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Abstract—Knowing the perceived economic value of words
is often desirable for applications such as product naming
and pricing. However, there is a lack of understanding on the
underlying economic worths of words, even though we have
seen some breakthrough on learning the semantics of words.
In this work, we bridge this gap by proposing a joint-task
neural network model, Word Worth Model (WWM), to learn
word embedding that captures the underlying economic worths.
Through the design of WWM, we incorporate contextual factors,
e.g., product’s brand name and restaurant’s city, that may
affect the aggregated monetary value of a textual item. Via a
comprehensive evaluation, we show that, compared with other
baselines, WWM accurately predicts missing words when given
target words. We also show that the learned embeddings of both
words and contextual factors reflect well the underlying economic
worths through various visualization analyses.

Index Terms—economic worth, word worth, word embedding
learning

I. INTRODUCTION

The learning of word embeddings, i.e., vector representa-
tions of words, has attracted much attention due to its applaud-
able intent to capture both semantic and syntactic meanings
of words in terms of real-number vectors and its ubiquitous
application base [1]–[4]. The success of word2vec [3] shed
a light in this important research direction, leading to many
variants [5]–[7] and their applications in text mining and
natural language processing [8]–[11]. While these prior works
stick to the original intent of “capturing semantic and synthetic
meaning”, we argue that the goal of learning word embeddings
can be further extended to learn the economic worth [12] of
words, which we envisage to have a great number of potential
applications in a wide range of domains.

We define the economic worth of a word, namely word
worth, as the associated monetary value. In some cases, a
word stands for a real object and the word worth reflects
that object’s price in the market. One example comes from
restaurant menus. As shown in Figure 1, steak and salmon
are more expensive than egg and cheese on average1. In other
cases, a word represents an abstract concept and its worth is
closer to a more complex perceived value [13]. One example is
the brand value, where “Valentino” always impresses people
with luxury while “Old Navy” is often linked to affordable
items, as shown in Figure 2(a).

Learning the word worths have several benefits. For ex-
ample, one may predict the prices of products, menu dishes,
and sales packages with given descriptions or titles based on

1Each word’s price is the average prices of all the dishes the word has been
used to describe.
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Fig. 1. Average prices of words in menus

0

300

600

900

1200

converse nike
old navy

ralph lauren
toms

valentino

Av
g.

 p
ric

e

(a) Shoe brands

0

3

6

9

chicago
dallas

detroit
miami

new−york−
city

pacific−
beach

Av
g.

 p
ric

e

(b) Cities

Fig. 2. Average prices of different contextual factors
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Fig. 3. Price distribution of words in restaurant menus

the learned word worths. Similarly, it may help recommend
appropriate words to describe products with a targeted price,
e.g., by formulating a missing word prediction problem, given
the listed prices and other words used to describe the products
or dishes. This idea can be further extended to help recom-
mend appropriate words to describe products with a targeted
price. Secondly, learning the word worth enables classification
tasks that are word-worth-driven. For example, with only the
restaurant’s menu provided, one may be able to categorize the
price range the restaurant lies in, which might be a difficult
task with only the understanding of words’ semantics.

Learning the word worths is a challenging task, as the
perceived value itself is highly variable, dependent on various
factors. Firstly, the underlying worths of words may benefit
from a multi-dimensional representation, which is where the
approach proposed by Chahuneau falls short [14]. Figure
3 shows the price distribution of four different words in a
restaurant menu dataset. As shown, for each word, the prices
it is associated with spread across a wide range. Secondly, the
economic worth is context-dependent. For instance, the word
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tuna is not expensive when it is associated with sandwiches,
yet it is highly priced in Japanese restaurants when served
as sashimi. Another context is location. For example, Figure
2(b) shows the average price of menu items for restaurants
in different US cities, which varies a lot due to the demand-
supply equilibrium. In summary, word worth is a complicated
concept and is hard to capture fully.

To encounter the characteristics of word worth and chal-
lenges mentioned above, we propose a joint-task neural net-
work model, word worth model (WWM), that learns the
representations of words which, in addition to the semantics,
capture the word worths. The proposed model incorporates
contextual factors that affect the word worths, such as locations
and brands.

To achieve the above, WWM aims to learn two tasks as a
joint-task neural network model: (1) missing word prediction,
and (2) price prediction by optimizing two different objective
functions, semantic objective and economic-worth objective,
respectively. Furthermore, we design the contextual bias inte-
gration, which addresses the context-dependent characteristic
of word worths. To enable the ability of joint-task learning,
we propose two input sampling methods that activate the
two objective functions: subsequence sampling and whole se-
quence sampling. When WWM is provided with subsequence
sampled input, it activates the missing word prediction task,
which aims to optimize the semantic objective; when WWM is
provided with the whole sequence sampled input, it activates
the price prediction task, hence optimizing the economic-
worth objective. We train WWM on four different datasets
that associate textual descriptions of objects and prices.

Quantitatively, through such a design, compared with repre-
sentations learned by naive approaches, the word embeddings
learned by WWM are shown to better predict the product
prices, given the words in product descriptions, and better
predict the other words to describe the products when given
part of the descriptions.

Qualitatively, the learned word embedding and contextual
biases are also shown to capture well the underlying economic
worth when demonstrated through visualization. More specif-
ically, we visualize the learned word embeddings on a t-SNE-
transformed, two-dimensional space, and find that words are
distributed closely together not only when they have similar
semantic meanings, but also when they associate with similar
range of monetary values. Also, when visualizing the different
contextual biases’ effects on the same word, one can see that
we are able to capture the luxury level of brands, and cost of
living of cities.

The contributions of this work are summarized below.

1) To the best knowledge of the authors, this is the first
work attempting to learn the word embedding capturing
economic worths, which have many potential applica-
tions in a wide range of domains.

2) We propose a joint-task neural network model, word
worth model (WWM) that learns word embeddings
capturing the economic worths and semantics by jointly
optimizing two tasks: missing word prediction and price
prediction. We also propose two input sampling methods
that enable the two tasks. Quantitatively, WWM is

shown to better predict product prices given descriptions,
and better predict missing words given part of the
descriptions. Qualitatively, the word embeddings learned
by WWM are shown to better capture words that are
similar in terms of economic worths, and the contextual
biases can capture the effects of different factors on the
final prices.

3) We implemented and open-sourced the proposed word
worth model (WWM).2 We believe through WWM,
many potential applications can be enabled, including
product naming, menu design, and pricing.

The rest of the paper is organized as follows. We first review
the literature in section II. We conduct data analyses to show
the word worths in section III. Our proposed word worth
model (WWM) and input sampling methods are presented
in section IV. In the section V , we evaluate the proposed
models with three real-world datasets, and demonstrate the
ability of the representations learned by our models in price
prediction and word prediction. We also show the quality of
the learned word embeddings through various visualization
analyses.Finally, we conclude this work and discuss future
works in section VI.

II. RELATED WORK

We review two lines of research relevant to this work: 1)
the economic worths of words, and 2) representation learning.

A. Economic Worths of Words

The notion of “economic worths of words”, or word worths,
is first mentioned by Kuehling [12], where the change in the
value of words is exploited to understand the “tides of innova-
tion”. However, there has been little follow-up research after
his initiation. The word worths can be expressed in different
ways besides monetary values. For example, in marketing, it
is measured as customers’ perceived value. Eggert et al. first
raise the idea of measuring the customer perceived value, and
claim that it is a better measurement than customer satisfaction
for research on business marketing [15]. Yang et al. also argue
that companies interested in customer loyalty should focus on
raising their perceived values [16].

In this work, we focus on the word worths as monetary
value. Chahuneau et al. leverage natural language processing
and linear regression to predict menu items’ prices based on
their textual descriptions [14]. In this approach, the word
worths are represented by corresponding coefficients of the
learned regression model. However, as we show later in Figure
3, the word worth should be multi-dimensional. Modeling it
as a scalar coefficient leads to a limited understanding.

B. Representation Learning

Representation learning of different items, e.g., words, im-
ages, and graphs, has long been studied [17]. In [3], Mikolov
et. al. propose neural network models, known as word2vec,
to learn word representations. Via unsupervised learning, it
exploits the co-occurrence patterns of words within a prede-
fined context window. Le et. al. [18] later extends word2vec to

2https://github.com/yusanlin/word-worth-embedding/

345



capture the representations of sentences as well as documents
(i.e., doc2vec).

Inspired by the elegant yet powerful design of word2vec,
numerous models and sampling methods are developed to
capture the nodes’ and edges’ representations in networks
[19]–[21]. Some works further capture the representations of
meta paths [22], [23]

The design of typical representation learning methods is
constrained by categorical learning targets. For targets with
continuous values, the problem is usually transformed into
approximated discrete labels, such as [24]. In this work, we
aim to learn a word representation that reflects its word worth
of a continuous value.

III. DATA ANALYSIS

In this section we conduct a data analysis on menus to
demonstrate the characteristics of word worths in terms of the
following three characteristics: i) multi-dimensionality and ii)
context dependency.3

A. Multi-Dimensionality

Chahuneau et al. learn word worths by fitting linear re-
gression models, where the word worths can be obtained
from the learned coefficients [14]. Here we follow the above-
mentioned approach to investigate our data. Specifically, we fit
a linear regression model using the 100 most frequent words in
restaurant menus as the independent variables, and the prices
of menu items as dependent variable. The result is shown in
Table I.4 As shown in the first row, the average price of menu
items in the dataset is $10.54 USD (the intercept). Depending
on words used in the menu, the estimated price is updated with
the corresponding coefficient. For example, the price of a dish
fried chicken would most likely be $10.54 + 0.22 + 0.38 =
11.14 USD.

TABLE I
LINEAR REGRESSION RESULTS OF RESTAURANT MENU DATA

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.53678 0.06423 164.041 <2e-16 ***

chicken 0.38063 0.0886 4.296 1.74E-05 ***
salad -0.71092 0.1086 -6.546 5.93E-11 ***

sandwich -1.50568 0.12507 -12.039 <2e-16 ***
cheese -2.28567 0.12966 -17.628 <2e-16 ***

beef -0.1215 0.14208 -0.855 0.392494
shrimp 1.31539 0.14271 9.217 <2e-16 ***

roll -2.08282 0.14589 -14.277 <2e-16 ***
lunch 0.04305 0.15508 0.278 0.781315
fried 0.22017 0.16455 1.338 0.180901
rice -2.91843 0.17412 -16.761 <2e-16 ***
egg -2.32797 0.16066 -14.49 <2e-16 ***

grilled 1.08832 0.16378 6.645 3.05E-11 ***
soup -3.07668 0.19335 -15.912 <2e-16 ***
pork 0.67305 0.17325 3.885 0.000102 ***

special 0.97969 0.17758 5.517 3.46E-08 ***

Although most of the words presented in the result signifi-
cantly contribute to the price (see the *** in the last column),

3The detailed dataset statistics will be discussed in section V
4Due to space limitation, we only show the results of the most frequent 15

words

this approach of estimating the word worths suffers from one
major drawback: it only captures words’ average associated
prices and loses meaningful context information. As Figure 3
in the section I suggests, the distribution of prices with respect
to a word in the menus varies greatly. Also, for different words,
the distributions of their prices are also very different.
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Fig. 4. MSE of price prediction with different dimensions

Figure 4 shows a comparison of price prediction when
word worth is modeled as multi-dimensional vectors vs. a
scalar (conducted using model later shown in Figure 8(b)).
In the figure, as N increases, the MSE in capturing prices
of given words decreases. Hence confirms the strength of
using multi-dimensional representation of words to capture
economic worths.

B. Context Dependency

Besides having a multi-dimensional representation of word
worth, some contextual factors can also affect the prices. One
example is the location: restaurants and their menus may have
significantly different prices due to the diversified living cost
of their located cities. As shown in Figure 5, the item prices
in restaurant menus differ across cities.
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Fig. 5. Price distribution of cities in restaurant menus

To sum up, the word worth has two unique characteristics,
i.e., multi-dimensionality and context dependency. Further-
more, when learning the representation of word worth, we do
not want to lose the semantics of these words. In the next
section, we develop the word worth model that learns the
word embedding carrying the underlying semantic meaning
and economic worths, considering the multi-dimensionality
and context dependency.

IV. WORD WORTH MODEL

In this section, we describe our Word Worth Model (WWM)
to learn the underlying economic worth and semantics of
words. We first give an overview of the model structure
and then discuss model training. For ease of explanation, we
summarize the symbols and corresponding definitions used in
this paper in Table II.
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TABLE II
SYMBOL DEFINITIONS

Symbol Definition

s raw input sequence (words)
T sequence length
N dimension of both word embedding and RNN hidden layer
V vocabulary size
We V ×N matrix of word embedding
hs embedding vector for a textual sequence (output of RNN)

Wr
hh N ×N matrix, RNN parameter

Wm N × V matrix for missing-word prediction
pm V -dimensional probability vector of missing words
L number of contextual factors
C L-dimensional binary vector for contextual factors
bc N -dimensional vector for contextual bias
Wc L×N ×N contextual matrix
y, ỹ real and predicted price
Wy N × 1 matrix of price predictor

D data set
s̃ sub-sequence
S set of all possible sub-sequences
Θ all model parameters

Js(Θ) semantic-related objective function
Jw(Θ) economic-worth objective function

α balance control of whole and sub-sequence sampling

A. Model Overview
Figure 6 shows the structure of WWM. There are three

major components in the model, including missing word
prediction, price prediction and contextual integration (see
dashed boxes in the figure). All of the them rely on a Recurrent
Neural Network (RNN) to encode a raw textual sequence to
a hidden numerical representation.

As shown in Figure 6, the computing flow of the model
has two steps: 1) sequence encoding and 2) target prediction.
For the first step, denoted as Step 1 in the red shaded area in
Figure 6, given a sequence s = 〈w1, · · · , wT 〉 of length T ,
the embedding matrix We is used to convert each raw token
(represented as one-hot vector) to its corresponding embedding
〈x1, · · · ,xT 〉. Then an RNN is used to generate the hidden
states of each word in the sequence as below.

h0 = �0

ht = xt +Wr
hh · ht−1

(1)

Here we customize the RNN by i) setting the hidden
dimension to be equivalent to the embedding dimension, and
ii) removing the conventional input-to-hidden matrix. The
purpose is to exploit directly the embedding into the follow-
up prediction. In an extreme case where the sequence contains
only one token, the sequence embedding hs would be exactly
the token embedding.

There are two branches in the second step, denoted by the
two blue areas in Figure 6, of which one is to predict the
missing tokens (labeled as Step 2(a)) and the other is to predict
the price (labeled as Step 2(b)). As mentioned earlier in the
data analysis, both the missing words and prices may depend
on the associating contextual factors. We assume there is a
limited number of contextual factors and each factor may or
may not be active. Formally, let L denote the total number
of contextual factors, a context can then be represented as

Fig. 6. Word worth model

a L-dimensional vector C, where each element is a binary
value indicating whether the corresponding factor is active or
not. Given a sequence embedding hs and its context C, the
contextual bias bc can be obtained as follows.

bc = hs · (C�Wc) (2)

Here the Wc is a L × N × N matrix encapsulating all con-
textual impacts on an item’s economic worth. The contextual
vector C determines which effect is activated. The operator
� is to select the weight of each active impact and sum them
up, as defined below.

C�Wc =
L∑

l=1

C[l] ·Wc[l] (3)

Particularly, if the context is not available, i.e., the vector C
is all zero and the resulted bias is a zero-vector.

However, whether the contextual factors affect the missing
words and prices may vary across different datasets. To control
the different effects of contextual factors on missing words and
prices, we design switches. There are two switches in WWM:
semantic switch, qs, and economic-worth switch, qw. The two
switches control how contextual factors are incorporated with
sequence embedding hs to predict missing words and prices
differently.

The structure of missing-word prediction is similar to that of
word2vec. Given a partial sequence vector, the model aims to
predict missing words that usually co-occur with those existing
ones. Formally, let hs denote the sequence’s vector and Wm

represent the predictor’s matrix parameters. The probability
vector pm over the vocabulary is shown as the equation below.

pm =

{
softmax ((hs + bc) ·Wm) , if qs = 1

softmax (hs ·Wm) , otherwise.
(4)

The prediction of the price aims to estimate the economic
worth of the given sequence. The final price y is predicted
based on the economic-worth switch qw as below.

ỹ =

{
relu

(
(hs + bc) ·Wy

)
, if qw = 1

relu
(
hs ·Wy

)
, otherwise.

(5)
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where relu(x) = max{x, 0}.
B. Model Training

The goal of our model is to learn the word embeddings
that capture both semantic meaning and economic worth.
Therefore, the training of the model takes two objective
functions into consideration. We assume that in a dataset D,
each instance consists of three elements: raw textual sequence
s, the item price ys and its context Cs. For semantic-related
objective function, only the raw text sequence is used, while
for economic-worth, all three elements are involved.

Semantic Objective. Given a sequence s, let S denote the
set of all possible sub-sequences. A sub-sequence s̃ is a
partial word sequence of the original one. In prediction of
missing words, our model gives a probability vector pm. The
semantic objective function is to minimize the negative log-
likelihood of corresponding real missing words. Formally, let
Θ = {We,Wr

hh,W
m,Wc,Wy} denote all model parame-

ters, the semantic objective function Js(Θ) is as follows.

Js(Θ) = − 1

|D|
∑
s∈D

1

|S|
∑
s̃∈S

∑
w∈s/s̃

logpm
s̃ [w] (6)

where s/s̃ represents a set of words that appear in the original
sequence s but missing in the sub-sequence s̃. Also, pm

s̃ [w]
denotes the probability of the corresponding missing word
estimated by our model.

Economic-worth Objective. As shown in the model structure
(Figure 6), besides the probability of missing words, another
output is the estimated price for the whole sequence. The
economic-worth objective function is the mean squared error
(MSE) between the predicted price and the true one.

Jw(Θ) =
1

|D|
∑

〈s,ys,Cs〉∈D
(ys − ỹs)

2 (7)

The final objective function is the sum of semantic and
economic-worth. Here we do not introduce any parameter
in merging the two objective functions even though the two
may be in different scales. Based on Equations (6) and
(7), the two objective functions are not active at the same
time. Specifically, the semantic objective function Js(Θ) is
only activated when the input is a sub-sequence while the
economic-worth objective function Jw(Θ) is activated only
when the input is a whole sequence.

In reality, it is impossible to traverse all possible sub-
sequences as it is quadratically growing with the data size.
To address this, we propose a mechanism of input sampling
to i) accelerate the training, and ii) take advantage of the fact
that the two functions are not in play at the same time.

1) Input Sampling: We propose two types of sampling
methods as shown in Figure 7. Here we leverage a toy example
for illustration. Let an object of value that is worth y be
described by s = 〈w1, w2, w3, w4, w5, w6〉. The two sampling
methods prepare inputs for the model as follows.

Whole-sequence sampling. This sampling method takes in
the whole description s = 〈w1, w2, w3, w4, w5, w6〉 as an
input sequence and provides the ground truth price y. It
thus activates the economic-worth objective Jw(Θ) for the

(a) Whole sequence (b) Sub-sequence

Fig. 7. Input sampling methods.

training to minimize. Formally, we denote the sequence s as
(wi)1≤i≤T , where T is the length of sequence s.
Sub-sequence sampling. This sampling method also produces
two inputs: sub-sequence s̃ and missing words s/s̃. In some
case, the sub-sequence may include only a single word, i.e.,
the shaded word w2 shown as the first example in Figure 7(b).
In this case, the missing word is one of those in the solid-
circled boxes, i.e., {w1, w3, w4, w5, w6}. Alternatively, it may
include a sequence of words with length shorter than s, as the
second example in Figure 7(b) show, i.e., the sub-sequence
words are 〈w2, w3, w4〉, while the missing word is among
{w1, w5, w6}. Formally, the sub-sequence s̃ of s can be de-
noted as (wi)t1≤i≤t2 , where 1 ≤ t1 ≤ t2 ≤ T , and the length
of the sub-sequence is βT . With the selected sub-sequence s̃,
missing words are hence s/s̃ = {wi|1 ≤ i < t1∨t2 < i ≤ T}.

The model learns words’ semantics and economic worths
by iteratively predicting the corresponding price and missing
words of the given sequence, with inputs provided by the two
sampling methods discussed above.

To train the proposed word worth model, there are several
hyper parameters to choose: the N for the hidden dimen-
sion, the parameter controlling the ratio between optimizing
semantic objective and economic-worth objective, and the
parameter determining the lengths of the sub-sequences, which
we discuss further in section V.

Let 0 ≤ α ≤ 1, where α is the probability that an epoch
optimizes the economic-worth objective, and 1 − α is the
probability that an epoch optimizes the semantic objective.
During training, in every epoch, an α-biased coin is tossed to
decide objective to optimize. If it is the head, then the inputs
sampled by whole sequence sampling are sent into WWM,
which optimizes the worth objective Jw(Θ). If it is the tail,
then the inputs sampled by sub-sequence sampling is sent into
WWM, which optimizes the semantic objective Js(Θ).

V. EVALUATION

We evaluate the learned embedding both qualitatively and
quantitatively. For qualitative analyses, we investigate that
given a word, the distribution of the associated prices of
its nearest neighbors in the embedding space. We then in-
vestigate how, in different datasets, the words locate in the
high-dimensional space through visualizations of the t-SNE-
transformed embeddings. We also analyze how the contextual
biases affect the words’ embedding in the space, and how that
reflect on their associated prices. For quantitative analyses,
we design two prediction tasks: price prediction and word
prediction. We compare the performances of WWM with
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four baselines, including word2vec, word-price model (WP),
missing-word-price model (MWP), and missing-word-context-
price model (MWCP). The first is the state-of-the-art model for
learning word embedding, and the rest are feed forward neural
network models we explore in our preliminary investigation of
this research, which we show the architecture of these baseline
models in Figure 8.

A. Datasets and Experiment Settings

We use four datasets, each of which represents a different
scenario where words are associated with economic worths.
Table III shows a summary of these datasets. All models are
implemented using PyTorch, and we released the implemen-
tation of WWM and the datasets on Github.5 For all models
including baselines, we set the hidden dimension for both word
embedding and contextual biases to 128. We then set the joint-
task ratio α = 0.5, and the sampling parameter β = 0.5. All
of the weights in the networks are initialized using Xavier
initialization. All models are learned using a batch size of
256 instances, and the learning stops when the loss functions
converge, or until the maximum number of epochs is reached,
i.e., 100.

TABLE III
DATASET SUMMARY

Dataset Description # of records Object Factor

Menu Restaurant menus 797,798 Dish City
Shoe Shoe store listing 26,285 Shoe Brand
Retail Online store listing 541,909 Product Country
Reward Crowdfunding projects 636,673 Reward Category

The performance metrics we use to evaluate the models’
performances in our evaluation are as follows. For price pre-
diction, since it is a continuous prediction target, we use mean
squared error (MSE) to measure the performance. For missing
word prediction, we use precision and recall to measure the
performance.

B. Baselines

To evaluate how well WWM captures the words’ underlying
semantic and economic-worth compared with other models,
we compare the word embedding learned by WWM with four
baseline neural network models shown in Figure 8 (see next
page).
Word2vec is the state-of-the-art word embedding learning
model proposed in [3]. It takes in words used to describe an
object, transforms the words into low-dimensional representa-
tions, and predicts the co-occurring words.
Word-price model (WP) takes in words used to describe an
object, transforms the input into low-dimensional representa-
tions, and predicts the price of the object.
Missing-word-price model (MWP) extends the popular
word2vec structure to include price information during embed-
ding learning.It takes in a target word, encodes and transforms
it into a low-dimensional representation, which then predicts
the missing words and the price.

5https://github.com/yusanlin/word-worth-embedding

Missing-word-context-price (MWCP), besides the missing
words and corresponding price, incorporates the contextual
bias as a normalization factor, inspired by doc2vec [18].The
model takes in the target words and contextual factor, trans-
forms both of them into the low-dimensional representations,
and predicts both the missing words and price of the object.

C. Learned Word Embedding

For word embeddings learned by each model on each
dataset, we show the word embedding correlation with asso-
ciated prices. More specifically, for each dataset, we select
a word (lobster for menu, suede for shoes, homemade for
retail, and jacket for reward) and use its top 10 similar words
according to the learned word embeddings, and plot the price
distributions of the words in the dataset.6 The results are shown
in Figures 9, 10, 11, and 12.

As shown, as the model considers more aspect of word
worths, the less variation the prices words associated with
get. In particular, the significant difference between WWM
and word2vec on menu dataset truly demonstrates the capabil-
ity of WWM in learning economic-worth-aware embeddings.
However, one can also see that there are times the quality
of embeddings produced by WWM is less ideal. For example,
for the retail and reward datasets, the improvement of reducing
price variances are smaller thant in menu and shoe datasets.
For the retail dataset, we figure it is due to the fact that within
the dataset, the ranges of product categories and prices are
both too wide. As for the reward dataset, we believe that the
nature of the reward description in crowdfunding projects are
not as concise as product names in other datasets. Hence the
uninformative words create noise for WWM to capture word
worths.

Another aspect we look at is how the word embedding lo-
cates in two-dimensional space. We first transform the learned
word embeddings from 128-dimensional to two-dimensional
vectors by applying tSNE. We then visualize them as scatter
plots, along with their associated average prices on the menu
and shoe datasets, in Figures 13 and 14, respectively. We also
compare the visualization of embeddings learned by word2vec
and WWM. As one can see that in Figure 13, as one traverses
towards the bottom-right in the visualization of WWM, the
prices of words increase almost consistently. In particular,
the words champagne and caviar, which both associate with
expensive dishes, are located in the bottom-right corner, while
the cheaper words such as butter and gravy are located on
the opposite side of the plot. In contrary, when looking at the
visualization generated using word2vec’s embedding, one can
see that words associated with different price range are meshed
together in the plot. Similar phenomenon can be observed
on the shoe dataset, as shown in Figure 14. Expensive shoe
materials, such as calfskin and diamond, are located on the
top-left corner in the plot, while cheaper shoe products such
as shoes for going to the beach are located on the opposite end.
However, embeddings created by word2vec cannot showcase
such difference.

6To speed up the process of finding nearest neighbors in high-dimensional
space, we construct KDTree of each sets of embeddings.
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(a) Word2vec (b) WP (c) MWP (d) MWCP

Fig. 8. Baseline models

(a) Word2vec (b) WP (c) MWP (d) MWCP (e) WW

Fig. 9. Embedding comparison on menu dataset

(a) Word2vec (b) WP (c) MWP (d) MWCP (e) WW

Fig. 10. Embedding comparison on shoe dataset

(a) Word2vec (b) WP (c) MWP (d) MWCP (e) WW

Fig. 11. Embedding comparison on retail dataset

(a) Word2vec (b) WP (c) MWP (d) MWCP (e) WW

Fig. 12. Embedding comparison on reward dataset
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(a) Word2vec (b) WW

Fig. 13. t-SNE-transformed embedding comparison on menu dataset

(a) Word2vec (b) WW

Fig. 14. t-SNE-transformed embedding comparison on shoe dataset

D. Analyses on Contextual Bias Embedding

As described previously in Section IV, we design the
contextual bias that is meant to capture the effect of different
contextual factors on the overall worth of a given textual
description. The contextual bias is purposely designed to have
the same number of dimensions as the word embeddings, in
order to serve as the element-wise shift. We investigate the
quality of the learned contextual biases on both the menu and
shoe datasets, where the contextual factor for menu is the city
of the restaurant, and the contextual factor for shoe is the brand
of the shoe.

In Figure 15(a), we show how the lobster dishes are priced
in different cities. On average, dishes including lobster is
priced at 1931. As shown, since Boston is famously known
for its locally-sourced fresh lobster (hence lower price), when
adding the contextual bias of Boston given lobster, the em-
bedding shifts significantly away from the lobster embedding,
compared to lobster in other cities, such as New York and
Chicago. Similar correlation between embedding position and
price can be observed when we visualize the prices of pizzas
in different cities, as shown in Figure 15(b).

Besides cities having an effect on price, as one can imagine,
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(a) Lobster (b) Pizza (c) Heel (d) Sneaker

Fig. 15. Contextual bias visualization

TABLE IV
PRICE PREDICTION PERFORMANCES IN MSE (10E-6)

dataset wp word2vec mwp mwcp ww

menu 36.3050 36.4088 36.1759 36.3491 35.5020
retail 8.1709 8.1690 8.1688 8.1684 8.1681

reward 5710.3388 5944.6016 5849.7515 5844.8580 5528.4521
shoe 1662.9549 1648.5325 1614.7071 1661.3844 1676.5710

brands of products can also be major factors that affect the
products’ prices. Stuart Weitzman is known for its luxurious
boots and heels, compared to other more affordable brands
such as Kate Spade. One can clearly see such shifts in the
embedding space in Figure 15(c). Similarly, for sneakers, those
by Jimmy Choo are for sure way more expensive than those by
Nike, and one can clearly see their distance in the embedding
space in 15(d).

E. Price Prediction
For price prediction, given a complete description of an

object, we sum together the embedding of each word in
the description, and pass the summed embedding to a linear
regression model to predict price. We split each dataset to 70%
training and 30% testing, and report the mean squared error
(MSE) in Table IV. We intentionally choose a simple model
to see whether the embedding can help with the prediction.
As one can see, the embeddings obtained from WWM lead
to slightly better results in the menu and reward dataset. It
performs poorly in the shoe dataset, which we believe due
to the nature of the shoe products, their prices are heavily
dependent on the contextual factor, i.e., brands, as previously
shown in 15(c) and 15(d).

F. Word Prediction
Another prediction task we conduct is the word prediction

task. For each dataset, we construct the experiment data. We
scan through all of the records in the dataset, and for each
record, we randomly pick one word as the missing word, and
the rest to be the query. For the same query, it can associates
with numerous missing words, which are the target that we
want to predict.

Given a query, we sum together the embedding of each word
in the query, and we find the top 1000 words that have their
embedding closest to the query embedding in the embedding

space. We rank these words increasingly based on their dis-
tance to the query embedding, and measure the performance
based on precision@k and recall@k. The results are shown in
Figures 16 and 17. As can be seen, the performances of the
WWM embeddings are superior than other baselines in three
out of the four datasets.

VI. CONCLUSION

In this paper, through data analyses on real-world dataset,
we identify the importance of understanding the economic
worth of words, and propose a joint-task neural network
model, Word Worth Model (WWM), that learns the word
embedding capturing its underlying semantics and economic-
worth. The model takes into account the two characteristics of
word worths: multi-dimensionality and context dependency,.
We also propose two sampling methods to prepare inputs for
training WWM. Compared with the state-of-the-art model,
word2vec, and other neural-network-based baseline models,
embeddings produced by WWM is shown to be superior both
quantitatively and qualitatively.

In the future, we plan to explore more potential architecture
design of the WWM model, such as leverage more sophisti-
cated form of sequence encoding techniques. We hope this
work opens up a new line of research in learning the word
embedding that considers the economic worth of words.
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