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Missing value (MV) imputation is a critical preprocessing means for data mining. Nevertheless, existing MV

imputation methods are mostly designed for batch processing, and thus are not applicable to streaming data,

especially those with poor quality. In this article, we propose a framework, called Real-time and Error-tolerant

Missing vAlue ImputatioN (REMAIN), to impute MVs in poor-quality streaming data. Instead of imputing MVs

based on all the observed data, REMAIN first initializes the MV imputation model based on a-RANSAC which

is capable of detecting and rejecting anomalies in an efficient manner, and then incrementally updates the

model parameters upon the arrival of new data to support real-time MV imputation. As the correlations

among attributes of the data may change over time in unforseenable ways, we devise a deterioration detection

mechanism to capture the deterioration of the imputation model to further improve the imputation accu-

racy. Finally, we conduct an extensive evaluation on the proposed algorithms using real-world and synthetic

datasets. Experimental results demonstrate that REMAIN achieves significantly higher imputation accuracy

over existing solutions. Meanwhile, REMAIN improves up to one order of magnitude in time cost compared

with existing approaches.
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1 INTRODUCTION

Due to various uncontrollable factors, e.g., hardware failure, unconscious malfunction, and partic-
ipants refusal, the issue of missing values (MVs) is ubiquitous in many real-world datasets. The task
of MV imputation, aiming to replace the MVs with some plausible ones, is critical because many
data mining and analytics applications, e.g., machine learning [15, 29] and pattern mining [14, 31],
do not handle the datasets with MVs well. Over years, many MV imputation algorithms [1, 25, 34,
35, 40, 45] have been developed. Most algorithms assume that the observed data as accurate ground
truths and use all of them to impute the MVs directly. However, in many real-world applications,
data are collected with no guarantee on data quality and credibility. For example, based on [28],
7% of Stock data in Yahoo! Finance and 5% of Flight data in Travelocity are inaccurate, even though
those sources of Stock and Flight information are considered as highly reliable. On the other hand,
many kinds of real-world data, e.g., sensory data, network traffic data, and web clicks data, usually
arrives sequentially and continuously as a high-speed stream [2, 4, 5], which requires real-time
processing. We consider the continuously arriving data containing MVs and anomalies as poor-

quality streaming data. Based on our analysis, the poor-quality streaming data has the following
characteristics: (1) The data arrive continuously and in real time. (2) Besides MVs, anomalies may
be embedded in the data. (3) Both values and correlations among attributes of the data dynamically
evolve over time.

Challenges. Owing to the aforementioned characteristics, MV imputation for poor-quality
streaming data is challenging in the following aspects:

(1) Real-time imputation. In contrast to batch processing, the streaming data are collected
sequentially and to be processed in an online fashion. Undoubtedly, the MVs in the data must be
imputed in real time. On the other hand, the imputation model needs to be updated incremen-
tally for real-time MV imputation as the observed values of the data change over time. However,
most existing MV imputation algorithms, e.g., GBKII [40], CMI [45], ERACER [21], OSICM [22],
and IIM [38], are designed for batch processing which does not support real-time imputation for
streaming data.

(2) Error tolerance. Since the anomalies may mask the real distribution or the correlations
among attributes of the data, the imputation model learned using all the observed data (includ-
ing anomalies) may be inaccurate. Thus how to learn an effective imputation model from the
poor-quality streaming data becomes another challenge. However, most existing approaches do
not consider the impact of anomalies in the data. In conventional online MV imputation methods
(where most of them are based on autoregression (AR) model [16]), the MVs at time t are typically
imputed using all the historical data collected from a time window of previous p time points, by
exploring the temporal dependencies in the data. Intuitively, if the historical data contain anom-
alies, the MV imputation results at time t are likely to be inaccurate. Thus, for an existing online
MV imputation algorithm to perform well on poor-quality streaming data, the anomalies not only
need to be detected but also repaired. Note that real-time anomaly repair [39] is a non-trivial re-
search problem. Existing anomaly repair methods also explore the temporal dependencies in the
data. Thus, the ideas behind anomaly repair and MV imputation are not independent from each
other, making the MV imputation for poor-quality streaming data more complex, leading to un-
satisfactory imputation results.
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Fig. 1. A segment of temperature values of sensor 1.

Example 1. Consider a real-world dataset, IDL,1 which contains data sampled from 54 sensors
deployed in the Intel Berkeley Research Lab. Each sensor captures the temperature and humidity of
the lab every 31 seconds. Figure 1 presents a segment of the observed temperature values of Sensor
18 evolving over time, denoted by black line. In this segment of data, the real anomalies occur in
the period from time 233 to 240. Notably, the real observed values of anomalies are greater than
100. To avoid the differences among the imputation results based on various methods not obvious
due to the large span of longitudinal, we denote the anomalies by the maximal value 40 and color
them in purple in Figure 1. Moreover, in this dataset, we only label the observation “anomalous” or
not manually (introduced in Section 6.1 in detail), i.e., the ground truths of anomalies are unknown.
Thus, we do not show the ground truths of the anomalies in the figure. Since the ground truths
of real MVs in the IDL dataset are unknown, we cannot evaluate the imputation results of various
algorithms by directly using the real MVs. Moreover, there are no MVs in the adopted segment
of data. Therefore, we assume that the MVs occur in the period from 241 to 250 (denoted by the
minimal value 13.6 and colored in red). We implement and apply several state-of-the-art online
MV imputation methods, including MUSCLES [35], SPIRIT [25], and TKCM [34] for demonstrating
their deficiencies. As they are not designed to handle anomalies, we repair the anomalies by AR [16]
model before applying these MV imputation methods.

As shown, existing temporal-dependency-based MV imputation (MUSCLES, SPIRIT, and TKCM)
could not effectively impute MVs even though the anomalies are repaired before MV imputation.
The reason is that the repaired anomalies (and imputed MVs) are used for later MV imputation
(and anomaly repair), and thereby the inaccuracies of anomaly repair (and MV imputation) are
propagated over the time series. Compared with temporal-dependency-based MV imputation, this
case study demonstrates that the proposed REMAIN obtains the imputation results closest to the
ground truths.

(3) Deterioration detection. In addition to observed data values, correlations among attributes
of the data are also expected to evolve over time, especially in dynamic environments. In partic-
ular, at some time points, the change may be abrupt, causing the imputation model to deteriorate
quickly. We term such time points as deterioration points (as illustrated in Example 2 and defined
formally in Section 4). To achieve a satisfactory imputation result, the parameters of the imputation
model need to be re-estimated at deterioration points. However, techniques for handling the dete-
rioration points typically rely on the feedback of MV imputation performance which requires the
ground truth of MVs to measure. Since the ground truths of MVs are unknown, the deterioration
detection is challenging.

1http://db.csail.mit.edu/labdata/labdata.html.
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Fig. 2. The change of example data over time.

Example 2. To illustrate the dynamic nature of streaming data, based on the IDL dataset in-
troduced in Example 1, Figure 2 (a) presents a selected segment of the observed Temperature and
Humidity attributes of Sensor 1 over time during which there are no MVs and anomalies. As shown,
the values of temperature and humidity are dynamically evolving over time. In addition, to illus-
trate the dynamic change of correlations amongst attributes of the data,2 we plot the evolution
of the correlation between attributes Temperature and Humidity in the IDL data, as shown in
Figure 2(b). The evolution of the correlation is quite smooth for some periods, e.g., time points
from 142 to 150. Under this scenario, it is natural to incrementally maintain the existing imputa-
tion model using newly arrival data. However, at some specific time points, the correlation changes
abruptly, e.g., time points 134, 138, and 140. Note that the newly arriving data at these time points
do not fit the existing model any more, i.e., at these time points (termed deterioration points and
denoted by red dots in Figure 2(b)), the existing imputation model deteriorated. Thus, there is a
need to re-estimate the parameters of the imputation model based only on the newly arriving data.

Since existing online MV imputation methods may not work well in imputing poor-quality
streaming data (as illustrated in Example 1), we devise a Real-time and Error-tolerant Missing vAlue

ImputatioN (REMAIN) framework. To the best of our knowledge, this is the first study on MV im-
putation for poor-quality streaming data. The proposed REMAIN imputes the MVs in poor-quality
streaming data with polynomial time and constant space. Our major contributions are summarized
as follows.

—We formulate the MV imputation problem for poor-quality streaming data and propose a
novel framework, namely, REMAIN, for real-time and error-tolerant MV imputation.

—In REMAIN, we propose a-RANSAC (an accelerated variant of RANSAC3) to initialize (and
re-estimate) the model parameters (in Section 3.2.1). Based on a-RANSAC, the efficiency of
parameter initialization and parameter re-estimation in REMAIN is significantly better than
using RANSAC. Moreover, we propose an incremental approach for updating parameters
of the imputation model (in Section 3.3) to accommodate the streaming applications.

—Considering the scenario where the correlations among attributes of the data change
abruptly, we define the notion of deterioration point. Accordingly, we devise a deteriora-
tion detection mechanism (in Section 4) by estimating the variance of imputation error at
each time point.

—Finally, we conduct an extensive experimental evaluation using both real and synthetic
datasets. The results demonstrate that the proposed REMAIN achieves significantly higher

2Note that the correlations among attributes are often exploited for MV imputation.
3RANSAC estimates the parameters of a given model from a dataset with presence of anomalies, which is not competent

for streaming data.
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Table 1. Notations

Notation Definition
ot

i the observation of the ith object at time t

xt
i the vector of values on d complete attribute in ot

i

yt
i the value on the incomplete attribute in ot

i

ŷt
i the prediction of yt

i

Ot the poor-quality dataset at time t

Ot
m the incomplete set of Ot at time t

Ot
a the anomalous set of Ot at time t

Ot
c the consistent set of Ot at time t

δ t the anomaly ratio at time t
τ the anomaly threshold

p the probability that the estimated model is correct

imputation accuracy than existing works. Moreover, compared with the state-of-the-art ex-
isting MV imputation methods, REMAIN obtains up to one order of magnitude improve-
ment in scalability.

2 PRELIMINARIES

In this section, we first introduce the problem of MV imputation for poor-quality streaming data.
Next, we review some prior works relevant to our research.

2.1 Problem Statement

For ease of discussion on the research problem, we first formally introduce some terms below and
summarize the notations used throughout the article in Table 1.

Definition 1. Given a set of objects {o1,o2, . . . ,on }, an observation, which consists ofd attributes,
is a data record describing an object at a time point, where ot

i denotes the observation of ith object
at time t .

In this article, an attribute containing MVs is termed as incomplete attribute, otherwise the
attribute is a complete attribute. Given a dataset, assume there are dm incomplete attributes and
dc complete attributes, i.e., dm + dc = d . Since we impute the MVs by exploring the correlations
between dm incomplete attributes and dc complete attributes (will be introduced in detail later),
the imputation for an incomplete attribute does not introduce violations in other incomplete
attributes, i.e., the imputation for multiple incomplete attributes are independent. Therefore,
for ease of illustration, we focus on imputation for one single incomplete attribute, i.e., dm = 1,
and denote an observation by ot

i = (yt
i , x

t
i ), where yt

i is the value on the incomplete attribute
and xt

i = (x t
i,1,x

t
i,2, . . . ,x

t
i,dc

) is the vector of values on dc complete attributes. It is worth noting

that the proposed REMAIN is also capable of the imputation for multiple incomplete attributes.
During the imputation for multiple incomplete attributes, the variant yt

i ∈ ot
i becomes a vector

yt
i , and the computation of parameter estimation becomes multiple matrix calculations from one

matrix calculation.

Definition 2. The observation ot
i = (yt

i , x
t
i ) is an incomplete observation if yt

i is missing, other-
wise ot

i is a complete observation.

On the other hand, a complete observation is either an anomalous observation or a consistent

observation, which is define as follows.
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Definition 3. The observation ot
i = (yt

i , x
t
i ) is an anomalous observation if (1) it is a complete

observation and (2) the predicted value ŷt
i significantly differs from the original observed valueyt

i ,
i.e., |ŷt

i − yt
i | > τ , where ŷt

i is computed by the MV imputation model (introduced in Section 3.2 in
detail) and τ is a predefined anomaly threshold. Otherwise, ot

i is a consistent observation.

The above definition of anomalous observation is widely adopted in existing anomaly detection
works [3, 20, 27, 39]. At an abstract level, an anomaly is defined as a pattern that does not conform
to expected normal behavior [9]. Given a set of observations, due to the difficulty of defining a
normal region that encompasses possible normal behavior, most of existing works approximate
the normal region by learning a (prediction) model which fits the majority observations in the
data. If an observation can be fitted to the model (i.e., the difference between the predicted value
(by the learned model) and the observed (real) value is smaller than a given threshold τ ), it is de-
termined as a normal observation. Otherwise, it is determined as an anomalous observation. In
other words, the intuition behind the definition is that a farther distance between the observed
value and its prediction indicates a higher probability of being an anomaly. Moreover, in this arti-
cle, we assume that anomalies exist in incomplete attributes. The main reasons are two-fold: (1) In
many real applications, noisy/erroneous values (e.g., MVs and anomalies) often occur simultane-
ously. For example, in applications of air monitoring and traffic jam detection, MVs and anomalies
may both be introduced due to the power shortage of physical measurement sensors, mobile de-
vices, outdoor and indoor cameras. Therefore, the existence of MVs indicates a high probability
of anomalies occurrence, i.e., the anomalies are more likely to exist in the incomplete attributes
with MVs simultaneously. (2) The data on the complete attributes are mainly used for learning an
MV imputation model which fills the MVs by exploring the correlations between the incomplete
attributes and complete attributes. For a complete attribute containing plenty of anomalies (even
though the probability of this case occurrence in practice is low as analyzed above), if we do not
handle (reject or repair) the anomalies on the complete attribute, the learned imputation model
may be inaccurate. However, the anomaly detection and repair for the complete attribute incurs
extra computation and time costs. To balance the MV imputation accuracy and efficiency, it is
reasonable to reject such complete attribute with significant anomalies since our main goal is MV
imputation rather than anomaly detection.

Definition 4. At time t , a poor-quality dataset Ot = {ot
1, o

t
2, . . . , o

t
n } is a collection of obser-

vations which consists of three subsets: incomplete set Ot
m , anomalous set Ot

a and consistent set
Ot

c , containingnm incomplete observations,na anomalous observations andnc consistent observa-
tions, respectively, such thatnm + na + nc = n. Additionally, the anomaly ratio (i.e., the percentage

of anomalous observations) at time t , denoted by δ t , is computed as δ t =
|O t

a |
|O t

a |+|O t
c | =

na

na+nc
.

It is notable that the anomalous setOt
a ⊆ Ot is non-deterministic because whether the observed

values are anomalous or not is unknown and thus needs to be detected. Consequently, the consis-
tent setOt

c is also non-deterministic, and the anomaly ratio δ t needs to be computed accordingly at
each time point t . In addition, for each observation ot

i ∈ Ot , the presence of MVs does not depend
on other observations, i.e., data are missing at random.

Example 3. Table 2 shows an example segment of poor-quality streaming data sampled from
IDL dataset (see Example 2). Each sensor is considered as an object and obtains the tempera-
ture and humidity of the lab continuously. For example, the observation of Sensor 1 at time t0 is
(19.447, 39.525), corresponding to temperature and humidity. For illustration, in Table 2, “–” in-
dicates MVs, and the numbers with red color indicate anomalies. Moreover, in IDL dataset, the
MVs and anomalies are concentrated in the attribute Temperature. As shown, at time t0, the tem-
perature of Sensor 4 is missing, i.e., Ot0

m = {ot0

4 }, while the observed temperature of Sensor 3 is

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 77. Publication date: September 2020.
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Table 2. Example of Poor-quality Streaming Data

observations
sensor id t0 t1 t2 · · ·

1 (19.447, 39.525) ( 12.346, 39.484) ( – , 39.710)
2 (18.843, 40.917) (19.518, 41.010) (18.146, 41.207) · · ·
3 ( 22.936, 45.276) (15.215, 45.470) (15.307, 47.296)
4 ( – , 43.585) ( – , 43.738) ( – , 44.212)
5 (18.535, 39.622) ( 24.387, 39.788) ( 23.894, 40.181) · · ·
6 (19.154, 39.377) (17.743, 39.462) (18.343, 39.507)
7 (17.762, 42.856) (18.392, 42.906) ( – , 42.998)
· · · · · · · · · · · · · · ·

anomalous, i.e., Ot0
a = {ot0

3 }. Accordingly, the consistent set at time t0 is Ot0
c = {ot0

1 ,o
t0

2 ,o
t0

5 ,o
t0

6 ,o
t0

7 },
and the anomaly ratio at time t0 is δ t0 = 1

6 .

In this article, we propose a framework, namely, REMAIN, for MV imputation of poor quality
streaming data at time t (t = 1, 2, . . .). Given a poor-quality dataset Ot = {ot

1,o
t
2, . . . ,o

t
n } as the

input, REMAIN aims to tackle the following issues:

—Building an MV imputation model for poor-quality streaming data.
—Designing effective and efficient algorithms for parameter estimation, including parameter

initialization and incremental parameter update, of the imputation model.
—Exploring a smart mechanism of deterioration detection that adapts quickly to the change

of correlations amongst attributes of the data.
—Imputing the MVs contained in the dataset based on the learned imputation model in an

online fashion.

Finally, REMAIN returns the imputed dataset Ot∗.

2.2 Related Work

The idea of imputing MVs based on the intrinsic relationships in the underlying data is widely
adopted in solving the MV imputation problem. The traditional MV imputation approaches can
mainly be classified into nearest-neighbor-based imputation (NNI) [1, 42, 48], kernel-based impu-
tation (KI) [43, 47] and regression-based imputation (RI) [21, 37, 44]. Given an incomplete obser-
vation, the NNI methods search neighbors of the incomplete observation and then take a distance-
weighted mean of the k neighbors for imputation, e.g., GBKII [40], CMI [45], and OSICM [22]. KI
methods employ various kernel functions/models [7] applicable to different data types to build
imputation models, e.g., NIIA [43] and DIM [46]. RI methods predict the MV on an incomplete
attribute by employing a regression model using the observed values on complete attributes in the
same observation, e.g., ERACER [21] and IIM [38]. However, all algorithms introduced above do
not consider the negative effect of anomalies. Moreover, almost all of them are proposed to work
on static datasets and inefficient for dynamic streaming data.

For online MV imputation, MUSCLES [35], SPIRIT [25], and TKCM [34] have been proposed.
They impute the MVs based on the temporal dependencies of the data, where the MVs at time t are
estimated based on the segment of historical data in a predefined time window. However, since the
intuitions of MUSCLES and SPIRIT for MV imputation are similar to that of AR model, they suffer
the same anomaly repair problem introduced in Section 1. TKCM cannot also avoid the impact of
anomalies during MV imputation, as the MVs in a time series s are imputed by the historical values

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 77. Publication date: September 2020.
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Fig. 3. An overview of REMAIN.

of s at the anchor points of k most similar patterns which are detected based on a set of reference
time series of s . If there is no anomaly in the reference time series but unfortunately the historical
values at anchor points in s (used for MV imputation) contain anomalies, the imputation result may
be inaccurate. On the other hand, MUSCLES does not scale well to a large number of objects since it
requires at least quadratic space and time. Even though the SPIRIT requires less memory and time
than MUSCLES by compressing the original data based on Principle Component Analysis (PCA),
its space complexity grows linearly with respect to the number of objects. The newest online
MV imputation method, TKCM, is proposed with the assumption that time series often exhibit
repeating patterns, which limits its applications. Additionally, a few prediction models over time
series based on neural networks are proposed for forecasting, e.g., [36] based on Deep LSTM.
However, they are not directly applicable to MV imputation for poor-quality streaming data due
to the big data samples requirement and large time occupation for model training.

3 REMAIN FRAMEWORK AND PARAMETER ESTIMATION

In this section, we first give an overview of the proposed REMAIN framework. Then we introduce
the parameter estimation which is the first component of the proposed REMAIN.

3.1 REMAIN– an Overview

First of all, in REMAIN, we adopt the multi-variates linear regression (MLR) as the basic MV impu-
tation model for the following three reasons: (1) MLR model is very powerful and easy to interpret,
which can even approximate the non-linear correlations amongst attributes [41]. (2) MLR model is
highly efficient. Its parameters can be computed based on the Least Square method easily. (3) MLR
model has good scalability and does not suffer the inaccuracy propagation. It does not require to
buffer any historical data. Moreover, for a new incomplete observation, it can be imputed directly
based on the learned MLR model without other computation.

Next, as shown in Figure 3, corresponding to the core issues to be tackled introduced earlier, the
proposed REMAIN consists of three components:

(C1) Parameter estimation learns the parameters of a given MLR model effectively and ef-
ficiently. First, the model parameters are initialized based on the poor-quality dataset Ot at the
first time point (i.e., t = 1) by employing a-RANSAC (Parameter Initialization). Afterwards, the
model parameters are incrementally updated at each time point to accommodate the streaming
applications (Parameter Update).

(C2) Deterioration detection determines if the current time t is a deterioration point. Since
the correlations among attributes of the data change in unforeseen ways, the imputation result
based on the (incrementally) updated model may deteriorate. When deterioration occurs, the data
arriving at the current time do not fit the existing imputation model anymore. Therefore, the model
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parameters need to be re-estimated just based on the poor-quality datasetOt (via the same proce-
dure of parameter initialization, i.e., resetting t = 1 basically).

(C3) MV imputation fills the MVs in the poor-quality dataset Ot based on the learned model
and derives the imputed datasetOt∗. Moreover, the anomaly ratio δ t at time t (t > 1) is effectively
estimated simultaneously.

Algorithm 1 provides the pseudo-code of REMAIN. Given a poor-quality dataset Ot at time
t (t = 1, 2, . . .), if t = 1 (i.e., at the first time point), we initialize the model parameters based on
a-RANSAC (Lines 4-7). If t > 1, we first determine whether it is a deterioration point (Line 10). If
a deterioration point is detected, the model parameters are re-estimated where the procedure is
the same as parameter initialization (Line 13). Otherwise, the model parameters are expected to
update incrementally (Line 16). Finally, the incomplete observations inOt are imputed based on the
learned model (Line 18). Moreover, δmax and δmin used for deterioration detection and parameter
initialization are expected to update based on the estimated anomaly ratio δ t (t > 1) (Lines 19–
22). It is notable that the proposed REMAIN supports both numerical and categorical data. For
the categorical data, we adopt the multivariate logistic regression model as the basic imputation
model which is similar to the MLR model. Additionally, in some specific applications, the number
of observations arriving at a time point may be small, e.g., 54 observations from 54 sensors at each
time point in IDL dataset. Under this scenario, we can collect observations from several successive
time points as a logical time point t . With sufficient complete observations at a logical time point,
the parameters of the imputation model are initialized/updated effectively. Next, we will introduce
each component in detail in the following sections.

3.2 Parameter Estimation

As introduced earlier, we adopt the MLR model to impute MVs in poor-quality streaming data.
For an incomplete observation ot

i = (yt
i , x

t
i ), the MV yt

i is estimated as a linear combination of the
values in xt

i = (x t
i,1,x

t
i,2, . . . ,x

t
i,dc

) where x t
i, j is the observed value on the j-th complete attribute

of ot
i . The prediction function is shown below:

ŷt
i = w

t
0 +

dc∑
j=1

wt
j x

t
i, j + ε

t
i , (1)

where ŷt
i is the prediction of yt

i , wt = (wt
0,w

t
1, . . . ,w

t
dc

) is the parameter vector consists of all pa-

rameters in MLR model and εt
i is a white noise generated according to the Gaussian distribution

with mean 0 and variance (σ t )2. If yt
i is missing, ŷt

i is the imputation result of yt
i . If yt

i is ob-
served but significantly differs from its prediction ŷt

i , i.e., |yt
i − ŷt

i | > τ , then yt
i is considered as an

anomaly.
Intuitively, the learning process of an MLR model is to determine its parameter vector wt . Given

a poor-quality dataset Ot at time t , suppose there are nc consistent observations in Ot
c ⊆ Ot . We

assume that all the consistent observations at the same time point are well captured by the MLR
model. Thus, based on Yule-Walker equation [12], wt can be estimated from the observations as
follows:

wt = ((Xt )T (Xt ))
−1

((Xt )T yt ), (2)

where

Xt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1, xt
1

1, xt
2

· · ·
1, xt

nc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1,x t
1,1,x

t
1,2, . . . ,x

t
1,dc

1,x t
2,1,x

t
2,2, . . . ,x

t
2,dc

. . .
1,x t

nc ,1
,x t

nc ,2
, . . . ,x t

nc ,dc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
yt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt
1

yt
2
· · ·
yt

nc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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ALGORITHM 1: REMAIN(Ot , δ1, p, s , τ )

Input: the poor-quality dataset Ot at time t (t = 1, 2, . . .),
the anomaly ratio δ1 at the first time point, i.e., t = 1,

the probability p,

the minimal number of observations required to estimate model parameters s ,
and the anomaly threshold τ
Output: the imputed dataset Ot∗

1 wt−1 = ϕ, Gt−1 = ϕ

2 δmax = δ1, δmin = δ1

3 foreach time point t do

4 if t == 1 then

5 //parameter initialization

6 w1,G1 = ParameterInitialization(O1, δmax , τ , p, s)

7 wt−1 = w1, Gt−1 = G1

8 else

9 // deterioration detection, de is a boolean variate

10 de = DeteriorationDection(Ot , wt−1, δmax , δmin , τ , p)

11 if de then

12 //re-estimate the parameters of the imputation model

13 wt , Gt = ParameterInitialization(Ot , δmax , τ , p, s)

14 else

15 // incrementally update the parameters of the model

16 wt , Gt = ParameterUpdate(Ot , wt−1, Gt−1, τ )

17 wt−1 = wt , Gt−1 = Gt

18 Ot∗, δ t = MVImputation(Ot , wt , τ )

19 if δ t > δmax then

20 δmax = δ t

21 if δ t < δmin then

22 δmin = δ t

23 return Ot∗ (t = 1, 2, . . .)

In matrix Xt , the 0th column is a constant vector with element 1, which is corresponding to the
interceptwt

0. The jth (1 ≤ j ≤ dc ) column is the vector of values x t
i, j (1 ≤ i ≤ nc ) on the jth complete

attribute of observations in Ot
c , which is corresponding to the parameter wt

j . Accordingly, yt is a

vector of desired values yt
i (1 ≤ i ≤ nc ) of observations in Ot

c .

3.2.1 Parameter Initialization. As introduced in the Introduction, the anomalies embedded in
the data may incur inaccurate MLR model used for MV imputation. One possible solution is to
employ the RANSAC (RANdom SAmple Consensus) [11] paradigm which is able to estimate the
parameters of a given model from a dataset with outliers. Here, we briefly review the traditional
RANSAC paradigm and analyze its pitfalls in handling streaming data.

RANSAC paradigm. Generally, RANSAC separates the observations of a dataset from inliers

(observations explainable by the model) and outliers (observations not explainable by the model),
assuming that the model parameters can be optimally estimated by a (usually small) set of inliers.
Given a poor-quality dataset Ot , RANSAC estimates the parameters of a model by the following
steps:
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1. Selecting s complete observations from Ot randomly, where s is the minimal number of ob-
servations to determine the model parameters. The selected observations compose an initial con-
sistent set Ot

c = {ot
1,o

t
2, . . . ,o

t
s }.

2. Estimating the model parameters based on Ot
c .

3. For ∀ot
i ∈ Ot ∧ ot

i � {Ot
c ∪Ot

m }, it is considered as an outlier (anomalous observation) and
added into Ot

a if |yt
i − ŷt

i | > τ , where the prediction ŷt
i of yt

i is computed based on the estimated
model in Step 2. Otherwise, the observation ot

i is considered as an inlier (consistent observation)
and added into Ot

c .

4. The estimated model is reasonably correct if there are sufficient inliers, i.e.,
|O t

c |
|O t

a |+ |O t
c |
> C (1 −

δ t ) where C (0 ≤ C ≤ 1) is a constant.
5. Re-estimating the model by using all members of the consistent setOt

c if the estimated model
in Step 4 is accepted as a correct model.

6. Repeating the above five steps for k times. The model estimated in each iteration is either
rejected because the size of consistent set Ot

c is too small, or be saved if the size of Ot
c is larger

than the previously saved model.
The anomalous observations and consistent observations in the dataset are considered as out-

liers and inliers in RANSAC, respectively. To estimate the parameters of the MLR model based
on the Least Square method, let s = dc + 2 because dc + 1 parameters need to be learned. Given a
certain probability p that the correct model can be obtained, the number of iteration k can be com-

puted as k =
loд (1−p )

loд (1−qs ) , where q is the probability that a selected observation ot
i in initial consistent

set Ot
c is an inlier, i.e., q = 1 − δ t . In practice, the number of iteration k is set two or three times

of the expected (theoretical) number to obtain a reasonable parameter estimation [11]. In this ar-
ticle, we set k as two times of the expected number to trade off the effectiveness and efficiency.
Moreover, we setC (1 − δ t ) = 1 − δmax to determine if the estimated model is correct (Step 4). The
reason is that with a relative small ratio threshold, i.e., C (1 − δ t ), more estimated models have
chances to be improved by re-estimation using all observations of the consensus set, and thereby
it is more likely to find the correct model.

Parameter Initialization based on a-RANSAC. As introduced above, different from classical
parameter estimation techniques which estimate the parameters of a model by optimizing the fit
of the model to all of the observations, RANSAC has an internal mechanism for detecting and
rejecting outliers. Thus it is capable of estimating the model parameters for poor-quality dataset
with a high degree of accuracy. However, RANSAC is not suitable for streaming data due to the
iterative estimation of model parameters.

Given a poor-quality dataset Ot at a certain time point, we have the following proposition for
time and space complexity of RANSAC.

Proposition 1. Given a poor-quality datasetOt at time t , the parameter vector of the MLR model

is estimated based on RANSAC in O (kncd
2 + kd3) time with O (d2) space, where nc is the size of

consistent set Ot
c ⊆ Ot , k is the iteration number of RANSAC, and d is the number of attributes in an

observation ot
i ∈ Ot

c .

Proof. We need O (dc + 1) space to store the parameter vector wt and O ((dc + 1)2) space to
store the intermediate result Gt

i (to be introduced later) used for incremental parameter update.
Since Xt and yt are composed of the consistent observations at time t , rather than the historical
observations, there is no extra space cost for Xt and yt . On the other hand, the computation costs
for matrix multiplication and matrix inversion in Equation (2) areO (nc (dc + 1)2) andO ((dc + 1)3),
respectively. Additionally, the parameter estimation is repeated k times, and thus the parameter
initialization based on RANSAC runs in O (k (ncd

2 + d3)) time. �
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Note that based on Definition 1, we have d = dc + dm . Moreover, in many real-world datasets,
the number of attributesd in an observation is usually significantly smaller than the datasizen, i.e.,
d 	 n. Thus we consider d as a constant.4 For conciseness of expression, we use d to replace dc in
space and time complexity analysis throughout the article unless noted specially. Based on Propo-
sition 1, RANSAC is time costly when the dataset is large and/or the computation requires many
iterations. To tackle this issue, we propose a variant of RANSAC, named a-RANSAC (accelerated

RANSAC), to trade off the effectiveness and efficiency.
In Proposition 1, the time cost of parameter initialization based on RANSAC is mainly affected

by (i) the number of iterations k and (ii) the size of consistent set nc . To obtain a near-optimal
parameter estimation with probabilityp correctness guarantee, the number of iteration k could not
be easily reduced. Therefore, in a-RANSAC, our intuition is to improve the efficiency of RANSAC
by reducing the size of consistent set nc . In detail, given a poor-quality dataset Ot at time t , a-

RANSAC first selects a subset of complete observations Ôt
c ′ from the set of complete observations

Ot
c ′ = O

t
a

⋃
Ot

c such that the distribution of anomalous observations in Ôt
c ′ is close to that of Ot

c ′ .

Next, a-RANSAC estimates the parameters of a given model based on RANSAC by using Ôt
c ′ .

The rationale behind the algorithm is that based on Ôt
c ′ , we can also obtain a correct MLR model

with probability p. Since the distribution of anomalous observation in Ôt
c ′ follows that in Ot

c ′ , it

is reasonable to assume that the anomaly ratio of Ôt
c ′ is also δ t . Based on the computation for

iteration k discussed earlier, a correct MLR model with probability p can be obtained when k ≥
loд (1−p )

loд (1−qs ) . Therefore, if there are enough complete observations to support k times non-repetitive

initial consistent set selection (Step 1 of RANSAC), the learned MLR model based on Ôt
c ′ is correct

with probability p. Next, we discuss how to determine the size of Ôt
c ′ .

Let the size of Ôt
c ′ be n̂c ′ = nc ′ + na′ where nc ′ and na′ are the numbers of consistent observa-

tions and anomalous observations in Ôt
c ′ , respectively. Then there are

(
n̂c′
s

)
possible initial consis-

tent sets. As discussed above,
(
n̂c′
s

)
should satisfy

(
n̂c′
s

)
≥ k . Based on the definition of binomial

coefficient [24], we have
s−1∏
i=0

(n̂c ′ − i ) ≥ ks!, (3)

where k and s are known. Here we aim to estimate n̂c ′ . Intuitively, the exact solution for Equa-
tion (3) is difficult to obtain. We need to try n̂c ′ from 1 to ks! to determine the minimal n̂c ′ . To find
the solution of Equation (3), we simplify Equation (3) as Equation (4):

s−1∏
i=0

(n̂c ′ − i ) ≥
(
n̂t

c ′ − s
)s
≥ ks!. (4)

Based on Equation (4), we have n̂c ′ ≥ s
√
ks! + s . In addition, after finding a reasonable MLR model

based on the initial consistent set (Step 4 of RANSAC), the RANSAC re-tunes the model parameters
based on all of the consistent observations by using least square estimation (Step 5 of RANSAC).
Referring to the central limit theorem, the number of samples used empirically for least square
estimation should be at least 30 or greater [18]. Thus we propose that the size of subset is n̂c ′ =

max{
 s
√
ks!� + s, 30}.

In addition, to derive a subset Ôt
c ′ ⊆ Ot

c ′ such that the distribution of anomalous observations is
close to that inOt

c ′ , we sample the complete observations fromOt
c ′ based on the statistical distribu-

4As a promising future direction, it is interesting to extend the REMAIN to high-dimensional streaming data.
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tion of anomalous observations at historical time points. For example, in Wireless Sensor Networks
(WSNs), the anomalous observations may be generated by some sensors due to the little energy
remaining. Under this scenario, the distribution of anomalous observations may be stable for a

period of time. Thus we can derive Ôt
c ′ by stratified sampling based on the historical information.

Finally, Algorithm 2 shows the pseudo-code of the parameter initialization. Given a poor-quality
dataset Ot at time t (t = 1), we first employ a-RANSAC to derive the parameter vector wt with
the correctness probability p (Lines 2-9). Next, the parameter vector wt is incrementally updated
based on the parameter update algorithm (to be introduced in Section 3.3) by using the remaining

complete observations Õt
c ′ = O

t
c ′ \ Ô

t
c ′ . It is notable that to solve the cold start problem (i.e., there

is no available historical data), the anomaly ratio at the first time point, i.e., δ 1, requires to be
provided to initialize the δmax and δmin . Generally, δ 1 can be given by domain experts or decided
by observing the distribution of the data arriving at the first time point, i.e., O1, based on existing
visual identification approaches [8].

ALGORITHM 2: ParameterInitialization(Ot , δmax , p, s , τ )

Input: the poor-quality dataset Ot ,

the maximum anomaly ratio δmax ,

the probability p,

and the minimal number of observations required to estimate model parameters s ,
and the anomaly threshold τ
Output: the parameter matrix Wt , the intermediate result for parameter update Gt

1 Ot
c ′ = O

t \Ot
m , w = 1 − δ t

2 // calculate the number of iteration k

3 k = 2 × loд (1−p )
loд (1−ws )

4 // determine the size of Ôt
c ′

5 n̂c ′ = max{
 s
√
ks!� + s, 30}

6 // select n̂c ′ complete observations from Ot
c ′

7 Ôt
c ′ =

{
ot

1,o
t
2, . . . ,o

t
n̂c′

}

8 // parameter estimation based on Ôt
c ′

9 Wt ,Gt = RANSAC(Ôt
c ′ , δ

t , p, s)

10 // parameter update by using the remaining complete observations

11 Wt−1 =Wt , Gt−1 = Gt

12 Õt
c ′ = O

t
c ′ \ Ô

t
c ′

13 Wt , Gt = ParameterUpdate(Õt
c ′ , Wt−1, Gt−1, τ )

14 return Wt , Gt

Proposition 2. Given a poor-quality stream dataset Ot at time t , for parameter initialization

based on a-RANSAC, the space complexity is O (d2) and the time complexity is O (k (nc ′d
2 + d3) +

ncd
2).

Proof. Referring to the Proposition 1, the time complexity of parameter estimation based on

a-RANSAC by using Ôt
c ′ isO (nc ′kd

2 + kd3). The time complexity of parameter update by using the

remaining complete observations isO ((nc − nc ′ )d
2) (referring to the Proposition 5 to be introduced

in Section 3.3). �

Compared with the time complexity of parameter initialization based on RANSAC, i.e.,
O (nckd

2 + kd3) (see Proposition 1), the time complexity of parameter initialization based on
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a-RANSAC is linear with the increase of both k and nc , as the size of consistent observations

in Ôt
c ′ , i.e., nc ′ , is usually much smaller than nc . Moreover, the proposed parameter initialization

algorithm (based on a-RANSAC) improves efficiency without losing much imputation accuracy
(as shown in Section 6).

3.3 Parameter Update

Note that the algorithm of parameter initialization introduced above only utilizes the poor-quality
dataset at one time point. Statistically, the MLR model is more accurate if there are more data
samples (i.e., consistent observations) to be used for model learning. Thus existing MV imputation
approaches mostly learn the imputation model using the entire data (i.e., in batch processing). At
time t (t > 1), if the model parameters are also estimated based on a-RANSAC using the entire
dataset (the collection of data from time 1 to t ), the size of the matrix Xt is increased to tnc × d .
Thus the time complexity of parameter estimation at time t is O (tknc ′d

2 + kd3 + tncd
2). Since t is

not fixed and can grow indefinitely, parameter estimation based on a-RANSAC using the entire
data is not competent for streaming data as time passes.

Based on the above analysis, online incremental parameter update is necessary. For streaming
data, the observations arrive sequentially and continuously. LetXt

i andYt
i be the sample matrixes

constituted by all of the consistent observations having arrived thus far (including the consistent
observations that arrived at historical time points t = 1, 2, . . . , t − 1).

Proposition 3. Let Gt
i = ((Xt

i )T (Xt
i ))−1 be an intermediate variable. Then Gt

i could be recursively

computed from Gt
i−1 as follows:

Gt
i = Gt

i−1 −
(
Gt

i−1

(
xt

i

)T ) (
xt

i Gt
i−1

(
xt

i

)T
+ I

)−1 (
xt

i Gt
i−1

)
. (5)

Proof. Based on matrix inverse lemma [30], we have

(A + BCD)−1 = A−1 − A−1B
(
DA−1B + C−1

)−1
DA−1,

where A, B, C and D are the invertible matrices. On the other hand, Gt
i can be denoted as follows:

Gt
i =

((
Xt

i

)T (
Xt

i

))−1

=

((
Xt

i−1

)T (
Xt

i−1

)
+
(
xt

i

)T (
xt

i

))−1

=

((
Gt

i−1

)−1
+
(
xt

i

)T
I
(
xt

i

))−1

.

Accordingly, let A =
(
Gt

i−1

)−1
, B =

(
xt

i

)T
, C = I and D = xt

i , the conclusion is proved. �

Proposition 4. Based on Gt
i , the parameter wt

i could be recursively computed from wt
i−1, as shown

in Equation (6) below:

wt
i = wt

i−1 − Gt
i

(
xt

i

)T
xt

i wt
i−1 + Gt

i

(
xt

i

)T
yt

i . (6)

Proof. Based on the Yule-Walker equation, we have

wt
i =

((
Xt

i

)T (
Xt

i

))−1 ((
Xt

i

)T
Yt

i

)

= Gt
i

[(
Xt

i−1

)T
Yt

i−1 +
(
xt

i

)T
yt

i

]

= Gt
i

(
Xt

i−1

)T
Yt

i−1 + Gt
i

(
xt

i

)T
yt

i .
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Furthermore, combining (Xt
i−1)TYt

i−1 = (Gt
i−1)−1

wt
i−1 and (Gt

i−1)−1
= (Xt

i−1)TXt
i−1 into above

equation, we have

wt
i = Gt

i

[(
Xt

i−1

)T
Xt

i−1

]
wt

i−1 + Gt
i

(
xt

i

)T
yt

i

= Gt
i

[(
Xt

i

)T
Xt

i −
(
xt

i

)T
xt

i

]
wt

i−1 + Gt
i

(
xt

i

)T
yt

i

= Gt
i

((
Xt

i

)T
Xt

i

)
wt−1 − Gt

i

(
xt

i

)T
xt

i wt
i−1 + Gt

i

(
xt

i

)T
yt

i .

Since Gt
i ((Xt

i )TXt
i ) = I, the conclusion is proved. �

Proposition 5. At time t , the space and time complexity of the parameter update based on Propo-

sition 4 is O (d2) and O (ncd
2), respectively.

Proof. To compute Wt
i incrementally, we need to store the matrix Gt

i of size (dc + 1) × (dc + 1).

Thus the space complexity is O (d2). Since the size of matrix (xt
i Gt

i−1 (xt
i )T + I) in Equation (5)

becomes a scalar, the time complexity of matrix inversion isO (1). Accordingly, the time complexity
of matrix multiplication in Equations (5) and (6) is O (d2). Since the parameters are updated based
on proposition 4 when each consistent observation inOt arrives, the time complexity of parameter
update at time t is O (ncd

2). �

Algorithm 3 shows the pseudo-code of parameter update. Given a poor-quality dataset Ot at
time t (t > 1), for each observation ot

i ∈ Ot , it is omitted for the parameter update if yt
i ∈ ot

i is
missing (i.e., ot

i is an incomplete observation) or |yt
i − ŷt

i | > τ (i.e., ot
i is an anomalous observation)

(Lines 4–9). Note that the predicted value ŷt
i is computed based on the learned model at time t − 1.

If ot
i ∈ Ot is considered as a consistent observation, it is used for refining the parameter vector wt

i

and the intermediate matrix Gt
i (Lines 10–12). Finally, the updated wt and Gt are returned.

4 DETERIORATION DETECTION

As introduced in the Introduction, the correlations among attributes of the data evolve over time
in unforeseen ways, which may yield the phenomenon of concept drift [13]. The concept drift
means that the correlations between the input variables (complete attributes) and the target vari-
ables (incomplete attributes) change over time. For the poor-quality streaming data, we target on
in the article, both the existence of anomalies and the smooth/abrupt changes of streaming data
may cause the concept drift. However, from the MV imputation perspective, we only concern the
concept drift resulting in unsatisfactory imputation accuracy. By detecting and rejecting anom-
alies to learn the MV imputation model, the concept drift caused by anomalies does not affect the
imputation accuracy significantly. Additionally, by updating the imputation model based on the
newly arriving data incrementally, the concept drift caused by the smooth change of the correla-
tions amongst attributes does also not introduce the degradation of the imputation accuracy. In
this article, we mainly concern the concept drift caused by the abrupt change of the correlations
among attributes of the data, since the imputation accuracy may deteriorate quickly if such con-
cept drifts are not detected as early as possible. We specifically define the time points when such
concept drifts occur as the deterioration points. Since most existing concept drift detection/fault
diagnosis approaches [6, 13, 33] are proposed for complete data, and do not aims at effective MV
imputation, we specifically devise an effective deterioration detection mechanism to achieve high
imputation accuracy.

Given a poor-quality datasetOt at time t , let et = {et
1, e

t
2, . . . , e

t
nm
} be the MV imputation errors

of the incomplete set Ot
m ⊆ Ot .
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ALGORITHM 3: ParameterUpdate(Ot , wt−1, Gt−1, τ )

Input: the poor-quality dataset Ot at time t (t > 1),

the parameter vector wt−1 derived at last time point,

the intermediate result Gt−1 at last time point,

and the anomaly threshold τ
Output: the updated parameter vector wt , the intermediate result for parameter update Gt

1 wt
i−1 = wt−1, Gt

i−1 = Gt−1

2 foreach observation ot
i ∈ O

t do

3 // ot
i is an incomplete observation

4 if yt
i is missing then

5 Continue

6 ŷt
i = w

t−1
0 +

∑d
j=1w

t−1
j xt

i, j + ε
t
i

7 // ot
i is an anomalous observation

8 if
���yt

i − ŷ
t
i
��� > τ then

9 Continue

10 Gt
i = Gt

i−1 −
(
Gt

i−1

(
xt

i

)T ) (
xt

i Gt
i−1

(
xt

i

)T
+ I

)−1 (
xt

i Gt
i−1

)

11 wt
i = wt

i−1 − Gt
i

(
xt

i

)T
xt

i wt
i−1 + Gt

i

(
xt

i

)T
yt

i

12 Gt
i−1 = Gt

i , wt
i−1 = wt

i

13 wt = wt
i , Gt = Gt

i

14 return wt , Gt

Definition 5. Time point t is a deterioration point if the mean absolute deviation of et , denoted by
MAD (et ), satisfies MAD (et ) > ϵ , where ϵ is an error tolerance threshold. Specifically, MAD (et ) =

1
nm

∑
ot

i ∈O
t
m
|ỹt

i − ŷt
i |, where nm is the size of Ot

m , ỹt
i and ŷt

i are the ground truth and prediction of

yt
i respectively.

Note that the estimation of imputation error et is challenging because the ground truths of
MVs are unknown. Hence, we cannot compute et directly. In this article, we explore the variance
of imputation errors and adopt the Gaussian distribution which is widely used in many fields to
capture the imputation errors. Suppose the imputation errors follow Gaussian distribution, i.e.,
et ∼ N (0, (σ t )2), where the mean is 0 as we believe that the methods do not make errors inten-
tionally and the reliability degree of the imputation results is reflected by the variance (σ t )2. If the
imputation results of Ot are unreliable, the distribution of imputation errors et has a wide spec-
trum and vice versa. Thus, we rewrite the definition of deterioration point in terms of variance as
follows.

Definition 6. Time point t is a deterioration point if the variance (σ t )2 of imputation errors et

satisfies (σ t )2 > ς2, where ς2 is a variance threshold.

Mathematically, given a set of complete observationsOt
f

(with size nf ) which fit the imputation

model, since the mean of imputation errors is supposed to be 0, the maximum likelihood (ML)
estimation of the variance (σ t )2 can be computed below:

(
σ t
)2
=

1

nf

(
yt

f − Xt
f wt−1

)T (
yt

f − Xt
f wt−1

)
. (7)

As introduced in Section 3.2.1, the learned near-optimal MLR model is correct with probability
p, i.e., there is 1 − p probability that the learned MLR model is incorrect. For the imputation error
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estimation problem, given a poor-quality dataset Ot , we consider the extreme scenario where the
consistent observations inOt

c ⊆ Ot fit the correct model well, while the anomalous observations in
Ot

a ⊆ Ot fit the incorrect model well. Let (σ t
c )2 and (σ t

ic )2 be the variances of imputation errors et

based on correct and incorrect MLR model, respectively. Then the variance (σ t )2 of et is estimated
as follows: (

σ t
)2
= p
(
σ t

c

)2
+ (1 − p)

(
σ t

ic

)2
. (8)

Example 4. For the observations in Table 2 at time t1, suppose the model parameters learned
at time t0 is wt0 = (32.328,−0.348). At time t1, the predicted temperature values based on wt0 are
ŷt1 = ( 18.587, 18.057, 16.504, –, 18.482, 18.595, 17.396 ), while the observed values are yt1 = ( 12.346,
19.518, 15.215, –, 24.387, 17.743, 18.392 ) (we do not predict the values of MVs as our goal is to detect
anomalous observations in this step). The difference between ŷt1 and yt1 (i.e., the estimated im-
putation error) is ŷt1 − yt1 = ( 6.241, −1.461, 1.289, –, −5.905, 0.852, −0.996 ). Thus the detected
anomalous set is Ot1

a = {ot1

1 ,o
t1

5 } where their absolute differences between the observed values
and predicted values are greater than the anomaly threshold τ = 5. Accordingly, the consistent
set is Ot1

c = {ot1

2 ,o
t1

3 ,o
t1

6 ,o
t1

7 }. As introduced earlier, we suppose that the consistent observations
and anomalous observations fit the learned correct and incorrect model well, respectively. There-
fore, based on the Equation (8), the variance (σ t1

1 )2 is estimated as (σ t1

1 )2 = 0.99 × 1
4 × [(−1.461)2 +

1.2892 + 0.8522 + (−0.996)2] + 0.01 × 1
2 × [6.2412 + (−5.905)2] = 1.734 (suppose p = 0.99).

Next, we discuss the bound of variance
(
σ t )2. As introduced earlier, the anomalous setOt

a is un-
determined and we need to detect whether the complete observations are anomalous or not. Given
a poor-quality dataset Ot , suppose it contains a1 anomalous observations in which a2 anomalous
observations are detected.

(i) If a2 = a1, i.e., all anomalous observations are detected exactly, then every complete obser-
vation ot

i ∈ Ot
f

is a consistent observation. We have ∀ot
i ∈ Ot

f
, ỹt

i = y
t
i , i.e., the observed value on

incomplete attribute of ot
i ∈ Ot

f
is the ground truth. Thus ∀ot

i ∈ Ot
f
, we have 0 ≤ ���et

i
��� ≤ τ , thereby

0 ≤ (σ t )2 ≤ τ 2.
(ii) If 0 ≤ a2 < a1, (a1 − a2) anomalous observations are not detected and included intoOt

f
incor-

rectly. In other words, there are (a1 − a2) anomalous observations which do not fit the imputation
model, but they are misused to estimate the variance of imputation. For ∀ot

i ∈ Ot
f
, if ot

i is a con-

sistent observation, we have ỹt
i = y

t
i and 0 ≤ ���et

i
��� ≤ τ . If ot

i is an anomalous observation, there

should be τ ≤ ���et
i
��� ≤ +∞ because the anomalous values may be any values. Therefore, we have

a1−a2

nf
τ 2 ≤ (σ t )2 ≤ +∞.

Finally, the variance of imputation error et of poor-quality datasetOt satisfies a1−a2

nf
τ 2 ≤ (σ t )2 ≤

+∞.

Proposition 6. Theoretically, the upper bound of the minimal variance
(
σ t )2 is

(
σ t )2

min_ub =

pδmaxτ
2 + (1 − p) (1 − δmin ) τ 2.

Proof. Based on the above analysis, the minimal variance a1−a2

nf
τ 2 achieves the greatest value

when a2 = 0, i.e., there is no anomalous observation detected. Thus the upper bound of minimal
variance a1−a2

nf
τ 2 =

a1

nf
τ 2.

When the imputation model is correct, we have Ot
f
= Ot

c , i.e., a1

nf
τ 2 = δ tτ 2 ≤ δmaxτ

2. In

contrast, when the imputation model is incorrect, we have Ot
f
= Ot

a , i.e., a1

nf
τ 2 =

(
1 − δ t )τ 2 ≤
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Fig. 4. The Distribution of Estimated Variance Over Real Datasets.

(1 − δmin )τ 2. Combined with Equation (8), we have a1

nf
τ 2 = pδ tτ 2 + (1 − p)

(
1 − δ t ) τ 2 ≤

pδmaxτ
2 + (1 − p) (1 − δmin ) τ 2. Thus the proposition is proved. �

Note that the upper bound of the minimal variance
(
σ t )2 is a theoretical threshold. When the

upper bound is achieved, no anomalous observation is detected, i.e., the imputation model has
deteriorated (refer to the proof of Porposition 6). However, in practice, the estimated variance(
σ t )2 is generally small. Intuitively, if an anomalous observation ot

i is considered as a consis-
tent observation incorrectly, we have 0 ≤ |yt

i − ŷt
i | ≤ τ . Moreover, since we consider the observed

yt
i of a consistent observation to be the ground truth ỹt

i , the imputation error et
i of the anoma-

lous observation ot
i is incorrectly computed as |et

i | = |ỹt
i − ŷt

i | = |yt
i − ŷt

i | which is less than τ , so

the estimated variance is less than τ 2, rather than greater than τ 2 in theoretical analysis. There-
fore, we adopt the upper bound of the minimal variance pδmaxτ

2 + (1 − p) (1 − δmin ) τ 2 as the

variance threshold ς2. If the estimated variance
(
σ t )2 > pδmaxτ

2 + (1 − p) (1 − δmin ) τ 2, we con-
sider a deterioration is detected at time t . Algorithm 4 presents the procedure of deterioration
detection. First, we determine the anomalous set Ot

a and consistent set Ot
c (Lines 2–10). Then, the

variance of imputation error et of poor-quality datasetOt , i.e.,
(
σ t )2, is computed based on Equa-

tions (7) and (8) (Lines 11–18). Finally, by comparing the estimated variance
(
σ t )2 and the bound

pδmaxτ
2 + (1 − p) (1 − δmin ) τ 2, we determine whether time point t is a deterioration point or not

(Lines 19–20).

Example 5. For two real-world datasets: IDL (introduced in Example 2) and Air Quality (to be
introduced in Section 6), suppose the anomaly threshold for the two datasets are 5 and 15, respec-
tively. Additionally, for IDL dataset, the δmax = 0.1 and δmin = 0.028 based on our statistics as the
anomalies naturally exist, while for Air Quality dataset, the δmax = 0.1 and δmin = 0.1 as no anom-
alies naturally exist and we inject anomalies manually. Based on Proposition 6, the upper bounds

of minimal variance
(
σ t )2 for IDL and Air Quality are 2.6 and 24.3 respectively (with p = 0.99).

On the other hand, for the above two datasets, we plot the real distributions of estimated vari-
ance in Figure 4. As shown, 96.22% and 96.15% of the estimated variances fall in the relative small
ranges, e.g., [0, 2.4] and [0, 22], respectively. It confirms our analysis that the estimated variance is

generally smaller than
(
σ t )2

min_ub in practice, and thus it is reasonable to adopt the upper bound
of the minimal variance as the variance threshold to detect the deterioration.

5 MISSING VALUE IMPUTATION

Finally, the MVs in the incomplete observations are imputed based on the learned MLR model.
Given an incomplete (anomalous) observation ot

i , the imputed (repaired) result of yt
i ∈ ot

i is:

ŷt
i =

⎧⎪⎨⎪⎩
yt

i i f ���yt
i − ŷt

i
��� < τ

wt
0 +
∑dc

j=1w
t
j x

t
i, j + ε

t
i otherwise

(9)
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ALGORITHM 4: DeteriorationDection(Ot , wt−1, δmax , δmin , p, τ )

Input: the poor-quality dataset Ot at time t (t > 1),
the model parameter wt−1,

the maximum anomaly ratio δmax ,

the minimum anomaly ratio δmin ,

the probability p,

and the anomaly threshold τ
Output: a bool variate de to indicate the deterioration

1 de = False , Ot
c = ϕ, Ot

a = ϕ

2 foreach ot
i ∈ O

t do

3 if yt
i ∈ o

t
i is missing then

4 continue //ot
i is an incomplete observation

5 else

6 ŷt
i = w

t−1
0 +

∑dc

j=1w
t−1
j xt

i, j + ε
t
i // wt

0 ,w
t−1
j ∈ wt−1

7 if
���yt

i − ŷ
t
i
��� < τ then

8 Ot
c ←

{
ot

i

}
//ot

i is a consistent observation

9 else

10 Ot
a ←

{
ot

i

}
//ot

i is an anomalous observation

11 // When the imputation model is correct

12 Ot
f
= Ot

c

13

(
σ t

c

)2
= 1

nf

(
yt

f
− Xt

f
wt−1

)T (
yt

f
− Xt

f
wt−1

)

14 // When the imputation model is incorrect

15 Ot
f
= Ot

a

16

(
σ t

ic

)2
= 1

nf

(
yt

f
− Xt

f
wt−1

)T (
yt

f
− Xt

f
wt−1

)

17 // Finally computing the
(
σ t
)2

18

(
σ t
)2
= p
(
σ t

c

)2
+ (1 − p)

(
σ t

ic

)2
19 if

(
σ t
)2
> pδmaxτ

2 + (1 − p) (1 − δmin ) τ 2 then

20 de = True

21 return de

Algorithm 5 shows the pseudo-code. It is worth noting that, the anomalous observations in Ot
a

can be detected and repaired at the same time. As a result, the anomaly ratio δ t can be estimated
based on the learned model. Moreover,δmax andδmin can be updated accordingly. In this way, there
is no need to employ specialized anomaly detection approaches for anomaly ratio estimation, and
thus both the time complexity and space complexity are reduced. Moreover, with the δmax and
δmin estimated based on the learned MLR model in REMAIN, the best performance is achieved
compared with existing anomaly detection/repair approaches (as shown in Appendix A).

Example 6. By the proposed REMAIN, the imputed streaming data in Example 3 is shown in
Table 3, where the MVs are imputed with high-accuracy (RMSE=0.5). In addition, the anomalies
can be detected and repaired effectively, thereby the anomaly ratio can be estimated accurately.
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Table 3. The Imputation Result of Data in Example 3

observations
sensor id t0 t1 t2 · · ·

1 (19.447, 39.525) (18.585, 39.484) (18.509, 39.710)
2 (18.843, 40.917) (19.518, 41.010) (18.146, 41.207) · · ·
3 (16.572, 45.276) (15.215, 45.470) (15.307, 47.296)
4 (17.160, 43.585) (17.107, 43.738) (16.942, 44.212)
5 (18.535, 39.622) (18.482, 39.788) (18.345, 40.181) · · ·
6 (19.154, 39.377) (17.743, 39.462) (18.343, 39.507)
7 (17.762, 42.856) (18.392, 42.906) (17.365, 42.998)
· · · · · · · · · · · · · · ·

ALGORITHM 5: MVImputation(Ot , wt , τ )

Input: the poor-quality dataset Ot at time t (t = 1, 2, . . .),
the model parameters wt ,

and the anomaly threshold τ
Output: the imputed dataset Ot∗

1 Ot∗ = Ot

2
���Ot

a
��� = 0,

���Ot
c
��� = 0

3 foreach ot
i ∈ O

t∗ do

4 ŷt
i = w

t
0 +
∑dc

j=1w
t
j x

t
i, j + ε

t
i // wt

0 ,w
t
j ∈ wt

5 if yt
i ∈ o

t
i is missing then

6 yt
i = ŷ

t
i //ot

i is an incomplete observation

7 else

8 if
���yt

i − ŷ
t
i
��� < τ then

9
���Ot

c
���+ = 1

10 continue //ot
i is a consistent observation

11 else

12
���Ot

a
���+ = 1

13 yi
t = ŷt

i //ot
i is an anomaly observation

14 δ t =
|O t

a |
|O t

a |+|O t
c |

15 return Ot∗, δ t

Proposition 7. The space complexity of REMAIN is O (d2) which can be regarded as a constant

due to d 	 n, while the time complexity of REMAIN is O (ncd
2 + nm ) which increases linearly with

the number of observations in Ot .

Proof. The proposed REMAIN imputes MVs based on a learned MLR model which is a global
model, i.e., we only need to maintain an MLR model withO (d ) space for the entire streaming data.
In addition, at each time point, the model parameters are updated or re-estimated just based on
the poor-quality dataset at current time t without any historical data. Based on Propositions 5 and
2, the space costs of both parameter update and parameter re-estimation areO (d2). Therefore, the
space cost of our REMAIN is O (d2), which can be regarded as constant due to d 	 n. In the same
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line, the time costs of parameter update and parameter re-estimation are linearly dependent on the
number of consistent complete observations (i.e., nc ) in the data. Moreover, the time complexity
of MV imputation based on the learned MLR model is O (1) for an incomplete observation. As a
result, the time complexity of MV imputation for Ot with nm incomplete observations is O (nm ).
Thus the time complexity of REMAIN is O (ncd

2 + nm ). The conclusion is proved. �

Note that in deterioration detection, we estimate the imputation error based on a widely adopted
principle in data cleaning—humans or systems always try to minimize mistakes in practice [39].
The variance of the imputation errors is then leveraged to reflect the reliability of the imputation
result. However, there is no guarantee for the imputation result to be always aligned with the
ground truth. Thus similar to other MV imputation algorithms, the accuracy of the imputation
result is unlikely to have theoretical guarantee. For this reason, we can only evaluate the accuracy
of our imputation result by comparing with the ground truth in experiments, which is the common
practice in MV imputation studies.

6 EXPERIMENTS

In this section, we report the result of an experimental study on REMAIN along with a number
of the state-of-the-art methods. All the programs are implemented in Python and the experiments
are performed on a PC with 3.4 GHz CPU and 16 GB RAM.

6.1 Experimental Settings

Datasets. To evaluate the performance of REMAIN, we adopt two real-world datasets as follows.
(1) Air Quality (AQ) data with real MVs and synthetic anomalies. The dataset contains observa-

tions which record concentrations for CO, Non Metanic Hydrocarbons (NMHC), Nitrogen Oxides
(NOx ), Nitrogen Dioxide (NO2), O3, Temperature (T), Relative Humidity (RH) and Absolute Hu-
midity (AH) collected by an Air Quality Chemical Multi-sensor device deployed in a significantly
polluted area of Italy [32]. In this dataset, the real MVs (mainly appear in attributes NO2 and NOx )
naturally exist and the corresponding ground truths are known. Therefore, we impute the inher-
ent MVs in the dataset. Moreover, we aim to verify that REMAIN is competent for imputing MVs
in multiple attributes by adopting NO2 and NOx as the incomplete attributes. By collecting data
from 72 successive time points as the observations of a logical time point, the dataset contains
130 logical time points. In addition, we synthetically inject anomalies into the data by randomly
replacing observed values on the incomplete attributes of some complete observations. Following
the same line of evaluation for stream data cleaning [28], the value of each replaced observation
is substituted by a random value between the minimum and maximum values in the dataset.

(2) IDL data with real anomalies and synthetic MVs. As introduced in Example 2, the IDL dataset
contains measurements of temperature and humidity taken from 54 sensors for every 31 seconds.
We adopt the data from 51 sensors as the data collected by the remain three sensors are too sparse.
In this dataset, both MVs and anomalies naturally exist and mainly appear in the Temperature
attribute. However, as the ground truths of MVs are unknown, we cannot evaluate the effective-
ness of the proposed algorithms by directly using the real MVs contained in the dataset. Instead,
we remove the observations with inherent MVs from the dataset and synthetically generate the
incomplete observations by marking off certain percentage of values on the attribute Tempera-
ture in the remaining data. On the other hand, we first employ RANSAC to detect the anomalies
naturally existing in the data, then we double check and label the anomalies manually. Finally, by
taking three successive time points as a logical time point, a dataset with 88 logical time points
where 153 observations arrive at each logical time point is obtained.
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In addition, for ease of evaluation, we manually inject the same specific ratio of anomalies and
MVs for the data arriving at each time point t in AQ and IDL dataset, respectively. Moreover, we
normalize the data based on min-max normalization [19], and repeat 10 times for each test as the
anomalies (in AQ) and MVs (in IDL) are randomly introduced. Finally, the averages are reported
to obtain reliable experimental results.

Algorithms for comparison. We experimentally compare the proposed REMAIN with four
state-of-the-art online MV imputation algorithms, including (1) the multivariate linear regression
method MLR [21], (2) the top-k case matching method TKCM [34], (3) the online time-series mining
methods MUSCLES [35], and (4) SPIRIT [25]. In addition, as the anomalies in the data have a neg-
ative influence on MV imputation, we implement the state-of-the-art anomaly repair algorithms,
including AR [16], ARX [23], IMR [39], and EWMA [17] to detect and repair the anomalies before
MV imputation over the examined online MV imputation algorithms. Note that the parameters in
AR model can be estimated based on either Yule–Walker equation or Bayesian approach (named
BVAR model in [26]). Since the Bayesian estimation, which requires a predefined Bayesian prior, is
difficult for incremental computation, we implement the AR model based on Yule–Walker equation
in this article. In addition to REMAIN (which initializes and re-estimates model parameters based
on a-RANSAC), we also implement REMAIN-RSAC (which initializes and re-estimates model pa-
rameters based on RANSAC) and REMAIN-NDD (REMAIN without deterioration detection).

Parameter Settings. In REMAIN, besides the poor-quality dataset Ot arriving at each time
point t , four parameters, i.e., δ 1, p, s , and τ , need to be provided. As introduced in Section 3.2.1,
the anomaly ratio at the first time point, i.e., δ 1, can be given by domain experts or estimated
based on the arrival dataO1 by exploring the existing visual identification approaches. Intuitively,
the impact of δ 1 on the final imputation accuracy is slight, as δ 1 is only used to initialize the
δmax and δmin which are expected to update with time passes. We set δ 1 = 0.1 for both AQ and
IDL datasets in experiments. The parameters p and s are the input of RANSAC (introduced in
Section 3.2.1), where p is the probability that a correct model can be obtained and s is the minimal
number of observations required to compute the model parameters. Intuitively, a large p indicates
a high probability of correctness for the learned MV imputation model while a high time cost
(as shown in Figure 6). As recommended in [10], we adopt p = 0.99 for the proposed REMAIN.
Additionally, as introduced earlier, we set s = dc + 2 since dc + 1 parameters need to be learned
where dc is the number of complete attributes in an observation. Finally, the parameter τ is the
anomaly threshold used to identify the anomalies and needs to be predefined. It is notable that
τ is also required by existing anomaly repair approaches, i.e., AR, ARX, IMR, and EWMA. In the
existing works mentioned above, τ is usually decided by observing the statistical distributions
of distances between the observed values and predicted values based on a segment of historical
data [39]. In other words, the parameter τ is usually pre-learned based on a segment of historical
data. In this article, the parameter τ can be decided based on the poor-quality dataset O1 at the
first time point with the same line of the existing works. In our experiments, we evaluate the
performances of the proposed REMAIN and the compared baselines over the real-world datasets
(see the experimental results in Appendix A), and set τ = 0.2 as the default value since almost all
approaches achieve the best performance when τ = 0.2.

For existing methods adopted as baselines, their parameters are required to be provided by pre-
learning based on a testing dataset (which is constituted by historical data). In addition, the existing
methods may not achieve the best performance with the default parameters recommended by their
authors, as the datasets adopted in this article are different from that adopted in existing works.
For fair comparison, we conduct a set of experiments over the two real-world datasets used in
this article (see details in Appendix B), and adopt the values with which the best performance is
achieved as the default parameters. The default parameter settings are shown in Table 4. Note that

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 77. Publication date: September 2020.



REMIAN: Real-Time and Error-Tolerant Missing Value Imputation 77:23

Table 4. Default Parameter Settings

Methods Parameter Settings
REMAIN s = dc + 2, p = 0.99, δ 1 = 0.1, τ = 0.2
MUSCLES p ′ = 6
SPIRIT p ′ = 6, hs = 1
TKCM L = 50, k ′ = 2, d ′ = 2, l = 3 (AQ), l = 9 (IDL)
AR/ARX/IMR p ′ = 6, τ = 0.2
EWMA λ = 0.2 (AQ), λ = 0.3 (IDL),τ = 0.2

Fig. 5. Error distribution approximation.

some notations in existing works are the same as that in REMAIN but with different meanings. To
avoid ambiguity, we add the apostrophes for the repeat notations of existing works, e.g., p of AR
is represented by p ′ in this article.

Performance metric. We adopt Root Mean Square Error (RMSE) to evaluate the imputation re-
sult. The lower RMSE is, the imputation result is closer to the ground truth and thus the imputation
has better performance.

6.2 Error Distribution Evaluation

As we assume that the imputation errors follow the Gaussian distribution in deterioration detec-
tion (Section 4), here we verify this assumption using the two real-world datasets. Figure 5 shows
the error distribution of imputation results from our datasets. It can be observed that Gaussian dis-
tributions are fitted and the means are approximate 0, showing consistency with our assumption.

6.3 Performance Evaluation by Varying p

Recall that the parameter p is the probability that a correct model can be obtained by RANSAC
(a-RANSAC). It impacts the performances of the proposed REMAIN and REMAIN-RSAC. Thus,
we evaluate the RMSE and time cost of REMAIN and REMAIN-RSAC by varying p on the two
real-world datasets. With a large p, the imputation model learned by RANSAC (a-RANSAC) is

more likely to be correct. However, with the increase of p, the number of iteration k =
loд (1−p )

loд (1−qs )

in RANSAC increase, which incurs the high time cost. Moreover, the variance threshold ς2 =

pδmaxτ
2 + (1 − p) (1 − δmin ) τ 2 used for deterioration detection is low when the p is large. The

time costs of both REMAIN and REMAIN-RSAC is higher with more deterioration detection points
being detected. Therefore, as shown in Figure 6, the RMSE of REMAIN (REMAIN-RSAC) decreases
as p increases, while the time cost correspondingly increases.
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Fig. 6. Performance by varying the probability p with τ = 0.2, δ t = 0.1, and s = 10 for AQ dataset and τ = 0.2,

γ t = 0.1, and s = 3 for IDL dataset, respectively.

Fig. 7. Imputation accuracy by varying anomaly ratio δ t , over Air Quality with τ = 0.2, p = 0.99, and s = 10.

6.4 Evaluation on Air Quality

The experiments on real MVs and synthetic anomalies over AQ dataset mainly consider two fac-
tors: anomaly ratio δ t and anomaly threshold τ .

6.4.1 Varying the Anomaly Ratio δ t . First, REMAIN imputes the MVs by using data without
anomalies, while existing solutions impute the MVs by employing repaired anomalies as intro-
duced in Section 1. Therefore, as shown in Figure 7, REMAIN always achieves the lowest RMSE.
In particular, when there is no anomaly in the data, i.e., the anomaly ratio is 0%, the performance
of REMAIN is also the best. One reason is that existing works suffer the problem of inaccuracy
propagation by imputing MVs using the historical data based on temporal dependencies, while
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Fig. 8. Time cost by varying anomaly ratio δ t , over Air Quality with τ = 0.2, p = 0.99, and s = 10.

REMAIN imputes MVs based only on the data at the current time without being affected by his-
torical imputation errors. Another reason is that the effective deterioration detection mechanism
in REMAIN improves the imputation accuracy.

In addition, with anomaly repair before MV imputation, existing online MV imputation methods
show better performance than no anomaly repair. For example, when anomaly ratio δ t = 10%, the
RMSE errors of MUSCLES with anomaly repair based on EWMA (Figure 7(b)), ARX (Figure 7(c)),
IMR (Figure 7(d)), and AR (Figure 7(e)) are 0.1182, 0.0866, 0.0759, and 0.0841, respectively, which
are lower than 0.1452 without anomaly repair (Figure 7(a)). Nevertheless, their performances are
worse than REMAIN.

On the other hand, among REMAIN, REMAIN-RSAC, and REMAIN-NDD, the RMSE of REMAIN
is slightly higher than that of REMAIN-RSAC, because in REMAIN, the parameters of the imputa-
tion model are re-estimated based on a small subset of consistent observations, which reduces the
accuracy of imputation model. However, the time cost of REMAIN is lower than that of REMAIN-
RSAC (can be observed in Figures 8 and 10), which verifies that REMAIN is more competent for
streaming data. Comparing with REMAIN and ERMAIN-RSAC, the RMSE error of REMAIN-NDD
is higher, which verifies that the deterioration detection indeed contributes to the imputation ac-
curacy improvement.

Second, Figure 8 presents the time cost by varying anomaly ratiodelta. Since there is no deterio-
ration detection in REMAIN-NDD, its time cost is lower than that of REMAIN and REMAIN-RSAC.
As shown in Figure 8(a), the time costs of MLR, SPIRIT, and TKCM are lower than that of REMAIN.
The reason for MLR is that there is no anomaly detection and deterioration detection. For SPIRIT,
it only needs to maintainhs (hs = 1 in our experiments, which is usually small) AR models by com-
pressingn objects intohs hidden variables. For TKCM, its time cost is low because there are a small
number of MVs in the AQ dataset. It is not surprising that MUSLCES incurs higher time cost since
it maintains n AR models for n objects. Similar results can be observed in Figure 8(b) with anomaly
repair based on EWMA. Since the parameters of EWMA model are stable, the time cost of anomaly
repair based on EWMA is much lower than that of MV imputation. As shown in Figure 8(c)–(e),
the time costs for existing online MV imputation methods are significantly increased due to the
high time cost of anomaly repair, while REMAIN achieves the lowest time cost.
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Fig. 9. Imputation accuracy by varying anomaly threshold τ , over Air Quality with δ t = 0.1, p = 0.99, and

s = 10.

Fig. 10. Time cost by varying anomaly threshold τ , over Air Quality with δ t = 0.1, p = 0.99, and s = 10.

6.4.2 Varying the Anomaly Threshold τ . Figures 9 and 10 show the MV imputation accuracy
and time cost under increased anomaly threshold τ . As shown in Figure 9, the RMSE error of
REMAIN first decreases and then increases. With a small anomaly threshold, some consistent
observations are detected as anomalous ones. As a result, the imputation model updated based
on insufficient consistent observations does not perform well. On the contrary, with a too large
an anomaly threshold, some anomalous observations are not detected, i.e., they are mistaken as
consistent observations. As a result, the learned imputation model also does not perform well.
Therefore, the RMSE error of REMAIN shows the tendency of deceasing first and then increasing.
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Fig. 11. Number of deterioration points over AQ dataset with τ = 0.2, δ t = 0.1, p = 0.99, and s = 10.

In the same way, existing works with anomaly repair based on EWMA, AR, ARX, and IMR models
show the same trend.

On the other hand, as shown in Figure 10, the time cost of REMAIN significantly decreases
when the anomaly threshold is smaller than 0.3, and then remains stable with the increase of
anomaly threshold. With a small anomaly threshold, the variance threshold is correspondingly
small, which causes many deterioration points to be detected. At deterioration points, since the
model parameters need to be re-estimated which is time consuming, the time cost of REMAIN is
high when the anomaly threshold is small. Nevertheless, when the anomaly threshold reaches a
certain value, e.g., 0.3, there is no anomalous observation to be detected, and the main time cost
is caused by model parameter update. Thus the time cost of REMAIN tends to be stable. We adopt
the default anomaly threshold τ = 0.2.

Additionally, we show the number of detected deterioration points in Figure 11 by varying the
anomaly ratio δ t and the anomaly threshold τ over the AQ dataset. Since the variance threshold
ς2 is proportional to both anomaly ratio and anomaly threshold, it is not surprising that less dete-
rioration points are detected with the increase of anomaly ratio and anomaly threshold. Moreover,
the number of deterioration points detected by REMAIN is almost the same as that of REMAIN-
RSAC, which further verifies that the proposed a-RANSAC (in REMAIN) does not trade much
effectiveness off for the improved efficiency.

6.5 Evaluation on IDL Dataset

The experiments on real anomalies and synthetic MVs over IDL dataset focus on the evaluation
by varying the missing ratio which controls the percentage of incomplete observations and the
number of consecutive MVs which decide how long (in terms of consecutive time points) each
incomplete observation lasts.

6.5.1 Varying the Missing Ratio. As shown in Figure 12, the imputation accuracy of REMAIN is
stable with the increase of missing ratio. In addition, REMAIN always shows the lowest RMSE error
compared with other online MV imputation methods under evaluation. This result demonstrates
again that the proposed REMAIN works well in MV imputation for poor-quality streaming data.

Next, we compare the efficiency of various approaches in terms of time cost w.r.t. missing ratio.
Intuitively, with the increase of missing ratio, more incomplete observations need to be imputed,
while fewer consistent observations can be used to update or re-estimate parameters of the impu-
tation model. Moreover, since the anomaly ratio is defined as the proportion of anomalous obser-
vations in all complete observations, with the increase of missing ratio, the number of complete
observations decreases, and thereby the anomaly ratio increases. Accordingly, the variance thresh-
old increases, which causes fewer deterioration points to be detected. Under the mutual impact of
factors introduced above, Figure 13 shows that the time costs of REMAIN and REMAIN-RSAC
decrease with the increase of missing ratio. Likewise, other approaches except for TKCM show
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Fig. 12. Imputation accuracy by varying missing ratio γ t , over IDL with τ = 0.2, p = 0.99, and s = 3.

Fig. 13. Time cost by varying missing ratio γ t , over IDL with τ = 0.2, p = 0.99, and s = 3.

the similar trend, mainly because the time cost of parameter update is greater than that of MV
imputation for temporal-dependency-based existing works. Since in TKCM, the MV in an incom-
plete observation is imputed based on the anchor points detected from the reference time series,
which is time costly, its time cost shows an up-growing trend with the increase of missing ratio.
Moreover, due to the high time consumption, we present the time cost of TKCM by using another
ordinate (shown as right ordinate) in Figure 13.

6.5.2 Varying the Number of Consecutive MVs. In Figure 14, we study the imputation accuracy
w.r.t. the number of consecutive MVs. As shown, the RMSE error of REMAIN remains stable as the
number of consecutive MVs increases from 1 to 10, which verifies that our REMAIN is resilient to
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Fig. 14. Imputation accuracy by varying the number of consecutive MVs, over IDL with γ t = 0.1, τ = 0.2,

p = 0.99, and s = 3.

Fig. 15. Time cost by varying the number of consecutive MVs, over IDL with γ t = 0.1, τ = 0.2, p = 0.99, and

s = 3.

consecutive MVs. Since MUSCLES and SPIRIT suffer from the error propagation during MV im-
putation, their performances become worse when they face a large number of consecutive MVs.
The time cost results are reported in Figure 15. It is notable that to make the time costs of vari-
ous approaches more clear, we present the results of some approaches by using another ordinate
(shown as the right ordinate and annotated by “y2”) in the figure. As shown, since both missing ra-
tio and anomaly ratio are stable, the time costs of various methods are stable. In addition, REMAIN
achieves the best performance in terms of time cost in most cases.
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Fig. 16. Number of deterioration points over IDL dataset with γ t = 0.1, τ = 0.2, p = 0.99, and s = 3.

Fig. 17. Imputation accuracy by varying the data size.

Following the same line of AQ dataset, Figure 16 shows the number of detected deterioration
points of REMAIN and REMAIN-RSAC over the IDL dataset by varying the missing ratio and the
number of consecutive MVs. As introduced in Section 6.5.1, the increase of missing ratio incurs
a large anomaly ratio, thus the number of detected points also decreases with the increase of
missing ratio. Since the number of consecutive MVs do not impact the variance threshold ς2 and
both REMAIN and REMIAN-RSAC are competent for handling consecutive MVs, the number of
detected deterioration points retains stable.

6.6 Evaluation on the Sythetic Dataset

To evaluate the scalability of REMAIN, we generate synthetic datasets based on the real-world
dataset Air Quality. In the synthetic datasets, both anomaly ratio and missing ratio are 10%, and
the anomaly threshold τ = 0.2. Since the time cost of MUSCLES increases heavily with the increase
of data size, we omit its results in this section.

Figure 17 shows that REMAIN has the best performance in imputation accuracy compared with
other online MV imputation methods. Even though the imputation accuracy of REMAIN is slightly
worse than that of REMAIN-RSAC due to the efficient parameter re-estimation, the efficiency of
REMAIN is better than that of REMAIN-RSAC. Without deterioration detection, REMAIN-NDD
shows the worst imputation accuracy compared with REMAIN and REMAIN-RSAC. With the
anomaly repair (i.e., the anomalies are repaired before MV imputation), the improvement of MV
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Fig. 18. Time cost by varying the data size.

imputation accuracy based on existing methods is limited, as the repaired anomalies have errors
propagated into MV imputation easily.

As shown in Figure 18, it is not surprising that the time costs rise with the increase of data size
for all online MV imputation approaches. Similar to the results shown in Figure 8, the time cost
of SPIRIT is lower than that of REMAIN in Figure 18(a), since SPIRIT only needs to maintain a
small number of AR models for hidden variables. Nevertheless, the SPIRIT has a higher imputa-
tion error. Likewise, since the anomalies are repaired based on a stable model in EWMA, similar
results are observed in Figure 18(b). With anomaly repair based on AR, ARX, and IMR models, the
time costs of existing works significantly increase due to the extra time cost for anomaly repair.
Consequently, REMAIN achieves the best performance in time cost. Specifically, REMAIN yields
one order of magnitude performance gain in time cost compared with existing online MV imputa-
tion approaches. In addition, it can be observed that the time cost of REMAIN is obviously lower
than that of REMAIN-RSAC in Figure 18, which supports that REMAIN is more competent for
streaming data than REMAIN-RSAC.

6.7 Summary of Experiments.

We summarize the experimental findings as follows: (1) The MV imputation accuracy is signifi-
cantly improved by the proposed REMAIN compared with existing woks, e.g., MLR, MUSCLES,
SPIRIT, and TKCM, even though the anomaly repair is conducted before MV imputation. (2) RE-
MAIN shows comparable imputation accuracy to the REMAIN-RSAC, while the efficiency is sig-
nificantly improved. (3) Without deterioration detection, REMAIN-NDD shows the lowest time
cost while the imputation accuracy is worse than REMAIN and REMAIN-RSAC. (4) With con-
stant space complexity, in time cost, REMAIN shows the best performance in most scenarios and
shows up to one order of magnitude improvement compared with existing online MV imputation
approaches.

7 CONCLUSION

In this article, we have studied the problem of MV imputation for poor-quality streaming data
which has the following characteristics: (1) arriving continuously; (2) containing MVs and
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anomalies simultaneously; and (3) changing dynamically for data values and the correlations
among attributes. Specifically, these characteristics lead to major challenges for existing impu-
tation methods. To address these challenges, we propose a novel framework of real-time and
error-tolerant MV imputation, called REMAIN. To the best of our knowledge, this is the first
study on MV imputation for poor-quality streaming data. Instead of employing MV imputation
based on all of the complete observations, REMAIN learns and incrementally updates an effective
imputation model by detecting and eliminating anomalous observations from the whole dataset.
To make the imputation model adapt to the dynamical change of data, REMAIN detects the dete-
rioration points through monitoring the MV imputation errors at each time point. Experimental
results on two real-world and synthetic datasets demonstrate that REMAIN achieves higher
imputation accuracy and scales up well compared to the state-of-the-art MV imputation methods.

APPENDICES

A ESTIMATION OF ANOMALY RATIO

Given a poor-quality dataset Ot at time t (t > 1), since the anomalous set Ot
a ⊆ Ot is non-

deterministic, the anomaly ratio δ t needs to be estimated based on the detected anomalous ob-
servations. Moreover, the accuracy of the estimated anomaly ratio δ t affects the accuracy of δmax

and δmin which are used for deterioration detection and parameter initialization, and thereby af-
fects the final imputation accuracy. In the proposed REMAIN, at each time point t , we estimate
the anomaly ratio δ t based on the learned MLR model and update δmax and δmin accordingly. To
evaluate the effectiveness of anomaly detection based on the learned MLR model in REMAIN, we
compare the proposed the REMAIN with (1) AR+REMAIN, (2) ARX+REMAIN, (3) IMR+REMAIN,
and (4) EWMA+REMAIN, where the MVs are imputed based on the learned MLR model in RE-
MAIN, while the anomalies are detected/repaired based on existing works AR, ARX, IMR, and
EWMA, respectively. Moreover, we implement the REMAIN with the real anomaly ratio δ t (de-
noted by “Real” in Figure 19).

Fig. 19. Performance comparison on imputation accuracy with p = 0.995.

First, Figure 19(a) shows the MV imputation accuracies of various approaches by varying anom-
aly ratio and anomaly threshold over the AQ dataset, repectively. As introduced earlier, the learned
MLR model (used for MV imputation and anomaly detection simultaneously) in REMAIN explores
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the non-linear correlations among attributes in the same observation, while AR, ARX, IMR, and
EWMA explore the temporal correlations of the data to detect/repair anomalies based on a seg-
ment of historical observations. Since the inaccuracies of imputed MVs and repaired anomalies in
the historical data segment are to be propagated to later anomaly detection, the estimated anomaly
ratio based on AR, ARX, IMR, and EWMA are likely to be inaccurate. By comparison, REMAIN
does not suffer the problem of inaccuracy propagation with no requirements for historical data
during model learning. Moreover, the mechanism of deterioration detection in REMAIN further
improves the effectiveness of the learned MLR model by considering the abrupt change of the data.
Therefore, as shown in Figure 19(a), the estimated anomaly ratio based on the learned MLR model
in REMAIN is most close to the real anomaly ratio, and thereby the estimated δmax and δmin are the
most accurate. Consequently, REMAIN achieves the lowest RMSE compared with AR+REMAIN,
ARX+REMAIN, IMR+REMAIN, and EWMA+REMAIN.

Similar results can be observed in Figure 19(b) which shows the MV imputation accuracies of
various approaches by varying the missing ratio and anomaly threshold over IDL dataset, respec-
tively. Since anomalies naturally exist in the IDL dataset, i.e., at each time point, the size of anoma-
lous set Ot

a is deterministic, the size of consistent set Ot
c is reduced with the increase of missing

ratio, and thereby the anomaly ratio δ t increases accordingly. Therefore, the change trend of MV
imputation accuracy in Figure 19(b) is similar to that of in Figure 19(a). On the other hand, with
the increase of anomaly threshold τ , the RMSE errors of all approaches decrease first and increase
then (the reasons are elaborated in Section 6.4.2). Moreover, almost all approaches achieve the best
performances when τ = 0.2. Thus, we adopt 0.2 as the default value of the anomaly threshold τ
for the proposed REMAIN and the existing anomaly detection/repair works, i.e., AR, ARX, IMR,
and EWMA.

B DEFAULT PARAMETER SETTINGS

In existing methods, the parameters are recommended for their adopted datasets rather than the
two real-world datasets adopted in this work. Thus, through extensive experimental evaluation,
we adopt the parameters with which the best performance is achieved over the datasets adopted
in this work.

B.1 Parameter Settings for Existing Anomaly Repair Approaches

For existing anomaly repair approaches, they are mainly used for anomaly detection before MV
imputation over the examined online MV imputation algorithms. We use the F −measure to eval-
uate the accuracy of the detected anomalies. Let truth be the set of real anomalies and f ound be the

set of detected anomalies. Then F −measure = 2 · Recall ·Pr ecision
Recall+Pr ecision

where Recall =
|truth

⋂
f ound |

|truth |

and Precision =
|truth

⋂
f ound |

|f ound | . The higher F −measure is, the closer the detected anomalies are

to the ground truths, and thereby the imputation accuracy is higher.
As shown in Figure 20(a)–(c), since the rationales of anomaly repair based on existing AR, ARX,

and IMR are similar, the change trends of them are also similar to each other. With various anomaly
ratios, their performances are stable whenp ′ is in range of [4, 9], while with various missing ratios,
most of them achieve the best performance when p ′ = 6. Thus, for AR, ARX and IMR, we set the
default value of p ′ as 6. For EWMA, based on its performance shown in Figure 20(d), we set the
default λ = 0.2 for Air Quality dataset and λ = 0.3 for IDL dataset, respectively.
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Fig. 20. Performance of existing anomaly repair approaches with various parameters.

B.2 Parameter Settings for Existing MV Imputation Algorithms

For existing online MV imputation approaches, we adopt the RMSE introduced in Section 6.1 to
evaluate their imputation accuracy.

First, Figure 21 presents the MV imputation accuracy of MUSCLES by varying the parameter p ′

with various anomaly ratios and missing ratios over AQ and IDL datasets, respectively. We adopt
the default p ′ = 6 for the following two reasons: (i) As shown in Figure 21, the RMSE error of
MUSCLES shows an up-growing trend with the increase of p ′. But the increase of RMSE error is
slight especially for the IDL dataset, i.e., the difference of RMSE error between p ′ = 6 and p ′ = 1 is
not obvious. (ii) In several existing works [25, 34, 35], all of them adopt p ′ = 6 as the default value
with different datasets. Without loss of generality, we also adopt p ′ = 6 as the default value.
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Fig. 21. Performance of MUSLES by varying p′.

Fig. 22. Performance of SPIRIT by varying p′ and hs , respectively.

Second, in Figure 22, we study the accuracy of SPIRIT in terms of its parameters, i.e., p ′ and hs .
As shown in Figure 22(a), the RMSE errors are stable with the increase of p ′ on both AQ and IDL
datasets, and thus we adopt p ′ = 6 as the default value which is consistent with MUSCLES. On the
other hand, we adopt the default value of hs as 1 because the lowest RMSE is achieved by SPIRIT
when hs = 1 (as shown in Figure 22(b)).

Finally, for TKCM, there are four parameters, i.e., L, d ′, l , and k ′, and Figure 23 illustrates the
imputation accuracies of TKCM by varying these parameters with various anomaly ratios and
missing ratios over AQ and IDL datasets, respectively. Based on the experimental results, we adopt
the default values of the parameters as L = 50, d ′ = 2 and k ′ = 2 for both AQ and IDL datasets.
Moreover, we set l = 3 and l = 9 for AQ and IDL dataset, respectively.
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Fig. 23. Performance of TKCM by varying L, d ′, l , and k ′, respectively.
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