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Abstract—Viral marketing on social networks, also known
as Influence Maximization (IM), aims to select k users for the
promotion of a target item by maximizing the total spread of their
influence. However, most previous works on IM do not explore
the dynamic user perception of promoted items in the process. In
this paper, by exploiting the knowledge graph (KG) to capture
dynamic user perception, we formulate the problem of Influence
Maximization based on Dynamic Personal Perception (IMDPP)
that considers user preferences and social influence reflecting
the impact of relevant item adoptions. We prove the hardness of
IMDPP and design an approximation algorithm, named Dynamic
perception for seeding in target markets (Dysim), by exploring the
concepts of dynamic reachability, target markets, and substantial
influence to select and promote a sequence of relevant items. We
evaluate the performance of Dysim in comparison with the state-
of-the-art approaches using real social networks with real KGs.
The experimental results show that Dysim effectively achieves
at least 6 times of influence spread in large datasets over the
state-of-the-art approaches.

Index Terms—influence maximization, multiple promotions,
item relationships, dynamic personal perceptions

I. INTRODUCTION

Social influence [1], [2], [3] refers to the impact of a social
environment on people’s behavior. By exploiting the social
influence of users, a wide spectrum of applications (e.g.,
item promotion and viral marketing) have been formulated
as various research problems, such as influence maximization
(IM) [1], revenue maximization (RM) [2], and profit maxi-
mization (PM) [3]. Among them, IM selects k users as the
seeds to promote one target item to maximize the number of
influenced users. Nevertheless, in real life, companies often
promote relevant items in multiple events, e.g., Apple Inc.
usually promotes iPhones, AirPods, and iPads in September,
followed by a series of subsequent promotions.' In this work,
we address a new IM problem formulated for a sequence of
promotions on relevant items.>

For multiple promotions, exploring the dynamic changes in
personal perceptions on promoted items is important, since

Uhttps://www.apple.com/apple-events/.
2 After the influence propagation of the seed group for the first promotion
finishes, the second follows, and so on.
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users’ perceptions of item relationships may vary according
to the changes in users’ demand indicated by research in the
marketing field [4]. First, the complementary and substitutable
relationships between items affect users’ preferences on items
[4], [5], [6]. In economics, cross elasticity of demand [7] indi-
cates that adopting complementary items of an item increases
the preference for it, while adopting its substitutable items has
the opposite effect. For example, users who own iPhones with
no headphone jack may be interested in AirPods (due to its
complementary relationship with iPhones), while users who
have iPhones may have less interest in iPads (due to their
substitutable relationship). Second, the association between
items may trigger extra adoptions without promotions [8], [9].
For example, AirPods may be directly adopted together with
iPhones due to their complementary relationship.

Third, the perceptions of these relationships between items
are usually personal and dynamic [4], [10], [11], as the items
got newly adopted usually bring fresh experiences to users.
For example, users who care more about large screens than
mobility may treat iPhones as substitutable items of iPads;
when these iPad users start to care about the mobility, they may
tend to regard iPhones as complementary items of iPads. In
turn, the changes in personal perceptions of item relationships
lead to changes in users’ preferences. Fourth, the dynamic
personal perceptions of item relationships also affect users’
social influence strength over friends, since friends adopting
similar items and sharing similar perceptions tend to become
closer [12], [13]. To address IM in a sequence of promotions
on relevant items, it is essential to carefully examine dynamic
personal perceptions of item relationships, together with their
ripple effect on personal preferences for items, social influence
strength, and item associations.

Knowledge graph (KG) (along with weighted meta-graphs)
to capture the relationships (e.g., the complementary and
substitutable relationships) has been well-explored in recom-
mendation systems [10]. As illustrated in Fig. 1, KG represents
facts (e.g., ITEM iPhone and ITEM AirPods SUPPORT the
FEATURE Bluetooth in Fig. 1(a)), while meta-graphs capture
relationships in the KG (e.g., m; in Fig. 1(b) describes two
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Fig. 1. (a) A tiny KG describing facts about the iPhone, AirPods, wireless
charger, and charging cable. (b) Three meta-graphs specifying the comple-
mentary relationship. (c¢) Bob’s initial personal item network, where a dotted
edge denotes a complementary relationship. (d) Update of Bob’s personal item
network: after adopting iPhone and AirPods, Bob’s weightings on m1 and
mo grow, which increases the relevance scores between iPhone, AirPods, and
the wireless charger.

ITEMs SUPPORTing the same FEATURE are complementary).
Note that these meta-graphs can be used to reflect the percep-
tion of item relationships, in forms of personal item network,
for each individual. The personal weighting on each meta-
graph describes the significance of this meta-graph to an
individual (e.g., the values next to my,...,ms in Fig. 1(c)),
while the relevance scores between items describe the strength
of their relationships in the mind of this individual [10], [11]
(e.g., the values on dotted edges in Fig. 1(c)). By adjusting the
weightings on meta-graphs according to previous adoptions
[10], [11], dynamic personal perceptions of item relationships
in individual users can be updated (in Fig. 1(d)). In this paper,
we aim to leverage dynamic personal item networks for a
sequence of IM promotions.

Following up the example in Fig. 1, Fig. 2 illustrates the
IM process considering dynamic personal perceptions of item
relationships, personal preferences for items, social influence
strength, and item associations. As shown, the number of
hearts indicates Bob’s preference for a not-yet-adopted item,
and a solid arrow represents the social influence between users
(thickness implies strength). After Bob is promoted iPhone
by Alice, Bob’s purchase decision depends not only on the
influence strength from Alice but also on his own preference
for iPhone (in Fig. 2(a)). Meanwhile, item associations usually
trigger extra adoptions of relevant items, such as AirPods,
according to Bob’s item network (in Fig. 1(c)). After Bob
purchases iPhone and AirPods, his perception of the comple-
mentary relationship changes (i.e., he becomes to regard items
supporting common features or belonging to the same brand
as complementary), which increases the relevance between
iPhone, AirPods, and the wireless charger (in Fig. 1(d)).
After that, as Bob has adopted iPhone and AirPods, and their
relevance to the wireless charger increases, Bob’s preference
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Fig. 2. Illustration of the IMDPP problem. (a) The states before Bob adopts
iPhone and AirPods. (b) The states after Bob adopts iPhone and AirPods.

for the wireless charger grows accordingly.® Moreover, if
Cindy acts as a seed to promote the wireless charger, as Bob
and Cindy have similar adopted items (in Fig. 2(b)) (indicating
Bob shares a similar perception of item relationships with
Cindy and tends to behave similarly with Cindy), the influence
strength from Cindy to Bob thus becomes stronger. It is easier
for Cindy to promote the wireless charger to Bob now, since
both Cindy’s influence strength to Bob and Bob’s preference
for the wireless charger increase.

To incorporate factors depicted in the example above, sev-
eral new challenges arise. (i) Propagation of item impact (i.e.,
impact due to item adoption): Item adoptions change users’
personal perceptions of item relationships, their preferences for
other items, their strength of social influence among friends,
and the item associations. In other words, the promotion of an
item may affect the adoptions of subsequent items and thereby
the planning for the next promotions. The order of items
being promoted matters. (ii) Antagonism of the substitutable
relationship: Promoting an item after adopting a substitutable
item is not beneficial when the first item has met the users’
needs. It is thus vital to avoid promoting substitutable items to
the same users in consecutive promotions. (iii) Determination
of promotional timing: As the promotions are dependent on
previous ones, a seed in early promotions should facilitate
subsequent promotions, while a seed in later promotions
should focus on potential adoptions benefited from previous
promotions. Therefore, determining the proper promotional
timing for each seed is essential.

In this work, we formulate a new problem, named Influence
Maximization based on Dynamic Personal Perception (referred
to as IMDPP). In contrast to most previous works [14]
focusing on one item, given the social network, KG, and meta-
graphs for different item relationships, IMDPP targets on mul-
tiple promotions to maximize the overall spread of influence
by choosing items and selecting seed users for promotion at
proper timings under a total budget, where users have differ-
ent costs as seeds [3], and each promotion allows multiple
items to be promoted. We exploit personal item networks to
capture dynamic personal perceptions of complementary and
substitutable relationships between items. The adoptions of
items dynamically adjust users’ weightings on meta-graphs,
reflecting dynamic personal perceptions and updating personal
item networks. Also, users’ preferences for other items, their
social influence strength over friends, and the item associations
change accordingly, in turn affecting other users’ adoptions,
their personal weightings on meta-graphs, their preferences

3A real example is in https://amzn.to/3fW7JLC.



for other items, their social influence strength, and the item
associations in a ripple effect. For the ease of understanding,
we first present the fundamental problem of IMDPP, referred
to as Simple IMDPP (SIMDPP), by focusing on the important
factors of dynamic personal perceptions of item relationships
and their fundamental ripple effect on dynamic preferences
for items, i.e., neglecting dynamic social influence strength
and item associations.

We prove that SIMDPP and IMDPP are NP-hard and
inapproximable within O(‘Vl%), where |V is the number
of users and € is an arbitrarily small constant. We design
an approximation algorithm, named Dynamic perception for
seeding in target markets (Dysim), to tackle the above chal-
lenges of IMDPP. For the first challenge in the propagation
of item impacts, Dysim introduces dynamic reachability to
evaluate the impacts from previously promoted items on
the currently chosen item, as well as the potential impact
from the current item on any candidate item in subsequent
promotions. For the second challenge in the antagonism of
the substitutable relationship, Dysim identifies farget markets
to promote complementary items to socially close users in
consecutive promotions. For the third challenge in determining
the promotional timing, Dysim introduces substantial influence
to evaluate both immediate and subsequent adoptions under
the impact of a candidate seed (assigned at some promotional
timing). For SIMDPP, where dynamic social influence strength
and item associations are not considered, we develop an
approximation algorithm, namely Simple Dysim (SDysim), in
this paper as well. We evaluate the performance of SDysim and
Dysim on real social networks with KGs, i.e., Amazon, Yelp,
Douban, and Gowalla. Due to the space constraint, the details
of IMDPP and Dysim are presented in the full-length version
[15] of this paper. The contributions of this work include:

o To the best of our knowledge, IMDPP is the first attempt
to study the IM problem under a sequence of promotions
on relevant items, where the personal perceptions of
item relationships are dynamically captured from users’
previously adopted items by KG and meta-graphs, and
the changes in preferences for items, social influence
strength, and item associations are considered as a ripple
effect in the diffusion process.

We prove that SIMDPP and IMDPP are inapproximable
within O(‘Vl%) even for a simple case with only the
complementary relationship and only one promotion.
We design an approximation algorithm Dysim, which
plans a distinct effective promotional strategy for each
target market to avoid antagonism between substitutable
items. Dysim carefully examines the dynamic reachability
of items to prioritize the promotion of relevant items, and
evaluates the substantial influence of candidate seeds to
properly determine the promotional timing.

Via real social networks and real KGs, experimental
results demonstrate that SDysim and Dysim effectively
achieve at least 6 times of the influence spread over the
state-of-the-arts.
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II. RELATED WORK

Influence maximization (IM) aims at maximizing the num-
ber of influenced users by selecting seed users. It was first
formulated as a discrete optimization problem and proved as
NP-hard by Kempe et al. [1]. Since then, various issues in
IM have been actively studied. To address the inefficiency
in computing influence spread, some exploit the submodular
property and certain heuristics [16]. Recent works further
introduce the reverse influence sampling to approximate the
influence with guarantees [17].* Recently, Huang et al. [14]
point out that users’ adopting probabilities of the promoted
item should depend on users’ previously adopted complemen-
tary and substitutable items (which is modeled as dynamic
preferences for items in IMDPP). However, [14] targets only
on a specified item in only one promotion with fixed item
relationships, whereas IMDPP explores multiple promotions
on relevant items and carefully examines the dynamic user per-
ceptions of item relationships. Although various issues, e.g.,
target audience, scalability, and complementary/substitutable
items, are studied, previous works [1], [3], [14], [16], [17]
promote only one target item in only a single promotion,
instead of multiple target items in multiple promotions, and
the phenomenon of dynamic personal perceptions of item
relationships together with its ripple effect are not considered.
By contrast, IMDPP aims at a sequence of promotions on
relevant items modeled by Knowledge Graph, where the item
relationships and promotional timings are able to alter users
adoption decisions.

Some studies investigate IM on promoting multiple target
items, e.g., making exclusive adoption among items [18],
avoiding spamming seeds by overwhelming promotions [19],
learning diffusion probabilities of different items [20], and
maximizing utility-based adoption among desired items [21].
However, they focus on a single promotion and do not con-
sider multiple promotions to promote a sequence of relevant
items modeled by KG and meta-graphs. Moreover, they study
the problems under simpler scenarios without capturing the
dynamic changes in personal perceptions of item relation-
ships, personal preferences for items, social influence strength,
and item associations. By contrast, in IMDPP, the adoption
of items dynamically changes the personal perceptions of
complementary and substitutable relationships between items.
The changed perceptions of item relationships affect users’
preferences for items and users’ social influence strength over
time, in turn affecting other users’ adoptions, their preferences
for other items, and their social influence strength as a ripple
effect. Therefore, the above works have limitations to IMDPP,
since the promotional timing is critical as users’ perceptions
of item relationships, preferences for items, and influence
strength on friends are dynamic.

Research on adaptive IM [22], [23], [24] aims to select
the seeds adaptively based on the adoptions in the previous
influence diffusion. However, although multiple promotional
timings are considered, they consider only one item in the IM

“More introduction on other IM problems is presented in [15].



problem and ignore multiple target items, item relationships,
and dynamic preference for items. Moreover, adaptive IM
requires a predefined budget allocation to different promo-
tions, and it does not have the adaptive monotonicity and
the adaptive submodularity (or even the adaptive bounded
weak-submodularity).’ By contrast, IMDPP does not require a
predefined budget allocation to promotions and can be solved
by Dysim with an approximation guarantee (detailed in [15]).

Knowledge graph (KG) is employed to describe facts in a
wide spectrum of applications, e.g., relevance measures and
search [11], [25], and recommendation [10]. Shi et al. [10]
present a new similarity measure through personal weighted
meta-paths to include different semantics of similarity. Users’
own preferences can thus be derived from these meta-paths. Gu
et al. [11] point out that a user may have different perceptions
of similarity due to the change in her interests. They propose
to automatically pick up meta-paths to best characterize the
similarity by user-provided examples. Huang et al. [25] further
extend meta-paths to meta-graphs to measure similarity with
more complex connections. Note that these works focus on
predicting the ratings of unknown items for users, which is
essentially different from the IM problem. Inspired by the
above research, we first attempt to incorporate the above
relevance measurements and adopt the above meta-graphs with
dynamic personal weightings in influence diffusion of multiple
relevant items.

III. FUNDAMENTAL PROBLEM FORMULATION

To study various issues in multiple promotions of relevant
items, we first introduce two important factors, which can
be easily incorporated into existing diffusion models, e.g.,
triggering models [1], by extending the diffusion process, to
consider dynamic changes in personal perceptions of item
relationships [4], [10], [11] and their fundamental ripple
effect on personal preferences for items [4], [5], [6], [7].°
(1) Relevance measurement: KG 1is leveraged to measure the
relevance between two items and find personal item networks,
by learning the personal weightings on meta-graphs from
users’ previously adopted items.” (2) Preference estimation:
Users’ preferences for not-yet-adopted items are derived and
updated based on previously adopted items and personal item
networks. The dependency of these factors is illustrated in
Fig. 3, while the discussion of deriving and updating them
is detailed in [15]. For ease of discussion, we summarize the
notations in Table I.

The adaptive monotonicity is a property that conditional expected marginal
adoptions of any item are non-negative. The adaptive submodularity (or
the adaptive bounded weak-submodularity) is the property that conditional
expected marginal adoptions of any fixed item do not increase (or boundedly
increase) as more items are selected and their states are observed.

%The complete problem that considers the comprehensive ripple effect on
social influence strength [12], [13], [26] and item associations [8], [9] is
presented in the full version [15].

"Instead of KG, some lightweight alternatives, such as Tagging algo-
rithm [27], Sceptre [28], PMSC [29], and DecGCN [30] can also be adopted
to learn item relationships. Since the above works derive the item relationships
according to all users’ adoption history, the item network is no longer
personalized. When they are adopted in our problem, all personal item
networks will be identical.
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Accordingly, we elaborate on the diffusion process as fol-
lows. A campaign includes 7" promotions. The ¢-th promotion
contains multiple steps (¢ = 0,1,..., where each step rep-
resents an influence propagation from users adopting items
to their friends that haven’t adopted those items yet.® As a
promotion depends on previous promotions, the initial state of
a user in the ¢-th promotion (i.e., adopted item, perceptions,
and preferences at (; = 0) is the same as the state at the
end of the (¢ — 1)-th promotion, while the seeded users in the
t-th promotion newly adopt the promoted items at ¢, = 0.
When the diffusion starts at step ¢; > 1, a user u may
be promoted x by any friend ' who newly adopted z at
(¢ — 1 only if u has not adopted = yet. The probability that
u will adopt x is derived according to the social influence
strength from u’ (denoted as p, ) and u’s preference for x
(denoted as Pyer(u, z, (¢ — 1)), i€, purw X Ppret(u, x, (¢ — 1).
Then, at the end of this step, u’s personal perceptions of item
relationships (i.e., personal item network) are updated by (/)
relevance measurement (detailed in [15]) if v newly adopts
any item, while her preferences for not-yet-adopted items also
change accordingly by (2) preference estimation (detailed in
[15]). If there is any new adoption at (;, the next step (; + 1
starts with users having new adoptions at (; to promote their
newly adopted items to their friends (who have not yet adopted
those items).” In other words, the diffusion of ¢-th promotion
stops when no new adoptions happen since users cannot be
promoted the adopted items again. Thus, the diffusion of the
(t 4+ 1)-th promotion follows.

Based on the above diffusion process for relevant items in
multiple promotions, we aim to choose a number of items,
seed suitable users, and decide the proper timing, such that
the influence spread (defined below) is maximized. Formally,
S = {(u,z,t)} is a seed group, where a seed (u, z, t) indicates
that an item z is chosen for promotion starting at a seeded
user « in the decided t-th promotion.'® Let S, C S denote
a subgroup of seeds chosen for the ¢-th promotion. We first
define the influence spread and then formulate the problem as
follows.

Definition 1 (Influence function). Let T denote the num-
ber of promotions. For a seed group S, the influence
spread in the social network Gsy = (V,FE), denoted as

8Note that ¢ — 1 = ¢J® if ¢ = 0, where ([, is the last step of the
(t — 1)-th promotion.

9Following other IM problems [1], [16], these users promote items to their
friends without costs.

19An item « can be assigned to multiple seeded users at multiple promo-
tions; each promotion can promote multiple chosen items by multiple seeded
users.



TABLE I
SUMMARY OF NOTATIONS IN SECTIONS III-IV.

[ Notation Description |

Gt Step ¢ of the ¢-th promotion

Pyer(u, y, Ct) w’s preference for y updated at ¢;

Pu,w w’s influence strength on v

(u, z,t); (u,x) Seed; nominee

S = {(u,z,t)}; Seed group; subgroup of seeds in the ¢-th

+ promotion

g Oy (S); T Influence function; number of promotions

{m®} 1 {mS} Sets of meta-graphs for describing comple-
mentary/substitutable relationships

7, G Target market; set of target markets with
common users

ro, | T Average complementary/substitutable rele-
vance between x and y per user (the timing
is specified from context)

DR™' (89, z) 2’s dynamic reachability of 7’s users given
SY9 and W

t Latest promotional timing in SY

oG (S), is the expected adoptions in all T promotions, i.e.,
T T

oON(S) = 3 o™ (Si | S1,5,.0,Si1) = 2 2 na(S; |
=

t=1 t=1xzel
S1,89,...,8t—1), where ng(S: | S1,S9,...,5:—1) is the
expected new adoptions of x for S, in the t-th promotion
conditioned on S, ..., Si_1 in previous promotions."" (When

Gsy is clear from context, we write o(S) for short.)

Definition 2 (Simple IMDPP (SIMDPP)). Let m€ and mS
denote the meta-graphs for describing the complementary and
substitutable relationships between items, respectively. Based
on the diffusion process described earlier, given a social
network Ggy = (V, E) with the influence strength p,, ,, for all
u,v €V, a KG Ggg = (V,E, P, V), two sets of meta-graphs
{mC} and {mS}, a target item set I = {x}, the cost c, . of
hiring a user uw € V to promote an item v € I, the budget b,
and the total number of promotions T', the SIMDPP problem
is to find the seed group S = Ule St such that the influence
spread o (S) is maximized within the budget constraint b, i.e.,

Z?:l Z Cuz < b.12

(u,z,t)E€St

Theorem 1. SIMDPP cannot be approximated within
O(lvl%) in polynomial time unless P = NP, even with
only the complementary relationship and P, = 0 in only one
promotion.

Proof Sketch. We prove the theorem with the gap-introducing
reduction from the decision problem of Set Cover. Given a set
cover instance, by constructing a corresponding special case
of SIMDPP, we prove that if there is a set cover solution with
at most k sets, there is a feasible solution of SIMDPP with the
total influence at least |U|+2|U|+2, where |U| is the size of
the ground set of set cover instance, and c¢ is a large constant.

”Following [1], [16], o is estimated by the Monte Carlo method, which
simulates the influence diffusion of seeds according to the probabilities.

12As stated in Sec. II, adaptive IM problems may incur an unbounded cost
and require a predefined budget allocation. By contrast, SIMDPP does not
require a predefined budget allocation and can be solved (by our proposed
algorithm) with a limited approximation ratio (as stated in Theorem 2 later).
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Otherwise, if there exists no set cover solution with at most &
sets, the optimal value of SIMDPP is at most 2|U| + k + 2.
Then, we assign c suitably to satisfy |[V[17¢ < %%
where |V| and € are related to |U| and c. Consequently, if there
is a |V|!~¢ approximation algorithm of SIMDPP, we can solve
the decision problem of set cover in polynomial time, implying
P = NP, which is a contradiction. For more details, please

refer to [15]. O

IV. APPROXIMATION ALGORITHM
A. Algorithm Overview

To efficiently solve SIMDPP, we design an approximation
algorithm, namely Simple Dysim (SDysim), which embodies a
number of ideas. (i) To tackle the challenge in the propagation
of item impacts, SDysim introduces Dynamic Reachability
(DR) to measure the impact made by an item promotion and
the impacts resulted from the promotions of other items based
on users’ dynamic perceptions of item relationships (detailed
later in Eq. (1)). Specifically, DR evaluates both proactive
and reactive impacts for each item. For an item, the proactive
impact is the probability for this item to result in an increase
of users’ preferences on other items. The reactive impact is
the probability to increase users’ preferences on this item
resulted from other items promoted previously. The item with
the highest DR is prioritized for promotion. Previous works
[18], [20], [21] select users only and do not consider the items
in IM.

(i) To avoid antagonism between substitutable items,
SDysim identifies target markets, each of which consists of
socially close users to promote complementary items in con-
secutive promotions. Specifically, it identifies some nominees
(where a nominee is a user-item pair (u,z)) as candidate
seeds, denoted by (u,x,t), for an incoming promotion at
time ¢ (decided later). Note that a target market targets on a
cluster of nominees in order to promote complementary items
to socially close users. Since different target markets may
share some common users, it is important to avoid promoting
substitutable items to them. Accordingly, SDysim prioritizes
the target market promoting items with the least substitutable
relevance to items in the overlapping target markets (i.e., the
target markets sharing many common users). By contrast,
prior works [18], [20], [21] consider only one relationship and
thereby may promote substitutable items to the same users.

Equipped with the above strategies, SDysim includes two
phases: Target Market Identification (TMI) and Dynamic
Reachability Evaluation (DRE).'? Since users in social net-
works usually have different needs and diverse purchase inten-
tions, a promotional strategy is planned more sophisticatedly
if the target users are identified first. Intuitively, intensively
promoting a few items within a short period can better
draw users’ attention. Hence, SDysim first exploits TMI to
identify target markets and then leverages DRE to plan the

3The complete algorithm Dysim to tackle all challenges is presented in
[15]. Besides, our proposed algorithm can deal with adaptive IM (even without
a predefined budget allocation to different promotions), detailed in [15].



Algorithm 1: SDysim
Input: Social network Gsy = (V, E); knowledge graph
Gxc = (V, €, P, U); item set I; total budget b; total
number of promotions 1’
Output: Seed group

* 'V
1U +A{(u,z) |lueV,z eI}
2 N < selectNominees (U, b)
3{N7} < clusterNominees (N)
4 for each N do
5 leentify the target market 7 by N ™
6 CG < prioritizeTargetMarket ({7})
7 for each G in CG do

8 [S9«0

9 | for each 13, € g where k = 1,2, ... do
10 ka < nominees in Tk
11| | I+ {x| (u,z) € NT#}
12 | | while I™* # () do

13 Tp < argmax, ;r, DR™(SY, z)
14 I« I™ \ {zp}

15 if S9 + () then

16 { + max{t | (u,z,t) € S9}
17 tp < min{t + 1, T}

18 else

19 |tp 1

20 for each (u,x,) € N™* do

21 LSQ — S9U{(u, p, tp)}

22 return |, 59

distinct effective promotional strategy for each target market.
Specifically, TMI selects and clusters nominees to promote
complementary items to each target market and prioritizes
target markets with fewer substitutable items to the nominees
in the overlapping target markets. For each target market, DRE
finds the item with the highest DR to exploit item impacts
and decides the promotional timings for the corresponding
nominees to be seeds. Algorithm 1 presents the pseudo-code
of SDysim.'*

B. Algorithm Description

1. Target Market Identification (TMI): TMI selects the
nominees that exert large influence spread, clusters select
nominees to identify each target market for promoting com-
plementary items to socially close users, and prioritizes the
target market with fewer substitutable items to the nominees
in the overlapping target markets.

For nominee selection, TMI carefully examines the marginal
gain of influence for each nominee. It’s crucial to select
a cost-effective nominee due to different costs of nominees
and a limited budget. Therefore, we propose marginal cost-
performance ratio (MCP) to jointly consider the above factors
and ensure the approximation ratio of SDysim in Theorem 2.
Specifically, given a set N of selected nominees, MCP of a
nominee (u,x) is w , where f is the influence
spread o with the nomlnees placed in the first promotion

14Please refer to [15] for more pseudo-codes.
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Fig. 4. An example of TML (a) A social network. (b) Average relevance over
all users in the whole social network. (c) Average relevance in 73.

as the seeds and P, assigned at the beginning of this
promotion. For the nominees with the costs satisfying ¢, , <
b— Z(u,)m,)e ~ Cu,zr» TMI iteratively extracts the one with the
highest MCP into N.

Afterward, TMI identifies the target markets by clustering
the nominees. To promote complementary items to the users in
a target market, TMI first clusters the nominees in IV (e.g., by
clustering methods POT [31] and FGCC [32nh according to
the social distances between the nominees and the relevance
between their promoting items, i.e., 7, — 75, where 75
and 75 »,y are the average complementary and substitutable
relevance between x and y over all users, respectively.'6
Larger complementary and smaller substitutable relevance are
encouraged. For each cluster, a target market 7 is identified
by exploring the influenced users from the nominees N7 (e.g.,
by MIOA [16])."7 Note that with TMI, the budget allocation
of SDysim is realistic since a larger target market is inclined
to have a larger budget to promote items. In TMI, the target
markets are identified by the influence of nominees, where
more nominees and influential nominees lead to a larger target
market. As more nominees and influential nominees usually
incur a larger cost [3], SDysim allocates larger budgets to those
target markets accordingly.

Afterward, TMI prioritizes the target market with fewer
substitutable items to the nominees in the overlapping target
markets. Let G denote a set of target markets with common
users. A target market 7; is in G if there is another target mar-
ket 7; € G with the common user number above a threshold
6.'8 TMI arranges the promoting order for the target markets
in each G by deriving Antagonistic Extent (AE) of each target
market 7; according to the substitutable relationship between
every promoting item x and the items of other target market 7;,
ie, AE(T;) = ermyeﬁ E where 7;,7; € G,1 # j. The
target market (and the items in the corresponding nominees)
with a smaller AE is promoted earlier in G.'°

Example 1. Figs. 4(a) and 4(b) present an example of TMI
with a social network and the average relevance over all users
in the whole social network, where the dotted and dashed
edges are the complementary and substitutable relationships,
respectively. The number beside each edge is the relevance.

5More details of POT and FGCC are presented in [15].

16The derivation of relevance is described in [15].

"More details of MIOA are presented in [15].

8The sensitivity of SDysim to @ is evaluated in [15].

19 Alternatively, according to research in the marketing field, the profitabil-
ity [33] of a target market is also a good metric to prioritize target markets.
The comparison of different marketing orders is presented in Sec. V-D.



Assume N = {(u1, iPad), (u2, AirPods), (u4, iPhone), (ug,
AirPods), (u7, iPad)} by TMI according to MCP. Then, TMI
finds three clusters N™ = {(u1, iPad)}, N™ = {(ur, iPad)},
and N7 = {(ug, AirPods), (u4, iPhone), (ug, AirPods)} from
Figs. 4(a) and 4(b), and identifies 71, 7o, and 73 accordingly,
as shown in Fig. 4(a). Assume 6 = 1. Then, 71, 75, and 73
belong to the same G since 71 and 73 have two common users,
and 7o and 73 have two common users. After that, according
to the substitutable relevance in Fig. 4(b), AE(7;) = 0.5 since
iPad promoted in 7 is substitutable to iPhone promoted in 73.
Similarly, AE(m) = 0.5 and AE(73) = 0.5+ 0.5 = 1. TMI
thereby promotes 71, 7o, and 73 sequentially. |

2. Dynamic Reachability Evaluation (DRE): For each target
market 7, € G selected by TMI, DRE evaluates Dynamic
Reachability (DR) of each item in 73, and the nominees (in
N7%) promoting the item with the highest DR serve as the
candidate seeds. In other words, after TMI has identified target
markets with socially close users to promote complementary
items and has prioritized the target markets using AE, DRE
allows each target market to prioritize its promoting items
differently and lets the nominees promoting items with higher
DR be the seeds earlier. Specifically, let d™ denote the
diameter of the target market 73, and SY is the seed group
determined so far for all the target markets in G. Let I+ denote
the items that have not yet been promoted in 7. DR of an item
xel™is

DR™(SY,z) = PI™ (89, x,d™) 4+ RI™ (59, z,d™). (1)

The proactive impact PI™(SY, z, d™) is the probability of =
to increase the preferences of users in 7y, for other items. The
reactive impact RI™ (SY, 2, d™) is the probability to increase
the preferences of users in 7 for x under the impact from
other items in S9.2° The adoption of z increases (decreases)
the preferences for the items complementary (substitutable)
to = [7]. Given SY, the likelihood of regarding = and y as
complementary (substitutable) for each user is proportional to
the complementary (substitutabcle) relevance between x and
y, ie., LOTE(x,y,89) = and L£57k(x,y,89) =

=S
T,y

e where 75 and 75 , are the average complementary
and substitutable relevance between z and y over all users in
i after the promotion of S9, respectively.?! Therefore, PI is
recursively formulated as follows.

PI™(SY,z,d)
= > (£ (y, S9)E, — L5 (0, SN,
Y

Tx,y
= ———
Ty tTay

@)

+PITk(ngy7d_ 1))7

where y represents each item relevant to x. The first two terms
are the likelihood to increase and decrease the preferences of
the users in 7 for y (weighted by the corresponding relevance

2047k appears in PI and RI to restrict the item impact propagation to the
users at most d"+ away in Tg.
21The update of relevance is described in [15].
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Fig. 5. An example of DRE: an illustration of the dynamics in u5’s personal
item network. (a) Initially. (b) After us adopts iPad. (c) Expectation.

between z and y). The last term PI7(SY,y,d—1) recursively
captures the likelihood to increase or decrease the preferences
(of users in 7y) for other items via item impact propagation
from y, where PI7(S9 y,0) = 0.2

Similarly, RI evaluates the item impact propagation from
any promoted item z to x according to 7 , and 75 , as follows.

RI™(SY,z,d) 3)

= Z (ﬁc""k (Z’ ) Sg)f(z:,z - ‘CS’Tk (Z» xZ, SQ)fi,w

where z is each item relevant to = and RI™(S9,y, 0)=0.
Consequently, for each 7 selected by TMI, DRE ex-
tracts the nominees {(u,z,) | ¥, = argmax DR™ (59, z),
zel™k

+ RI™(89,2,d 1)

(u,z,) € N} with the highest DR as the candidate seeds
iteratively, and this property (i.e., the highest DR) is important
to approximate the optimal solution in Theorem 2.

Example 2. Following Example 1, this example shows how
the DRE of SDysim works based on the diffusion model
to solve SIMDPP. Assume that the seed group becomes
S9 = {(uy, iPad, 1)} after 7, is promoted. To update the
complementary and substitutable relevance in each user’s dy-
namic perception, SDysim employs the Monte Carlo method to
generate different cases of users’ adoption decisions according
to their preferences for items and the influence strength. For
example, suppose that, due to the seed w;’s promotion at
t = 1, up adopts iPad and promotes to us by her social
influence. For the case that us adopts iPad, the update of her
adopting item (referring Fig. 3) in turn changes her personal
item network from Fig. 5(a) to Fig. 5(b). Meanwhile, us’s
preference for AirPods increases due to the adopted item
{iPad} and her changed personal item network (Fig. 5(b)),
where the complementary relevance between iPad and AirPods
increases from 0.05 to 0.1. By contrast, for the case that us
does not adopt iPad at ¢ = 1, her personal item network and
her preference for AirPods remains unchanged. Based on the
number of times these cases being observed, SDysim computes
the expectation of wus’ personal item network, as shown in
Fig. 5(c).

After that, assume that SY = {(uy, iPad, 1), (u7, iPad,2)}
after 7 is also promoted. SDysim now concentrates on 73,
where N™ = {(uq, AirPods), (u4, iPhone), (ug, AirPods)},

22Here it is d — 1 because item impact has propagated 1-hop from x to .



d™® = 3, and I {iPhone, AirPods} (due to the items
not yet promoted by the nominees in N™). DRE calculates
the DR for iPhone and AirPods, i.e., DR™(SY, iPhone) and
DR™(SY, AirPods), respectively, according to the updated
(same as above) personal item networks.

DR™ (89, iPhone)
_,02-02 0404
- (0.4 +0.2 04402

+(1-0.4+ PI™(S9, AirPods, 2))

02-0.2 04-04

(0.4 +02 04+0.2
=14+ (-02) =12

Since DR™(SY, AirPods) = 1.8 > DR™(SY, iPhone)
1.2, DRE then extracts {(ua, AirPods), (ug, AirPods)} for
promotion first. u

+ PI™(SY,iPad, 2))

+ RI™(S9,iPad, 2))

After a set of nominees {(u,z,)} are extracted by DRE,
SDysim finds the promotional timing for them. Since the target
markets have been arranged in a promoting order (by TMI)
and the items with higher DR have been promoted with higher
priority (by DRE), the promotional timing ¢, for {(u,z;)} is
assigned right after the latest promotion in SY to ensure the
influence spread of the seeds in SY is not reduced. Let £ denote
the latest promotion in SY, i.e., = max{t | (u,z,t) € S9}.
SDysim assigns {(u,z,)} in the promotion ¢, = min{t+1, 7"}
to be the seeds, i.e., SY U {(u,zp, t,)}. Then, SDysim selects
the next item with DRE and determines the timing for the
corresponding nominees. After all nominees in 7 are assigned
their promotional timings as the seeds, TMI moves on to the
next target market 75,4, € G. It returns the seed group S =
Ug S 9 as the solution after all target markets are examined.”

Theorem 2. SDysim is a (1 — ﬁ — €)(min{ By e Biinext})
approximation algorithm for SIMDPP in O(M |V ||I| kmax)
time, where Pipprer > 0 and Bpjpery > 0 are the minimum
preference and extra adoption probability, respectively. c is
the maximum hop of influence propagation, M is the time to
evaluate o depending on the evaluation error ¢ > 0,** and
kmax IS the maximum size of a feasible solution.

Proof. For more details, please refer to [15]. O

V. EXPERIMENTS
A. Experiment Setup

The experiment includes four datasets, where each one
consists of a KG and a social network: i) Douban [20],
ii) Gowalla, iii) Yelp, and iv) Amazon.?> Since there are no

2389 of different G can be derived in parallel due to the independency of
different G.

24Note that the technique of reverse influence sampling cannot support
multiple promotions since the dependency among different promotions makes
positive propagation irreversible.

2 Gowalla, Yelp, and Amazon are from https://www.yongliu.org/datasets,
https://www.yelp.com/dataset, and https://jmcauley.ucsd.edu/data/amazon,
respectively. KGs are HINs in the datasets, where the HINs contain diverse
node types like items, categories, brands, etc.
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TABLE II
THE STATISTICS OF DATASETS.
Dataset Douban | Gowalla Yelp Amazon
# of node types 3 3 6 6
# of nodes 7.6M 3.2M 251K 260K
# of users 5.5M 407K 17K 1.6M
# of items 2.1M 2.8M 22K 20K
# of edge types 3 3 6 6
# of edges 100M 42M 1.6M 1.4M
# of friendships 86M 4.4M 140K 30.6M
Directed friendship? No No No Yes
Avg. initial influence strength 0.011 0.092 0.121 0.050

social relationships in Amazon, we supplement it with Pokec?®
according to the user profiles. To capture the complementary
and substitutable relationships between items, the meta-graphs
are generated according to [28], and the relevance of a certain
relationship regarding a meta-graph is derived according to
[25]. For the diffusion models, the two factors, relevance
measurement (including the learning of personal weightings on
meta-graphs and the constructions of personal item networks)
and preference estimation are learned and updated based on
[10] and [34], respectively. The statistics of the datasets are
listed in Table II. Following [3], the costs of hiring users
to promote items are set proportional to users’ out-degree
and their preferences for items, since users who are more
influential and who prefer the item less may need more
incentive to be seeds. In the implementation of Dysim, we
exploit the submodularity to speed up the nominee selection,
and follow [31] and [16] to cluster nominees and explore
influenced users, respectively, in TMI.

We compare SDysim with OPT (derived from a brute-force
approach) and four state-of-the-art approaches: BGRD [21],
HAG [20], PS [18], and DRHGA [14] as the baselines.”’
We extend [14], [18], [20], [21] to consider different costs
of selecting a user to promote an item by selecting from
the user-item pairs or the users that satisfy the remaining
budget. Furthermore, since they cannot be directly applied
to our problem, we augment [14], [18], [20], [21] with CR-
Greedy [22] to support multiple promotions and determine the
promotion timings of the user-item pairs as the seeds in each
baseline. The performance metrics include the 1) influence
spread o (Def. 1) and 2) execution time. We perform a series
of sensitivity tests in terms of the budget b and the number
of promotions 7. To verify our algorithm, we further conduct
an empirical study on course promotion in viral marketing
for the course selection system. The complete experiments for
IMDPP (including the case study on Amazon) are shown in
[15] due to the space constraint. We conduct all experiments
on an HP DL580 server with an Intel 2.10GHz CPU and 1TB
RAM. Each simulation result is averaged over 100 samples.

B. Performance Comparison

First, we compare all approaches and OPT on small datasets
sampled from Amazon with 100 users. Fig. 6(a) shows the
influence under different budgets. SDysim has the closest

20https://snap.stanford.edu/data/soc-Pokec.html.
27Codes and datasets are available on https:/tinyurl.com/y26fx2mp.
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Fig. 6. Comparisons with optimal solutions.

performance to OPT, and outperforms BGRD, HAG, PS, and
DRHGA, because TMI of SDysim carefully selects influential
nominees by MCP, and DRE of SDysim then prioritizes nom-
inees based on dynamic perceptions of item relationships. In
contrast, the baselines neglect the changes in item relationships
and do not promote items beneficial to each other over time.
Fig. 6(b) compares the influence under various numbers of
promotions. SDysim creates a larger influence spread as 7T’
increases because TMI avoids promoting substitutable items
to the same users in near promotions. All baselines do not
incorporate the item impact propagation to achieve a larger
influence spread as 1" grows even a sophisticated algorithm
based on CR-Greedy [22] is employed to schedule promotions
at different timings.

Figs. 7(a)-7(c) compare the influence in large datasets under
different budgets.?® For all datasets, SDysim achieves the
largest influence spread, followed by DRHGA, BGRD, HAG,
and PS, because SDysim is able to exploit the changes in
users’ preferences. PS fails to obtain a large influence spread
because it only estimates the influence of a seed alone and
cannot utilize the impact of items from other promotions
to find seeds. BGRD usually achieves smaller than half of
the influence compared with SDysim, because it neglects the
substitutable relationship and regards all items as a bundle to
be promoted. Although DRHGA also promotes all items, it
is usually better than BGRD since DRHGA is able to select
appropriate users to promote each item, instead of regarding
all items as a bundle in BGRD. However, as DRHGA does
not choose items to be promoted, it still generate a smaller
influence spread compared with SDysim. HAG outperforms
BGRD in Yelp with low budgets and in Amazon when the
budget is relatively low to the social network size. This is
because HAG greedily selects the most influential combination
of user-item pairs as the seeds, instead of the most influential
user to promote a bundle of items, making the solutions
of HAG more cost-effective. BGRD fails to achieve a large
influence spread for a large b in Douban since items (e.g.,
songs and books) in Douban are usually complementary, but
BGRD still allocates the budget to the same users to promote
a bundle of complementary items.

Figs. 7(e)-7(f) present the influence in large datasets under
different numbers of promotions with the maximal 7" as 40
(following [22]). SDysim achieves the largest influence spread
for all 7" with significant increments as 7' grows, because

28Fig. 7(c) doesn’t include HAG due to execution time longer than 12 hours.
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TMI of SDysim first arranges the promoting order of target
markets, and SDysim then exploits DR to prioritize items to
be promoted for each target market. In contrast, the influ-
ence spreads grow slowly for the baselines, especially when
T > 20, because they cannot arrange the promoting order
holistically and fail to utilize more promotions to properly
gain more adoptions.

Figs. 7(d) and 7(g)-7(h) compare the execution time under
different budgets and different numbers of promotions, respec-
tively. As shown in Fig. 7(d), when b varies, SDysim requires
the least execution time for most cases. HAG suffers from
finding numerous combinations of seeds for a large budget.
PS requires much time to search for maximum influence paths
to evaluate the influence of a user. Although DRHGA only
selects users, it takes more time than BGRD since the selection
process is repeated for each item. As b becomes larger, the
execution time of SDysim only slightly increases since TMI
quickly selects influential nominees by MCP according to the
cost and increment on influence for each candidate nominee.
PS is less sensitive to b since it employs a discounting strategy
to estimate a seed’s influence under the impact of selected
seeds. On the other hand, as shown in Fig. 7(g), SDysim
requires a low overhead to find promotional timings since
it assigns the promotions by TMI and DRE, which are less
sensitive to 7', whereas the baselines greedily assigning the
promotional timings tend to suffer from larger 7". To show the
scalability of SDysim, Fig. 7(h) compares the execution time
of SDysim on different datasets (in the order of the number of
users in the social network). The time increases not only as the
number of users increases but also as that of items increases
(e.g., so the time on Gowalla and Amazon are similar) due to
the propagation of item impact.

C. Ablation Study

Fig. 8 compares SDysim, SDysim without target markets
(i.e., w/o TM), and SDysim without item priority (i.e., w/o IP).
We have the following three observations. First, the influence
spread is smaller when target markets are not identified, since
the selected nominees may promote substitutable items to the
same users in consecutive promotions, which detracts from
users’ preferences for the posterior items to be promoted.
By contrast, SDysim effectively avoids the antagonism of
the substitutable relationship by identifying and prioritizing
the target markets. Second, the influence spread of SDysim
without item priority is also smaller than that of SDysim,
because all items in a target market are promoted simulta-
neously, and therefore the promotion of an item is hardly
facilitated by promoting its complementary items first. In
contrast, SDysim determines the item priority by exploiting
DR, which carefully measures the impact from previously
promoted items on an item and also the potential impact from
this item on other items in subsequent promotions. Third, as T’
increases, the gaps between SDysim and SDysim w/o TM/IP
increase. This is because the number of promotions in SDysim
w/o TM/IP is limited, i.e., at most the number of items/target
markets, implying that more promotions are not beneficial



B SDysim @ BGRD ®HAG O0PS ODRHGA
7000

B SDysim @ BGRD ®HAG 0OPS ODRHGA

40000
6000
5000
4000
3000
2000
1000

0 0

100 200 300 400 500
b (T=10)

30000
© 20000
10000

(a) Influence (Yelp). (b) Influence (Amazon).

B SDysim @ BGRD BHAG O PS ODRHGA

100 200 300 400 500
b (T=10)

B SDysim @ BGRD ®HAG 0OPS ODRHGA

10000
8000
6000

©

50000
40000
30000
4000 20000
2000 10000

0 0

1 5 20 40 1 5 20 40

10 10
T (b=500) T (b=500)

(e) Influence (Yelp). (f) Influence (Amazon).

mSDysim BWBGRD ©OPS ODRHGA
250000

B SDysim ®BGRD BHAG OPS ODRHGA

200000
— 1)
150000 |3
2 N}
5] 100000
100000 2
50000 50000

o ‘ 0 %LJ]HJ[”JIﬂ-H

100 200 300 400 500 100 200 300 400 500
b (T=10) b (T=10)

200000
150000

Timi

(¢) Influence (Douban). (d) Execution time (Amazon).

B SDysim ®BGRD BHAG OPS ODRHGA B SDysim

200000 1000000
o 100000

> - Gowalla
%?150000 § § 10000

2 ~
2100000 || > 1000
g S E 100
£ 50000 IH [ 10
0 [ 1j] J 1
1 5 10 20 40 Dataset (b=500,T=10)

T (b=500)

(g) Execution time (Amazon). (h) Execution time.

Fig. 7. Comparisons on large datasets.

for a larger influence spread. By contrast, SDysim effectively
schedules the promotional timings of different target markets
and different items to exploit the propagation of item impacts.

D. Comparison of Different Market Orders

To compare with Antagonistic Extent (AE), we leverage the
following metrics to evaluate additional promotional orders
of target markets: profitability (PF) [33], size of the market
(87) [33], relative market share (RMS) [35], and random
(RD). PF and SZ are two of the most common criteria
to prioritize target markets in the marketing research field.
PF is the expected adoptions under the promotion from the
corresponding nominees minus the cost of the nominees. SZ is
the number of customers in the target market. A target market
with a larger PF or SZ is preferred to be promoted earlier.
RMS is widely used to assess the value of a firm’s item in the
product management field. RMS of an item z is defined as
the ratio of x’s market share to the largest market share of its
substitutable item, where the market share is evaluated by the
number of users preferring the item most. The target market
that promotes items with a higher RMS is prioritized.

Fig. 9 manifests that AE and PF usually achieve the largest
influence spread, followed by SZ, RMS, and RD. AE and PF
outperform the others since AE prioritizes the target markets
that have less substitutable relationship on the subsequent
target markets, while PF prioritizes the target markets with
more profits to ensure their influence spread. When there exist
excessively large target markets (e.g., identified by plenty of
nominees), PF is suggested as the ordering metric, since PF
can accurately prioritize these large target markets to maximize
the influence. In general cases, AE is usually a better metric to
prioritize the target markets since the impact from the substi-
tutable items promoted by prior target markets is minimized.
By contrast, SZ, RMS, and RD, without carefully examining
the relationships of items promoted in other target markets,
cannot avoid the antagonism of the substitutable relationship.

The results manifest that promoting target markets with a
smaller AE or a larger PF earlier in TMI is beneficial to
achieve a larger influence spread.

E. Empirical Study

In this study, we have recruited five classes for promoting
courses by viral marketing to evaluate the effectiveness of
SDysim in real-world settings. There were 30 elective courses
for computer science college students, including artificial
intelligence (AI), objective-oriented programming (OOP), and
big data, to name a few. The goal of the campaigns is to
encourage the students in Taiwan University to select those
courses, i.e., maximizing the total number of students selecting
the elective courses. The statistics of all classes are presented
in Table III.

To construct KG of these courses, we crawled their syl-
labuses from Taiwan University, and extracted keywords of
courses, related compulsory courses, and research fields of
teachers. The meta-graphs were defined according to the
curriculum guidelines in Taiwan.?® Following [3], the costs
of hiring users to promote courses are set as users’ out-degree
over their initial preferences for courses, since users who are
more influential and who prefer the course less may need more
incentive to be the seeds.

To evaluate the effectiveness of different approaches, we
have launched campaigns based on the following approaches:
1) SDysim, 2) BGRD [21], 3) HAG [20], and 4) PS [18].
In this study, the budget and the number of promotions
were set to 50 and 3, respectively. For SDysim, relevance
measurement (including the learning of personal weightings on
meta-graphs and the constructions of personal item networks)
and preference estimation are updated according to [10] and
[34], respectively. TMI of SDysim follows [31] and [16] to
cluster nominees and explore influenced users, respectively.

2https://cirn.moe.edu.tw/Upload/file/32077/83646.pdf.
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Fig. 10 reports the total number of students selecting the TABLE III
elective courses for different approaches in each class. For THE STATISTICS OF RECRUITED CLASSES.
all classes, SDysim induces the most students who selected Class ID A B C D E
those courses, followed by BGRD, HAG, and PS. These results # of users 33 126 | 22 | 20 | 20
# of edges 293 | 420 | 387 | 227 | 308

validate that SDysim is able to encourage students to select
those courses by carefully evaluating the dynamic changes in
the relationships between courses. For instance, we observe
that a student in Class A initially regarded the complementary
relevance between Al and software design for cloud computing
(SDCC) as 0.1. After he selected Al and big data, the
complementary relevance between Al and SDCC increased
to 0.6 (derived according to [10]). He then selected SDCC
accordingly. In Class D, another student initially reported that
the influence from one of her classmates is 0.2. During the
promotions, both of them selected cloud computing and IoT,
which increased the classmate’s influence to this student to
0.7 (derived according to [36]). Then, this student selected big
data after being informed that the classmate selected big data
as well. By contrast, BGRD, HAG, and PS do not capture the
dynamic changes in the relationships between courses and the
ripple effect, resulting in fewer students selecting the elective
courses in the end.

Besides, although BGRD is able to select influential stu-
dents in each class, all courses are promoted as a bundle
without considering their relationships. For example, in Class
B, BGRD selects a student to promote python and C++
in a bundle, but the two courses were usually regarded as
substitutable for most students (i.e., the average substitutable
relevance between python and C++ was 0.7). We observe that
more than two-thirds of the students who selected python
did not select C++ when they were promoted C++ by their
classmates. Similar to BGRD, HAG does not examine the
substitutable relationship when promoting courses. In Class B,
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HAG also promoted OOP and C++ to the same set of students.
However, more than half of the students selected only one of
OOP and C++, indicating the waste of simultaneous promo-
tions for substitutable items. PS induces the fewest students to
select the elective courses, since it does not facilitate students
to promote multiple courses and cannot properly utilize the
course promotion from other seeds. For example, in Class C,
PS selected a student to promote deep learning (DL) to a set
of students who were very interested in DL (i.e., their average
initial preference for DL was 0.9). As DL and natural language
processing (NLP) were regarded as highly complementary for
this set of students (i.e., the average complementary relevance
between DL and NLP was 0.75), a good strategy is to let the
students selected by PS to promote NLP as well. However,
PS did not promote any other course to this set of students
in Class C. The above results lead to conclusions consistent
with the experiments in Sec. V-B, indicating that exploring the
dynamic personal perceptions of item relationships, dynamic
preference for items, dynamic social influence strength, and
item associations is the cornerstone of influence maximization
under a sequence of promotions on relevant items.

VI. CONCLUSION

To the best of our knowledge, this paper makes the first
attempt to study the problem of influence maximization under
a sequence of promotions for multiple relevant items. By
exploring KG and meta-graphs to capture dynamic personal
perceptions of item relationships, we formulate a new problem,
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Fig. 10. The empirical study: the total number of students selecting the
elective courses for each classes.

named IMDPP, and its fundamental problem, namely SIMDPP,
to choose items and select seed users for promotions at proper
timings. We prove the hardness of SIMDPP and IMDPP and
design an approximation algorithm Dysim to solve IMDPP.
Dysim first identifies nominees and target markets to promote
complementary items to socially close users in consecutive
promotions. For each target market, Dysim prioritizes the
items to be promoted by dynamic reachability of items. Then,
Dysim determines proper promotional timings with the highest
substantial influence for each nominee. We also design an
approximation algorithm SDysim for SIMDPP. Experiments
on real social networks and KGs demonstrate that SDysim and
Dysim can effectively achieve at least 6 times of the influence
spread. Furthermore, the empirical study validates that explor-
ing the dynamic personal perceptions of item relationships, dy-
namic preference for items, dynamic social influence strength,
and item associations is crucial for influence maximization
under a sequence of promotions on relevant items.

ACKNOWLEDGEMENT

This work is supported in part by the National Sci-
ence Foundation under Grant No. IIS-1717084, by MOST
through grants 108-2221-E-002-022-MY3, 109-2221-E-001-
017-MY2, 107-2221-E-001-011-MY3, 109-2221-E-305-013-
MY3, and 108-2221-E-305-010-, and by the Institute for
Information Industry under Contract 109-1134 and 108-1602.

REFERENCES

D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in ACM SIGKDD, 2003.

K. Han, C. Xu, F. Gui, S. Tang, H. Huang, and J. Luo, “Discount
allocation for revenue maximization in online social networks,” in ACM
Mobihoc, 2018.

H. T. Nguyen, T. N. Dinh, and M. T. Thai, “Cost-aware targeted viral
marketing in billion-scale networks,” in JEEE INFOCOM, 2016.

A. D. Shocker, B. L. Bayus, and N. Kim, “Product complements and
substitutes in the real world: The relevance of “other products”,” JM,
2004.

R. Venkatesh and W. Kamakura, “Optimal bundling and pricing under a
monopoly: Contrasting complements and substitutes from independently
valued products,” J. Bus, 2003.

J. Gerlach, R. M. Stock, and P. Buxmann, “Never forget where you’re
coming from: The role of existing products in adoptions of substituting
technologies,” JPIM, 2014.

R. H. Frank and E. Cartwright, Microeconomics and behavior.
McGraw-Hill New York, 1991.

M. Zhang and J. Bockstedt, “Complements and substitutes in online
product recommendations: The differential effects on consumers’ will-
ingness to pay,” Inf. Manag., 2020.

1499

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

N. T. Koukova, P. Kannan, and A. Kirmani, “Multiformat digital prod-
ucts: how design attributes interact with usage situations to determine
choice,” JMR, 2012.

C. Shi, Z. Zhang, Y. Ji, W. Wang, P. S. Yu, and Z. Shi, “Semrec:
a personalized semantic recommendation method based on weighted
heterogeneous information networks,” W3J, 2019.

Y. Gu, T. Zhou, G. Cheng, Z. Li, J. Z. Pan, and Y. Qu, “Relevance
search over schema-rich knowledge graphs,” in ACM WSDM, 2019.

L. Ma, R. Krishnan, and A. L. Montgomery, “Latent homophily or social
influence? an empirical analysis of purchase within a social network,”
Manag. Sci., 2015.

M. Yavag and G. Yiicel, “Impact of homophily on diffusion dynamics
over social networks,” SSCR, 2014.

H. Huang, Z. Meng, and H. Shen, “Competitive and complementary
influence maximization in social network: A follower’s perspective,”
Knowl.-Based Syst., 2020.

Y.-W. Teng, S. Shi, C.-H. Tai, D.-N. Yang, W.-C. Lee, and M.-S.
Chen, “Influence maximization based on dynamic personal perception
in knowledge graph,” arXiv:2010.07125, 2020.

W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization
for prevalent viral marketing in large-scale social networks,” in ACM
SIGKDD, 2010.

Q. Guo, S. Wang, Z. Wei, and M. Chen, “Influence maximization revis-
ited: Efficient reverse reachable set generation with bound tightened,”
in ACM SIGMOD, 2020.

Y.-W. Teng, C.-H. Tai, P. S. Yu, and M.-S. Chen, “Revenue maximization
on the multi-grade product,” in SDM, 2018.

S. Datta, A. Majumder, and N. Shrivastava, “Viral marketing for multiple
products,” in IEEE ICDM, 2010.

H.-J. Hung, H.-H. Shuai, D.-N. Yang, L.-H. Huang, W.-C. Lee, J. Pei,
and M.-S. Chen, “When social influence meets item inference,” in ACM
SIGKDD, 2016.

P. Banerjee, W. Chen, and L. V. S. Lakshmanan, “Maximizing welfare
in social networks under a utility driven influence diffusion model,” in
ACM SIGMOD, 2019.

L. Sun, W. Huang, P. S. Yu, and W. Chen, “Multi-round influence
maximization,” in ACM SIGKDD, 2018.

K. Han, K. Huang, X. Xiao, J. Tang, A. Sun, and X. Tang, “Efficient
algorithms for adaptive influence maximization,” VLDB, 2018.

B. Peng and W. Chen, “Adaptive influence maximization with myopic
feedback,” in NeurIPS, 2019.

Z. Huang, Y. Zheng, R. Cheng, Y. Sun, N. Mamoulis, and X. Li, “Meta
structure: Computing relevance in large heterogeneous information net-
works,” in ACM SIGKDD, 2016.

Y. Timmor and T. Katz-Navon, “Being the same and different: A model
explaining new product adoption,” JCB, 2008.

J. Zheng, X. Wu, J. Niu, and A. Bolivar, “Substitutes or complements:
another step forward in recommendations,” in ACM EC, 2009.

J. McAuley, R. Pandey, and J. Leskovec, “Inferring networks of substi-
tutable and complementary products,” in ACM SIGKDD, 2015.

Z. Wang, Z. Jiang, Z. Ren, J. Tang, and D. Yin, “A path-constrained
framework for discriminating substitutable and complementary products
in e-commerce,” in ACM WSDM, 2018.

Y. Liu, Y. Gu, Z. Ding, J. Gao, Z. Guo, Y. Bao, and W. Yan,
“Decoupled graph convolution network for inferring substitutable and
complementary items,” in ACM CIKM, 2020.

H. Chen, H. Yin, X. Li, M. Wang, W. Chen, and T. Chen, “People
opinion topic model: opinion based user clustering in social networks,”
in WWW, 2017.

F. Wang, G. Wang, S. Lin, and P. S. Yu, “Concurrent goal-oriented co-
clustering generation in social networks,” in IEEE ICSC, 2015.

L. Simkin and S. Dibb, “Prioritising target markets,” MIP, 1998.

T. Zhao, J. McAuley, M. Li, and I. King, “Improving recommendation
accuracy using networks of substitutable and complementary products,”
in [EEE IJCNN, 2017.

P. W. Farris, N. Bendle, P. E. Pfeifer, and D. Reibstein, Marketing
metrics: The definitive guide to measuring marketing performance.
Pearson Education, 2010.

Z. Zhang, W. Zhao, J. Yang, C. Paris, and S. Nepal, “Learning influence
probabilities and modelling influence diffusion in twitter,” in WWW,
2019.



		2021-06-20T22:58:09-0400
	Preflight Ticket Signature




