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Informative representation of road networks is essential to a wide variety of applications on intelligent trans-

portation systems. In this article, we design a new learning framework, called Representation Learning for

Road Networks (RLRN), which explores various intrinsic properties of road networks to learn embeddings of

intersections and road segments in road networks. To implement the RLRN framework, we propose a new

neural network model, namely Road Network to Vector (RN2Vec), to learn embeddings of intersections and

road segments jointly by exploring geo-locality and homogeneity of them, topological structure of the road

networks, and moving behaviors of road users. In addition to model design, issues involving data preparation

for model training are examined. We evaluate the learned embeddings via extensive experiments on sev-

eral real-world datasets using different downstream test cases, including node/edge classification and travel

time estimation. Experimental results show that the proposed RN2Vec robustly outperforms existing meth-

ods, including (i) Feature-based methods: raw features and principal components analysis (PCA); (ii) Network

embedding methods: DeepWalk, LINE, and Node2vec; and (iii) Features + Network structure-based methods:

network embeddings and PCA, graph convolutional networks, and graph attention networks. RN2Vec sig-

nificantly outperforms all of them in terms of F1-score in classifying traffic signals (11.96% to 16.86%) and

crossings (11.36% to 16.67%) on intersections and in classifying avenue (10.56% to 15.43%) and street (11.54%

to 16.07%) on road segments, as well as in terms of Mean Absolute Error in travel time estimation (17.01% to

23.58%).
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1 INTRODUCTION

Owing to population growth, urbanization, and technological advances, efforts for smartening the
various infrastructures of cities have been planned in many countries. As an important branch
of the smart city, intelligent transportation systems (ITS) [19] have received significant interests
from academia, industry and governments, owing to the growing demands of solutions to address
various transportation issues, such as traffic congestion, pollution, and accidents.
The core of ITS includes functionalities of analysis, mining, predictions, and management built

upon data collected from various sources (e.g., road networks, vehicle trajectories, traffic signal
control systems, etc.) Among them, road networks are arguably the most basic due to the ubiq-
uitous needs in ITS. For instance, road networks are essential to digital maps (e.g., Google Map
and OpenStreetMap (OSM) [4]), online ride-hailing services (e.g., Uber and Lyft), self-driving cars,
and various traffic analysis tasks. Typically, a road network is modeled as a graph, which consists
of intersections (or junctions) as nodes1 and road segments as edges.2 Additionally, both the inter-
sections and road segments in road networks contain not only geo-spatial information (e.g., the
coordinates) but also various information about road characteristics and transportation facilities,
such as traffic signal and stop signs on intersections, road categories (e.g., primary and motor-
way), number of lanes of road segments, and so on. Take the small portion of the San Francisco
road network in Figure 1 as an example. The blue lines are road segments and blue circles are
intersections. Also shown are information tagged by volunteers for intersections (e.g., traffic sig-
nal, crossings, stop signs, and motorway junctions) and road segments (e.g., the primary way in
orange and motorway links in pink). As ITS mainly focus on road transportation, capturing net-
work structure and associated information to represent road networks are important for various
applications, such as travel time estimation [27], destination prediction [32], and intelligent speed
adaptation [10].

To achieve good performance in these ITS applications, high-quality features of intersections or
road segments that capture intrinsic properties of road networks are much needed. This conven-
tionally requires labor-intensive feature engineering effort by domain experts. Recently, represen-
tation learning techniques [35], aiming to automatically learn useful latent feature vectors (also
called embeddings)3 of data objects as inputs to machine learning or data mining algorithms, have
been developed and well received in the fields of speech recognition [17], computer vision [18],
natural language processing (NLP) [9, 25], and so on. In this article, inspired by the successes
in these fields, we investigate the issue of representation learning for real-world road networks,
aiming to learn useful road network embeddings for general support of various ITS applications.
Here we focus on learning embeddings for intersections and road segments, to capture rich feature
information inherent to those components in preparation for general use in ITS applications.
To learn representations of road networks, it is natural to apply existing network represen-

tation learning methods [8, 21, 23, 24, 33] by treating a road network as a general network.
However, this idea is impractical. First, while existing methods capture the topological structure
of networks, they do not consider the spatial properties of road networks, e.g., the geo-locality of
intersections/road segments. Second, they mostly apply random walks to sample the structure of
networks, which fails to capture the moving behaviors of mobile road users who tend to take the
shortest paths to move from the sources to destinations. Finally, they do not incorporate various
homogeneity relationships of intersections/road segments (e.g., the sharing of some common

1In this article, we use the terms “intersection,” “junction,” and “node” interchangeably.
2In this article, we use the terms “road segment” and “edge” interchangeably.
3We use the terms “latent feature vectors,” “embeddings,” and “representations” interchangeably in this article.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 11. Publication date: December 2020.



On Representation Learning for Road Networks 11:3

Fig. 1. A portion of San Francisco road network. Fig. 2. Overview of the RLRN framework.

properties such as traffic signal by two intersections or motorways by two road segments) into
their models.
To fill this gap between the conventional network representation learning methods and one tai-

lored specifically for road networks, we design a new learning framework, called Representation
Learning for Road Network (RLRN), as depicted in Figure 2, which explores the intrinsic properties
of a road network to learn discriminative embeddings of its intersections and road segments, two
essential and most important elements of road networks. In specific, the RLRN framework consists
of two phases: (I) Training data preparation and (II) Representation learning. In Phase I, we propose
a novel data preparation module that generates training data by sampling shortest paths on road
networks to simulate user moving behaviors. Additionally, we supplement the above training data
using real-world trajectory data for model training. In Phase II, we propose a novel neural network
model, namely, Road Network to Vector (RN2Vec), to learn the embeddings of intersections and
road segments jointly. More specifically, RN2Vec consists of three sub-modules, namely, Intersec-
tion of Road Network to Vector (IRN2Vec) [28],4 Segment of Road Network to Vector (SRN2Vec),
and Intersection and Segment of Road Network to Vector (ISRN2Vec), which learn embeddings
of intersections and road segments by predicting various relationships among (i) intersections,
(ii) road segments, and (iii) between intersections and road segments, respectively.5 Finally, we
evaluate the effectiveness of the learned road network embeddings by five predictive ITS applica-
tions, including traffic signal classification and crossing classification for intersection embeddings;
street classification and avenue classification for road segment embeddings; and travel time esti-
mation for both.
The main contributions of this work are as follows.

• Novel ideas for road network representation learning.We analyze the intrinsic prop-
erties of the road networks and explore novel ideas to learn embeddings for intersections
and road segments, which support various ITS applications with excellent performance.

• A new representation learning framework for road networks. We propose RLRN,
a two-phase framework for road network representation learning. In Phase I, we sample
shortest paths, supplemented by paths travelled by road users, for training data preparation.
In Phase II, we propose RN2Vec, a novel neural network model that learns embeddings
for intersections and road segments by encoding the network structural information and
predicting various relationships among intersections and road segments jointly.

4The preliminary research result on IRN2Vec is reported in SIGSPATIAL 2019.
5Although IRN2Vec and SRN2Vec are the sub-modules in RN2Vec, they can be adapted to learn embeddings of intersections

and road segments separately.
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• Empirical study onmultiple predictive applications using real-world data.We con-
duct extensive experiments to evaluate RN2Vec on various missing tag prediction tasks and
a travel time estimation task on multiple real-world datasets. Experimental results show
that the proposed RN2Vec robustly outperforms three categories of existing methods, in-
cluding (i) Feature-based methods: raw features and principal components analysis (PCA);
(ii) Network embedding methods: DeepWalk, LINE, and Node2vec; and (iii) Features + Net-
work structure-based methods: network embeddings and PCA, graph convolutional net-
works, and graph attention networks. Specifically, RN2Vec significantly outperforms them,
in terms of F1-score in classifying traffic signals (11.96% to 16.86%) and crossings (11.36%
to 16.67%) for intersections, and classifying avenue (10.56% to 15.43%) and street (11.54% to
16.07%) for road segments, as well as in terms ofMean Absolute Error in travel time estima-
tion (17.01% to 23.58%).

The remainder of this article is organized as follows.We first review the relatedwork in Section 2
and then present our problem formulation and data preprocessing in Section 3. Next, we detail the
proposed neural network model RN2Vec in Section 4 and report the evaluation result on real-
world data in Section 5. Finally, we conclude the article in Section 6 and discuss future research
directions.

2 RELATEDWORK

In past several years, the topic of representation learning [1, 35] has received significant interests
in the fields of machine learning and data mining, owing to its advantages in reducing the labor-
intensive effort in feature engineering. Compared with traditional feature engineering methods
(e.g., feature extraction and principal components analysis), the goal of representation learning
is to automatically transform raw data into low-dimensional latent vectors (i.e., embeddings), as
input features to machine learning and data mining algorithms. Recently, neural network-based
representation learningmodels have achieved great success in various domains, including NLP [9],
speech recognition [17] and computer vision [18], and so on.

Inspired by these advances, research on representation learning has been extended to network
data. Network embedding methods [8, 21, 23, 24, 33] have been proposed to embed network nodes
and edges into a latent space as feature vectors that preserve their roles and structural properties
in the network. These works typically assume that nearby nodes on network are relevant and
thus tend to place their learned representations close to each other in the latent feature space.
DeepWalk [21] learns node representations by sampling nodes in the network via uniform random
walks to train Skip-grammodel [16] bymaximizing the likelihood of predicting whether two nodes
are within k-hop to each other. Node2vec [8] also aims to learn node representations but focuses
on the issue of sampling the network neighborhood by applying parameterized random walks
rather than uniform randomwalks. The parameterized randomwalks have two parameters: return
parameter p in and out parameter q, which controls the walking process based on the probability
of returning back to the previous node and the probability of selecting the next node away from
the previous node to simulate BFS and DFS search strategies, respectively. Instead of employing
random walks, LINE [24] basically samples node relevance in accordance with the frequencies of
their 1-hop and 2-hop connectivity. It captures first-order similarity (similarity between adjacent
nodes) and second-order similarity (similarity between nodes in terms of their common neighbors),
separately, to learn two representations of nodes that are used together by concatenation.
These aforementioned methods leverage only network structural information to obtain node

embeddings, without considering homogeneity information or attributes associated with vertices
in networks. Content enhanced embedding methods assume node content information is available
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and exploit both topological information and content features simultaneously. Text-Associated
DeepWalk (TADW) [33] combines the network and text information associatedwith nodes to learn
node embeddings. Content-Enhanced Network Embedding [23] aims to learn various context-
aware embeddings for a vertex by incorporating information from its neighbors. In our work, we
explore common tags and types of edges and nodes in road networks to establish relationships in
our model. Recently, Graph Neural Network (GNN) models [12, 26] have achieved great success
in various graph analytics applications, e.g., node classification, in social, citation and biological
networks. Based on the concept of label propagation and information diffusion in a network, these
models propose to learn embeddings of nodes by aggregating information (e.g., raw attributes of
nodes or their embeddings) from their neighborhood. Graph Convolutional Network (GCN) [12]
treats the edges of a given network as links of neurons between two layers in a neural network
to carry out label propagation in the network. By adopting multiple layers in the model, GCN
performs the label propagation and graph convolution (i.e., aggregate neighbors’ embeddings)
within k-hop for each node to enable the final prediction. However, Graph Attention Network
(GAT) [26] adopts attention mechanisms to learn the weights between two connected nodes, to
perform weighted combination of neighbors’ embeddings. However, these GNN models are de-
signed to tackle a prediction task in an end-to-end manner instead of targeting on the representa-
tion learning problem. Moreover, they are designed for general networks, not for road networks.
So far, there are only a few works considering road network representation learning for ITS [5,

6, 11, 14]. A case study on Danish road network appliesNode2vec to empirically learn road segment
embeddings for road category classification and speed limit classification [11]. DeepWalk is em-
ployed to prepare road segment embeddings for multi-step trajectory prediction [5]. Road2Vec [14]
quantifies the traffic interactions among road segments and employs the ideas of Word2Vec and
DeepWalk to learn embeddings of road segments. Instead of traffic interactions, attribute infor-
mation from nodes and edges are incorporated in random walks to learn road segment embed-
dings [6]. These works either simply apply representation learning methods designed for general
networks or extended with only some simple attributes of road segments, without considering the
influence of intersections and the relationships between intersections and road segments. More-
over, these existing works are not evaluated by different ITS applications.
Different from existing works, the proposed model RN2Vec explores the intrinsic geo-spatial

properties of intersections and road segments and various relationships established based on geo-
closeness and common characteristics of intersections and road segments so as to learn an effec-
tive road network representation. Additionally, although some existing works explore the human
behavior analysis via trajectory data [7, 20, 29–31, 36, 37], there exists an issue of incomplete cov-
erage in road networks. Thus, the RLRN framework samples the training data based on both of
real-world trajectories as well as shortest paths that resemble user moving behaviors. Finally, the
embeddings learned by RLRN can generally support multiple ITS applications.

3 PRELIMINARIES

In this section, we define important terms used throughout the article, formulate the tackled prob-
lem, discuss the challenges, and detail the data preprocessing.

3.1 Terminology

Definition 1 (Road Network). A road network is an undirected graph G = (V ,E,Ψ,Ω)6, where
V is a set of nodes (i.e., intersections7); E ⊆V ×V is a set of edges (denoted as road segments);

6While road networks can be modeled as a directed graph, the design of our RLRN framework does not consider directions.
7Without loss of generality, we also consider terminal/end of a road as an intersection.
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Ψ : V→A is a descriptor function that describes a node v ∈V by a set of pre-defined tags in A to
capture its characteristics, i.e., Ψ(v ) ∈A; and Ω : E→B is a descriptor function that describes an
edge e ∈E by a set of pre-defined tags in B to capture its characteristics, i.e., Ω(e ) ∈B.

Note that the characteristics setsA and B in Definition 1 may be derived from the road networks
or made available by government agencies, volunteer-generated effort, or commercial services. We
further discuss them later in Section 3.3.

Definition 2 (Trajectory). A trajectoryT = {p1,p2, . . . ,p |T | } is a sequence of spatio-temporal sam-
ple points generated from the underlying route of amobile road user. Each sample pointpi contains
a location (xi ,yi ) (i.e., longitude and latitude) and a timestamp ti .

Definition 3 (Road Network Sequence). A road network sequence SR = {v1, e1,v2, e2, . . . ,v |SR | } is
a sequence of intersections and road segments where vi and ei are the ith intersection and road
segment in the path of SR generated by a path sampling method or transformed from a trajectory.

3.2 Problem Definition and Analysis

The goal of this work is to learn embeddings of intersections/road segments for use as input fea-
tures to various predictive and analytical ITS applications. We formally define the problem as
follows.

Definition 4 (Representation Learning on Road Networks). Given a road network, denoted as an
undirected graphG= (V ,E,Ψ,Ω), this problem learns two functions: (i) fV :V→Rd , which projects
each intersection v ∈ V to a vector in a d-dimensional latent space Rd , (ii) fE : E→Rd , which
projects each road segment e ∈ E to a vector in a d-dimensional latent space Rd , where d�|V |
and d�|E |.
In this work, we propose the RLRN framework and a neural networkmodel RN2Vec to tackle the

representation learning problem on road networks. Although there are a few works considering
representation learning for road segments [5, 6, 11, 14], they are mostly applying some existing
representation learning methods designed for general networks to the road network data, without
exploring properties unique in road networks. Our design of RN2Vec consists of three sub-modules,
namely, IRN2Vec, SRN2Vec, and ISRN2Vec, which are based on the same ideas and design principle
but different focus, by exploring intrinsic geo-spatial properties and characteristics of intersections
and road segments.
To realize the RLRN framework and the RN2Vec model, we face the following challenges.

(1) Model design: A well-designed neural network model is essential for effective and efficient
learning. (2) Geo-spatial characteristics:Different from general networks, a road network is charac-
terized by specific information about roads, e.g., traffic signals and stop signs on intersections, the
type of road segments (such as primary way and residential way), and so on. Thus, identifying in-
formation on intersections and road segments to explore their relationships (in terms of relevance
and similarity) for representation learning of the road network elements requires careful study.
(3) Training data preparation: Training data need to be prepared and tailored based on the learn-
ing logic behind the proposed RN2Vec model. For road network representation learning, a good
network sampling method that captures the user moving behaviors in road networks is a mandate.

3.3 Data Preprocessing

In our work, we extract road networks and user-generated tags associated with intersections and
road segments from the OSM [4], a publicly editable and accessible map service. We download
the raw OSM data of several cities (e.g., San Francisco, Porto, and Tokyo) to generate the road
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Table 1. Dataset Statistics for Road Network

Intersections’ tags San Francisco Porto Tokyo Segments’ categories San Francisco Porto Tokyo

Turning_loop 51 17 84 Residential 26,519 78,535 121,289

Give_way 89 458 44 Sevice 28,937 18,005 27,784

Bus_stop 178 2,052 4,905 Unclassified 1,870 16,043 89,355

Turning_circle 1,198 454 36 Primary 4,364 10,301 11,627

Crossing 5,021 6,934 14,377 Secondary 5,645 8,776 10,180

Traffic_signals 2,582 1,646 8,470 Tertiary 6,411 13,976 33,260

Motorway_junction 300 506 257 Motorway 669 2,056 774

Stop 243 786 572 Trunk 612 1,386 5,286

Speed_camerca 26 82 53 Primary_link 157 443 1163

Mini_roundabout 148 131 61 Secondary_link 148 369 151

— — — — Tertiary_link 65 370 186

— — — — Motorway_link 1,119 1,834 852

— — — — Trunk_link 89 463 474

Total Coverage 16.84% 8.48% 13.29% Total Coverage 99.81% 98.99% 98.87%

networks. Specifically, the OSM data mainly includes three sets of elements: Nodes, Ways, and
Relations. Among them, Nodes contains the position of points in the geo-space, Ways denote the
road segments or boundaries of areas, while Relations contains the relationship between elements.
Since the focus of this article is on intersections and road segments in road networks, we extract
intersections from Nodes and road segments from Ways to form road networks. In the following,
we introduce how we extract tags and types of intersections/road segments.

3.3.1 Intersections. As mentioned previously, intersections may share some common charac-
teristics. Thus, we extract two kinds of information on intersections: intersection tags and inter-

section types. Intersection tags are extracted from the “Highway” tag of Nodes in OSM data for an
intersection. Specifically, a node consists of a unique ID, coordinate (i.e., longitude and latitude),
and several key-value pairs of tag attributes, e.g., <node id=“25496583” lat=“51.5173639” lon=
“-0.140043”> <tag k=“highway” v=“traffic_signal”/> </node>. As shown in Table 1, we select the
10 most frequently appearing tags of nodes to learn embeddings. Second, intersections may be
similar due to the same intersection types. In the real world, different types of intersections, such
as T-juction and X-junction, exist. However, this junction-type information needs to be captured
additionally as it is not readily available in the OSM data. One natural way to characterize types
of intersections is by the number of road segments (or road ways) intersected at them. In this
article, we calculate the number of road segments passing through an intersection as the N-way
type of the intersection (N = 2, 3, . . . , 6). For example, a T-junction are intersected by three road
segments. In the real world, five-way and six-way intersections are less common but still exist,
especially in suburban areas.

3.3.2 Road Segments. Similar with intersections, road segments also share some common char-
acteristics, captured by road segment categories. Thus, we extract road segment categories from
the OSM data. In OpenStreeMap, a way consists of a unique ID of the way, several key-value pairs
of tag attributes and a list of references. The list of references contain IDs of the nodes that consti-
tute the road segment, e.g., <edge id=“30758272”> <tag k=“highway” v=“primary”/><reference
list “3152008151,” “767854126,” “1229779432,” “767854350,” “65344423”> </way>. As shown in
Table 1, we extract road segments’ categories from the “Highway” tag of Ways in the OSM data
and select 13 most frequently appearing categories of road segments. Figure 3 shows illustrative
examples of road segments in different categories (highlighted as green lines) extracted from the
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Fig. 3. A portion of Tokyo road network.

Fig. 4. The RN2Vec model.

OSM data in Tokyo. Statistics of the intersection tags and road segment categories are summa-
rized in Table 1. Based on our observation, the coverage of the road segment categories on road
segments is consistently much better than the intersection tags on intersection for different cities.

4 THE RN2VEC MODEL

In this section, we detail the design of RN2Vec. We first analyze the relationships considered
among intersections and road segments, and then detail the design of sub-modules in RN2Vec, i.e.,
IRN2Vec, SRN2Vec, and ISRN2Vec, which respectively learn representations of intersections, road
segments, and both of them jointly. Finally, we discuss the training data preparation for RN2Vec.

4.1 Relationships in Road Network

The main idea behind RN2Vec is to learn embeddings of two road network elements (i.e., intersec-
tions and road segments) by capturing the geo-locality and homogeneity relationships among them.
Under the context of our study, the geo-locality relationship between two elements is established
based on their closeness in terms of road distance within a given threshold. For example, using
100 m as a threshold, two intersections are considered to be local (or in the neighborhoods of each
other) if they can reach each other by traveling within 100 m on road. However, the homogeneity
relationship, existing only between two intersections or two road segments refers to the sharing of
certain common properties. To systematically capture various geo-locality and homogeneity rela-
tionships within the road network, we design the RN2Vec model in three sub-modules, as shown
in Figure 4.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 11. Publication date: December 2020.
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Overall, RN2Vec aims to learn embeddings for intersections and road segments jointly by cap-
turing specific relationships between two intersections (via IRN2Vec), between two road segments
(via SRN2Vec) and between an intersection and a road segment (via ISRN2Vec). The specific ho-
mogeneity relationships considered in IRN2Vec and SRN2Vec are based on user-generated tags
(see Table 1 for the complete list) for intersections and road segments, respectively. Additionally,
in IRN2Vec, we also explore the road type of intersections, e.g., T-Junction, as a homogeneity re-
lationship. However, the geo-locality relationship for pairs of intersections, road segments, and
intersection/road segment are separately captured in their corresponding models. Note that in
ISRN2Vec, in addition to the generic geo-locality mentioned above, we also explore an additional
kind of geo-locality, called direct connection (DC), between an intersection and a road segment,
representing their direct connection, i.e., the intersection is an endpoint of the road segment. We
argue that a directly connected pair of intersection and road segment is more relevant than other
indirectly connected pairs and thus incorporate this relationship in ISRN2Vec.

4.2 Representation Learning for IRN2Vec

In this section, we present IRN2Vec, the first sub-module of RN2Vec, to learn embeddings for
intersections in a road network. As discussed earlier, our idea lies in capturing the geo-locality
and homogeneity relationships between two intersections. Note that, in IRN2Vec, we divide the
homogeneity relationships of intersections based on tags and road types, due to the nature of
different data sources. If two intersections share at least one same tag, then we say they have the
“same intersection tag” (or simply “same tag”) relationship. However, if two intersections share the
same road type, thenwe say they have the “sameN-way type” (or simply “same type”) relationship.
Accordingly, we propose IRN2Vec that jointly predicts the targeted relationships between any
given pair of intersections for intersection representation learning.
As shown in Figure 4, the IRN2Vec is a multi-task binary classifier that takes a pair of intersec-

tions vx ,vy ∈ V as the inputs to predict three relationships between them, including geo-locality,
same intersection tag and same N-way type. In this model, the input layer takes in two one-hot
vectors �vx and �vy of length |V |, representing node vx and vy , respectively. In the latent layer, �vx
and �vy are transformed into latent vectors Rvx

′ �vx and Rvy
′ �vy , where Rvx and Rvy are two |V | × d ma-

trices consisting of all intersections’ latent vectors, i.e., each row of this matrix denotes the vector
for an intersection, Rvx

′ and Rvy
′ are their transpose matrices, and d is the dimensionality of the

hidden space. Next, we use inner product followed by a Siдmoid function to predict whether two
intersections vx and vy have a specific relationship. More specifically, to present these operations
in the proposed neural network, we apply Hadamard function,8 i.e., element-wise multiplication,
to aggregate the two vectors, which is denoted by Rvx

′ �vx � Rvy ′ �vy , and then we apply the Lin-

ear function, i.e., f(x) = x, for activation. Finally, the output layer, taking Summation as the input
function and Siдmoid function for activation, computes Siдmoid (Rvx

′ �vx · Rvy ′ �vy ), respectively, to
predict the three relationships, correspondingly measured by (1) the probability Ploc (vx ,vy ) for
vx and vy to be located within a neighborhood of certain distance, (2) the probability Ptaд (vx ,vy )
for vx and vy to have the same intersection tag, and (3) the probability Ptype (vx ,vy ) for vx andvy
to have the same N-way type. The three joint probabilities are derived as follows:

Ploc (vx ,vy ) = σ
(∑

Rvx
′ �vx · Rvy ′ �vy

)
; Ptaд (vx ,vy ) = σ

(∑
Rvx
′ �vx · Rvy ′ �vy

)
; Ptype (vx ,vy )

= σ
(∑

Rvx
′ �vx · Rvy ′ �vy

)
,

8Average and Minus are also tested empirically but Hadamard outperforms them.
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where σ (z) = 1
1+e−z is the Siдmoid function. In IRN2Vec, wemake Rvx and Rvy to be the samematrix.

In the training process, conceptually, if intersections vx and vy are observed in the training data
to satisfy one of the targeted prediction tasks, then Rvx

′ �vx and Rvy ′ �vy are moved closer in the latent
space. Otherwise, they are moved away in the latent space.
The learning of IRN2Vec model parameters (i.e., intersection embeddings) is realized by set-

ting multiple optimization objectives and thus is critical to set the objective functions properly.
To train IRN2Vec, a training dataset DI , which contains training data entries in the form of
〈vx ,vy , Sloc (vx ,vy ), Staд (vx ,vy ), Stype (vx ,vy )〉, extracted from the road network in the train-
ing data preparation phase (see Section 4.5). In a training data entry, Sloc (vx ,vy ), Staд (vx ,vy ) and
Stype (vx ,vy ) are Boolean values, indicating whether intersections vx and vy are located within
k-meter in the road network, whether vx and vy have the same intersection tag, and whether vx
and vy have the same N-way type, respectively. With the training dataset DI , the IRN2Vec model
is trained by the backpropagation training algorithm in conjunction with asynchronous stochastic
gradient ascent. It goes backward to adjust the weights in Rvx and Rvy for each data entry s in DI ,
attempting to maximize the overall objective function ORN 2V ec of the RN2Vec model as follows:

ORN 2V ec = λOI SRN 2V ec + μOI RN 2V ec + (1 − λ − μ )OSRN 2V ec , (1)

where λ and μ are weighting parameters.
WhileOSRN 2V ec andOI SRN 2V ec are to be discussed later in Section 4.3 and Section 4.4, here we

define the objective function OI RN 2V ec as a weighted combination of Oloc (vx ,vy ), Otaд (vx ,vy ),
and Otype (vx ,vy ) derived as follows:

Oloc (vx ,vy ) =

{
Ploc (vx ,vy ) if Sloc (vx ,vy ) = 1
1 − Ploc (vx ,vy ) if Sloc (vx ,vy ) = 0

, (2)

Otaд (vx ,vy ) =

{
Ptaд (vx ,vy ) if Staд (vx ,vy ) = 1
1 − Ptaд (vx ,vy ) if Staд (vx ,vy ) = 0

, (3)

Otype (vx ,vy ) =

{
Ptype (vx ,vy ) if Stype (vx ,vy ) = 1
1 − Ptype (vx ,vy ) if Stype (vx ,vy ) = 0

. (4)

In Equations (2), (3) and (4), the functions Oloc (vx ,vy ), Otaд (vx ,vy ), and Otype (vx ,vy ) quan-
tify how IRN2Vec correctly predicts Sloc (vx ,vy ), Staд (vx ,vy ), and Stype (vx ,vy ) for a data en-
try s . Specifically, for a training data entry sI = 〈vx ,vy , Sloc (vx ,vy ), Staд (vx ,vy ), Stype (vx ,vy )〉,
Oloc (vx ,vy ) aims to maximize Ploc (vx ,vy ), when Sloc (vx ,vy ) is 1, and minimize Ploc (vx ,vy ), oth-
erwise. Similarly, Otaд (vx ,vy ) and Otype (vx ,vy ) aim to maximize Ptaд (vx ,vy ) and Ptype (vx ,vy ),
when Staд (vx ,vy ) and Stype (vx ,vy ) is 1, respectively, andminimize Ptaд (vx ,vy ) and Ptype (vx ,vy ),
otherwise.
To ease the computation in the optimization process, we maximize logOloc (vx ,vy ),

logOtaд (vx ,vy ) and logOtype (vx ,vy ) instead ofOloc (vx ,vy ),Otaд (vx ,vy ), andOtype (vx ,vy ). The
objective functions are as follows:

logOloc (vx ,vy ) = Sloc (vx ,vy ) log Ploc (vx ,vy ) + [1 − Sloc (vx ,vy )] log[1 − Ploc (vx ,vy )], (5)

logOtaд (vx ,vy ) = Staд (vx ,vy ) log Ptaд (vx ,vy ) + [1 − Staд (vx ,vy )] log[1 − Ptaд (vx ,vy )], (6)

logOtype (vx ,vy ) = Stype (vx ,vy ) log Ptype (vx ,vy ) + [1 − Stype (vx ,vy )] log[1 − Ptype (vx ,vy )].
(7)
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Accordingly, the objective function OI RN 2V ec is defined as follows:

OI RN 2V ec =
∑
sI ⊆DI

{
α logOloc (vx ,vy ) + β logOtaд (vx ,vy ) + (1 − α − β ) logOtype (vx ,vy )

}
, (8)

where α and β are weighing parameters.
As mentioned, we apply backward propagation in conjunction with stochastic gradient ascent

to maximize the overall objective function ORN 2V ec . Specifically, for each training data entry, it
goes backward to adjust the weights of intersections vx and vy in Rvx

′ �vx and Rvy
′ �vy based on the

gradients, respectively, as follows:

Rvx
′ �vx := Rvx

′ �vx + η[αd logOloc (vx ,vy ) + βd logOtaд (vx ,vy ) + (1 − α − β )d logOtype (vx ,vy )]/dR
v
x
′ �vx ,
(9)

Rvy
′ �vy := Rvy

′ �vy + η[αd logOloc (vx ,vy ) + βd logOtaд (vx ,vy ) + (1 − α − β )d logOtype (vx ,vy )]/dR
v
y
′ �vy ,
(10)

where η is the learning rate.

4.3 Representation Learning for SRN2Vec

Next, we present the second sub-module of RN2Vec, namely SRN2Vec, to learn embeddings for
road segments in a road network. To generate the embedding of a road segment, one naive ap-
proach is to apply some aggregation functions, e.g., Hadamard, Addition, or Average, on the em-
beddings of its two end intersections (generated by IRN2Vec). However, this approach misses the
information of road segments themselves, such as the geo-locations and road categories. Thus, fol-
lowing similar idea and the same design principle in IRN2Vec, we propose SRN2Vec by exploring
the intrinsic properties of road segments for representation learning.
Given a road network, we learn road segment embeddings by exploring the relationships of

geo-locality and same road category9 between two road segments. As shown in Figure 4, SRN2Vec
is also a multi-task binary classifier with a model architecture similar to IRN2Vec but targeting on
different prediction objectives. More specifically, SRN2Vec takes a pair of road segments ex , ey ∈ E
as the inputs to predict the two aforementioned relationships between them. The input layer takes
in two one-hot vectors �ex and �ey of length |E |, representing edge ex and ey , respectively. In the
latent layer, �ex and �ey are transformed into latent vectors Rex

′ �ex and Rey
′ �ey , where Rex and Rey are

two |E | × d matrices consisting of all road segments’ latent vectors, Rex
′ and Rey ′ are their transpose

matrices, and d is the dimensionality of the hidden space. Next, we use inner product followed by
a Siдmoid function to predict (1) the probability Ploc (ex , ey ) for ex and ey to be located within a
neighborhood of certain distance and (2) the probability Pcate (ex , ey ) for ex and ey to have the
same category relationship. The two joint probabilities are derived as follows:

Ploc (ex , ey ) = σ
(∑

Rex
′ �ex · Rey ′ �ey

)
; Pcate (ex , ey ) = σ

(∑
Rex
′ �ex · Rey ′ �ey

)
,

where σ (z) = 1
1+e−z is the Siдmoid function. We make Rex and Rey identical.

To train SRN2Vec, a training dataset DS , which contains training data entries in the form of
〈ex , ey , Sloc (ex , ey ), Scate (ex , ey )〉 is extracted from the road network in the training data prepa-
ration phase (see Section 4.5). In a training data entry, Sloc (ex , ey ) and Scate (ex , ey ) are Boolean
values, indicating whether road segments ex and ey are located within k-meter in the road net-
work, and whether ex and ey have the same road category relationship, respectively. With the
training dataset DS , the SRN2Vec model is trained by the backpropagation training algorithm in

9Similarly with the same tag relationship in IRN2Vec, we say two road segments have the “same road category” (or simple

“same category”) relationship if they share at least one same category.
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conjunction with asynchronous stochastic gradient ascent to maximize the overall objective func-
tion ORN 2V ec in Equation (1). The objectives Oloc (ex , ey ) and Ocate (ex , ey ) are derived as follows:

Oloc (ex , ey ) =

{
Ploc (ex , ey ) if Sloc (ex , ey ) = 1
1 − Ploc (ex , ey ) if Sloc (ex , ey ) = 0

;

Ocate (ex , ey ) =

{
Pcate (ex , ey ) if Scate (ex , ey ) = 1
1 − Pcate (ex , ey ) if Scate (ex , ey ) = 0

.

In specific, for a training data entry sS = 〈ex , ey , Sloc (ex , ey ), Scate (ex , ey )〉, Oloc (ex , ey ) aims to
maximize Ploc (ex , ey ), when Sloc (ex , ey ) is 1, and minimize Ploc (ex , ey ), otherwise. Ocate (ex , ey )
aim to maximize Pcate (ex , ey ), when Scate (ex , ey ) is 1, and minimize Pcate (ex , ey ), otherwise.

To ease the computation, we maximize logOloc (ex , ey ) and logOcate (ex , ey ) instead of
Oloc (ex , ey ) and Ocate (ex , ey ). The objective functions are as follows:

logOloc (ex , ey ) = Sloc (ex , ey ) log Ploc (ex , ey ) + [1 − Sloc (ex , ey )] log[1 − Ploc (ex , ey )], (11)

logOcate (ex , ey ) = Scate (ex , ey ) log Pcate (ex , ey ) + [1 − Scate (ex , ey )] log[1 − Pcate (ex , ey )]. (12)

Finally, the objective function OSRN 2V ec is defined as follows:

OSRN 2V ec =
∑

sS ⊆DS

{
γ logOloc (ex , ey ) + (1 − γ ) logOcate (ex , ey )

}
, (13)

where γ is a weighing parameter.
We apply backpropagation in conjunctionwith asynchronous stochastic gradient ascent tomax-

imize the objective function OSRN 2V ec based on the gradients derived as follows:

Rex
′ �ex := Rex

′ �ex + η[γd logOloc (ex , ey ) + (1 − γ )d logOcate (ex , ey )]/dR
e
x
′ �ex , (14)

Rey
′ �ey := Rey

′ �ey + η[γd logOloc (ex , ey ) + (1 − γ )d logOcate (ex , ey )]/dR
e
y
′ �ey , (15)

where η is the learning rate.

4.4 Representation Learning for ISRN2Vec

Please note that RN2Vec learns embeddings for intersections and road segments jointly. As
IRN2Vec and SRN2Vec target on intersections and road segments independently,10 there is no in-
teractions between them. Thus, in addition to explore the geo-locality relationships between a pair
of intersection and road segment, ISRN2Vec plays an essential and critical role to bridge IRN2Vec
and SRN2Vec in RN2Vec, by sharing the learning parameters, i.e., intersection embeddings and
road segment embeddings, with IRN2Vec and SRN2Vec.
Similarly, ISRN2Vec is a binary-task classifier that takes an intersection v ∈ V and a road seg-

ment e ∈ E as the inputs to predict their geo-locality, i.e., located within a certain distance. More
specifically, the input layer takes in two one-hot vector �v and �e of length |V | and |E |, respectively,
representing node v and edge e . In the latent layer, �v and �e are transformed into latent vectors
Rv ′�v and Re ′�e , where Rv and Re are |V | × d and |E | × d matrices representing the transformation,
Rv ′ and Re ′ are their transpose matrices, and d is the dimensionality of the hidden space. Next,
we use inner product followed by a Siдmoid function to predict (1) the probability Ploc (v, e ) for
v and e to be located within a certain distance; and (2) the probability PDC (v, e ) for v and e to be
directly connected. As mentioned, in ISRN2Vec, the matrix Rv and Re , consisting of embeddings
of all intersections and road segments, are identical to Rvx (= Rvy ) of IRN2Vec and Rex (= Rey ) of
SRN2Vec, respectively, which effectively connect all sub-modules of RN2Vec.

10Actually, IRN2Vec and SRN2Vec may be used as standalone models to learn intersection embeddings and road segment

embeddings separately by using OI RN 2V ec and OSRN 2V ec as the training objective, respectively.
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To train the ISRN2Vec, a training dataset DI S that contains training data entries in the form of
〈v, e , Sloc (v, e ), SDC (v, e )〉 is extracted from the road network. In a training data entry, Sloc (v, e )
and SDC (v, e ) are Boolean values, indicating whether node v and edge e are located within k-
meter and whether directly connected in road networks. Accordingly, ISRN2Vec, trained by the
backpropagation training algorithm in conjunction with asynchronous stochastic gradient ascent,
goes backward to adjust the weights in Rv and Re , attempting to maximize the overall objective
function ORN 2V ec in Equation (1). In ISRN2Vec, the objectives Oloc (v, e ) and ODC (v, e ) quantify
how Sloc (v, e ) and SDC (v, e ) in a data entry are correctly predicted, respectively, are derived as
follows:

Oloc (v, e ) =

{
Ploc (v, e ) if Sloc (v, e ) = 1
1 − Ploc (v, e ) if Sloc (v, e ) = 0

; ODC (v, e ) =

{
PDC (v, e ) if SDC (v, e ) = 1
1 − PDC (v, e ) if SDC (v, e ) = 0

.

To ease the computation, we adopt logOloc (v, e ) and logODC (v, e ) as follows:

logOloc (v, e ) = Sloc (v, e ) log Ploc (v, e ) + [1 − Sloc (v, e )] log[1 − Ploc (v, e )], (16)

logODC (v, e ) = SDC (v, e ) log PDC (v, e ) + [1 − SDC (v, e )] log[1 − PDC (v, e )]. (17)

The objective function OI SRN 2V ec for ISRN2Vec is defined as follows:

OI SRN 2V ec =
∑

sI S ⊆DI S

{
ω logOloc (v, e ) + (1 − ω) logODC (v, e )

}
, (18)

where ω is a weighting parameter.
During training, we apply stochastic gradient ascent to update Rv ′�v and Re ′�e based on the

gradients derived as follows:

Rv ′�v := Rv ′�v + η[ωd logOloc (v, e ) + (1 − ω)d logOloc (v, e )]/dR
v ′�v, (19)

Re ′�e := Re ′�e + η[ωd logODC (v, e ) + (1 − ω)d logODC (v, e )]/dR
e ′�e, (20)

where η is the learning rate.

4.5 Training Data Preparation

To meet the need of model training, in Phase I of RLRN, we sample pairs of elements (i.e., intersec-
tions and road segments) in the road network to prepare training data for RN2Vec. Our design de-
cision represents a tradeoff in data collection between the computational efficiency (i.e., sampling
instead of enumeration) and the quality (i.e., the training data should cover as many intersections
and road segments as possible). Conventionally, network representation learning techniques adopt
randomwalks to sample the network structure. However, we argue that randomwalks-based sam-
pling is not suitable for road networks, becausemobile road users do not move randomly. Therefore,
we adopt shortest path-based scheme to sample the road network, which is more aligned to the
moving behaviors of mobile road users. Specifically, we apply Dijkstra algorithm to find the short-
est paths between randomly selected pairs of road network elements.
After generating a set of shortest paths, we employ sliding windows on each path to prepare

training data entries for RN2Vec in the form of sI = 〈vx ,vy , Sloc (vx ,vy ),Staд (vx ,vy ), Stype (vx ,vy )〉,
sS = 〈ex , ey , Sloc (ex , ey ), Staд (ex , ey )〉 and sI S = 〈v, e , Sloc (v, e ), SDC (v, e )〉 to generate three datasets,
DI , DS , and DI S . More specifically, along a sampled shortest path, represented as a sequence of
interleaving intersections and road segments (i.e., SR = {v1, e1,v2, e2, . . . ,v |SR | }, we examine the
notions of hop-based neighborhood and distance-based neighborhood to define the geo-locality be-
tween road network elements. Conventionally, network embedding techniques typically adopt
hop-based neighborhood, which does not capture the geo-spatial characteristics of road networks
very well. Considering an example of road network sequence SRN = {v1, e1,v2, e2,v3, e3,v4, e4,v5}
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Fig. 5. An example of different sliding window size in the RN2Vec model.

(see Definition 3), sampled via shortest path betweenv1 andv5, where a sliding window of 2-hop is
used. As shown in Figure 5(a), we have three 2-hop neighborhood windowsw1= {v1, e1,v2, e2,v3},
w2= {v2, e2,v3, e3,v4} and w3= {v3, e3,v4, e4,v5}. As shown in Figure 5(b), intersections v3 and v5
are distant but they are treated as close to each other by a 2-hop window. Generally speaking,
near things are more related than distant things. Therefore, in RN2Vec, we explore distance-

based neighborhood. For the same road network sequence in Figure 5, where a 50m window is
used to sample along the shortest path, resulting in w1= {v1, e1,v2, e2,v3, e3}, w2= {v2, e2,v3, e3},
w3= {v3, e3,v4, e4}, andw4= {v4, e4,v5}.

Accordingly, for each pair of road network elements (i.e., (vx ,vy ), (ex , ey ) or (v, e)) within
a window, we create a positive sample reflecting their geo-locality and homogeneity. For in-
stance, for the first window w1= {v1, e1,v2, e2,v3, e3}, we create positive training samples 〈v1, e1,
1, sameDC (v1, e1)〉, 〈v1, v2, 1, sametaд (v1, v2), sametype (v1, v2)〉, 〈v1, e2, 1, sameDC (v1, e2)〉, 〈v1, v3,
1, sametaд (v1, v2), sametype (v1, v2)〉, 〈v1, e3, 1, sameDC (v1, e2)〉, 〈e1, v2, 1, sameDC (e1,v2)〉, and so
on, where 1 indicates the positive locality between the pair of network elements, sameDC (v, e )
or sameDC (e,v ) are further determined by checking whether v and e are directly connected;
sametaд (vx ,vy ) and sametype (vx ,vy ) are determined by checking whether vx and vy have the
same intersection tag and same N-way type, respectively; samecate (ex , ey ) is determined by check-
ing whether ex and ey have the same road category. In addition to the positive training samples,
the RN2Vec model also needs negative data samples for learning. Thus, we generate negative data
samples following the idea of Negative Sampling [16], replacing the second element by randomly
selecting another element.
In our study, we show that the shortest path-based sampling approach is better than the con-

ventional random walk-based network sampling. Nevertheless, we argue that using real-world
trajectory data, which captures the moving behaviors of mobile road users, to sample the road
network is better than existing approaches that randomly generates samples. However, publicly
available trajectory datasets do not cover the whole corresponding road networks, i.e., not all the
intersections and road segments in the road networks are visited by the collected trajectories.
Thus, in this article, we supplement shortest path sampling with real-world trajectories for model
training.

5 PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate RN2Vec by using multiple real-world
road network datasets and five downstream applications, including intersections classification, road
segments classification as well as travel time estimation of travel paths on road networks for all these
models. For comparison, we include three categories of existing methods, including (i) Feature-
based methods, (ii) Network embedding methods, and (iii) Features + Network structure-based
methods in our evaluation. We also perform parameter tuning on RN2Vec and its sub-modules,
examine several issues and demonstrate the generality and robustness of RLRN framework. Finally,
we visualize and compare embeddings generated by RN2Vec and some selected models.
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Table 2. Statistics of Road Network Datasets

Name San Francisco Porto Tokyo Seattle Chicago

#Intersections 58,404 119,769 217,117 200,213 261,727

#Road segments 76,744 154,128 305,874 247,184 377,973

Table 3. Statistics of Trajectory Datasets

Name #GPS Points #Trajectories Avg. Time Gap

San Francisco 11,219,955 443,406 14.12 s

Porto 74,269,739 1,233,766 15.11 s

Tokyo 68,275,641 273,046 15.00 s

5.1 Datasets and Compared Methods

Our evaluation involves two types of real-world datasets, i.e., road network datasets and trajectory
datasets. Specifically, road networks are fed for training/testing of representation learning models,
while some tags/categories of nodes/edges (i.e., the ground truth) are used for classification tasks.
Meanwhile, trajectory datasets are used to provide the travel paths and their corresponding travel
times (i.e., the ground truth) for travel time estimation.

5.1.1 Road Network Data. We extract five road networks, including San Francisco, Porto,
Tokyo, Seattle and Chicago, from the raw network data downloaded from OpenStreetMap web-
site [4]. Note that in road segment classification tasks, we use additional road segment types from
TIGER data [2] including avenue, drive, boulevard, street, court, and so on, which are not part of
road segment categories in the OSM data. As the TIGER data, produced by the US Census Bureau,
only contains information on US road networks, we use San Francisco, Seattle and Chicago road
networks in classification tasks for evaluation of road segment embeddings. Some statistics of the
road networks extracted are summarized in Table 2.

5.1.2 Trajectory Data. We collect three publicly accessible trajectory datasets as follows. Some
statistics of these trajectory datasets are summarized in Table 3.
San Francisco [22]. This dataset collects 11 million GPS points from 536 taxis running in San

Francisco for a 30-day period, and every taxi has two statuses (occupied or not). We select the
sequences of GPS points by occupied taxis to form trajectories and remove trajectories with fewer
than 5 sample points, which yields 0.4 million trajectories.
Porto [3]. This dataset collects 1.7 million trajectories (containing 74 million GPS sample

points) from 442 taxis running in Porto City over a complete year. Each taxi reports its location
every 15 second. We remove trajectories with fewer than 10 sample points to yield 1.23 million
trajectories.
Tokyo [34]. This dataset collects 68 million GPS sample points from 617,040 users in Tokyo

taking different vehicles, such as bike, train, and car. We consider sequences of GPS sample points
by users taking bicycle and bus and segment them into trajectories when there is no sample point
for 45 s or more (which is longer than about 99% time gaps). Then, we remove trajectories with
fewer than 5 sample points, which yields 0.27 million trajectories.

5.1.3 Compared Methods. We use Unique ID as a baseline for our evaluation. In addition, we
examine three categories of existing methods, including (i) Feature-based methods: raw features
and PCA; (ii) Network embedding methods: DeepWalk, LINE, and Node2vec; and (iii) Features +
Network structure-based methods: network embeddings and PCA, graph convolutional networks,
and graph attention networks.
Unique ID (UID) uses one-hot vectors as unique IDs of intersections and road segments in a

network. Without learning embeddings, this method serves as a baseline.
Raw Features (RF) directly uses intersection tags and road types as feature vectors of inter-

section and uses road segment categories as feature vectors of road segments.
PCA linearly transforms the raw features of intersections and road segments into a new space

where the top k (i.e., k = 4) components are used as embeddings.
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DeepWalk [21] learnsd-dimensional node vectors by exploring the relationship of nodeswithin
w-hop neighborhood via uniform random walks in the network.

LINE [24] learns d-dimensional node vectors by by capturing the first-order proximity in d/2
dimensions and the second-order proximity on the other dimensions.
Node2vec [8] is generalized from DeepWalk. It learns d-dimensional node vectors by capturing

node pairs withinw-hop neighborhood via parameterized random walks in the network.
Network embedding and PCA (NE+PCA) concatenates the best network embeddings in ex-

periments and the PCA embeddings to form combined embeddings.
GCN [12] learns embeddings of intersections/road segments in a road network by aggregating

information from their neighborhoods. Note that GCN is not designed specifically for representa-
tion learning. To compare GCN as a general network embedding method, we train a GCN model
for a classification task not targeted in our downstream applications (e.g., turning circles classifi-
cation for intersection embedding and boulevard classification for road segment embedding), then
we extract the output of the last layer of the GCN model as the embeddings for evaluation (de-
noted as GCN_E). However, to observe how embedding methods fare with the best performance
of GCN, we also directly train an end-to-end GCN model (denoted as GCN_A) for each of the
targeted classification tasks for comparison.
GAT [26] adopts the attention mechanism to learn the weights between two connected nodes

for information aggregation. Similarly to GCN, we also consider two GAT variants, GAT_E and
GAT_A, in the classification tasks.
Notice that although several existingworks are proposed for learning road segment embeddings,

they simply apply network embeddingmethods (e.g., DeepWalk and Node2vec). Thus, we compare
DeepWalk, LINE, and Node2vec instead of them for evaluation. RN2Vec is implemented in C. All
experiments are run on the Ubuntu 18.04 operating system with an Intel Core i5-8400 CPU.

5.2 Parameter Tuning and Unique Issues

In this section, we tune the parameter settings on the sub-modules (i.e., IRN2Vec, SRN2Vec, and
ISRN2Vec) and RN2Vec. Then we study unique issues arise in RN2Vec.

5.2.1 IRN2Vec. To study the impact of parameter setting on IRN2Vec, we vary the values of
important parameters to observe how the F1-score changes in traffic signal classification.
After learning the intersection embeddings,11 we use the 2,582, 1,646, and 8,470 intersections

with the “traffic signal” tag in the San Francisco, Porto, and Tokyo road networks as positive sam-
ples. Then, we randomly add equal number of negative samples (i.e., intersections without the
“traffic signal” tag) to form three balanced labeled datasets, which are randomly split as the train-
ing set (90%) and test set (10%). We use the training set to train a classifier by using linear SVM and
evaluate the performance using the test set. In Figure 6, we report the F1-score of these sensitivity
tests.
Dimensionality (d). Generally speaking, a small dimensionality is not sufficient to capture the

various relationships between intersections, but too large a dimensionality may lead to overfitting.
Figure 6(a) shows that setting d at 128 for IRN2Vec is reasonable.
No. ofNegative Samples (ns).We test various number of negative samples per positive sample.

As shown in Figure 6(b), the best performance are achieved when ns is set to 5 in datasets.
No. of Shortest Paths Per Node (wn). Generally speaking, more shortest paths generate more

training data, leading to better performance in downstreaming tasks. Figure 6(c) suggests that the
performance continues to improve whenwn increases and it converges atwn = 1280.

11We remove all “traffic signal” tags while learning intersection embeddings.
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Fig. 6. Parameter analysis for IRN2Vec.

Fig. 7. Evaluation of α and β for IRN2Vec.

Distance of Window Size (ws). Figure 6(d) shows that the performance improves while ws
increases from 100 to 700 m (with a step of 200 m). The best performance is achieved at ws =
500m.
Weights of α and β . Finally, we evaluate the weights α , β , and 1 − α − β corresponding to

various objectives of IRN2Vec, i.e.,Oloc (vx ,vy ),Otaд (vx ,vy ), andOtype (vx ,vy ) in Equation (8).We
perform grid search to tune the performance. As shown in Figure 7, the performance of IRN2Vec in
different datasets does not change much when α is set between 0.75 to 0.8 and β is set to between
0.05 to 0.1. Consistently, the best performance is achievedwhenα = 0.8 and β = 0.1. Note that when
α = 0.85 and β = 0.15 (i.e., it does not consider the same-type relationship between intersections in
IRN2Vec), the experiments have the worst results, which suggests that the same-type relationship
between intersections is quite useful for representation learning and traffic signal classification.

5.2.2 SRN2Vec. Next, we study the impact of important parameters on the performance of
SRN2Vec in avenue classification, which infers whether a road segment has an avenue tag on
it or not. We use the 11.2k, 22.2k, and 68.7k road segments tagged as “avenue” in Tiger data on
San Francisco, Seattle, and Chicago road networks, respectively, as positive samples and randomly
select equal number of non-avenue road segments as negative samples to form labeled datasets.
For each dataset, we randomly split it into 90% and 10% as the training set and test set, respec-
tively. We use the training set to train a linear SVM model as a binary classifier and evaluate its
performance using the test set. We report the F1-score.

As shown in Figure 8, SRN2Vec performs the best when the dimensionality d is set to 256;
the number of negative samples per positive sample ns is set to 7; the number of shortest paths
sampled per road segmentwn is set to 1280; the window sizews is set to 900 m. Moreover, we test
the parameter γ and 1 − γ , the weighs for logOloc (ex , ey ), and logOcate (ex , ey ) in Equation (13).
The best performance is achieved when the γ is set to 0.8.
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Fig. 8. Parameter analysis for SRN2Vec.

Fig. 9. Unique issues in traffic signal classification.

5.2.3 ISRN2Vec. By using the best parameter settings for IRN2Vec and SRN2Vec, we tuneω for
weighing logOloc (v, e ) in ISRN2Vec (i.e., Equation (18)) on both traffic signal classification and
avenue classification tasks. The tuning is based on the overall RN2Vec performance as ISRN2Vec
does notwork alone like IRN2Vec and SRN2Vec. Due to space limit, we do not plot the experimental
result. The performance is the best when ω is set to 0.75.

5.2.4 RN2Vec. Finally, we perform grid search to tune the performance of λ, μ, and 1 − λ − μ,
which are theweights forOI SRN 2V ec ,OI RN 2V ec , andOSRN 2V ec in Equation (1). Based on the results,
the weights of λ and μ are set to 0.6 and 0.2. In summary, in RN2Vec, the dimensionality of all
embeddings is set to 256. The number of negative samples per positive sample is set to 7. The
distance of window size is set to 900m, the number of shortest paths sampled is set to 1280, the
weights of α , β , γ , ω, λ, and μ are set to 0.8, 0.1, 0.8, 0.75, 0.6, and 0.2.

5.2.5 Study of Unique Issues. As discussed, several unique issues arise in the design of RN2Vec.
In this section, we perform experiments on traffic signal classification to examine the following
issues: (1) Sampling schemes for training data, (2) distance-based vs. hop-based neighborhoods,
and (3) ablation study on tags and N-way types.
To validate our argument that shortest paths better reflect the moving behaviors of mo-

bile road users than random walks, we compare the proposed RN2Vec12 with a variant that uses
training data prepared by random walk sampling. As shown in Figure 9(a), shortest paths out-
performs random walks by 3.38% to 10.23% in traffic signal classification, which suggests that
using shortest paths sampling in RN2Vec is significantly more effective than using random walks,
because mobile users naturally follow the more economic shortest paths while moving on roads.

12In this article, shortest path is considered by default as the data sampling scheme of the proposed RN2Vec.
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To validate our idea of adopting distance to capture geo-locality in road networks, we compare
the proposed distance-based neighborhood (with ws = 900 m) for road networks representa-
tion learning against the hop-based neighborhood (with hop number k = 5), which is widely
used in conventional network representation learning. Figure 9(b) shows that distance-based
neighborhood outperforms hop-based neighborhood in all three datasets (improving by 3.13%
to 7.64%), which suggests that distance-based neighborhood, capturing the geo-spatial charac-
teristics of the road network, is a more natural choice for road network representation learning.
Finally, as we separate two homogeneity relationships in IRN2Vec (due to the nature of data

sources), we perform an ablation study to find the impact of same-tag and same-type relationships
between intersections on the performance of the proposed RN2Vec. In this study, we consider three
variants of RN2Vec: (1) Complete is the complete version with all factors considered; (2) NoTag
does not consider the same-tag relationship in IRN2Vec; and (3) NoType does not consider the
same-type relationship. Figure 9(c) shows that Complete outperforms NoTag and NoType for about
0.78% to 8.24% in the three datasets, which suggests that taking both tags and N-way types of
intersections into account are beneficial for RN2Vec to learn better intersection representations.
In Figure 9(c), we observe that NoType, which uses tags but not intersection types, performs

the worst in all datasets. This means the N-way intersection types we derived is more informa-
tive than the tags generated by OSM volunteers. This may be due to the incomplete/inaccurate
tag information associated with intersections in the OSM data. We dig further into this issue and
find significant amount of missing tags in open street maps. For example, there are only 243 stop
signs in San Francisco road network, which is unreasonably few. To investigate this issue and to
validate our idea of using tags in learning, we collect additional 3,727 stop signs from the offi-
cial website of San Francisco government [13] as supplementary stop sign tags of intersections
in the San Francisco road network for representation learning. The new result is improved for
about 2.94% compared with the old result using only stop sign tags from OSM dataset. This sup-
ports our argument that the information of intersection tags, if available and more accurate, is
indeed useful for representation learning. Thus, the RN2Vec embeddings have room to get better
as the volunteer-generated tags grow or official/proprietary geographical information describing
the road networks is used.

5.3 Intersection Classification

In this section, we evaluate the intersection embeddings generated by RN2Vec by two intersection
classification tasks (i.e., traffic signal classification and crossing classification) on three real-world
road network datasets (i.e., the San Francisco, Porto, and Tokyo datasets). They are both binary
classification tasks that infer whether an intersection has a traffic signal tag and has a crossing tag
or not, respectively. We follow the same experimental setup mentioned in Section 5.2.1 and also
report the F1-score for comparison.
The parameter configurations of compared methods are tuned experimentally. The dimension-

ality of raw feature, PCA and NE+PCA are set to 14, 4, and 132, respectively. In DeepWalk and
Node2vec, we set the window size w = 5, the number of walks = 20 and the walk length = 1,280.
For Node2vec, we set the two parameters p = 1 and q = 4 for parameterized random walks. For
GCN_A and GCN_E the number of hidden layers is set to 2 followed by a fully connected layer.
The dimensionality and learning rate are set to 128 and 0.01. For GAT_A and GAT_E, the dimen-
sionality is 128 (i.e., 4 attention heads and the embedding size = 32 for each head) and the learning
rate is set to 0.005.
Evaluation by Traffic Signal Classification. The performance of all evaluated models on

traffic signal classification is reported in Table 4. Please note that RF, GCN_A, and GAT_A are
application-specific methods, which do not use embeddings generated for general support of
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Table 4. Performance of Traffic Signal Classification

San Francisco Porto Tokyo

UID 0.532 0.511 0.505

RF 0.751 0.746 0.729

GCN_A 0.789 0.798 0.755

GAT_A 0.801 0.812 0.769

PCA 0.733 0.709 0.701

DeepWalk 0.711 0.661 0.639

LINE 0.573 0.553 0.557

Node2vec 0.713 0.680 0.624

NE+PCA 0.771* 0.760* 0.736*

GCN_E 0.695 0.679 0.652

GAT_E 0.711 0.680 0.641

IRN2Vec 0.883 0.831 0.782

RN2Vec 0.901 (16.86%) 0.873 (14.87%) 0.824 (11.96%)

Table 5. Performance of Crossing Classification

San Francisco Porto Tokyo

UID 0.527 0.516 0.509

RF 0.739 0.672 0.717

GCN_A 0.770 0.712 0.775

GAT_A 0.798 0.721 0.783

PCA 0.719 0.650 0.741

DeepWalk 0.692 0.635 0.718

LINE 0.554 0.567 0.577

Node2vec 0.717 0.644 0.734

NE+PCA 0.757* 0.684* 0.769*

GCN_E 0.703 0.638 0.717

GAT_E 0.698 0.631 0.729

IRN2Vec 0.779 0.719 0.800

RN2Vec 0.843 (11.36%) 0.798 (16.67%) 0.869 (13.00%)

multiple applications. While the goal of this evaluation is to compare against the state-of-the-art
embedding learning methods, we include them as references to see how the general RN2Vec
method fare with those specialized approaches.
As shown, RN2Vec soundly outperforms all the compared models. The improvement ratio (com-

pared with the best of the embedding methods, marked by ∗) ranges from 11.96% to 16.86% in three
datasets. Based on the results, we have the following observations. (1) UID, without exploring fea-
tures or relationships in road networks, has the worst performance. (2) The feature-based methods
achieve better performance than conventional network embedding methods learned by encoding
network structure information, which prove that the properties (features) of intersections are very
useful, especially in classification tasks where features are even more important than structural in-
formation. (3) Among network embeddingmethods, while DeepWalk andNode2vec are better than
LINE, they are still significantly inferior to IRN2Vec and RN2Vec. It may suggest that LINE, only
capturing the information of 1-hop or 2-hop neighborhood of nodes in networks, is not suitable
for road network representation learning, which has a broader neighborhood and more general
relationships. Moreover, all DeepWalk, LINE, and Node2Vec, only capturing network structural
information, are insufficient for road network representation learning. (4) NE+PCA, aiming to
combine features and structural information in embeddings, is effective. It is consistently the best
among all valid embedding methods but still significantly inferior to IRN2Vec and RN2Vec. GCN_E
and GAT_E, supposed to encode both feature and structural information as well, do not perform
as well as NE+PCA, probably because they are geared toward their training target too much in-
stead of being able to generalize for general embedding learning. On the contrary, RN2Vec is able
to explore structural information, various relationships on road networks, distance-based neigh-
borhood, and shortest path sampling to achieve excellent performance. (5) RN2Vec and IRN2Vec
perform convincingly better than specialized application solutions (i.e., RF, GCN_A, and GAT_A),
demonstrating the feasibility of general-purpose intersection embeddings. (6) RN2Vec outperforms
IRN2Vec, which suggests that learning embeddings of intersections and road segments jointly is
more effective than learning intersection embeddings alone as IRN2Vec does.
Evaluation by Crossing Classification. To demonstrate the robustness of RN2Vec for inter-

section embeddings, we evaluate the models by performing an alternative intersection classifica-
tion task that infers whether an intersection in a road network has a crossing on it. The experi-
mental setup is the same as that in Section 5.2.1, except for having the “crossing” tags as positive
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samples (5,021, 6,934, and 14,377 intersections in San Francisco, Porto, and Tokyo datasets, respec-
tively.) The performance of all evaluated models on the task of crossing classification is reported
in Table 5. As shown, RN2Vec robustly outperforms all the compared methods, with improvement
ratios over the competing embedding methods ranging from 11.36% to 16.67% among the three
datasets.

5.4 Road Segment Classification

In this section, we evaluate RN2Vec by two road segment classification tasks (i.e., avenue classifica-
tion and street classification) on three real-world road networks (i.e., San Francisco, Chicago, and
Seattle).13 In experiments, we also evaluate road segments embeddings generated by intersection
embeddings, IRN2VecH , by applying Hadamard function14 on intersection embeddings generated
by IRN2Vec.
The parameters of compared methods are tuned experimentally. The dimensionality of raw fea-

ture, PCA and NE+PCA are set to 13, 4, and 260, respectively. In DeepWalk and Node2vec, we set
the window size w = 5; the number of walks = 20 and the walk length = 1,280. For Node2vec,
the two parameters p and q for parameterized random walks are set to 1 and 5, respectively. For
GCN_A and GCN_E, the number of hidden layers is set to 2 followed by a fully connected layer.
The dimensionality and learning rate are set to 256 and 0.01. For GAT_A and GAT_E, the dimen-
sionality is set to 256 (i.e., 4 attention heads and an embedding size = 64 for each attention head)
and the learning rate is both set to 0.005.
Evaluation by Avenue Classification. The performance of all evaluated methods on avenue

classification is reported in Table 6. We observe that all the embedding-based methods including
IRN2VecH outperform UID. Among embedding methods, IRN2VecH performs the worst, suggest-
ing that capturing information associated with road segments is better than simply aggregating
information in intersection embeddings. Other observations are consistent with our findings from
evaluation by traffic signal classification. Again, the proposed RN2Vec soundly outperforms all
the compared methods, including specialized GCN_A and GAT_A. The improvement ratio (com-
pared with the best of these embedding models, marked by ∗) ranges from 10.56% to 15.43% in the
three datasets. Also, the road segment embedding learned by RN2Vec outperforms those learned
by SRN2Vec, i.e., jointly learning embeddings of intersections and road segments in road networks
is beneficial.
Evaluation by Street Classification. To demonstrate the robustness of road segment embed-

dings learned by RN2Vec, we evaluate the road segment embeddings by comparedmethods to infer
whether a road segment is tagged as “street” in Tiger data. The experimental setup is the samewith
avenue classification, except for using road segments with the “Street” tag (there are 14,145, 19,803,
and 55,796 such road segments in San Francisco, Seattle, and Chicago datasets, respectively). The
result of evaluation is reported in Table 7. As shown, SRN2Vec and RN2Vec robustly outperform
all the compared methods, with improvement ratios (compared with the best of these embedding
models, marked by ∗) ranging from 11.54% to 16.07% in these three datasets.

5.5 Travel Time Estimation

In addition to classification tasks, we further evaluate our proposed RN2Vec model on an appli-
cation of different type, travel time estimation for paths in road networks. In the following, we

13Tiger dataset do not cover Porto and Tokyo so we extract Seattle and Chicago road network for the experiments instead.

Those binary classification tasks infer whether a road segment has an avenue/street tags or not. We follow the same

experimental setup mentioned in Section 5.2.2.
14Average and Addition are also tested but Hadamard outperforms them.
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Table 6. Performance of Avenue Classification

San Francisco Seattle Chicago

UID 0.507 0.537 0.520

IRN2VecH 0.525 0.554 0.539

RF 0.690 0.667 0.719

GCN_A 0.748 0.724 0.749

GAT_A 0.757 0.739 0.766

PCA 0.667 0.643 0.702

DeepWalk 0.642 0.613 0.693

LINE 0.592 0.566 0.547

Node2vec 0.631 0.628 0.664

NE+PCA 0.700* 0.669* 0.720*

GCN_E 0.650 0.639 0.691

GAT_E 0.649 0.631 0.682

SRN2Vec 0.763 0.749 0.768

RN2Vec 0.808 (15.43%) 0.752 (12.41%) 0.796(10.56%)

Table 7. Performance of Street Classification

San Francisco Seattle Chicago

UID 0.541 0.560 0.524

IRN2VecH 0.563 0.580 0.544

RF 0.738 0.743 0.751

GCN_A 0.751 0.758 0.743

GAT_A 0.762 0.769 0.752

PCA 0.718 0.712 0.720

DeepWalk 0.707 0.698 0.709

LINE 0.516 0.540 0.537

Node2vec 0.711 0.718 0.699

NE+PCA 0.745* 0.754* 0.759*

GCN_E 0.703 0.709 0.698

GAT_E 0.689 0.697 0.714

SRN2Vec 0.785 0.802 0.797

RN2Vec 0.831 (11.54%) 0.854(13.23%) 0.881(16.07%)

first introduce the experimental setup and then report the experimental results obtained by using
intersection/road segment embeddings learned by RN2Vec, its variants, and other methods.

5.5.1 Experimental Setup. Travel time estimation is a regression task that predicts the travel
time of a given moving path in road networks. Publicly available trajectory datasets, including San
Francisco, Porto, and Tokyo, are processed for preparation of training and used as ground truth for
testing.15 To avoid the learned regression model simply counting the number of sample points in
a trajectory to exploit the relatively fixed time gap between consecutive sample points for travel
time estimation, we do not directly use raw trajectories for travel time estimation. Instead, we
adopt Barefoot [15], a state-of-the-art road network matching technique, to map raw trajectories
onto their underlying road network to obtain sequences of intersections or road segments (which
depict corresponding moving paths of the trajectories in the road network). Thus, this task aims to
estimate the travel time of a given moving path (i.e., as a sequence of intersections or a sequence of
road segments). To achieve the goal, we apply a Long Short-TermMemory (LSTM) model followed
by three fully connected layers (with dimensions 256, 256, and 1, respectively) as a regression
model. More specifically, given a travel path as the input, the LSTM model takes the embedding
of each intersection or road segment in the travel path as a state to estimate its travel time.
We use mean absolute error (MAE) between the predicted result and the ground truth (in sec-

onds) as the metric to evaluate the travel time estimation. In the experiments, we adopt the best
embeddings obtained previously in the classification tasks for each method.

5.5.2 Evaluation of Models. The results of travel time estimation obtained using intersection
embeddings and road segment embeddings learned by the evaluatedmodels are reported in Table 8
and Table 9, respectively. As shown, RN2Vec robustly outperforms all the compared methods by
11.24% to 18.52% in MAE compared with the best among existing works (marked by *) on the three
datasets. From the results, we have the following observations. (1) As shown, all the embedding-
based methods outperform the UID method, which validates the use of general embeddings (for
both intersections and road segments) for travel time estimation. (2) The results show that the
feature-based methods (i.e., RF and PCA) do not perform well, because they only explore features

15While raw trajectory data contains the arrival times at GPS points, they are not used for training and testing.
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Table 8. Performance of Intersection Embedding in

Travel Time Estimation

San Francisco Porto Tokyo

UID 75.62 169.49 106.39

RF 67.33 164.07 100.75

PCA 69.09 167.22 103.12

DeepWalk 64.97 163.17 95.74

LINE 67.05 161.99 99.86

Node2vec 61.37 160.65 96.31

NE+PCA 58.87* 157.66* 92.25*

GCN_E 63.25 159.79 94.26

GAT_E 62.87 161.16 96.89

IRN2Vec 49.54 141.96 86.29

RN2Vec 47.97 (−18.52%) 137.99 (−12.48%) 81.88 (−11.24%)
RN2VecRN 44.99 (−23.58%) 125.03 (−20.70%) 76.28 (−17.31%)

Table 9. Performance of Road Segment Embedding

in Travel Time Estimation

San Francisco Porto Tokyo

UID 80.61 168.37 107.64

RF 69.33 164.79 98.28

PCA 73.09 167.85 100.56

DeepWalk 75.32 158.69 99.57

LINE 68.65 167.79 104.66

Node2vec 62.97 163.13 93.18

NE+PCA 60.25* 152.69* 91.92*

GCN_E 64.18 161.59 97.78

GAT_E 63.95 163.33 96.05

SRN2Vec 51.05 137.28 85.91

RN2Vec 46.89 (−22.17%) 133.64 (−12.48%) 82.86 (−9.86%)
RN2VecRN 44.99 (−25.33%) 125.03 (−18.12%) 76.28 (−17.01%)

but not network structural information. (3) Compared with existing network embedding methods
(i.e., DeepWalk, LINE, and Node2vec), NE+PCA achieves better performance, because it not only
contains the intersection or road segment features but also the network structural information.
(4) While GCN_E and GAT_E are supposed to capture both features and structural information,
they do not perform as good as NE+PCA and RN2Vec. This observation may suggest that although
GCN/GATmethods contain node/edge features and structural information, their ways of integrat-
ing feature propagation and graph convolution in terms of hop-based neighborhood may optimize
their models towards the training target instead of capturing inherent structural properties of the
network as the representation learning models do. As a result, network embeddings coupled with
feature embeddings (i.e., NE+PCA) performs better. (5) For intersection embeddings (see Table 8),
the result shows that RN2Vec outperforms all the compared methods by 11.24% to 18.52% in MAE
compared with the best among existing works (marked by *) on the three datasets. This demon-
strates that RN2Vec is able to capture the intrinsic properties of the road networks and thus achieve
better performance. Moreover, RN2Vec is better than IRN2Vec by 1.39% to 6.84%, suggesting that
capturing the various relationships among intersections and road segments is particularly useful.
Similarly, as shown in Table 9, the road segment embeddings learned by SRN2Vec outperforms all
the existing models by 6.54% to 15.25%; and RN2Vec is even more impressive, outperforming them
by 9.86% to 22.17%. (6) It provides new evidence that the embeddings for intersections and road
segments learned by our RN2Vec can support various applications of different types.
Finally, we study the effect of using both intersection and road segment embeddings, denoted as

RN2VecRN, for travel time estimation. As shown in Table 8 and Table 9, RN2VecRN improves the best
existing work for intersection embeddings by 17.31% to 23.58% on the three datasets and that for
road segment embeddings by 17.01% to 25.33%. As shown, RN2VecRN is also better than using only
either intersection embeddings or road segments embeddings generated by RN2Vec. It validates
that intersections and road segments in road networks are both important and complementary to
each other in travel time estimation.

5.6 Enhancement by Trajectory Data

To validate our argument for using real-world trajectory data as a supplement of the adopted
shortest data sampling by default, we compare RN2Vec (denoted by RN2VecS) with two variants,
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Table 10. Trajectories for Intersection Classification

Traffic Signal Classification (F1-score)

San Francisco Porto Tokyo

Best Baseline 0.771 0.760 0.736

RN2VecT 0.853 0.845 0.811

RN2VecS 0.901 (16.86%) 0.873 (14.87%) 0.824 (11.96%)

RN2VecS+T 0.907 (17.64%) 0.887 (16.71%) 0.830 (12.78%)

Crossing Classification (F1-score)

San Francisco Porto Tokyo

Best Baseline 0.757 0.684 0.769

RN2VecT 0.818 0.767 0.833

RN2VecS 0.843 (11.36%) 0.798 (16.67%) 0.869 (13.00%)

RN2VecS+T 0.876 (15.72%) 0.817 (19.45%) 0.878 (14.17%)

Table 11. Trajectories for Travel Time Estimation

Intersection Embeddings (MAE)

San Francisco Porto Tokyo

Best Baseline 58.87 157.66 92.25

RN2VecT 50.66 146.07 84.34

RN2VecS 47.97 (−18.52%) 137.99 (−12.48%) 81.88 (−11.24%)
RN2VecS+T 46.11 (−21.67%) 135.04 (−14.35%) 78.87 (−14.50%)

Road Segment Embeddings (MAE)

San Francisco Porto Tokyo

Best Baseline 60.25 152.69 91.92

RN2VecT 48.22 139.76 85.52

RN2VecS 46.89 (−22.17%) 133.64 (−12.48%) 82.86 (−9.86%)
RN2VecS+T 44.36 (−26.37%) 130.77 (−14.36%) 80.10 (−12.86%)

RN2VecT and RN2VecS+T, in intersection classification and travel time estimation,16 which have
the same parameter settings as RN2Vec except that RN2VecT samples real trajectories for training
data while RN2VecS+T samples both shortest paths and real trajectories instead. The performance
of RN2Vec, its variants and the best compared model, i.e., NE+PCA, denoted by Best Baseline,
are summarized in Table 10 and Table 11.
In Table 10, we observe that RN2VecT outperforms the Best Baseline in intersection clas-

sifications, even though it does not perform as well as RN2VecS due to the issue of incomplete
coverage. We observe that RN2VecS outperforms RN2VecT by 1.6% to 5.63% and 3.06% to 4.32%
in traffic signal classification and crossing classification, respectively. However, RN2VecS+T brings
the performance up one notch to outperform Best Baseline by 12.78% to 17.64% and 14.17% to
19.45%, respectively. In Table 11, a similar trend exists in travel time estimation. RN2VecS+T con-
sistently performs the best, improving 14.35% to 21.67% and 12.86% to 26.37% with intersection
and road segment embeddings over the Best Baseline in the three datasets. It demonstrates that
while the trajectory data are incomplete, the real-world moving behavior of users is useful for
representation learning on road networks.

5.7 Test on Generality and Robustness

As mentioned earlier, this work aims to learn useful road network embeddings for general support
of various ITS applications. To demonstrate the robustness and generality of RLRN and RN2Vec
in learning general purpose embeddings in support of various ITS applications, we use RN2Vec to
learn a set of generic intersection/road segment embeddings (denoted by RN2VecG) without us-
ing information relevant to the classification and travel time estimation tasks. More specifically,
we remove the same intersection tag objective in the IRN2Vec sub-module and do not use tra-
jectory data. We following the same parameter settings in previous experiments and set α = 0.8
and β = 0.2. The performance results of RN2VecG and the best model among comparedmodels, de-
noted by Best Baseline, are summarized in Table 12 and Table 13. The results show that RN2VecG
robustly outperforms Best Baseline in all experiments, which demonstrate that, although the
performance of RN2VecG is slightly worse than the RN2Vec, these generic embeddings are gener-
ally useful and effective for all applications, and thus exhibiting great generality and robustness.

16We do not perform experiments on road segment classification due to the lack of trajectory data for Seattle and Chicago.
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Table 12. Generic Intersection Embeddings

Traffic Signal Classification (F1-score)

San Francisco Porto Tokyo

Best Baseline 0.771 0.760 0.736

RN2VecG 0.894(15.95%) 0.851(11.97%) 0.79(7.33%)

Crossing Classification (F1-score)

San Francisco Porto Tokyo

Best Baseline 0.757 0.684 0.769

RN2VecG 0.803(6.08%) 0.756(10.53%) 0.824(7.15%)

Travel Time Estimation (MAE)

San Francisco Porto Tokyo

Best Baseline 58.87 157.66 92.25

RN2VecG 48.99(−16.78%) 138.21(−12.34%) 83.47(−9.52%)

Table 13. Generic Road Segment Embeddings

Avenue Signal Classification (F1-score)

San Francisco Seattle Chicago

Best Baseline 0.700 0.669 0.720

RN2VecG 0.781(11.57%) 0.743(11.06%) 0.777(7.92%)

Street Classification (F1-score)

San Francisco Seattle Chicago

Best Baseline 0.745 0.754 0.759

RN2VecG 0.812(8.99%) 0.835(10.74%) 0.861(13.44%)

Travel Time Estimation (MAE)

San Francisco Porto Tokyo

Best Baseline 60.25 152.69 91.92

RN2VecG 48.87(−18.89%) 136.09(−10.87%) 83.20(−9.49%)

Fig. 10. Visualization of intersection embeddings with/without traffic signal.

Fig. 11. Visualization of road segment embeddings of avenue/non-avenue.

5.8 Visualization of Embeddings

To get a sense of how the learned embeddings are positioned in latent feature space, in this sec-
tion, we visualize the intersection and road segment embeddings generated by RN2Vec, along with
some selected competitive models. We map the learned intersections and road segments embed-
dings to a two-dimensional space using the t-SNE algorithm and color them based onwhether they
are labelled with traffic signal and avenue, respectively, i.e., intersections equipped with traffic sig-
nal are colored in purple and road segments categorized as avenue are colored in blue. As shown
in Figure 10 and Figure 11, the purple-colored intersections and blue-colored road segments, re-
spectively, are much better clustered in embedding space of RN2Vec than in those spaces of other
models, explaining why RN2Vec achieves excellent performance superior to others.

6 CONCLUSION AND FUTURE WORK

In this article, we study the problem of road network representation learning, which is of interest
to the academic and industrial communities due to its practical value to various ITS applications.
In the proposed RLRN framework, we develop a novel RN2Vec model by exploiting various geo-
locality and homogeneity relationships in road network to learn road network embeddings, which

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 11. Publication date: December 2020.



11:26 M.-X. Wang et al.

are general-purposed, effective, and reusable. In addition to the modeling ideas behind RN2Vec,
insights obtained from this work, e.g., shortest path sampling and distance-based neighborhood,
provide guidance for training and use of the road network embeddings in ITS. The result has sig-
nificant implications and potential applications on a variety of forecasting problems, e.g., accident
occurrence, air pollution, traffic control, traffic congestion, and so on. The automatically learned
embeddings are practically useful for many ITS applications that involve road networks, e.g., map
information management, intelligent speed adaptation, route planning, travel time estimation, and
so on.
Several issues arising in the course of this study reveal some limitations of our work. (i) Data

quality: We have exploited OSM and trajectory data in our study. While OSM data are rich and
valuable, the user-generated tags tend to be incomplete or inaccurate. Moreover, both OSM and
trajectory data have low coverage on road networks. (ii) Relationship variety: Only a few relation-
ships that capture intrinsic properties of road networks are exploited. (iii) Directed graphs: The
proposed model is designed based on undirected graphs, which may exist a gap from real-world
road networks. Further research on above issues have a potential to improve the performance of
RN2Vec and bring more advances in the direction of road network representation learning.
In the future work, we plan to extend our work for missing tag recommendation and inac-

curate information detection on OSM data and explore ideas of transfer learning to address the
low coverage issues. Moreover, we plan to exploit more variety of data, e.g., aerial images, Lidar,
Hyper-spectral images for road networks, traffic data, human mobility data, and explore meaning-
ful metapaths in road networks to identify and incorporate more variety of relationships in our
models. Finally, we will study the representation learning problem for urban regions, aiming to
encode the underlying patterns and structures of regions for smartening of modern cities.
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