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Improving Data Analytics with Fast
and Adaptive Regularization
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Abstract—Deep Learning and Machine Leaming models have recently been shown to be effective in many real world applications.
While these models achieve increasingly better predictive performance, their structures have also become much more complex. A
common and difficult problem for complex models is overfitting. Regularization is used to penalize the complexity of the model in order
to avoid overfitting. However, in most leamning frameworks, regularization function is usually set with some hyper-parameters where the
best setting is difficult to find. In this paper, we propose an adaptive regularization method, as part of a large end-to-end healthcare data
analytics software stack, which effectively addresses the above difficulty. First, we propose a general adaptive regularization method
based on Gaussian Mixture (GM) to learn the best regularization function according to the observed parameters. Second, we develop
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an effective update algorithm which integrates Expectation Maximization (EM) with Stochastic Gradient Descent (SGD). Third, we
design a lazy update and sparse update algorithm to reduce the computational cost by 4x and 20x, respectively. The overall
regularization framework is fast, adaptive, and easy-to-use. We validate the effectiveness of our regularization method through an
extensive experimental study over 14 standard benchmark datasets and three kinds of deep learning/machine learning models. The
results illustrate that our proposed adaptive regularization method achieves significant improvement over state-of-the-art regularization

methods.

Index Terms—Adaptive regularization, data analytics, complex analytics, data science, knowledge discovery and data mining

1 INTRODUCTION

ECENT developments in Deep Learning and Machine

Learning technology [1], [2], [3], [4] have led to a series
of breakthroughs in many real world applications [5], [6],
[7], [8]. Thanks to the large public datasets [9] and high-
performance computing systems, e.g., large-scale distributed
clusters of computers equipped with GPUs, we are now able
to build more complex and better-performing predictive
models [10], [11], [12], [13].

In the past few years, many advanced deep learning
models have been developed. An important trend in these
recent developments is that the number of layers in these
models (and thus their complexity) has increased rapidly.
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Take ILSVRC, the famous visual recognition challenge, as
an example. The number of layers of the annual winning
model has increased from 8 layers in 2012 to 152 layers
in 2015.

Unfortunately, as the models become more complex, the
overfitting problem is becoming more severe as well. Let’s
use a standard benchmark image dataset, CIFAR-10, as an
example to illustrate the overfitting problem. Using the
CIFAR-10 dataset, the task is to train a classifier that classifies
a given image into one of the 10 classes (airplane, automo-
bile, truck, etc.) The accuracy of Alex-CIFAR-10 model on the
CIFAR-10 image classification problem is shown in Fig. 1.
Let us first focus on the plain Alex-CIFAR-10 model. As we
can observe from the figure, the training accuracy of plain
Alex-CIFAR-10 is very high (approaching 100 percent) but
the test accuracy is quite low (only about 76 percent) when
the model converges. This is because the model is likely to
fit the noise in the training data so that it does not generalize
very well to the test data. This phenomenon of overfitting [14]
is common in complex models and significantly affects the
predictive ability of models.

Fortunately, overfitting problem [14] can be effectively
addressed by regularization [15], which typically involves
adding a penalty term on the complexity of the model.
Equation (1) shows the overall loss function that a model
aims to minimize. It consists of two terms, the first term,
data-misfit, also called the training loss, is an error term that
indicates how well the model fits the training data and the
second term is the penalty term, which is called regulariza-
tion term. It consists of a strength parameter B and a

mitted, but republication/redistribution requires IEEE permission.
ublications/rights/index. html for more information.


https://orcid.org/0000-0001-7271-3999
https://orcid.org/0000-0001-7271-3999
https://orcid.org/0000-0001-7271-3999
https://orcid.org/0000-0001-7271-3999
https://orcid.org/0000-0001-7271-3999
https://orcid.org/0000-0001-8605-076X
https://orcid.org/0000-0001-8605-076X
https://orcid.org/0000-0001-8605-076X
https://orcid.org/0000-0001-8605-076X
https://orcid.org/0000-0001-8605-076X
https://orcid.org/0000-0002-8949-489X
https://orcid.org/0000-0002-8949-489X
https://orcid.org/0000-0002-8949-489X
https://orcid.org/0000-0002-8949-489X
https://orcid.org/0000-0002-8949-489X
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
mailto:
mailto:
mailto:
mailto:
mailto:

552 |IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021

0.95
09
=
5085
3
o 08¢
<
0.75 | e T e e
Aex-CIFAR-10-plain-train —&—
0.7 Alex-CIFAR-10-regularization-train ——
Alex-CIFAR-10-plain-test —&—
0.65 . Mex-CIFAR-10-regularization-test —@-

7020 % 506070 % % 707 724 39 %570
Epochs

Fig. 1. Training and test loss with and without regularization.

function f of the model parameters w.

Loss(w) = data-misfit + f(8, w). (1)

Typically, the function f is related to L1-norm (f(8, w) =
Bllw||,) or L2-norm (f(B, w) = B||w||3) of the parameter w.
We refer back to Fig. 1. For Alexnet-CIFAR-10, human
experts [16], [17] have set f(B,w) = B||w||3, and different B
values for different layers. We can observe that when the
regularization is applied, the training accuracy decreases
while the test accuracy increases significantly.

Many regularization methods have been proposed in the
literature. However, the use of these methods is typically ad
hoc and experimental in nature. Given a specific applica-
tion, data scientists typically need to make many painstak-
ing attempts to choose the optimal type of f (e.g., L1-norm,
L2-norm) and strength of the regularization, g, on a held-
out validation dataset, to decide the best f and g which will
be applied on the test dataset.

In [17], models are carefully tuned by the human experts
and it has been shown that using different values of g at dif-
ferent layers of a deep learning model may lead to better
performance in the test data. Nevertheless, the sharp rise in
the number of deep learning layers poses a great challenge
for manual setting of effective regularization for each layer.

Driven by the difficulty of setting the best regularization,
we ask the following question: Is it possible to adaptively
leamn the best regularization term? The answer is YES. From
the Bayesian view point, regularization term corresponds to a
prior distribution for the model parameters w. For instance,
L1-norm regularization corresponds to a Laplacian prior and
the L.2-norm regularization corresponds to a Gaussian prior.
The best regularization should be the one that equals to the
actual distribution of model parameters w. However, the
actual distribution of model parameters w for different tasks
may vary quite significantly, and as a result, there is no single
regularization setting (strength g and type of f) that can fit
every problem well.

Fortunately, the intermediate model parameters w learned
during training process can be very informative to approxi-
mate the actual distribution. Based on this insight, we propose
an adaptive regularization tool designed to learn the best reg-
ularization term during the model training process. Instead of
employing a fixed prior distribution (i.e., by fixing f and p) for
the model parameters w as the regularization term, our key
idea is to capture the model parameter distribution with an
adaptive distribution function. In other words, we propose to
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Fig. 2. Overview of adaptive regularization tool.

fit an adaptive distribution function using the intermediate
model parameters obtained during the model training pro-
cess. Subsequently, this adaptive distribution function will be
used to impose regularization on the model parameters.

Based on the above principle, we propose a practical adap-
tive regularization tool based on the Gaussian Mixture (GM)
framework. We choose GM because it provides a richer class
of density models, thus can model the prior of model parame-
ters w better. Fig. 2 illustrates the core idea: the deep learning
model inputs model parameters w to the adaptive regulariza-
tion tool; the tool will then iteratively learn the Gaussian Mix-
ture as actual prior over w and adaptively calculate the
regularization term for the model.

However, adaptively leamning such GM from the inter-
mediate model parameters w is challenging for several rea-
sons. Two sets of parameters, namely GM parameters and
model parameters w need to be updated. These two sets of
parameters are closely related to each other. An appropriate
algorithm should be designed to update these two sets of
parameters properly. Also, leamning GM is an iterative and
time-consuming process. We need to design an appropriate
algorithm to reduce the computational cost.

In order to update GM parameters and model parameters
properly, we design an innovative and effective update
method where GM parameters are updated via a lightweight
Expectation-Maximization (EM) algorithm [18] and the model
parameters can be learned under a common optimization
framework such as Stochastic Gradient Descent (SGD) [19].
To reduce the computational cost, we propose lazy update
and sparse update algorithms that reduce the computational
time by more than 4 times and 20 times respectively.

Our proposed regularization method is a general and flexi-
ble tool designed to support different machine leaming and
deep learning models. The regularization tool has been inte-
grated into our GEMINI software stack [20] designed to sup-
port healthcare data analytics. Fig. 3 shows GEMINI, where
various subsystems form an end-to-end big data analytics
pipeline, from data cleansing to visualization. When the raw
data is first fed into GEMIN], the data cleaning and integra-
tion system, DICE, cleans the data. It works with a crowd-
sourcing platform, CDAS, to improve data quality using
subject matter experts (e.g., clinicians). The cleansed data can
then be processed by a distributed and scalable data process-
ing system, epiC [21], which provides big data processing and
analytics such as aggregation and summarization. Deep ana-
lytics is supported by Apache SINGA [22], a distributed deep
learning platform. The red box illustrates the interaction of
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Fig. 3. GEMINI healthcare data analytics software stack.

the proposed GM regularization tool (GM Reg) with Apache
SINGA to provide adaptive regularization for deep learning
models. In the meantime, the data can be fed into CohAna for
cohort analysis [23], [24]. Lastly, the results could be visual-
ized via iDat. In order to support such a large data analytics
software stack, advanced database supports are needed for
the storage layer [25]. In our case, the data is stored in Fork-
base [26], a universal immutable storage system. GEMINI
runs either on a single machine orin a CPU-GPU cluster.
Contributions. The contributions of this paper include:

e Weproposea general adaptive regularization method
based on GM to learn the best regularization accord-
ing to the intermediate model parameters instead of
making ad-hoc attempts to obtain a suitable regulari-
zation setting.

e We propose an efficient update framework where
GM is trained by a lightweight EM algorithm [27] and
the model parameters are updated via SGD. We also
propose efficient lazy update and sparse update algo-
rithms to reduce the computational cost by 4 times
and 20 times respectively. Apart from experimental
results, theoretical analysis is also given for these
update algorithms.

e We conduct extensive experiments using both real
world datasets and standard benchmark machine
learning datasets. We also propose a supervised way
to evaluate the effectiveness of the GM regularization.
Results on all the datasets demonstrate that our regu-
larization can achieve better (or equally good) perfor-
mance than all the baseline regularization methods
(L1-norm regularization [28], L2-norm regulariza-
tion [15], Elastic-net regularization [29] and Huber-
norm regularization [30]) under their best settings.

e We design our regularization method to be an easy-
to-use and general tool. We also provide guidance
on setting the appropriate hyper-parameters for dif-
ferent kinds of models.

This article is an extension of our conference paper [31]. In
this work, we extend the GM regularization to sparse datasets
and also provide a supervised way to show the effectiveness
of our GM regularization method. Additionally, we provide a
theoretical analysis on the effectiveness of our proposed lazy
update algorithm and design easy-to-use APIs for the GM
regularization tool. The remainder of the paper is structured
as follows. Section 2 gives some related background on

TABLE1
Table of Symbols
Symbol Definition
M number of features
number of samples
™ € RM*!  features of the nth sample in the training set
Y™ label of the nth sample in the training set
weRM?  model parameters
D (2™, y™)Y_, features/label pairs in the
training set
K number of Gaussian components
[71, 73, . .., 7", mixing coefficient (satisfy the
constraint Y g, 7, = 1)
A [M,Xe, ..., AT, precision (inverse of variance)
N (x|, &) Gaussian distribution of the kth Gaussian
component
o [, - .- ,aK]T, parameters of Dirichlet
distribution
au the gradients of model parameters with
respect to the negative log likelihood function
Greg the gradients of model parameters with
respect to the regularization term
L learning rate
B the number of mini-batches in the training set
I, GM parameter update interval
Im model parameter update interval
E number of first few epochs when lazy update
is not employed
tn the time for calculating g, for each mini-batch
RL the ratio of time for E-step, M-step and SGD
step when lazy update is employed to t;
RNL the ratio of time for E-step, M-step and SGD

step when lazy update is not employed to ¢

Bayesian interpretation of regularization, GM and several
useful priors. Section 3 introduces our proposed GM regulari-
zation method. Section 4 introduces the theoretical analysis
for lazy update algorithm and Section 5 introduces our
designed APIs for our regularization tool. Section 6 reports
the experimental results. Related work is reviewed in Section 7
and finally Section 8 concludes this paper.

2 PRELIMINARIES

In this section, we discuss the required prior knowledge of
regularization. Table 1 lists the definitions of symbols used
in this paper.

2.1 Bayesian Interpretation of Regularization

From the Bayesian perspective, regularization corresponds to

a prior distribution over the model parameters w. Let D

denote the observed data and w denote the model parameters.
According to Bayes’ Theorem, the posterior probability

of model parameters w is given by

p(w|D) =EEE, @

where p(D|w) is the likelihood function and p(D) is a
constant.

For w, the probability is usually estimated using maxi-
mum a posteior (MAP) estimation [32], [33]. The MAP prob-
lem can be written as below.
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wyrap = argmax p(w|D)
w
= argmax p(D|w)p(w) 3)
w

= argmax logp(D|w) + logp(w).
w

The term log p(w) is the log of model parameter prior dis-
tribution and it is the regularization term (corresponds to
f(B,w) in Equation (1). Specifically, if p(w) is a Laplacian dis-
tribution or Gaussian distribution, this term corresponds to
Ll-norm and L2-norm regularization respectively. For Elas-
tic-net regularization, the prior distribution p(w) corresponds
to a compromise between the Laplacian and Gaussian distri-
butions. For Huber-norm regularization, the corresponding
prior distribution is piecewise: Gaussian distribution for small
value model parameters and Laplacian distribution for large
value model parameters. In our work, we assume p(w) fol-
lows a GM distribution where each Gaussian component is
centered at zero but may have different variances.

2.2 Gaussian Mixture Distribution

GM is a superposition of multiple Gaussian distributions. In
our GM regularization, we assume all model parameters w
are sampled from the same one-dimensional GM distribution.
The one-dimensional GM distribution can be expressed in the
form below.

K
p(x) =Y N (], M), (4)
k=1

where K is the number of Gaussian components and i, is
the mixing coefficients which satisfy the constraint
SN 7= 1,and N (z|p, M) is Gaussian distribution. s, is
the mean and J; is the precision (inverse of Gaussian vari-
ance) of the kth Gaussian component.

2.3 Dirichlet and Gamma Prior
The intermediate model parameters during the training pro-
cess do not have a stationary distribution. Therefore, the
actual Gaussian components cannot be learned directly
from these intermediate model parameters. In order to learn
the GM prior for the model parameters w, two prior distri-
butions are introduced for mixing coefficients r;, and Gauss-
ian precisions A, respectively.

Dirichlet distribution, which is used as the prior distribu-
tion for mixing coefficients m;, is defined as follows.

Di_r(j'[|a) =& A ﬂ“k_l (5)

T(en) ... Tlax) i koo
where «y,...,ax are the parameters for the distribution,
@ =31, and @ denotes [ay,...,ax]" . ['(z) is the

Gamma function. This prior distribution is introduced in
order to learn more Gaussian components.

As mentioned in Section 2.1, the means of all the Gauss-
ian components of the GM distribution are set to zero.
When the mean of a Gaussian distribution is fixed, the
Gamma distribution is the conjugate prior for the Gaussian
precision. Gamma distribution is defined as follows.

Gam()|a, b) = ﬁbﬂ/\“_lexp(—b/\), ©)
where a and b are the two parameters for the distribution.
They control the shape and the decaying rate of the Gamma
distribution.

In the process of GM learning, a and b are used for con-
trolling the scale of A. This is due to the fact that the values
of most model parameters are small. If GM is learned based
on these model parameters, large A will be learned which
will impose very strong regularization and that is harmful
to the model. a and b can help to smoothen the learning of A.

3 PROPOSED ADAPTIVE REGULARIZATION

In this section, we introduce our proposed adaptive regular-
ization method based on GM.

3.1 GM Regularization Term

In this paper, GM distribution is used as model parameter
prior. In particular, we assume that all the model parameters
are independent and identically distributed (this assumption
is commonly used in Gaussian prior, Laplacian prior, etc.).
Also, we assume all the model parameters follow a GM distri-
bution where each Gaussian component is centered at zero
but may have different variances.

D = (z, y(“)):;l, with z(® € RM*! and y™ € R, is used
to denote the set of input/output pairs in the training set,
w € RM*! denotes model parameters, where N is the num-
ber of samples and M is the number of features. Mixing

- T .
coefficients [y, 73, ..., ;] are denoted as m and precisions

A1, A2, .., A" as A. Considering the prior distributions
introduced in Section 2.3, the prior distribution of model
parameters w can then be written as below.

p(w, 7, N, a,b) = p(w|m, A)p(w|a)p(A|a, b)

M K K (7)
=(JT_ mN (w0, X)) ) Dir(xler) H Gam(Ag|a, b),

m=1 k=1

where K is the number of Gaussian components, p(x|er) and
p(Ala, b) are the prior distributions for GM parameters r and A.

3.2 Loss Function—-Optimization Function

In order to solve the MAP problem formulated in Equa-
tion (3), given the GM regularization term, the loss function
(optimization function) is defined as below.

G= —lng(D|w) - lng(‘w, T, A|“: a, b): (8)

where the first term is the negative log likelihood function
and the second term is the regularization term. This is the
function that is optimized for the prediction and classifica-
tion tasks.

3.3 Optimization

As mentioned in the introduction, for our adaptive regulari-
zation method, two sets of related parameters need to be
updated, namely, GM parameters and model parameters.
Typically, the model parameters are learned through SGD,
which is employed for updating model parameters here.
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For GM parameters, a lightweight EM algorithm is
designed. Fig. 4 shows how SGD interacts with EM in our
update method. After both kinds of parameters are initial-
ized, regularization based on GM is calculated. The calcu-
lated regularization then affects model parameters through
SGD. After the model parameters are updated via an SGD
step, one step of EM is employed to update the GM based
on the updated model parameters. Subsequently, a new reg-
ularization is calculated for the model parameters. This pro-
cess iterates until the algorithm converges.

3.3.1 Responsibility Function

Responsibility function of the kth Gaussian component for
the mth model parameter, w;,, is defined as follows.

re(we) = M, (9)
2 o1 TP (wm)

where pj(wr,) is the probability density of w,,, under Gaussian
component k. This function calculates the conditional proba-
bility that a particular model parameter of w, wy,, is generated
by a particular Gaussian component k. This responsibility
function is used for calculating model parameter gradients
and GM parameter update formulas introduced below.

3.3.2 G@Gradient Descent for Model Parameters

When GM parameters are fixed, gradient descent method is
used to update model parameters w. The gradient for the
mth model parameter w with respect to G is given by

3G —log p(D|w)
w,, - w,,

K
+ Z(rk(wm) (Mwnm)), (10)
k=1

where z!? is the mth dimension of sample n. For simplicity,
we denote the first term as the g; (all model parameters)
and the second term as the g,., (all model parameters).

The g,., is a weighted sum of the product of Gaussian
precision and the model parameter value. The responsibility
function rj,(wy,) determines the weighting value. This equa-
tion shows the regularization effect is a collective effect of
different Gaussian components.

Since the probability density function pj(w,,) is in the form
of exponential function, it affects the responsibility function
significantly. This provides an opportunity for giving differ-
ent regularization strengths to different model parameters.
For areas that are near zero, the Gaussian component that has
the largest precision dominates other Gaussian components.
Consequently, for model parameters with small values, the
regularization is strong because it is mainly imposed by this

Gaussian component with the largest precision. On the con-
trary, for model parameters with large values, the regulariza-
tion is weak.

3.3.3 Update for GM Parameters
In this section, the update formulas for GM parameters &
and A are introduced.

The derivatives for the Gaussian precisions and mixing
coefficients are as follows.

el a—1 M 1 w?

N =( " —5)—ﬂ;rk(ﬁfm)(m—7) an
G ar—1 Tr(W)
= _F - — 12
aﬂk Ty Z ' ( )

m=1 Tk

where )\, and 7, are the kth dimension of A and .

The second term of g"ﬁis a weighted sum of the difference
between the squared model parameter and the variance of
GM distribution. The first term is controlled by the GM
hyper-parameters a and b.

Given fixed responsibility values, the minimizer for A
and 7, can be obtained from Equations (11) and (12). Deriv-
ing the update formula for }; is straightforward. Setting
Equation (11) to zero gives the following equation.

e = 2(a—1)+ E,‘Fil Tr(W)
E = .

(13)
2+ M g (w w2,

Here 2(a — 1) and 2b work as smoothing terms which corre-
spond to adding “pseudo” model parameters to the kth
cluster.

Since "M | r;,(wy,) corresponds to the responsibility of the
kth Gaussian component. The magnitude of 3" | ry(w;,) is
the same as the number of model parameters (We use M to
denote the number of model parameters). Inspired by this
observation, b is set as a proportional function to M. a plays a
similar role as b and fine-tunes the value of learned A. For a,
the proportion with b affects the magnitude of the learned .
So a is set as a proportional function to b. But since
M ri(wn) plays the major role in the numerator of
Equation (13), the setting of a is not so significant.

For mixing coefficient 7, deriving the update formula is a
bit complex because the constraint "5 | 7, = 1 must be sat-
isfied. Thus a Lagrange multiplier has to be used here. The
Lagrangian of the loss function is defined as follows.

K
L=G+/\;ﬂg(2ﬂk—l),

k=1

(14)

where ), is the Lagrange multiplier. Set the derivatives of
L with respect to m;, and )y, to zero

aL ar—1 & k(W) .
gk—— s _ﬂ; - +/\£a_g—0 (15)
L &
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Solving Equations (15) and (16), the update formula for m;
can be given as follows.

DM ri(wm) + (@~ 1)

, (1)
M+ E::il (a; = 1)

where 7, is the kth dimension of z.

This equation shows that « greatly affects the number of
Gaussian components learned. If « is large, then most probably
one Gaussian will be learned because all dimensions of 7 will
be the same. Typically, « is set to the power of M (e.g., M").

Given Equations (9), (10), (17) and (13), responsibility val-
ues can be computed and then model parameters w can be
updated. After the model parameters are updated, the values
for GM parameters A and & can be updated subsequently.

3.4 Lazy Update

Calculating g,., (ie., the second term of Equation (10)) and
updating GM parameters &, A are time-consuming because
the Gaussian Probability Density Function needs to be com-
puted. This is the bottleneck of the algorithm.

In order to reduce the computational time, a lazy update
method is employed for models with a large number of
parameters. The intuition for the lazy update is explained as
follows. Both g, and GM parameters &, A do not change too
much after the first few epochs. Consequently, they do not
need to be updated in every iteration after the first few epochs.

Algorithm 1. Lazy Update for GM Regularization
Input:w, @, a,b,7, A L, I, I,, E, B

1: initialize: it < 0, epoch-it «— 0
2: while not converged do
3:  Compute g,
/*Estep*/
if epoch it < F or it mod I, = 0 then
Compute responsibility function based on Equation (9)
Compute g,,
end if
Compute & based on Equation (10)
/*M step */
9: if epochit < E orit mod I; = 0 then
10: Compute 7 and A according to Equations (17) and (13)
11:  endif
/*SGD step */
122 w@t) - p
13: dt—at+1
14:  if epoch_it mod B =0 then
15: epoch_it «— epochit + 1
16: endif
17: end while

i AN S

Algorithm 1 shows the lazy update algorithm. Here, L is
the learning rate for SGD and E is denoted as the number of
the first few epochs when lazy update is not employed, I,
and I, as the update interval for GM parameters and model
parameters. g,,, is updated every iteration when the epoch
number is less than E. Thereafter, g,,, is updated every I,
steps as shown in line 6 of Algorithm 1. Here, B is the num-
ber of mini-batches in the training set. When %= is calcu-
lated, the g,., calculated in E-step is used . Since E-step is
not carried out in every iteration, thus g,., is not updated in

every iteration. For GM parameters i and A, after E epochs,
they are updated every I, steps.

Algorithm 2. Sparse Update for GM Regularization

Input:w, e, a,b, 7, A, L, Iy, E, B, N
: initialize: it < 0, epoch_it «— 0
: initialize:
$it=0
: while not converged do
Compute gy
for j — OtoNg — 1do
for m such that z;,, # 0 do
Compute responsibility function for w,, based on
Equation (9)
9: Compute g, for w,, based on Equation (18)
10: U, — it
11: end for
12:  end for
/* E step and M step */
13:  if epoch_it < E orit mod I; =0 then
14: Compute responsibility function based on Equation (9)
15: Compute & and A according to Equations (17) and (13)
16: endif
/*SGD step */
17: w0 o)L
18: it —at+1
19:  if epoch-it mod B = 0 then

B IAR U

20: epoch_it «— epoch_it + 1
21: endif
22: end while

3.5 Sparse Update

For sparse datasets, the first term of Equation (10) is sparse
because it only touches dimensions where the input vector is
non-zero. However, the second term is not sparse and it takes
much time to calculate the responsibility values. Conse-
quently, we do not calculate Equation (10) in every iteration.
Instead, we perform a “sparse update” in order to reduce the
computational time. For the mth model parameter w,,, we
batch the dense "regularization update” up and then perform
update on wy, only when the corresponding input dimension
T, 18 non-zero. We introduce a vector u, in which u,, stores
the last iteration when the mth model parameter was regular-
ized. Consequently, if z,, is non-zero, the gradient for the
mth model parameter with respect to & is derived as follows.

G —logp(Dlw) . =

m = T + (it — up) ;(rk(wm)(/\kwm)): (18)
where it is the current iteration, the second term of the
equation is denoted as g,,, ,,- We multiply (it — u,,) by the
original g,., term in Equation (10) because we need to batch
the regularization updates up.

Algorithm 2 shows the detailed update algorithm for
sparse update. In this algorithm, Np is the number of
samples in a mini-batch and z;,, is the mth dimension of
the jth sample in the mini-batch. In line 7 and line 8, respon-
sibility and g, are only calculated for the dimensions
where the input vector is non-zero, which reduces a lot of
computational time because the input vectors are sparse.
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class GMRegularization (input_dim,
b=None, alpha=None, gm_num=None,
sparse=None, uptint=None):

a=None,

def calcResponsibility(input, model_param)
def calRegGrad(input, model_param)
def uptGMParam(input, model_param)

Fig. 5. The GM regularization API.

For the update of GM parameters =, ), since we need to
calculate the responsibility values for every model parame-
ter, we choose to update them in every iteration for the first
E epochs, and after that, we update the parameters every I,
iterations, which is the same as the lazy update algorithm
described in Section 3.4.

4 THEORETICAL TIME ANALYSIS FOR
LAzy UPDATE

In this section, We give a mathematical formular for the cal-
culation of total computational time and analyze the effect
of GM parameter update interval I,, model parameter
update interval I,,, and number of the first few epochs when
the lazy update is not employed, E. Here weassume I, = I,,,.

From Algorithm 1, we can see there are four steps that
consume computational time, namely computing gy, E step,
M step and SGD step. We use {; to indicate the time for
computing g, for each iteration. For the other three steps,
since we set I = I,,,, responsibility function, g, g 7 and A are
updated in the same iteration. we use RNL and RL to indi-
cate the ratio of total time for E step, M step and SGD step
when lazy update is and is not employed to #;, respectively.

Assume P is the total number of epochs for convergence, B
is the total number of mini-batches every epoch. For the same
dataset and model, ¢;, B, E and P are fixed for different I,,,.
The total time T for different I,,, and F is calculated as follows:

T=tyx Bx Ex (1+ RNL)

+ty x Bx(P-E)
x (14 RL+ (RNL— RL)/I).

(19)

In Equation (19), the first term is the time for the first few
epochs when the lazy update is not employed and the sec-
ond term is the time for the remaining epochs. Equation (19)
can be reformulated as follows:

T =ty x Bx (P+P><RL+(RNL—RL)

(P—E)
X (E + T .

From Equation (20), we can see that E has a positive corre-
lation with the total time 7" and I,,, has a negative correlation
with the total time T'. If E'is set small, I,, plays a significant
role in reducing the total time T'. On the contrary, if E is set

large, the impact of I,,, is greatly reduced. Practically, we set £
toarelatively small value and set I, to arelatively large value.

(20

5 REGULARIZATION TOOL WITH GENERAL APIs

As mentioned earlier and shown in Fig. 3, our proposed reg-
ularization method is designed as a general and flexible tool

that can be easily integrated with a deep learning platform
in the big data analytics pipeline.

In this section, we describe how we design the APIs for
our regularization tool so that it is easy-to-use and general
enough for different datasets, models and platforms.

Fig. 5 shows the APIs we design for the regularization
tool. The parameters are explained as follows:

input_dim: dimension of input

a (optional): GM parameter a (default: 1+0.1*b)

b (optional): GM parameter b (default: related to
input_num, see Section 6.2.1)

e alpha (optional): GM parameter «
input_num"?)

e gm_num (optional): initial number of Gaussian com-
ponents (default: 4)

e sparse (optional): specify whether sparse update is
employed (default: False)

e uptint (optinal): a tuple including GM and model
parameter update intervals for lazy update. If either
of these two values is larger than 1, lazy update is
employed (default: (1,1))

Our GM Regularization tool is easy-to-use: for the
parameters, only input_dim is required. Others are optional
and GM regularization provides default values for them.

In the meantime, our GM Regularization tool provides
different kinds of options for users, such as lazy update for
complex models, sparse update for sparse datasets, tunable
update intervals for users to trade off between model accu-
racy and computational time.

Key Functions. GM regularization tool provides three
functions:

(default:

e calResponsibility(input, model_param): calculating
responsibility values
calcRegGrad(input, model_param): calculate g,.,
uptGMParam(input, model_param): updating GM
parameters using EM algorithm

As shown in Fig. 2, with this tool, a model only needs to
input model parameters and input vectors to GM regulari-
zation tool. In turn, our GM regularization tool returns g,.,
after calculating responsibility values, g,., and GM para-
meters. It is sufficiently general to support different kinds of
models.

In order to demonstrate that our regularization is general
for different platforms, we implemented our regulariza-
tion tool with machine learning libraries in python as well
as integrated our regularization tool with deep learning
models on an open-source deep learning platform Apache
Singa [22].

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
GM regularization method through experiments using stan-
dard benchmark datasets. The baseline regularization meth-
ods include L1-norm regularization (L1 reg) [28], L2-norm
regularization (L2 reg) [15], Elastic-net (Elastic-net reg) [29],
Huber-norm regularization (Huber reg) [30]. For all these
baseline methods, both Grid Search (GS) [34] and Bayesian
Optimization (BO) [35], [36], [37], [38], [39] are employed to
find their best regularization strengths.
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TABLE 2

UCI DataSet Characteristics
Dataset #Samples  #Features  Feature Type
breast-canc 699 81 categorical
breast-canc-dia 569 30 continuous
breast-canc-pro 198 33 continuous
climate-model 540 18 continuous
congress-voting 435 32 categorical
conn-sonar 208 60 continuous
credit-approval 690 42 combined
cylindar-bands 541 93 combined
hepatitis 155 34 combined
horse-colic 368 58 combined
ionosphere 351 33 combined
6.1 Experiment Settings

Datasets. Experiments on both real datasets and machine
learning /deep learning benchmark datasets are conducted.

1) CIFAR-10." This is a benchmark dataset for image clas-
sification, which consists of 60,000 32 x 32 colour images in
10 classes, with 6,000 images per class. The training and test
datasets contain 50,000 and 10,000 images respectively.

2) Hospital Frequent Admitter (Hosp-FA) Dataset. This is a
real dataset from a hospital, which consists of inpatient visits
(i.e., cases) of patients, including various types of medical fea-
tures (i.e., diagnosis, demographics, etc.) On this dataset, we
predict whether a patient is readmitted into the hospital
within 30 days. This dataset consists of 1,755 patient samples
each of which has 375 features. Dealing with medical features
which have varying numbers of observations is challenging.
In this dataset, there are different kinds of features, e.g., infor-
mative and less informative features. The distributions of
model parameters that correspond to different kinds of fea-
tures are quite different. To be specific, the distribution of
model parameters that correspond to informative features
usually has a larger variance while the distribution of model
parameters that correspond to less informative features has a
smaller variance.

3) UCI Machine Learning Repository Datasets. These are the
benchmark datasets from the UCI machine learning reposi-
tory [40]. These datasets are also referred to as UCI datasets.
To avoid selection bias, we choose the first 11 (in alphabeti-
cal order) binary classification datasets (by skipping those
datasets where all regularization methods achieve perfect
performance). One-hot encoding method is used to trans-
form the categorical features to binary features and we pre-
process the continuous features to have zero mean and unit
variance. Missing values in the categorical features are a
separate class and missing values in the continuous features
are imputed by the mean value.

Table 2 shows the characteristics of UCI datasets, where #
Features is the number of features after one-hot encoding.
The features of this dataset can be either, categorical, contin-
uous or combined (the dataset has both categorical and con-
tinuous features). Most of these datasets have less than
1,000 samples, but the number of features is large because
the ratios of # Features to # Samples of most datasets are
more than 10 percent.

1. https: / /www.cs.toronto.edu/ ~kriz/ cifar.html

4) Synthetic Dataset. The synthetic dataset is obtained by
generating features from a multivariate Gaussian distribution
with identity matrix and generating model parameters that
sample from a Gaussian Mixture model with mixing coeffi-
cients [0.75, 0.25] and precision [200, 10]. The numbers of fea-
tures and model parameters are 1,000 and the numbers of
generated training samples and generated test samples are
10,000 and 40,000 respectively. In this dataset, each model
parameter is connected with a feature, if the value of a model
parameter is small, its corresponding feature is regarded as
less informative because its contribution is small. From
the GM mixing coefficients and precision, we can see that
75 percent features are less informative whereas 25 percent
features are informative.

5) URL Reputation DataSet [41]. This is an extremely
sparse dataset. It has around 24 million samples and
3.2 million features, less than 1 percent of the features are
non-zero. The features of this dataset are anonymized and
correspond to lexical and host-based features gathered for
each URL. The task is to identify malicious URLs. We use
80 percent of samples for training and 20 percent samples
for testing via stratified sampling.

Evaluation Metric. We use accuracy, i.e., the ratio of correct
predictions, on the test dataset to measure the classification
performance of regularization methods under examination.

Deep Learning Model Structures. Table 3 shows the model
structures for our deep learning models. For Alex-CIFAR-10,
the first convolutional layer filters the 32 x 32 x 3 input
images with 32 kernels of size 5 x 5 x 3 with a stride of 1 pixel.
The second convolutional layer has 32 kernels of size 5 x 5 x
32 and the third convolutional layer has 64 kernels of size 5 x
5 x 32. The last layer is the 10-way fully-connected softmax
layer. Pooling layer, RELU layer and LRN layer [7] are
inserted between convolutional layers. The number of model
parameters is 89440.

The second model is the twenty-layer ResNet [10], which is
arepresentative model with a large number of stacked layers.
We experiment on this model to study the behavior of our GM
regularization in complicated and deep neural networks. The
inputs of the network are 32 x 32 images, with the per-pixel
mean subtracted. The first layer is 3 x 3 convolutions, follow-
ed by a stackof 6 n (n = 3 here) layers with 3 x 3 convolutions
with 16, 32, 64 filters respectively. The subsampling is per-
formed by convolutions with stride 2 and the network ends
with a 10-way softmax function. In total, there are 20 stacked
weighted layers. The number of model parameters is 270896.

For these two models, the momentum is set to 0.9, the
learning rate is 0.001 for Alex-CIFAR-10 and 0.1 for ResNet.
For other hyper-parameters such as stopping criteria and
weight decay, they are set to be the same as [7] and [10]
respectively.

Data augmentation is performed for ResNet but not for
Alex-CIFAR-10. By doing this, we aim to show the effective-
ness of our proposed regularization both on a simple struc-
ture neural network without any data augmentation and on
a complex neural network with data augmentation.

Environment. Logistic Regression (LR) is implemented
using python and Convolutional Neural Network (CNN) is
implemented on Apache Singa [22]. Experiments are run on
a server equipped with Intel i7-4930K CPU and three GTX
Titan X GPU cards.


https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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TABLE 3
Deep Learning Model Structures
Model Layers
5x5,32 5x 5,32
e ' 5x 5,64
Alex-CIFAR-10  MaxPooling RELU RELU § x1 Softmax
RELU AvgPooling AvePooli
LRN LRN vgroolmg
ResNet 3XB§$16 x1 3XB?CT16 x 3 3 x 3,32 3XB§}32 x3 3x3,64 3XB?CT64 %3 Av ling Softmax
RELU RELU ' RELU °% RELU 8POOINg
3x3,16 3 x 3,32 3 x 3,64

6.2 Case Study: Adaptive Regularization Tool on
Deep Learning Models

In this section, we show a case study on how our adaptive

regularization tool can be used to learn Gaussian Mixtures

in deep learning models and how appropriate regulariza-

tion is generated by our adaptive regularization tool. Alex-

CIFAR-10 and ResNet are used in this section.

6.2.1 Easy Setting of GM Hyper-Parameters

The setting of GM hyper-parameters is straightforward. It
can be automatically defined by the characterisitcs of the
dataset. The same setting of GM prior hyperparameters a, b,
a and K (initial number of Gaussian components) is used
for different layers to adaptively learn their best GMs for
regularization.

Initial Number of Gaussian Components. The initial number
of Gaussian components, K, is fixed to 4. Aninteresting obser-
vation is that our GM regularization tends to learn one or two
Gaussian components for different models eventually,
because some of the Gaussian components are gradually
merged to one during the GM learning process. The final
number of Gaussian components (whether one or two) is
learned automatically. We experiment with different initial

TABLE 4
Learmned Regularization for Alex-CIFAR-10
GM Reg
Layer Name 4 A
convl/weight [0.216, 0.784] [10.727, 835.959]
conv2/weight [0.019, 0.981] [0.640, 1904.024]
conv3/weight [0.013, 0.987] [0.095,2017.931]
dense/weight [0.036, 0.964] [3.939,1277.578]
GS L2 Reg (expert-tuned)
Layer Name 4 A
convl/weight [1.000] [200.000]
conv2/weight [1.000] [200.000]
conv3/weight [1.000] [200.000]
dense/weight [1.000] [50000.000]
BO L2 Reg

Layer Name 4 A
convl/weight [1.000] [429.200]
conv2/weight [1.000] [63.950]
conv3/weight [1.000] [500.000]
dense/weight [1.000] [12500.000]

number of Gaussian components and find four to be the best
according to the experimental results shown in Section 6.7.
Hyper-Parameters a, b and c. b is set to yM, where M is the
number of model parameters for each layer, and the parame-
ter grid for y is [0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02,
0.05]. As mentioned in Section 3.3.3, a is not a significant par-
ameter, itissetto1 + 1072 bor1 + 107! b. For «, it is set to M.

6.2.2 Learned GM Regularization

This section shows the learned GMs for Alex-CIFAR-10 and
ResNet respectively. In terms of baseline methods, for L2
Reg using GS (GS L2 Reg), A is manually set by experts
using grid search [10], [35], while for L2 Reg using BO (BO
L2 Reg), the search space for regularization strength is from
0.00001 to 1.0 and from 0.0000005 to 0.05 for Alex-CIFAR-10
and ResNet respectively.

Tables 4 and 5 show the learned GMs under the best param-
eter setting. Since ResNet has 20 layers, only the learned & and
A for the representative layers are shown here. Layers with
asterisk indicate that there are several other layers that have
very similar 7 and A. Compared with both GS L2 Reg and BO
L2 Reg, GM Reg learns more than one Gaussian for each layer
by adaptively learning different GM parameters & and A for
different layers automatically. This result confirms that our
GM regularization is adaptive to the model parameter distri-
butions of different layers so that the best regularization for
each layer can be leammed. The two Gaussian components
learned for each layer correspond to informative and less infor-
mative features respectively. The learned A for Alex-CIFAR-10
is larger than that of ResNet, which indicates that Alex-
CIFAR-10 needs stronger regularization; this is due to lack of
Batch-normalization (BN) layers in the Alex-CIFAR-10. For
ResNet, many layers have similar  and A because of the GM
initialization method which is discussed in detail in Section
6.8. According to [42], the initialization distributions of model
parameters between two convolutional layers are the same if
the two layers have the same number of filters. As shown in
Table 3, there are three stacks of filters, 16, 32 and 64 respectiv-
ely. The layers in each stack have the same initialized Gaussian
variance, leading to similar learned GM parameters A and 7.

6.2.3 Comparison on Accuracy

In this experiment, we study the effects of GM regulariza-
tion on the predictive ability of deep learning models. In
terms of baseline methods, the settings are the same as those
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TABLE 5 TABLE 6
Representative Learned Regularization for ResNet Accuracy on Deep Learning Model
GM Reg Alex-CIFAR-10 ResNet
Layer Name n A no regularization 0.777 0901
convl/welght [0.377, 0.623] [0301,8106] ST 7ReB 0.822(expert-tuned) oot
2a-brl-convl/weight [0.066, 0.934] [0.149,22620) N gflgaﬂzaﬁon 0.830 0921
2a-brl-conv2/weight* [0.062, 0.938] [0.145, 23.016] : )
3a-br2-conv/weight [0.152, 0.848] [0.195,22.010]
3a-brl-convl/weight [0.047, 0.953] [0.141, 22.824] .
3a-brl-conv2/weight* [0.032, 0.968] [0.121,23.617] the number of samples is small, for eacih dataset, we run a
4a-br2-conv/weight [0.068, 0.932] [0.157,22.733]  S5-fold cross-validation. For all the baseline methods, we use
4a-brl-convl/weight [0.023, 0.977] [0.114, 23.868] both GS and BO to find the best regularization strength. For
4a-brl-conv2/weight* [0.016, 0.984] [0.109,24.39]  GS, the grid of regularization strength is [107%,...,10%],
ip5/ weight [0-230,0.770] [0-865,6.9791  which is consistent with [30]. For BO, the search space for
GS L2 Reg regularization strength is from 10~ to 10* accordingly.
Layer Name = b\ The average and standard errors of accuracies under the
All Layers [1.000] [50.000] best parameter setting on the test dataset are shown in Table 7.
BO L2 Reg The highest average accuracy results are indicated in bold.
Layer Name - > 'fl"he r851}111t sh}olws fthat the G]i\/l. reg.'u]arizat}iil;mrl1 meth?d .ow:;pzr-
. orms the other four regularnization methods optimiz Yy
;gﬂgﬁ;‘:f}-l ;weight E g%} Eigssg} both GS and BO in 9 out of 12 datasets and achieves the same
2a-brl-conv2/weight* [1.000] [25.000] best performance as other baseline methods in two of the other
3a-br2-conv/weight [1.000] [25.000] three datasets. GM regularization does not prevail against the
3a-bri-convl/weight [1.000] [25.000] baseline methods only in the breast-canc-dia dataset. For this
3a-brl-conv2 /weight* [1.000] [21.250] dataset, our adaptive GM regularization is comparable with
4a-br2-conv/weight [1.000] [25.000] the baselines and our standard errors are smaller than Huber
4a-bri-convl /weight [1.000] 17.050] Reg. These results again provide clear evidence for the perfor-
4a-brl-conv2 /weight* [1.000] [25.000] . . N
ip5/ weight [1.000] [25.000] mance benefits of our adaptive GM regularization.

in Section 6.2.2. The results under the best parameter setting
on the test dataset are summarized in Table 6.

For the Alex-CIFAR-10, the GS L2 Reg is carefully tuned
by the human expert, where the strengths of regularization
are different for different layers. From Table 6, we can see
GS L2 Reg improves the accuracy from 0.777 (without any
regularization) to 0.822, which indicates the importance of
regularization in deep leaming models. For BO L2 Reg, it
further improves GS L2 Reg which is consistent with the
observation in [35] for the following two reasons. First, BO
is able to obtain different regularization strengths for differ-
ent layers as shown in Table 4. Second, BO finds the best
regularization strengths in a more principled way by only
evaluating the most promising regularization strengths.
Our GM regularization further improves the BO Reg from
0.824 to 0.83 in terms of accuracy. This result confirms the
advantage of adaptive GM regularization over both GS L2
Reg and BO L2 Reg.

For the ResNet, since the BN layer serves as a form of
regularization, the improvement of L2 Reg over no regulari-
zation is not so dramatic as that in Alex-CIFAR-10. Similar
to Alex-CIFAR-10, BO L2 Reg is able to improve GS L2 Reg.
In the meantime, our GM Reg further improves BO L2 Reg
from 0.912 to 0.920. This result is nearly the same as the
result of a ResNet with 1202 layers [10], which confirms the
effectiveness of our proposed GM regularization.

6.3 Comparison on Small Dataset

In this section, we evaluate our GM regularization with
Logistic Regression model on one real hospital readmission
dataset and 11 machine leamning benchmark datasets. Since

Compared with L1-norm regularization method, GM reg-
ularization achieves better results in all the datasets. This is
because L1-norm regularization tends to reduce the model
parameters of less informative features to zero, which totally
removes the effect of these features. On the contrary, GM reg-
ularization method learns a small variance Gaussian compo-
nent for these features so that the effects of these features are
retained instead of being removed.

L2-norm regularization imposes the same regularization
strength for all the features, so it is likely that the informa-
tive features with large model parameter values are over-
regularized. In contrast, GM regularization does not regular-
ize these informative features strongly since a large variance
Gaussian component is learned to exert weak regularization.

Both Elastic-net and Huber-norm regularization tradeoff
between L1-norm and L.2-norm regularization. For Elastic-
net, it uses a parameter [1_ratio to control the proportion of
Ll-norm regularization and L2-norm regularization. By tun-
ing this parameter, Elastic-net enables L1-norm or L2-norm
regularization to dominate. As such, Elastic-net achieves bet-
ter results than L1-norm regularization and L2-norm regular-
ization for nearly all the datasets in terms of both GSand BO.

Huber-norm regularization is in the form of a piecewise
function; that is, Huber-norm regularization is L2-norm regu-
larization for small model parameters and it is L.1-norm regu-
larization for large model parameters. The two parameters
p and A control the threshold between L1-norm and L2-norm
regularization. By tuning the threshold value, Huber-norm
regularization can tradeoff between Ll-norm and L2-
norm regularization to dominate these two regularization
methods in terms of both GS and BO.

Comparing BO with GS, we can find BO achieves better
results in most datasets, due to the fact that BO is able to
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TABLE 7
Comparison on Accuracies and Standard Errors

Dataset Method L1 Reg L2 Reg Elastic-net Reg Huber Reg GM Reg

Hosp-FA GS 0.844 +0.023 0.842 + 0.021 0.847 +0.022 0.845 + 0.022 0.848 + 0.021
BO 0.846 + 0.023 0.842 + 0.022 0.847 +0.020 0.848 + 0.022

breast-canc GS 0.963 £+ 0.012 0.969 £+ 0.012 0.970 £+ 0.011 0.970 £+ 0.011 0.970 £+ 0.011
BO 0.964 £+ 0.011 0.970 £ 0.011 0.970 £ 0.011 0.970 £ 0.014

breast-canc-dia G5 0.972 +0.012 0.979 + 0.008 0.981 + 0.007 0.982 £+ 0.011 0.981 + 0.007
BO 0.972 + 0.008 0.981 + 0.007 0.982 + 0.011 0.981 + 0.007

breast-canc-pro G5 0.818 + 0.044 0.834 + 0.050 0.839 + 0.040 0.834 + 0.051 0.859 + 0.036
BO 0.819 + 0.046 0.834 + 0.051 0.844 + 0.040 0.839 £+ 0.041

climate-model GS 0.965 + 0.010 0.963 £+ 0.013 0.965 £ 0.010 0.967 +0.011 0.969 + 0.011
BO 0.965 + 0.010 0.967 +0.011 0.967 +£0.011 0.967 +0.011

congress-voting G5 0.968 + 0.015 0.970 + 0.015 0.972 £0.017 0.972 +0.013 0.977 + 0.018
BO 0.972+0.013 0.970 + 0.015 0.975 £0.012 0.975 +0.017

conn-sonar GS 0.803 + 0.034 0.832 +0.042 0.837 +0.050 0.830 + 0.052 0.847 +0.057
BO 0.813 + 0.037 0.837 + 0.055 0.832 £0.055 0.832 + 0.063

credit-approval G5 0.867 +0.032 0.868 +0.022 0.875 +0.032 0.874 +0.028 0.878 £+ 0.033
BO 0.868 + 0.028 0.868 + 0.018 0.877 £+ 0.037 0.877 £ 0.035

cylindar-bands G5 0.782 + 0.038 0.791 £ 0.017 0.795 £ 0.020 0.791 + 0.023 0.798 £+ 0.016
BO 0.784 + 0.023 0.789 + 0.020 0.797 £+ 0.020 0.795 + 0.018

hepatitis GS 0.866 + 0.067 0.898 + 0.040 0.904 + 0.038 0.898 + 0.040 0.904 + 0.038
BO 0.865 +0.045 0.898 + 0.040 0.904 + 0.038 0.891 + 0.048

horse-colic GS 0.835 +0.064 0.842 + 0.040 0.864 + 0.040 0.859 + 0.060 0.870 + 0.047
BO 0.835 +0.046 0.845 + 0.028 0.867 £+ 0.037 0.862 + 0.049

ionosphere G5 0906 +£0.029 0.903 + 0.028 0.909 £ 0.027 0.909 + 0.037 0.920 £ 0.024
BO 0.909 £ 0.033 0.898 +£0.027 0903 £ 0.025 0.912 + 0.030

explore different regularization strengths in a more princi-
pled and automatic way. Only the most promising regulari-
zation strengths will be evaluated, thus higher-quality
regularization strengths can be obtained.

By assuming a GM prior distribution over model parame-
ters, our adaptive GM regularization method models the
model parameter prior better, thus imposing more appropri-
ate regularization. It learns two Gaussian components as the
model parameter prior distribution to regularize both infor-
mative and less informative features, imposing different
strengths of regularization on these two kinds of features,
which results in better performance than the baselines opti-
mized by both GS and BO. Details on the learned Gaussian
components are discussed in Section 6.4.

6.4 Learned Gaussian Components for
Small Datasets

In this section, we evaluate the adaptively learned Gaussian
components for two representative small datasets, horse-colic
and conn-sonar datasets. Fig. 6 shows the mixture probability
density for different values of model parameters for two
Gaussian components in both datasets. For both of these two
datasets, two Gaussian components are learned. The horizon-
tal axis indicates the model parameter value w,, and the verti-
cal axis shows the mixture probability density, myp(wsm), the
numerator in Equation (9). Points A and B labeled in the figure
show where two Gaussian components have the same mix-
ture probability density. In both figures, the small variance
Gaussian component dominates in the area near zero. When
model parameters are getting beyond A/B points, the large
variance Gaussian component begins to dominate. This shows

that our GM regularization exerts strong effects on small value
model parameters which correspond to less informative fea-
tures and exerts less strong regularization on large value
model parameters which correspond to informative features.
Anotherobservation is that the Gaussian shapes of the two fig-
ures differ a lot, which illustrates that our adaptive GM regu-
larization method can learn different GM distributions for
different datasets. The variance of the small variance Gaussian
in horse-colic dataset is much smaller than that in conn-sonar
dataset, this shows that the model parameters corresponding
to the less informative features in the horse-colic dataset are
much smaller and need to be regularized more strongly.

Fig. 7 shows the change of responsibility values along with
the change of model parameter values for the two lear-
ned Gaussian components in both datasets. The blue and
green lines show the large precision Gaussian component
and small precision Gaussian component respectively. The
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Fig. 6. The horizontal axis indicates the model parameter and the vertical
axis shows the mixture probability density. The GM parameters for
horse-colic dataset are m = [0.326 0.674], A = [1.270 31.295], and for
conn-sonar dataset are w = [0.345, 0.655], A = [0.062, 0.607].



562 |IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2021

10.00,0.01)

=

o - . - - —
\ 10.00,0.86)
o8 \ [
\ f
1-2.56. 0.500 '
\ : /,r

=

Responsibility
Responsibility
2 2

\_/

10.000.00)

0,00/ 0.14]

o,

T oz o8 6% 64 86 08 ry o 3 ] 3
Madel Parameter Model Parameter

(a) Horse-colic dataset (b) Conn-sonar dataset

Fig. 7. The horizontal axis indicates the model parameter and the vertical
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are w = [0.345, 0.655], A = [0.062, 0.607].

responsibility values of these two Gaussian components sum
up to 1. The two points in the vertical dotted line that passes
through the origin show the responsibility values of these two
Gaussian components for zero value model parameters. From
the figures, we see that the responsibility value of the large
precision Gaussian component is much larger than that of the
small precision Gaussian component, which shows that the
large precision Gaussian component dominates in the area
near zero. Then the responsibility value of the large precision
Gaussian component decays fast. Two curves cross when the
absolute values of the model parameters are +0.39 and +2.56
for Horse-colic and Conn-sonar datasets respectively. When
the absolute values of model parameters are beyond 0.39 or
2.56, the small precision Gaussian component begins to d omi-
nate and exert weaker regularization on the model parameters
with large values. This shows that our GM regularization
exerts strong effects on small value model parameters and
exerts weaker regularization on large value model parame-
ters, which is consistent with the observations made in Fig. 6.

6.5 Comparison on Synthetic Dataset

This section demonstrates the effectiveness of GM regulariza-
tion using a supervised method. The generation of the syn-
thetic dataset is explained in Section 6.1. As introduced in
Section 1, our GM regularization learns a GM distribution
using the intermediate model parameters during training to
approximate the actual distribution of the model parameters
while imposes appropriate regularization on the model
parameters. In this section, we show two observations: (1) The
GM learmned by our GM regularization is a good approxima-
tion of the actual distribution of the model parameters. (2) The
distribution of the final learned model parameters regularized
by GM regularization resembles the actual distribution of the
model parameters more than other baseline regularization
methods. For this synthetic dataset, we add some noise when
generating the labels. As the accuracy may not be convincing
because of the noise, we also present the cross entropy loss
that compares the predicted probability with the label (label
loss) and true probability (probability loss).

The same as Section 6.3, both GS and BO are employed to
find the best regularization strengths for baseline methods. In
this experiment, for grid search, the grid of regularization
strength is [107*, ..., 10°], while for BO Reg, the search space
for regularization strength is from 10~* to 10* accordingly.
The results under the best parameter setting on the test data-
set are shown in Table 8. From the table, we can see that our
GM regularization achieves the best results in terms of all

TABLE 8
Comparison on Synthetic Dataset

Regularization Method Accuracy Label Loss Probability Loss
Llreg GS 0.8363 14077.36 14117.00
BO 0.8365 14046.24 14081.12
L2reg GS 0.8365 14091.44 14136.12
BO 0.8365 14088.04 14133.96
Elastic-net reg GS 0.8363 14079.72 14119.60
BO 0.8363 14015.56 14054.36
Huber reg GS 0.8368 14064.68 14104.20
BO 0.8373 14007.16 14044.20
GM reg 0.8377 13995.04 14026.16
TABLE 9
Learned Gaussian Components on
Synthetic Dataset
original & original A
[0.75,0.25] [200, 10]
learned learned X
[0.76, 0.24] [277.65, 27.23]

metrics. L2 Reg performs the worst in label loss and probabil-
ity loss than other baseline methods in terms of both GS and
BO because the generated dataset has a large proportion of
less informative features, i.e., 75 percent features are less
informative. Note that L2 Reg does not perform as good as L1
reg, which regularizes the less informative features strongly,
in terms of both GS and BO. Huber Reg achieves better results
than other methods in terms of both GS and BO except for
GM regularization because of its ability to trade off between
L1 and L2 as mentioned in Section 6.3.

Comparing BO with GS, we can find BO achieves better
results than GS, which is consistent with the observations in
Section 6.3.

Table 9 shows the mixing coefficient & and precision A of
the leammed GM. The table shows that our GM regulariza-
tion learns two Gaussian components with & = [0.24,0.76],
A = [27.23,277.65]. The learned mixing coefficient 7 is
nearly the same as the original . Both of the learned Gauss-
ian components have higher precisions than the original
GM because the regularization tends to “pull” the model
parameters closer to zero, leading to the learned GM having
smaller variances and larger precisions.

In order to show the distribution of the model parameters
regularized by our GM regularization better resembles the
actual model parameter distribution than other baseline regu-
larization methods, Fig. 8 shows the distribution of the origi-
nal model parameters and the distributions of the model
parameters regularized by different regularization methods
optimized by BO. We choose BO here because BO achieves
better results than GS as shown in Table 8. From the figure,
we can see that more than 8 model parameters regularized by
L1 reg, Elastic-net Reg and Huber Reg are nearly zero, more
than those of original distribution, GM Reg and L2 Reg. This
is attributed to the less informative features. L1 reg, Elastic-
net Reg and Huber Reg impose strong regularization on less
informative features, reducing the values of their correspond-
ing model parameters to zero or nearly zero in order to restrict
the effects of these less informative features. In this dataset,
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because most features, i.e., 75 percent features, are less infor-
mative, strongly regularizing these less informative features
removes the beneficial effects of these features, which is harm-
ful to the model. Comparing L2 Reg with GM Reg, we can
observe that for L2 Reg, less model parameters are beyond
+0.4 but there are more model parameters around zero due
to the regularization strength. For L2 reg, it is a special case of
the GM Reg with number of Gaussian components equaling
to one. Consequently, the strength of regularization imposed
by L2 Reg is the same for all model parameters. In this dataset,
the optimal learned precision for L2 Reg is 91.56, which
results in overly weak regularization for small value model
parameters around zero and overly strong regularization for
large value model parameters. On the contrary, GM Reg
leamns two precisions, namely 277.65 and 27.23, regularizing
small value model parameters and large value model parame-
ters respectively. This result confirms that our GM regulariza-
tion is able to impose appropriate regularization strengths to
different kinds of features.

6.6 Comparison on URL Reputation Dataset

In this section, we show the effectiveness of sparse update
method proposed for extremely high-dimensional and
sparse datasets. In this dataset, our sparse GM regulariza-
tion achieves the same best accuracy as the baseline, 0.9870,
which is consistent with [41]. Table 10 shows the computa-
tional time (in seconds) for GM regularization and sparse
GM regularization in each iteration. From the table, we can
see that the sparse update method decreases the

TABLE 10
Computational Time on URL Reputation DataSet
Method GM Reg sparse GM Reg
Time (Sec) 4.000 0.206
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computational time by about 20 times, which confirms the
effectiveness of our proposed sparse update algorithm.

6.7 Experiment on Initial Number of Gaussian
Components

In this section, we show the performance of the GM regulari-
zation method by varying the initial number of Gaussian com-
ponents. Since « also affects the final number of Gaussian
components learned, we are therefore interested in investigat-
ing the effects of initial number of Gaussian components with
respect to different « values. Fig. 9 shows the accuracy of dif-
ferent combinations of initial number of Gaussian compo-
nents and «. From the figure, we can see that when the initial
number of Gaussian components is two, the results are worse
than those of four or six; when the initial number of Gaussian
components is more than six, either the results are becoming
worse or there is no significant improvement. The reason is
explained as follows. When the initial number of Gaussian
components is two, all the model parameters will be assigned
to the two Gaussian components in the beginning. Since in
the end, at most two Gaussian components are learned, the
initial assignment of the model parameters largely determines
the final assignment of model parameters when the model
converges, which is not appropriate. On the contrary, if we set
the initial number of Gaussian components to be four or six in
the beginning, these initial Gaussian components can be grad-
ually merged into two Gaussian components. However, if the
initial number of Gaussian components is set to more than
six, the accuracy decreases because the model is more difficult
to converge to two Gaussian components if we start with too
many Gaussian components in the beginning. Comparing
four with six, we choose four because having more Gaussian
components incurs more computation cost and it is more dif-
ficult for the model to converge.

6.8 Effectiveness of Proposed Initialization
Methods for GM

It is well known that fitting GM can be very sensitive to poor
initial conditions. In this section, several proposed initializa-
tion methods for GM are compared. For these proposed meth-
ods, the initialization of GM is related to the initialization of
model parameters. In both Deep Learning model and Logistic
Regression model, the model parameters are initialized with a
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zero-mean Gaussian distribution. The variances of different
components of the initialized GM should be larger than the
variance of the initialized model parameters so that the initial
regularization is not too strong. We shall consider three ini-
tialization methods, namely identical, linear and proportional.
For ease of explanation, in the remaining of this paragraph,
we work with precision, the inverse of the variance. In the
identical method, the precisions of different GM components
are set identically to min. For ResNet, since the precisions of
each layer’s initialized model parameters are different, min is
set to one-tenth of the initialized model parameter precisions.
For other models, since the precisions of initialized model
parameters are 100, all the min values are set to 10. In the sec-
ond method, linear initialization, the precisions of the K initial
GM components are linearly spaced between [min, K x min].
The third initialization method is proportional initialization.
In this method, the precision of the latter GM component is
set to be two times the precision of the former component.
The precision of the first GM component is min. Both linear
and proportional methods cause the initial responsibility of
different GM components to be different.

As mentioned in Section 2.3, « also affects the number of
Gaussian components learned. We therefore investigate the
effects of GM initialization methods with respect to different
a values. Fig. 10 shows the accuracy of different combinations
of GM initialization methods and «. The results show, for
both Alex-CIFAR-10 and ResNet, linear and proportional ini-
tialization methods perform far better than identical initializa-
tion method. Table 11 shows the average accuracy of different
GM initialization methods over different & values. The aver-
age accuracy of linear and proportional initialization methods
are also far better than identical initialization method, mainly
due to the final state. For Alex-CIFAR-10 and ResNet, the final
state of the learned GM is two Gaussian components. If the
GM components have different variances initially, they will
converge to the final state faster. Another observation is that

TABLE 11
Average Accuracy for Different Initialization Methods
Method Alex-CIFAR-10 ResNet
linear 0.819 0.918
identical 0.802 0912
proportional 0.817 0916

linear initialization is better than proportional initialization,
because linear initialization method generates Gaussian com-
ponents that are more scattered. When « is set to 0.5, we get
the best performance as the GM learns multiple Gaussian
components that lead to faster convergence.

6.9 Effectiveness of Lazy Update

In this experiment, we investigate the effect of GM parame-
ter update interval I;, model parameter update interval [,
and number of the first few epochs when the lazy update is
not employed, E.

6.9.1 Performance of Update Interval Values

Figs. 11a and 11b show the training elapsed time with respect
to the number of epochs for different I,,, values and the base-
line (L2 Reg). In this experiment, we set I, = I, and E to two
so that after two epochs, the increase of time is mainly due to
lazy update. The results show that all six settings grow line-
arly in time as the number of epochs increases, which confirm
the effectiveness of our proposed lazy update algorithm. We
can observe that the algorithm with 7., = 1, where no lazy
update is employed, takes the longest time to converge and
the algorithm with I,, = 50 takes the shortest. This is because
the algorithm with a larger I,, updates GM parameters and
model parameters less frequently. Fig. 11c shows the conver-
gence time for different I,,, values and the baseline (L2 Reg).
The number of epochs for convergence is 160 for Alex-
CIFAR-10 and 200 for ResNet. In this experiment, we set I,,, =
I,. Among the six settings, the algorithm with [;,,=1 takes the
longest time and the algorithm with I,,,=50 takes the shortest.
This is consistent with the observations made in Figs. 11a and
11b. For both Alex-CIFAR-10 and ResNet, algorithm with
I,,=50 takes almost one fourth the time of the algorithm with
I,,=1, where no lazy update is employed. Fig. 12 shows the
accuracy of different I;,, values for both models. From the
figure, we can see that even if GM parameters and model
parameters are updated less frequently, there is no significant
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drop in accuracy. This again shows the effectiveness of lazy
update algorithm.

6.9.2 Performance of GM Parameter Update
Interval Values

Another factor that can further reduce time is I, because the
update of GM parameters includes calculating the responsi-
bility value as well as calculating new A and m using the
high-dimensional model parameter vector, which is quite
time-consuming. Considering the fact that the GM parame-
ters converge faster than the model parameters, we set [,
larger than I,,,. Figs. 13a and 13b show the convergence time
for different combinations of I, and I,,,, where I,,, is fixed to
50 and I, is increased from 50 to 500. Fig. 13 shows that the
convergence time can be further reduced if I, is increased.

6.9.3 Performance of E Values

As mentioned in Section 3.4, the number of the first few
epochs when the lazy update is not employed, E, is another
factor that affects the time and accuracy. Figs. 14a and 14b
show the training elapsed time with respect to epochs for dif-
ferent E values and baseline (L2 Reg). The results show that
the lazy update algorithm takes more time for computation of
each epoch before E epochs, since updating model parame-
ters and GM parameters each step consumes more time than
not updating them. After 70 epochs, we can observe the algo-
rithm with E=50 takes the most time for computation while

565

ik

50850 100850 200850 500850

Time(Seconds)
BEEddBBE

Time(Secands)
E88SE 83

g

5050 100&50 200850 500850
Updste Interval |, & |, Update Interval |, & I,

(a) Alex-CIFAR-10 (b) ResNet
Fig. 13. Time for different combinations of I, and I;,,.

the algorithm with E=1 takes the least. This is because the
algorithm with larger E takes more time in the first £ epochs
when lazy update is not employed. Fig. 14c shows the conver-
gence time for different £ values and baseline. The result
shows that the decrease of time is proportional to the decrease
of E. When E is decreased to 1, the convergence time con-
sumed is only about 70 percent the time for the algorithm
with E = 50. Fig. 15 shows the accuracy of different E values
for both models. From the figure, we can see that even smaller
E values do not degrade the final accuracy too much. By
choosing a relatively small E value, we can obtain a high-
performance model within a short training time.

7 RELATED WORK

Our work extends two veins of research: Bayesian interpre-
tation of regularization and hyper-parameter optimization.

7.1 Bayesian Interpretation of Regularization

Many regularization strategies can be interpreted as Maxi-
mum a posteriori Bayesian inference [32], [33]. One of the
most frequently used regularization methods is L2-norm reg-
ularization [43], which is also known as weight decay [44],
ridge regression or Tikhonov regularization. L2-norm regu-
larization adds a quadratic term to the objective function. The
addition of this weight decay term shrinks the values of model
parameters. L.2-norm regularization can be regarded as MAP
Bayesian inference [32], [33] with Gaussian prior on the model
parameters. It is a special case of GM regularization when the
number of Gaussian components is restricted to one.

While L2-norm regularization is the most common form of
regularization, another common method to regularize the
model is L1-norm regularization [32], which is also known as
Lasso [45]. L1-norm regularization is defined as adding the
absolute values of the model parameters to the objective func-
tion. The L1-norm regularization forces insignificant model
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parameters to be zero, which is desirable in situations where a
sparse solution is preferable. L1-norm regularization corre-
sponds to a Laplacian prior on model parameters.

There are also many other forms of regularization target-
ing at different scenarios [29], [30]. For example, Huber-
norm regularization interpolates between L2-norm and L1-
norm regularization by using a piecewise function. Unlike
Ll-norm regularization, Huber function is differentiable.
Huber-norm regularization also imposes less penalty on large
model parameters compared with L2-norm regularization.
Recent experiments [30] suggest that Huber-norm regulariza-
tion is more robust and can achieve higher accuracy in Logis-
tic Regression. Elastic-net regularization [29], [46] is another
norm regularization method combining L1-norm and L2-
norm regularization. The Elastic-net regularization encour-
ages a grouping effect, where strongly correlated predictors
tend to be in or out of the model together. In circumstances
where the number of features is much larger than observa-
tions, Elastic-net regularization outperforms L1-norm regu-
larization significantly.

Compared with Laplacian distribution and Gaussian dis-
tribution, GM provides a richer class of density models,
modelling the parameter prior better and thus imposing a
more appropriate regularization. Also, different from previ-
ous works which define a specific regularization function,
we aim to develop an adaptive regularization method that
can learn the best regularization function. We assume that
the model parameters follow a GM prior distribution which
provides a richer class of density models. This GM is
learned adaptively via a lightweight EM algorithm so that
no painstaking ad-hoc attempts need to be made in order to
obtain the optimal regularization function.

7.2 Hyper-Parameter Optimization
Deciding the strength of regularization is typically modeled
as a hyper-parameter optimization problem [35], [47]. Grid
search [34] has long been a conventional method for obtain-
ing the regularization strength. This method, although sim-
ple and easy to implement, is shown to be not efficient [34],
[48]. Random search improves grid search by randomly
choosing trials instead of trials on a grid [34].

Recently, it has been shown that methods which optimize
hyper-parameters in a more principled and automatic way

can obtain higher-quality hyper-parameters. Bayesian opti-
mization [35], [36], [37], [38], [39] is one of these methods. The
key idea of BO is to view the hyper-parameter optimization
as the optimization of an unknown black box function, and
builds a probabilistic model for the black box function by
using multiple pairs of hyper-parameters and their corre-
sponding validation loss. One advantage of BO is that hyper-
parameters that need to be evaluated can be automatically
determined. In this manner, BO is able to find high-quality
hyper-parameters. The BO framework for hyper-parameter
optimization has several degrees of freedom to be instanti-
ated, such as initialization, the acquisition function and the
probabilistic model. Although BO is widely used and shown
to be effective in many applications [35], [36], [37], [38], [39], it
can hardly scale up to handle large numbers of hyper-param-
eters and is not efficient for big datasets.

The key idea of our proposed adaptive GM regularization
is to learn the strength of regularization adaptively. Our
method is easy to scale up because of the efficient update
method that incorporates SGD and EM. Also, different from
BO which does not exploit the information of model parame-
ters directly, our method interacts with model parameters
during the whole training process.

8 CONCLUSIONS

In this paper, we propose an adaptive regularization method
based on GM to impose appropriate regularization on differ-
ent kinds of features. Dirichlet and Gamma prior distribu-
tions are introduced for the GM parameters to control the
leaming of mixing coefficients and the shapes of different
Gaussian components. We design a lightweight EM algo-
rithm to update GM parameters and the model parameters
are learned under the SGD framework. In order to reduce
computational costs, we design lazy update and sparse
update algorithms to reduce the computational time by four
times and twenty times respectively. Experiments show that
our GM regularization method yields better performance in
terms of accuracy than existing methods.
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