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ABSTRACT
Citations of scientific papers and patents reveal the knowledge flow
and usually serve as the metric for evaluating their novelty and
impacts in the field. Citation Forecasting thus has various appli-
cations in the real world. Existing works on citation forecasting
typically exploit the sequential properties of citation events, with-
out exploring the citation network. In this paper, we propose to
explore both the citation network and the related citation event
sequences which provide valuable information for future citation
forecasting. We propose a novel Citation Network and Event Se-
quence (CINES)Model to encode signals in the citation network and
related citation event sequences into various types of embeddings
for decoding to the arrivals of future citations. Moreover, we pro-
pose a temporal network attention and three alternative designs of
bidirectional feature propagation to aggregate the retrospective and
prospective aspects of publications in the citation network, coupled
with the citation event sequence embeddings learned by a two-level
attention mechanism for the citation forecasting. We evaluate our
models and baselines on both a U.S. patent dataset and a DBLP
dataset. Experimental results show that our models outperform the
state-of-the-art methods, i.e., RMTPP, CYAN-RNN, Intensity-RNN,
and PC-RNN, reducing the forecasting error by 37.76% - 75.32%.
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1 INTRODUCTION
Scientific papers and patents reveal scientific discoveries and tech-
nological innovation. In addition to revealing the knowledge flows,
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citations of publications1 have been widely used as evaluation
metrics for assessing discoveries and innovations’ novelty and im-
pact [2, 8, 18], researcher competence [7], journal impacts [4], per-
formance of research institutes [10], emerging new research and
technologies [12, 13], and technology cycles, among others. Due to
the wide applications of citations, researchers have seen growing
interests in the task of citation forecasting on scientific publications
to assess their long-term potential.

One approach to citation forecasting is to treat the arrivals of
citations to a publication as a dynamic process of citation events
affected by a number of factors and model the occurrence of these
events mathematically.2 As such, future citation events are pre-
dicted using the developed mathematical models. For example,
Wang, Song, and Barabasi propose a WSB model by factoring in
the total number of citations a paper received, its age and fitness
(i.e., paper quality) in a manually tailored equation [19]. He et al.
improve the WSB model to better predict atypical articles whose
citations arrives in atypical patterns (e.g., articles that sleep with no
citations for a while and then awaken to receive many citations) [6].
Some other studies model the series of citation events as a tem-
poral point process using some pre-selected conditional intensity
functions, e.g., the reinforced poison process [17, 21] and Hawkes
process [14, 23, 26]. However, the aforementioned models do not
achieve good performance due to the limited power of identified
factors or strong assumptions unfit with the real-world scenarios.

Another more recent approach to citation forecasting involves
deep learning. In particular, recurrent neural network (RNN) has
been employed to emulate the temporal point process for citation
forecasting, exploring the chained neural cells in RNN to capture
the conditional intensity of previous citations [3, 9, 20, 22]. How-
ever, this approach results in numerical instability in training and
a computational bottleneck in inference due to the complexity of
density functions adopted [9]. Recently, Ji. et al. propose a sequence-
to-sequence model, called PC-RNN, for patent citation forecast of
a given focal patent, which employs an attention mechanism to
capture the dependencies in time sequences of citations to the focal
patent, citations to other patents of its inventors, and citations to
other patents owned its assignees [9]. While some ”indirect” cita-
tions are explored as additional signals to supplement direct citation
events to the focal patent, this work does not consider different
characteristics of individual patents, leading to significant infor-
mation loss. Additionally, it does not exploit the rich information
in the publication citation network (PCN), that contains not only
information and traits of a publication, but also “knowledge flow”
and “impact” revealed by edges in the citation network.

1The term “publication” refers to the papers or patents in this paper.
2We refer to the happening of a citation in terms of its timing as citation event.
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Figure 1: The CINES Model

In this work, we aim to exploit signals embedded in PCN and
various sequences of citation events for citation forecasting. We ar-
gue that information in both PCN and sequences of citation events
are useful for citation forecasting. The PCN, along with the content
and metadata describing publications, provides the linkage among
publications via citations, which can be viewed in retrospective and
prospective aspects to capture knowledge flow and impact. In other
words, a citation serves two roles with different implications. On
one hand, the retrospective aspect highlights that the references
documented in a focal publication signals the knowledge propaga-
tion from the references to it. On the other hand, the prospective
aspect stresses that the forward citations of a publication signal its
influence on subsequent innovations and in certain fields (i.e., its
future impacts). In addition, PCN as a whole is a rich data repository
that embeds temporally evolving technological trends and develop-
ment. The position of the focal publication in such a network and
its surrounding network structural information may bring useful
signals for forecasting future citations. Thus, in this work, we aim
to capture various information from PCN for each publication.

As the arrivals of future citations to a publication can be seen as a
sequence of citation events (also called citation event sequences), it is
intuitive that the past citation event sequences of a focal publication
are useful for its future citation forecasting. Furthermore, we argue
that in addition to the past citation event sequence associated with
the focal publication, the citation event sequences associated with
its related publications, including its references, similar publications
of its authors (or its inventors) and so on, are valuable supplements.
Thus, it’s a good idea to complement the information captured
in PCN with signals in related citation event sequences for future
citation forecasting.

Designing a citation forecast framework to incorporate both
information from PCN and related citation event sequences is chal-
lenging due to their distinctive representations, i.e., PCN is a graph
while related citation event sequences are time-variant sequences.
To meet the challenge, we propose a new neural network model,
namely Citation Network and Event Sequences (CINES), based on the
encoder-decoder paradigm to forecast the arrivals of future cita-
tions for a focal publication. As shown in Figure 1, CINES consists
of three components: i) a Citation Network Encoder (NetEnc), ii) a
Citation Event Sequence Encoder (SeqEnc), and iii) a Future Citation
Decoder (FCDec). NetEnc is a graph neural network that encodes
content, traits and network structural information in PCN into PCN

embeddings for publications in PCN. The novelty in our design of
NetEnc lies in the exploration of bidirectional feature propagation to
capture both prospective and retrospective aspects of citations and
the proposal of a temporal network attention (TNA) mechanism to
capture the factor of the temporal distance in citations. On the other
hand, to encode existing citation event sequences of related publica-
tions to the focal publication, SeqEnc exploits the Long Short Term
Memory (LSTM), a variant of recurrent neural networks known
for processing sequential data, to encode various citation event
sequences into corresponding sequences of citation event sequence
(CES) embeddings. Note that to handle different categories of cita-
tion event sequences, SeqEnc learns multiple LSTMs, one for each
category. Finally, FCDec takes the PCN embedding, various CES
embedding sequences and the citation event sequence of the focal
publication as the inputs to forecast the arrival of its future citations.
As future citations arrive as a temporal sequence, FCDec exploits an
LSTM for forecasting. Specifically, at each time step, FCDec explores
a two-level event/publication aware attention mechanism to learn
the attention weights for aggregation of various CES embedding
sequences into one aggregated CES embedding, which represents
the overall influence from related citation event sequences at that
time step. Finally, both the aggregated CES embedding and the
LSTM hidden state at that time step (which incorporates the PCN
embedding and the historical citation event sequence of the fo-
cal publication) are fed into a fully-connected layer to predict the
arrival time of the next future citation.

We conduct extensive experiments on two large-scale real-world
publication datasets (i.e., U.S. patents and DBLP papers) to evaluate
the proposed CINES model in comparison with several state-of-the-
art models. The results show that CINES outperforms the baselines
by reducing the Mean Absolute Error (MAE) by 37.76% and 75.32%
on the patent and paper citation forecasting, respectively.

The major contributions made in this work are as follows.
• We propose to explore both the PCN and the related cita-
tion event sequences, which provide valuable information
inherent to the dynamic pattern of citation events in com-
plementary forms, for future citation forecasting.

• We propose CINES, a new end-to-end neural network model,
for publication citation forecasting. The design of CINES is
tailored for exploiting unique characteristics of information
embedded in a large-scale temporal network and a variety
of citation event sequences.

• We conduct extensive experiments on U.S. patents and DBLP
papers to evaluate the proposed CINES against the state-
of-the-arts in research on citation forecast. Experimental
results show that CINES significantly outperforms the base-
lines by reducing the forecasting error (in terms of MAE)
up to 75.32%. Ablation study finds that signals from PCN
and related citation events sequences are complementary
for citation forecasting, while the former is generally more
important.

2 RELATEDWORKS
The citation forecasting task on publications aims to forecast the
arrival of future citations to a focal publication. Existing works gen-
erally fall into two categories: i) mathematically modeling citations
to a focal publication as a dynamic process of citing events; and ii)
learning machine learning models using historical citation data.
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2.1 Mathematical Modeling
Early studies on citation forecasting model the arrival of citations
as a phenomenon of citation events dominated by certain factors.
They analyze the factors, manually formulate amathematical model,
and fit citation events to the model [6, 19, 25]. For example, by
considering the total number of citations a publication received,
the age of the publication (which affects the long-term decay of
its novelty), and the fitness (i.e., how different it is from other
publications), Wang, Song and Barabasi propose the WSB model
to predict future citations to the publication [19]. He et al. extend
the WSB model to handle two atypical types of publications, i.e.,
awakened articles (first sleep and then gradually gain the citations)
and second-act articles (have two peaks of the citation arrivals) [6].
Alternatively, some studies model the arrivals of citing events as a
temporal point process [3, 8, 14, 17, 21, 23, 26]. This line of studies
differ in the conditional intensity functions used in the temporal
point process (e.g., reinforced poison process in [17, 21] and Hawkes
process [5, 14, 23, 26]) and priors used in themodels. However, these
mathematical models suffer from poor performance due to the
limits of identified factors or the strong assumptions behind used
conditional intensity functions, unfitting with real-world scenarios.

2.2 Machine Learning
Instead of manually formulating mathematical models, recent stud-
ies on citation forecasting explore machine learning methods to
learn predictive models from the historical citation data [1, 3, 15, 20,
22, 24]. Some works extract various types of features, e.g., author-
wise attributes, paper-specific and venue-centric features, from pub-
lications to train regression models for citation forecasting [1, 24].

Owing to the limits caused by manually designed conditional
intensity functions in temporal point processes, recurrent neural
networks (RNNs) are exploited to learn flexible exponential func-
tions with its cells [3, 20, 22]. However, these RNN-based methods
face numerical instability in training due to their designs of the ex-
ponential functions [9]. In addition, those works face data sparsity
issues. For new publications, which have limited or no citations,
it is hard for these models to predict future citations if the models
overfit on historical citing events. To address these issues in patent
data, a sequence-to-sequence model, called PC-RNN, is proposed to
capture dependencies among three types of citing event sequences,
including existing citations to the focal patent, citations to the
patents of its authors and citations to the patents of its assignee [9].

In this work, we propose to exploit publication citation networks
and citation event sequences, which have not been explored to-
gether in previous works for citation forecasting. Moreover, the
designs of components in our model, CINES, are new and tailored
for unique characteristics of information embedded the large-scale
publication citation networks and various citation event sequences.

3 PROBLEM FORMULATION
In this section, we formally define the notions of publication citation
network (PCN), citation event sequences and some related terms. Ac-
cordingly, we formulate the publication citation forecasting problem.
Definition 1. Publication Citation Network (PCN). A publi-
cation citation network is a directed graph 𝐷 = (𝑃, 𝐸, 𝜙), where 𝑃
is the node set and 𝐸 is the edge set. Each node 𝑝𝑖 ∈ 𝑃 denotes a
publication; each edge 𝑒𝑖 𝑗 ∈ 𝐸 denotes a citation, i.e., 𝑝𝑖 cites 𝑝 𝑗 ;

and 𝜙 : 𝑃 → F is a feature extraction function that maps each
node to F , the set of its features, such as publication date and title.
Definition 2. Reference Set and Forward Citation Set. Given
a PCN 𝐷 = (𝑃, 𝐸, 𝜙) and a publication 𝑝𝑖 , we refer to the set of
references cited by 𝑝𝑖 as the reference set of 𝑝𝑖 , i.e., 𝑅(𝑝𝑖 ) = {𝑝 𝑗 |𝑝 𝑗 ∈
𝑃, 𝑒𝑖 𝑗 ∈ 𝐸}. For simplicity, we use 𝑅𝑖 to denote 𝑅(𝑝𝑖 ). Similarly, we
refer to the set of publications that cite 𝑝𝑖 as the forward citation
set (or citation set in short) of 𝑝𝑖 , i.e., 𝐶 (𝑝𝑖 ) = {𝑝 𝑗 |𝑝 𝑗 ∈ 𝑃, 𝑒 𝑗𝑖 ∈ 𝐸}
and use 𝐶𝑖 to denote 𝐶 (𝑝𝑖 ).

The publications in the citation set𝐶𝑖 of a publication 𝑝𝑖 contain
the existing citations to 𝑝𝑖 , and thus may provide useful information
for the arrival of its future citations. We are particularly interested
in exploiting the temporal signal associated with the happenings
of those citations, referred as citation events, as defined below.

Definition 3. Citation Event. Given a publication 𝑝 𝑗 which cites
𝑝𝑖 , i.e., 𝑝 𝑗 ∈ 𝐶𝑖 , the citation event of the citation 𝑒 𝑗𝑖 ) is the time
distance between the publishing of 𝑝𝑖 and 𝑝 𝑗 , i.e., |𝐷𝑎𝑡𝑒 (𝑝 𝑗 ) −
𝐷𝑎𝑡𝑒 (𝑝𝑖 ) | where 𝐷𝑎𝑡𝑒 (𝑝) is the publishing date of 𝑝 .

By sorting the citation events of forward citations to a publication
𝑝𝑖 in ascending order, we have the citation event sequence of 𝑝𝑖 , as
defined below.

Definition 4. Citation Event Sequence. Given the citation set
𝐶𝑖 , the citation event sequence of 𝑝𝑖 is the sorted set of existing
citation events 𝑆𝑖 = {𝑡𝑛

𝑖
|1 ≤ 𝑛 ≤ 𝑚 where 𝑡𝑛

𝑖
is the 𝑛𝑡ℎ citation

event to 𝑝𝑖 and𝑚 is the total number of existing citations to 𝑝𝑖 .}.
In addition to the signal of direct citations to the focal publication,

we argue that citation event sequences to some related publications,
especially those that exhibit correlated signals, may be useful for
citation forecasting. In this work, we identify several categories of
related publications, depending on the nature of publications, i.e.,
patents or papers. For patents, the related publications of a focal
patent 𝑝𝑖 include i) patents referenced by 𝑝𝑖 , ii) patents citing 𝑝𝑖 ,
iii) similar patents by the inventors of 𝑝𝑖 , iv) similar patents owned
by the assignee of 𝑝𝑖 . Similarly, for papers, we explore related
publications in (i) and (ii) above but replace inventors in (iii) and
assignee in (iv) by authors and affiliations, respectively. Accordingly,
for 𝑝𝑖 , there are multiple related publications in each category 𝑋 ,
and each related publication has a corresponding related citation
event sequence as defined below.

Definition 5. Related Citation Event Sequences. Let𝑋𝑖 denote
the set of related publications to 𝑝𝑖 in category 𝑋 , e.g., when 𝑋 = 𝑅,
the set of related publications 𝑅𝑖 is the reference set of 𝑝𝑖 . Given the
𝑘th related publication in 𝑋𝑖 , its related citation event sequence is
represented as {𝑡1

𝑋,𝑘
, 𝑡2
𝑋,𝑘

, ..., 𝑡
𝑚𝑋,𝑘

𝑋,𝑘
}, where𝑚𝑋,𝑘 is the total number

of publications citing this 𝑘th related publication. Thus, all the
related citation event sequences corresponding to category X form
a set 𝑆𝑋

𝑖
as follows.

𝑆𝑋𝑖 = {{𝑡1𝑋,1, 𝑡
2
𝑋,1, ..., 𝑡

𝑚𝑋,1
𝑋,1 }, ..., {𝑡1

𝑋, |𝑆𝑋
𝑖
|, 𝑡

2
𝑋, |𝑆𝑋

𝑖
|, ..., 𝑡

𝑚
𝑋,|𝑆𝑋

𝑖
|

𝑋, |𝑆𝑋
𝑖
| }} (1)

Notice that the content and metadata of publications, the citation
network, the citation event sequence of publications, and related
citation event sequences of publications in various categories can
all be extracted from a dataset of scientific publications. Thus, we
formulate the problem of learning for citation forecasting as follows.
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Definition 6. Learning forCitation ForecastingProblem.Given
a dataset of scientific publications, the goal is to learn a citation
forecasting model𝑀 that maps i) a focal publication 𝑝𝑖 , along with
ii) its existing citation events 𝑆𝑖 = {𝑡1

𝑖
, 𝑡2
𝑖
, ..., 𝑡

𝑚𝑖

𝑖
}, iii) the citation

network 𝐷 = (𝑃, 𝐸, 𝜙), and iv) various related citation event se-
quences {𝑆𝑋

𝑖
|𝑋 is a category of related publication.} to the future

citation events of 𝑝𝑖 , i.e., {𝑡𝑚𝑖+1
𝑖

, 𝑡
𝑚𝑖+2
𝑖

, ...}.
The problem of learning for citation forecasting faces two chal-

lenges: i) data sparsity due to the limited number of existing citation
events to the focal publication; and ii) rich yet complex signals hid-
den in various sequences of citation events as well as content and
relationships among publications form the citation network. To ad-
dress the data sparsity issue, we explore both the citation network
and related citation event sequences to supplement the existing
citation events of the focal publication for citation forecasting. To
distill the complex signals, we analyze the characteristics of the
citation network and citation event sequences, aiming to design an
effective model for citation forecasting. As the citation network has
a temporal graph structure in which citations (i.e., directional edges
in the graph) have both retrospective and prospective aspects on
how publications are influencing or influenced by their neighbors.
Thus, an idea is to explore bidirectional feature propagation in a
temporal graph attention network to capture the aforementioned
roles of citations in the citation network. On the other hand, to cap-
ture the dependencies in various related citation event sequences,
our idea is to exploit recurrent neural networks to encode signals
in related citation event sequences by a two-level attention mech-
anism, which at the event level first aggregates weighted signals
amongst citation events for each related publication, and then at
the publication level further aggregates the aggregated signals of
related publications in the same category according to the similarity
between the related and focal publications. The proposed CINES
model is developed based on these ideas.

4 DESIGN OF THE CINES MODEL
In this section, we first introduce the model architecture and then
detail our design on components of the CINES model.
4.1 Model Architecture
To explore the supplementary signals from i) the publication citation
network (PCN) and ii) related citation event sequences of publica-
tions, we follow the encoder-decoder paradigm of neural network
architecture in the design of CINES, which consists of three compo-
nents (see Figure 1): 1) Citation Network Encoder (NetEnc) to encode
information in PCN, i.e., content and traits of publications and
their surrounding network structures; 2) Citation Event Sequence
Encoder (SeqEnc) to encode temporal dependencies in citation event
sequences of various related publications; and 3) Future Citation
Decoder (FCDec) to predict future citation events of a given focal
publication by taking its existing citation events and decode the
encoding (in form of embeddings) learned from NetEnc and SeqEnd.

Specifically, taking the focal publication 𝑝𝑖 as an example, Ne-
tEnc encodes the content and traits of 𝑝𝑖 and the network structural
information of its surroundings into its PCN embedding, denoted by
𝑔𝑖 . Meanwhile, SeqEnc encodes related citation event sequences of
𝑝𝑖 , corresponding to various categories (denoted by 𝑋1, 𝑋2, ...) into
a series of CES embeddings, which consists of multiple embedding
sequences for each category (shown in different colors in Figure 1),

while each embedding sequence is corresponding to a related pub-
lication and each individual CES embedding is corresponding to
a citation event. Finally, FCDec takes the existing (direct) citation
events of 𝑝𝑖 , i.e., 𝑆𝑖 = {𝑡1

𝑖
, ..., 𝑡

𝑚𝑖

𝑖
} where𝑚𝑖 is the number of for-

ward citations to 𝑝𝑖 received so far, as input, while decoding the
PCN embedding 𝑔𝑖 and all related CES embeddings to predict the
future citation events of 𝑝𝑖 (i.e., {𝑡𝑚𝑖+1

𝑖
, 𝑡
𝑚𝑖+2
𝑖

, 𝑒𝑡𝑐 .}).

4.2 Citation Network Encoder
In this section, we detail our design of the Citation Network En-
coder (NetEnc) which aims to encode content and traits and the
surrounding structural information of publications in PCN. Note
that the topics covered in a publication, its location in the PCN, and
indicators of knowledge flow and future impact are all potential
factors affecting its value which in turn may be related to its future
citations. Thus, an effective encoder should be able to capture those
signals for publications in PCN.

Due to the nature of PCN, i.e., it is a graph, we design NetEnc as
a graph neural network (GNN) model to exploit its underlying ideas
of feature transformation and propagation in the network. However,
as mentioned previously, there exist retrospective and prospective
aspects in citations due to their roles and implications in knowledge
propagation and potential impact among publications. Addition-
ally, PCN is a temporal network where the time distance between
cited and citing publications obviously contributes its uniqueness.
Conventional GNN models, based on our best knowledge, do not
take the special characteristics of PCN into consideration and thus
may not work well. To address these issues, our design of NetEnc
explores three different ideas, namely, Merge, Alternate and Cross,
to facilitate bidirectional feature propagation in order to accommo-
date both prospective and retrospective aspects of citations, while
proposing a temporal attention mechanism, called temporal network
attention (TNA), to address the temporal property of citations. In
the following, we first present TNA and then discuss alternative
strategies to extend TNA for bidirectional feature propagation.
4.2.1 Temporal Network Attention. We discuss the proposed
temporal network attention (TNA) under the context of “forward”
feature propagation (i.e., the knowledge diffusion) via citation edges
in PCN, as the idea also applies for “backward” feature propagation.
Our design has multiple layers, each of which models the feature
transition from a node’s 1-hop neighbors (i.e., its references) to
the node. As such, in each layer, each node collects the features
within the neighborhood of its 1-hop references. With 𝐿 layers,
a node/publication collects features propagated within its 𝐿-hop
neighborhood of references. Intuitively, the references of a publi-
cation may have different influences on it, and thus we propose to
model the different impacts of the references in our design. We ar-
gue that feature transitions along citation edges are different under
the following factors: i) the contents and traits being transmitted,
i.e., the transitions from two references with different topics are
different; and ii) its temporal distance, i.e., the transitions from a ref-
erence published a long time ago and another reference published
recently are different. Thus, they should be treated differently. Ac-
cordingly, for a node to aggregate information from its references at
each layer, TNA performs feature transformation based on temporal
distances of reference edges to carry out a weighted aggregation
by a graph attention.
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Figure 2: Layer 𝑙 of the Temporal Network Attention
Figure 2 shows the 𝑙-th layer of TNA, which models the feature

propagation process from references of a publication 𝑝𝑖 to generate
the layer-𝑙 embedding 𝑔𝑙

𝑖
of 𝑝𝑖 .3 As shown, the 𝑙-th layer transforms

the layer-(𝑙-1) embedding of 𝑝𝑖 and those of its references into
intermediate embeddings and aggregates them to generate the layer-
𝑙 embedding of 𝑝𝑖 . More specifically, for each reference 𝑝 𝑗 ( 𝑗 = 𝑗1,
𝑗2, ... 𝑗 |𝑅𝑖 | ), where the temporal distance between 𝑝𝑖 and 𝑝 𝑗 is 𝜏𝑖, 𝑗 , an
intermediate embedding 𝑧𝑙−1

𝑖 𝑗
=𝑊 𝑙

𝑓𝑠𝑡𝑒𝑝 (𝜏𝑖,𝑗 ) ·𝑔
𝑙−1
𝑗

(where𝑊 𝑙
𝑓𝑠𝑡𝑒𝑝 (𝜏𝑖,𝑗 )

is a transformation matrix tailored by the temporal distance 𝜏) is
generated. Note that the transformation matrix𝑊 is predetermined
by a step function 𝑓𝑠𝑡𝑒𝑝 which designates a number of temporal
distance ranges by some time steps, e.g.,𝑊1 for 0-1 year,𝑊2 for 1-2
year, and so on. Additionally, we use a threshold 𝛿𝜏 to designate
“long" temporal distance and use a special𝑊𝛿𝜏 for such citations.

Next, we aggregate the intermediate embeddings 𝑧𝑙−1
𝑖 𝑗

(where
𝑝 𝑗 ∈ 𝑅𝑖 ∪ {𝑝𝑖 }) based on the importance of 𝑝 𝑗 to 𝑝𝑖 as follows.

𝛽𝑙𝑖, 𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 ( ®𝛼 · (𝑧𝑙−1𝑖 𝑗 | |𝑧𝑙−1𝑖𝑖 )) (2)

where | | denotes the concatenation of the two embeddings and ®𝛼 is
a learned latent vector to help calculate the unnormalized attention
score (i.e., importance).

Finally, we normalize the attention scores with a softmax func-
tion as follows.

𝛾𝑙𝑖, 𝑗 =
𝑒𝑥𝑝 (𝛽𝑙

𝑖, 𝑗
)∑

𝑝 𝑗 ∈𝑅𝑖∪{𝑝𝑖 } 𝑒𝑥𝑝 (𝛽𝑙𝑖, 𝑗 )
(3)

The normalized scores serve as the weights to aggregate the layer-
(𝑙-1) embeddings of the references and 𝑝𝑖 to generate the layer-𝑙
embedding of 𝑝𝑖 as follows.

𝑔𝑙𝑖 = 𝜎 (
∑

𝑝 𝑗 ∈𝑅𝑖∪{𝑝𝑖 }
𝛾𝑙𝑖, 𝑗𝑊

𝑙
𝑓𝑠𝑡𝑒𝑝 (𝜏𝑖,𝑗 ) · 𝑔

𝑙−1
𝑗 ) (4)

where 𝜎 is a non-linear activation function.

4.2.2 Bidirectional Feature Propagation. Owing to the retro-
spective and prospective aspects of citations, the PCN can be logi-
cally treated as two PCNs with opposite directions of feature prop-
agation. As TNA discussed earlier works for only one direction, we
extend it for bidirectional feature propagation with three alternative
designs, namely, Merge, Alternate and Cross.
Merge: As mentioned, we may treat PCN as two separate networks
(where the citation edges have opposite directions) to capture the
knowledge flow from references and future impacts from forward ci-
tations independently. With this simple design, the PCN embedding
of 𝑝𝑖 , i.e., 𝑔𝑖 , can be obtained by concatenating the two embeddings
𝑔𝐿
𝑖
and 𝑔′𝐿𝑖 (learned from backward feature propagation).

3Note that the initial embedding of 𝑝𝑖 , denoted by 𝑔0
𝑖
, is pre-learned on its textual

content such as publication title and description by a representation learning model,
e.g., Word2Vec or Doc2Vec[11, 16].

Alternate: A potential weakness in the design of Merge is that the
embeddings from PCN and Reverse PCN are obtained independently
and simply concatenated, which does not reflect the potential inter-
play between retrospective and prospective roles of citations. Thus,
this design aims to fuse both aspects in one embedding by taking
turns to facilitate feature propagation in different directions. More
specifically, let the embedding of 𝑝𝑖 generated in the (2𝑙 − 1)-th
layer (odd layer) be 𝑔2𝑙−1

𝑖
and that generated in 2𝑙-th layer (even

layer) be 𝑔2𝑙
𝑖
. As feature propagation in a layer is based on the

embeddings obtained in the previous layer (in which feature propa-
gation is proceeded in opposite directions of the current layer), the
information in both retrospective and prospective aspects is fused
into the embedding through multiple iterations of the alternative
layers.
Cross: This design integrates both ideas of Merge and Alternate
to learns two embeddings for each publication. Instead of learning
them independently like Merge, they are learned dependently like
Alternate. Like Merge, we use two networks, i.e., PCN and Reverse
PCN, to carry out forward feature propagation and backward fea-
ture propagation, respectively. However, after the embeddings 𝑔𝑖
and 𝑔′

𝑖
are generated, they are swapped before being used in the

next layer. Therefore, the final embeddings are generated exactly
like being learned by Alternate, except that their initial directions
of feature flow are opposite.

Later in Section 5, we experimentally compare these three ex-
tensions on TNA to decide the NetEnc in our CINES model.

4.3 Citation Event Sequence Encoder
In this section, we introduce our design of Citation Event Sequence
Encoder (SeqEnc), which captures the dependencies among the ex-
isting citation event sequences of various publications related to
the focal publication 𝑝𝑖 . As discussed earlier, a related publication
belongs to some category 𝑋 .4 Moreover, for 𝑝𝑖 , there are multiple
related publications in each category and correspondingly each
related publication has a related citation event sequence.

For a publication 𝑝𝑖 , we group its related citation event sequences
of category 𝑋 into a set 𝑆𝑋

𝑖
. For the 𝑘-th citation event sequence in

𝑆𝑋
𝑖
, let its number of citation events be𝑚𝑋,𝑘 , we denote the 𝑠-th ci-

tation event in the sequence as 𝑡𝑠
𝑋,𝑘

, which is the temporal distance
between the publication corresponding to the 𝑠-th citation event
and 𝑝𝑖 . Figure 3 illustrates our design of SeqEnc. To encode the
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Figure 3: Design of the Citation Event Sequence Encoder
related citation event sequences, we exploit the Long Short Term
Memory (LSTM) model, to embed each citation event sequence
into a series of embeddings. Instead of using a general LSTM for

4Please refer to Section 3 for categories of related publications considered.
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all citation event sequences, we use one LSTM for each category of
citation event sequences to better differentiate their relevance. More
specifically, for the 𝑘-th sequence in 𝑆𝑋

𝑖
, i.e., {𝑡1

𝑋,𝑘
, 𝑡2
𝑋,𝑘

, ..., 𝑡
𝑚𝑋,𝑘

𝑋,𝑘
},

we feed the citation events one by one to the LSTM model for 𝑋
which is used for encode all the citation event sequences of cat-
egory 𝑋 . At each time step, a citation event is fed to the LSTM,
which encodes all the citation events (and their conditional de-
pendency) before the current time step into an embedding. For
example (as shown in Figure 3), we generate 𝑞1

𝑋,𝑘
as the embed-

ding for 𝑡1
𝑋,𝑘

, 𝑞2
𝑋,𝑘

as the embedding for {𝑡1
𝑋,𝑘

, 𝑡2
𝑋,𝑘

}, and so on.
Finally, the LSTM outputs a series of citation event sequence (CES)
embeddings, i.e., {𝑞𝑠

𝑋,𝑘
|1 ≤ 𝑘 ≤ |𝑆𝑋

𝑖
|, 1 ≤ 𝑠 ≤ 𝑚𝑋,𝑘 }, as the rep-

resentation of the citation event sequence. Note that we encode a
citation event sequence to a series of CES embeddings instead of
only one single embedding for the whole sequence in order to better
capture the different and increasing impacts brought by occurrence
of individual citation events. As such, the CES embeddings for all
categories of related publications, i.e.,

⋃
𝑋 {𝑞𝑠

𝑋,𝑘
|1 ≤ 𝑘 ≤ |𝑆𝑋

𝑖
|,

1 ≤ 𝑠 ≤ 𝑚𝑋,𝑘 for 𝑝𝑖 }, are passed to the Future Citation Decoder for
decoding and exploited for citation forecasting.

4.4 Future Citation Decoder
Here we discuss the design of Future Citation Encoder (FCDec),
which takes the existing citation event sequence of a focal publi-
cation, its PCN embedding and the CES embeddings of its related
citation event sequences as input to predict its future citation events.

Owing to the sequential nature of the existing and future citation
events, FCDec exploits an LSTMmodel to capture the dependencies
among the previous citations and the upcoming citations for fore-
casting. To exploit signals from PCN, FCDec intuitively takes the
PCN embedding of the focal publication as the initial hidden state
to the LSTM. On the other hand, FCDec aims to exploit the many
CES embeddings captured in the steps of citation event sequences
and thus needs to find a way to effectively comb the signals.

Notice that the overall CES embeddings generated by SeqEnc
consist of groups of CES embedding sequences which in turn con-
sist of CES embeddings corresponding to time steps in their se-
quences. In other words, the CES embeddings contains signals re-
lated to citation events in various categories of related publications.
To decode useful information from them, we propose a two-level
event/publication-aware attention mechanism, which systematically
aggregates signals captured in event and publication levels. At the
event level, we capture the signals in different time steps of cita-
tion events by learning attention weights for citation events to
aggregate the individual CES embeddings into embeddings of their
corresponding citation event sequences. At the publication level,
we further capture the aggregated signals in related citation event
sequences of the same category 𝑋 into a categorical CES embedding
for 𝑋 by learning attention weights for these sequences.

Figure 4 illustrates our design of FCDec, where 𝑔𝑖 , i.e., the PCN
embedding of the focal publication 𝑝𝑖 , is fed as the initial hidden
state to the LSTM. At time step 𝑛, the LSTM cell takes the hidden
state from cell 𝑛 − 1 and the citation event 𝑡𝑛

𝑖
to output an interme-

diate embedding ℎ𝑛
𝑖
which summarizes all previous citation events

and information in the PCN embedding 𝑔𝑖 . The embedding ℎ𝑛
𝑖
is fed

into a fully connected (FC) network, along with the concatenated
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Figure 4: Design of the Future Citation Decoder

categorical CES embeddings obtained by the two-level attention
mechanism to predict the next citation event 𝑡𝑛+1

𝑖
. As such, after

FCDec scans through existing citation events 𝑡0
𝑖
, 𝑡1
𝑖
, ...𝑡

𝑚𝑖

𝑖
, it starts

to forecast future citation events 𝑡𝑚𝑖+1
𝑖

, 𝑡
𝑚𝑖+2
𝑖

, and so on.
As illustrated in the dashed box on top of Figure 4, the categorical

CES embedding of category 𝑋 , denoted as 𝑐𝑛
𝑋
, is obtained by the

proposed event/publication attention mechanism. For the event-
level attention which aggregates the CES embeddings generated
from a citation event sequence by SeqEnc, e.g., 𝑞1

𝑋,𝑘
, 𝑞2

𝑋,𝑘
, ..., 𝑞𝑚𝑋,𝑘

𝑋,𝑘
,

the attention score representing the importance of the 𝑠-th citation
event 𝑞𝑠

𝑋,𝑘
to the time step 𝑛 of forecasting is defined as follows.

𝛽
𝑛,𝑠

𝑋,𝑘
= 𝑓 𝑋𝑒𝑣𝑡 (𝑞𝑠𝑋,𝑘

, ℎ𝑛𝑖 ) = 𝑉𝑋
𝑒𝑣𝑡 𝑡𝑎𝑛ℎ(𝑊𝑋

𝑒𝑣𝑡 (𝑞𝑠𝑋,𝑘
| |ℎ𝑛𝑖 )) (5)

where 𝑓 𝑋𝑒𝑣𝑡 is the attention function in the event-level for category
𝑋 with a learnable vector 𝑉𝑋

𝑒𝑣𝑡 and a learnable matrix𝑊𝑋
𝑒𝑣𝑡 .

Then the attention scores are normalized with a softmax function
as follows.

𝛾
𝑛,𝑠

𝑋,𝑘
=

𝑒𝑥𝑝 (𝛽𝑛,𝑠
𝑋,𝑘

)∑
𝑠=1,2,...,𝑚𝑋,𝑘

𝑒𝑥𝑝 (𝛽𝑛,𝑠
𝑋,𝑘

)
(6)

The normalized attention scores are used as weights to aggregate
their corresponding CES embeddings in the citation event sequence
of the 𝑘-th related publication, resulting in 𝑐𝑛

𝑋,𝑘
as follows.

𝑐𝑛
𝑋,𝑘

=
∑

𝑠=1,2,...,𝑚𝑋,𝑘

𝛾
𝑛,𝑠

𝑋,𝑘
𝑞𝑠
𝑋,𝑘

(7)

In turn, the publication-level attention further aggregates the
embeddings of different related publications in category 𝑋 gener-
ated by the event-level attention, i.e., 𝑐𝑛

𝑋,1, ..., 𝑐
𝑛

𝑋, |𝑆𝑋
𝑖
| . Considering

that the content and traits of a related publication may be corre-
lated to the citation event sequence of the focal publication (i.e.,
related publications with content similar with the focal publication
may have more similar citation event sequence with that of the
focal publication), we use the publication-level attention scores to
weigh the importance of the 𝑘-th related publication at the time
step 𝑛 by multiplying the attention score derived from the CES
embedding 𝑐𝑛

𝑋,𝑘
and the PCN embedding similarity derived from

𝑔𝑋,𝑘 and 𝑔𝑖 . Following this idea, we exploit a function 𝑓𝑔 to capture
the importance of the 𝑘-th related publication by estimating the
PCN embedding similarity between the related publication (i.e.,
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𝑔𝑋,𝑘 ) and the focal publication (i.e., 𝑔𝑖 ) as follows.

𝑓𝑔 (𝑔𝑋,𝑘 , 𝑔𝑖 ) = 𝑉𝑔𝑡𝑎𝑛ℎ(𝑊 𝑔 (𝑔𝑋,𝑘 | |𝑔𝑖 )) (8)

where 𝑉𝑔 and𝑊 𝑔 are learnbale parameters. Similarly, we exploit a
function 𝑓 𝑋

𝑝𝑢𝑏
to capture the importance brought from the citation

event sequence based on the CES embedding as follows.

𝑓 𝑋
𝑝𝑢𝑏

(𝑐𝑛
𝑋,𝑘

, ℎ𝑛𝑖 ) = 𝑉𝑋
𝑝𝑢𝑏

𝑡𝑎𝑛ℎ(𝑊𝑋
𝑝𝑢𝑏

(𝑐𝑛
𝑋,𝑘

| |ℎ𝑛𝑖 )) (9)

Thenwemultiply 𝑓𝑔 and 𝑓 𝑋𝑝𝑢𝑏 to to generate the attention score, 𝛽
𝑛,𝑘
𝑋

,
which represents the importance of the 𝑘-th related publication in
category 𝑋 at the time point 𝑛 of forecasting as follows.

𝛽
𝑛,𝑘
𝑋

=𝑓𝑔 (𝑔𝑋,𝑘 , 𝑔𝑖 ) · 𝑓 𝑋𝑝𝑢𝑏 (𝑐
𝑛
𝑋,𝑘

, ℎ𝑛𝑖 )

=𝑉𝑔𝑡𝑎𝑛ℎ(𝑊 𝑔 (𝑔𝑋,𝑘 | |𝑔𝑖 )) ·𝑉𝑋
𝑝𝑢𝑏

𝑡𝑎𝑛ℎ(𝑊𝑋
𝑝𝑢𝑏

(𝑐𝑛
𝑋,𝑘

| |ℎ𝑛𝑖 ))
(10)

Finally, we normalize the attention scores and exploit them to
weight the CES embeddings of related publications to generate the
categorical CES embedding of category 𝑋 , i.e., 𝑐𝑛

𝑋
, as follow,

𝛾
𝑛,𝑘
𝑋

=
𝑒𝑥𝑝 (𝛽𝑛,𝑘

𝑋
)∑

𝑘=1,2,..., |𝑆𝑋
𝑖
| 𝑒𝑥𝑝 (𝛽

𝑛,𝑘
𝑋

)
, 𝑐𝑛𝑋 =

∑
𝑘=1,2,...,𝑆𝑋

𝑖

𝛾
𝑛,𝑘
𝑋

𝑐𝑛
𝑋,𝑘

(11)

Here 𝑐𝑛
𝑋
represents the total impacts of all citation event sequences

in the category 𝑋 at time step 𝑛 of forecasting. The categorical CES
embeddings of all categories, i.e., 𝑐𝑛

𝑋1, 𝑐
𝑛
𝑋2, ..., etc., are concatenated

as 𝑐𝑛
𝑖
to fed to a fully connected (FC) network, together with the

embedding ℎ𝑛
𝑖
to predict 𝑡𝑛+1

𝑖
. The loss function L of the CINES

model is the Mean Absolute Error between the predicted arrivals
and the ground truth, i.e., L =

∑
𝑖=1,..., |𝑃 |

∑
𝑛=1,...,𝑚𝑖

|𝑡𝑛
𝑖
− 𝑡𝑛

𝑖
|.

5 EXPERIMENTS
In this section, we empirically evaluate the CINES model using two
real-world publication datasets against several baseline methods.
5.1 Experiment Setup
We collect two datasets for evaluation: i) a U.S. Patent dataset pub-
lically accessible from United States Publication and Trademark
Office (USPTO) website, and ii) a DBLP paper dataset collected from
the DBLP website. For each dataset, we build a citation network us-
ing the publications between a starting year (denoted as Start) and
the year of forecasting (denoted as Forecast), to predict the future
citation events till the ending year (denoted as End). We show the
statistics of the datasets in Table 1. For each patent, we collect its id,
title, description, publication date, the list of inventors, the assignee,
the U.S. patent class and a list of its references. For each patent 𝑝𝑖 ,
we represent the publication date (denoted by year/month/day) and
U.S. patent class in one-hot embedding, apply Word2vec to trans-
form the title and description into Word embedding, and finally
concatenate them to serve as the initial embedding 𝑔0

𝑖
in NetEnc. In

addition, we prepare the related citation event sequences for each
patent of different categories.5 As the number of related publica-
tions in some categories (i.e., patents by the inventors of 𝑝𝑖 and
patents owned by the assignee of 𝑝𝑖 ) may be very large, we select
at most 10 publications that have the most similar content with the
focal publication, measured by the distance between their Word
embeddings. The DBLP paper dataset is processed similarly for the
5Please refer to Section 3 for the different categories for papers and patents respectively.

categories of related publications by the authors and affiliation of
the focal paper.

Table 1: Statistic of the Datasets

Dataset No. of Publications Start Forecast End
U.S. Patents 980,849 1980 1999 2011
DBLP Papers 4,107,325 1995 2010 2019

For evaluation, we randomly split each dataset into three sets:
80% as the training set, 10% as the validation set and 10% as the
testing set. To train the CINES model, we feed the citation network
(by the end of the Forecast year) and the related citation event
sequences of each focal publication in the training set, and train
the model by minimizing the errors in predicting existing citation
events one by one, i.e., predict 𝑡𝑛

𝑖
based on 𝑡0

𝑖
, 𝑡1
𝑖
, ..., 𝑡𝑛−1

𝑖
for 𝑛 =

1, ...,𝑚𝑖 . For training, we set batch size as 8, and exploit Adam
optimizer with initial learning rate set as 0.0001. In the testing
phase, we evaluate the model by measuring the forecasting error
of the future citations, i.e., 𝑡𝑚𝑖+1

𝑖
, 𝑡
𝑚𝑖+2
𝑖

, ..., till the End year. We
measure the model performance with the Mean Absolute Value
(MAE) between the predicted future citations and the ground truth.
5.2 Baselines for Comparison
The following are the baselines compared in our evaluation.
RMTPP [3] models a citation event sequence as a point process
to predict both the next citation event and the type of point in the
citation event sequence. Since RMTPP only models one sequence,
in the experiments we only feed the existing citation events of the
focal publication as the input to RMTPP for prediction.
CYAN-RNN [20] is an intensity-based RNNmodel which forecasts
the time and user of the next resharing behavior in social media
datasets. By forcing the 𝑘-th output to be the (𝑘 + 1)-th input, this
model can be regarded as a sequence generator to be used for publi-
cation citation prediction. In the experiment, we feed the historical
citation event sequence to CYAN-RNN for prediction.
Intensity-RNN [22] takes an event arrival sequence and an evenly
distributed background time series as inputs to predict the arrival
of the next event. In our experiment, we feed the historical citation
event sequence of the focal publication with a simulated evenly
distributed background time series (as [22] did) for prediction.
PC-RNN [9] employs an attention-of-attention mechanism to cap-
ture the dependencies among existing citations, inventor’s cita-
tions and assignee’s citations for citation forecasting. In our ex-
periment, the three sequences generated based on the proposed
pre-processing method [9] are fed to PC-RNN for prediction.
5.3 Parameter Tuning
We tune the parameters in CINES (with different bidirectional fea-
ture propagation designs, i.e., Merge, Alternate, and Cross) and
show the results on the patent dataset in Figure 5.6 By increasing
the layer number 𝐿 in NetEnc from 1 to 5, Figure 5(a) shows that
better performance is achieved with more layers and it converges
when L= 3 (thus chosen as default). For the dimensionality of the
PCN embedding 𝑑𝑔 , Figure 5(b) shows that 128 is the best (i.e., a
higher dimensionality does not help) and thus chosen as the default
of 𝑑𝑔 . For the temporal distance unit 𝑢𝜏 ,7 Figure 5(c) shows that
6Parameter tuning for papers show similar results but not shown due to space limit.
7𝑢𝜏 refers to the unit range of temporal distance in 𝑓𝑠𝑡𝑒𝑝 , i.e., the same transformation
matrix is used for temporal distance within certain ranges specified by 𝑢𝜏 .
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CINES performs the best with 𝑢𝜏= 1 year, and it gets worse with a
larger 𝜏𝑢 , which leads to fewer ranges of temporal distance and thus
fewer transformation matrices used, i.e., the model does not work
as well when the same matrix is used on a range over 1 year. Finally,
for the temporal distance threshold 𝜏𝛿 in TNA, which specifies long
temporal distances, Figure 5(d) shows that CINES performs better
with a larger threshold. We set 𝛿𝜏 as 15 years.
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Figure 5: Parameter Tuning in CINES

Notice that the transformation matrices𝑊 ’s in NetEnc could
be shared in different layers. We compare three strategies: i) W-
Unique - different transformationmatrices for different layers; ii) W-
Shared - same transformation matrix for all layers; and iii) W-Direct
- different transformation matrix for direct references and indirect
references (i.e., references of references), respectively. Results in
Table 2 show that W-Unique works the best, suggesting the feature
transformation at different layers should be treated differently.

Table 2: Evaluation of the Transformation Matrices Settings

Model W-Unique W-Direct W-Shared
CINES-Merge 0.174 0.180 0.185

CINES-Alternate 0.179 0.189 0.201
CINES-Cross 0.171 0.174 0.182

5.4 Ablation Study
In this section, we perform an ablation study to assess the impacts
of various information (signals) in CINES on its performance. We
consider the following variants of the CINES model by reducing
information or replacing PCN and CES embeddings used in FCDec
for forecasting. i) Complete: the complete version of CINES; ii)
NoNet: not taking PCN embedding as input to FCDec; iii), NoRef:
one-directional feature propagation in NetEnc, not from referenced
publications to the citing publications; iv) NoCit, one-directional
feature propagation in NetEnc, not from citing publications to refer-
enced publications; v) NoSeq: not taking CES embeddings as input
to FCDec; vi) RawCon: taking pre-trained Word embedding instead
of PCN embedding as input to FCDec; vi) NoPubAt: replacing the
publication-level attention in FCDec by averaging the embeddings
of related publications as the categorical CES embedding. (i.e., re-
move 𝑓𝑔 from Eq (10); and viii) NoSplit: use one aggregated citation
event sequence for all related publications in a category instead of
multiple sequences, i.e., one for each related publications, for each
category as input to FCDec.

The blue bars in Figure 6 show the result of ablation study on
patents. We observe that Complete outperforms all variants, re-
ducing the MAE on patents by 6.55% (0.171 v.s. 0.183) to 34.73%
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Figure 6: Ablation Study of CINES on Patents and Papers
(0.171 v.s. 0.262). Between NoNet and NoSeq, we observe the former
has more performance deterioration against Complete than the
latter, indicating that the PCN embedding is more important than
CES embeddings in citation forecasting. By comparing NoNet and
RawCon, we observe that capturing the content and traits of the
focal publication into a Word embedding, while not as good as the
PCN embedding, is much better than not using it. In addition, we
observe that NoRef has 22.2% more MAE than Complete and NoCit
has MAE by 23.4%, validates our idea for exploring bidirectional
feature transmission to capture both retrospective and prospective
aspects of information flow on citations.

Between Complete and NoSplit, the former reduces 9.52% in
MAE, suggesting that exploring signals in citation event sequences
for individual related publications in the same categoryworks better
than using one mixed long citation event sequence aggregated
from all related publications in the category, as the latter may
inject noisy and misleading signals. Finally, Complete outperforms
NoPubAt by 6.55% in MAE, validating our idea that measuring the
patent similarity in the publication-level attention helps CINES to
capture signals from different related patents and aggregate the
CES embeddings better.

The results of the ablation study on papers dataset are also shown
in Figure 6 as the orange bars. Comparing the blue bars and orange
bars, we observe that for the patent citation forecasting, NoNet
results in 53.22% more MAE than the Completewhile NoSeq results
in 24.56% more MAE than the Complete, which suggests that the
citation network plays a more important role in patent citation
forecasting. As for the paper citation forecasting, we observe that
NoNet results in 82.22% more MAE than the Complete, while NoSeq
results in 73.33% more MAE than the Complete, which suggests
the same conclusion (but their importance are closer).
5.5 Comparison against Baselines
We evaluate CINES against several baselines. Figure 7 shows that
the best of CINES variants in bidirectional feature transformation (
denoted by Merge, Alternate and Cross) significantly reduces MAE
from the best baseline by 40.21% for patents and 46.43% for papers.
CINES-Cross performs the best among CINES variants. Between
CINES-Cross and CINES-Merge, the former captures more informa-
tion than the latter as CINES-Cross combines two CINE-Alternate
models with initial feature propagation in opposite directions, while
CINES-Merge combines two independent feature propagation.

Among the baselines, RMTPP and CYAN-RNN simply simulate
the intensity function with the exponential function of the hidden
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Figure 7: Performance Evaluation against Baselines
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states in the RNN. Instead, Intensity-RNN learns the RNNs with a
more flexible structure and higher capability, and thus outperforms
those two models (e.g., 0.292 MAE by Intensity-RNN v.s. 0.693
MAE by RMTPP and 0.687 MAE by CYAN-RNN). Owing to the
extra information extracted from related publications of inventors,
assignee and the power of attention mechanism explored, PC-RNN
outperforms Intensity-RNN slightly.

Again, CINES significantly outperforms PC-RNN (the winner
amongst all the baselines). CINES’s superior performance is due
to the following reasons: i) CINES explores strong signals from
PCN by designing a novel NetEnc to effectively capturing the con-
tent and traits of publications as well as the network structural
information of the PCN; ii) CINES deals with related citation event
sequences in an effective way by designing a well-tailored SeqEnc
that distinguishes and captures temporal dependencies of citation
events in individual related publications instead of mixing citation
event sequences of related patents in the same category into one
long sequence (as PC-RNN does); iii) CINES make effective citation
forecasting by designing an FCDec that exploits the strength of an
LSTM to decode signals from existing citation events and the PCN
embedding and explore a two-level attention mechanism to distill
important signals from the CES embeddings.

5.6 Sensitivity Tests
In this section, we conduct a number of sensitivity tests to observe
how the CINES model performance is affected by various factors,
including i) the number of references in the focal publication; ii)
the number of forward citations to the focal publication; and iii)
the publication year of the focal publication.

First, we plot in Figure 8 the MAE of citation forecasting on focal
publications with the various number of references and forward
citations, respectively. As shown, the MAE is quickly lowered when
the number of references/citations in a publication increases from
0 to 4, and the performance improvement is reduced after then.
This observation shows that both references and citations provide
important information for citation forecasting.

In Figure 9, we plot MAE of citation forecasting on patents pub-
lished in various years to evaluate the impact of publication year.8
The blue curve, showing the forecasting errors made by the Com-
plete CINES model on patents published from year 1980 to 1999,
first drops and then rises. A hypothesized explanation is that the
publications published in early years have fewer references than
those published in later years (as references published before 1980
are cleared from the dataset due to the lack of content information)
and similarly, the publications published in later years tend to be
cited less often than those published earlier. To verify this hypoth-
esis, we remove the signals of references and forward citations
from CINES separately and plot their MAEs by orange and green
8Result of the evaluation on papers is similar but not shown due to the space limit.

curves, denoted by RemoveRef and RemoveCit, respectively. As
shown, the MAE of RemoveRef increases as the number of cita-
tions tends to decreases for later publications, while the MAE of
RemoveCit decreases as the number of references tends to increases
for later publications. Moreover, the gap between RemoveRef and
Complete increases over years while the gap between RemoveCit
and Complete decreases, which supports our explanation.
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Figure 8: Evaluation of References and Citations Numbers

5.7 Summary of Experimental Findings
Here we summarize our main observations. First, capturing the con-
tent and traits of publications aswell as the structural information of
the citation network helps citation forecasting. Second, differentiat-
ing fine-grained temporal distances in Temporal Network Attention
helps to distinguish the impacts of references corresponding to vari-
ous temporal distances, which improves citation forecasting. Third,
related citation event sequences, with an event/publication-aware
attention to capture different influence of related citation events to
the focal publication based on publication content and traits, are
complementary to citation network in citation forecasting. Finally,
we observe a trend of the forecasting errors (first drop and then
arise) made by the CINES model for publications published over
the years in our datasets. This is because that publications in early
years are missing some references and those in later years are in
lack of citations. Generally speaking the CINES model performs
best for publications with rich references and citations.

6 CONCLUSION
We propose the CINES model for future citation forecasting by ex-
ploring both the publication citation network (PCN) and the citation
event sequences, where the ideas of temporal network attention
and bidirectional feature propagation are explored for the PCN and
a two-level event/publication-aware attention mechanism is devel-
oped for citation event sequences. Empirically, we demonstrate the
superiority of CINES to the current state of the arts in research on
future citation forecasting.

In future works, we plan to analyze citation strategies and study
the performance of CINES on short-term and long-term forecasting.
Moreover, we plan to explore temporal attention in social networks.
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