, x2), and consider the estimator which outputs an
arbitrary element of the set of typical assignments

G e0©) =loelql’: o =7},

(This set is non-empty since g € ©(G) due to the constraints (9.1).) We have an
analogue of Theorem C:

Theorem 1 Let 6; ~ 7w and 05 |01 ~ M (61, -). If
k
51(91: 6) > H(O1)+4 9.2)
for some § > 0 then there exists 8 > 0 and a constant co > 0 such that
P(dry (@0, 7 x 1) 2 8) = 1= 5'em .

We note that if the approximation details described in the previous remark are imple-
mented, the above probability bound will deteriorate to 1 — ¢, ! exp{—co(logn)?},
which is the probability of (G,, 6p) being a good instance, just as is the case for
Theorem C.
We can now look at a few special cases:
11 1-6 ¢
e In the balanced two-color case ¢ = 2, m = (3, i) and M = 0 1-0) the
simple computation shows that the condition (9.2) reduces to k(log2 — h(0)) >
2log?2 where h(0) = —60logf — (1 — 6)log(l — 0). For 0 close to a half, this
reduces to k(1 — 260)% 4+ O (k(1 — 26)3) > 8log2 ~ 2.4. In contrast the Kesten-
Stigum bound is k(1 — 20)2 > 1.
e More generally, in the balanced symmetric case 7 = (é, e, 37), and

11—
M:)J—i—( )
q

1n", rel[—-——1],
the condition (9.2) reduces to kf; (1) > 2¢ log g with

Jfa) =1+ (g — DA log(l + (g — DA) + (¢ — DA — 1) log(l —2).

This is the condition stated in [12, Theorem 3] in the context of hypothesis testing
for the usual SBM.

Proof (sketch) The proof of this theorem follows exactly the same scheme used in
Sect. 7, so we will only highlight the main differences. For S € Z([¢q] x [¢]), let

26009 = [0 € 0G) : @5, €5}
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we have

AGy  — Gy — A
2600, I{vy," = Ve, Vy" =Ve, @ o € S}

E[Z(Gy, 00, 9)] = () NG, M)

, 9.3)

where N (m, M) is the number of graphs from the configuration model such that
Eq. (9.1) holds, i.e, such that f)g’; " = Ve. A counting argument similar to Lemma 3
yields

[k (x)]!

]_[x/elq][mie(x, X - [mve(x7, x)]!

N(T, M) = ]‘[

x€lql

2
— exp (%H(Ve) — nkH () + % log (%k) + (’)(logn)). (9.4)

1_[ [mVe(x, x")]!

x,x'€lq]

Next, we compute the numerator. We define

oG
9000 |E| Z 800u0 ,00,v,00
(u,v)€E

and let 2 C 2 ([q]*) be the subset of Q € Z([q]*) with entries in Z /m satisfying
the constraints

%(mQ +mQR) €S,
(Zi},ize[q] Q(x1, X1, x2, iz)) = Ve, (9.5)

X1,X2

(le,ne[q]g(xl X1, X2, X2) b =Ve.
We recall the notation (711 Q) (x1, X1) = sz,iz Q(x1, X1, x2, X2) and (12 Q) (x, x') =
sz,fcz Q(x2, X2, x1, X1). We also let w (x, x') := %(mQ + 1) (x, x). We have

> 1{AG"_ve, b =Tk =y > QY , =)

G,00.,0 Qe2G,00.0
_ nm(x)
Z < ()) 1_[ (nw(x,~)>N(Q)'

In the above sum, the first multinomial accounts for the number of ways of choosing
00, the second product account for the number of ways of choosing # in agreement
with the overlap distribution &g, 9 = w, and third term N (£2) is the number of graphs
G from the configuration model such that Q o= = Q. Using the identity in Eq. (9.4),
we have

_ [nkw(x, x)]!
NE) = 1_[ ]_[x el M, X/ %, ) NmQUE, X, x, x)]!

.XXE
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[[ mQe.x 230

x,x' %, €lq]

k 2
— exp ( — nkH(w) + %H(Q) n % log (%k) n O(logn)). (9.6)

Plugging this in Eq. (9.3), we end up with

E[Z(G. 00.9)] = g@exp ( —n(k — ) H (o) + %H(sz) -~ %H(ve)

otk —1)H() + O(logn))

< n€ exp (n mag( S« (@) + O(log n)),
we

where, recalling that Ve (x, x') = 7 (x)M (x, x'),

Si(w) = max S(),
QeZ(Iq1h

subj.to (ML +mN)/2=w,
Y Qe FrLx, B2) = Velxr, x2) |

i],izEX

Y QB x, B) = Te(E), F) ©.7)

X1,X2€X

and
k 1 k_ _
S(Q) = EH(Q) — (k — l)H(E(mQ +7r2§2)) - EH(UC) + (k — 1)H(r).

For W=7 X1, let 2, thﬂe maximizer in (9.7), and let (X1, )~(1, X0, f(z) ~ Q,, then
(X1, X1) ~ Ve and (X2, X2) ~ Ve. Therefore, by subadditivity of the entropy,
k ~ ~ k
Si(w x ) = EH(XLXI;X27X2) —(k—1DH@@ xm) — EH(Xl,Xz)+ (k—1H(r)
k ~ k ~ k ~
=< EH(XL X1) + EH(Xz, X2) — (k= DH(X1) — EH(Xls X1)
k ~ k
= EH(X1|X1)+§H(X1)—(/<— DH(X1)

k -
= _§I(X1§Xl)+H(X1)-

The rest of the proof follows verbatim from Sect. 7. O
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10 Amenable graphs: some omitted proofs
10.1 Proof of Proposition 1

The proof is based on a decoupling principle under e-perturbation of a general obser-
vation channel. This principle is given in Lemma 3.1 in [44], which once specialized
to our setting, takes the following form:

Lemma 10 (Lemma 3.1 [44]) For all & > 0, it holds that
Lre o 1y @) g
- > 1(64:0,]Y5))de’ < 21o0g | A,
nJo u,vevVy

This is very similar to our Lemma 2. In fact the latter follows the same line of proof.
Recall the definition of the decoupled estimator

X = E[ £ @Y | E[r@0|¥S)]

= (ZMu,G,,(X)f(X)) : (ZMv,G,,(x)f(X)>, u,v e V.

xeX xekX

For a pair of vertices u, v € V,, we let .G, (x, x") := IP’(OM =x,0, = x’|Y((;i)), for
x,x € X. Expanding the squares and cancelling equal terms we have

= (dec) 1 < <(d
RO = RIS = o (EIXS - BIRVL)

Moreover,
BRPR — 3 E[E[f(gu)|ygj] E[ @)Y }
u,vev,

and

E|X™L = 3 E[E[f <9u>f(9u>|Yéi)]2]

u,vevy,
Therefore,
1 =B 2 = (dec) |2
(B - E|X)3)

_ 2115
<=

> E[[E[r@0renlrs)] ~E[renlvs) e[ ren )] ]

u,vev,

2
< W s~ 5w roE|

n2
u,veV, x,x'eX

Hot,0,Gn (X, X7) = [, G, (X) oo, G, (x’)H
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4|| [
f Z dTV(Mu v,Gp> Mu,G, X My, G,,)]

u,vevV,

1
<% |55 2 (6 alYS).

u,veV,

We used Pinsker’s inequality and Jensen’s inequality in the last line. We apply
Lemma 10 and Jensen’s inequality and obtain for all ¢ > 0,

€ ~(d ayes elog|X|
/0 [Ra® 2 ) = REPS (D )de’ < 41 71y %" — 0.

Since the integrand is non-negative, it too converges to zero almost everywhere.

10.2 Proof of Corollary 1

We lower bound the overlap as by taking the identity permutation:

~(l
E[overlapw(), zZ W = 6y)
| | uev,
_x10 _x]
ueV xeX
[]E D= 19:4—X| BG (u, 1)]]
ueV xeX
| | Z Z MMIG (x)
n ueV, xeX
(@) 2
- ZE[H‘G,()(X) ]
xeX

We in (@) used the fact that 6, and 6, are independent and identically distributed
conditional on Y l(;G)n wh: In (b) we take n — oo followed by I — oo. The statement
follows from local weak convergence of (G, 0,) towards (G, 0), 0,, being a uniformly
random root of G,,.
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