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Abstract—Viral marketing on social networks, also known
as Influence Maximization (IM), aims to select k users for the
promotion of a target item by maximizing the total spread of their
influence. However, most previous works on IM do not explore
the dynamic user perception of promoted items in the process. In
this paper, by exploiting the knowledge graph (KG) to capture
dynamic user perception, we formulate the problem of Influence
Maximization based on Dynamic Personal Perception (IMDPP)
that considers user preferences and social influence reflecting
the impact of relevant item adoptions. We prove the hardness of
IMDPP and design an approximation algorithm, named Dynamic
perception for seeding in target markets (Dysim), by exploring the
concepts of dynamic reachability, target markets, and substantial
influence to select and promote a sequence of relevant items. We
evaluate the performance of Dysim in comparison with the state-
of-the-art approaches using real social networks with real KGs.
The experimental results show that Dysim effectively achieves
at least 6 times of influence spread in large datasets over the
state-of-the-art approaches.

Index Terms—influence maximization, multiple promotions,
item relationships, dynamic personal perceptions

I. INTRODUCTION

Social influence [1], [2], [3] refers to the impact of a social

environment on people’s behavior. By exploiting the social

influence of users, a wide spectrum of applications (e.g.,

item promotion and viral marketing) have been formulated

as various research problems, such as influence maximization
(IM) [1], revenue maximization (RM) [2], and profit maxi-

mization (PM) [3]. Among them, IM selects k users as the

seeds to promote one target item to maximize the number of

influenced users. Nevertheless, in real life, companies often

promote relevant items in multiple events, e.g., Apple Inc.

usually promotes iPhones, AirPods, and iPads in September,

followed by a series of subsequent promotions.1 In this work,

we address a new IM problem formulated for a sequence of

promotions on relevant items.2

For multiple promotions, exploring the dynamic changes in

personal perceptions on promoted items is important, since

1https://www.apple.com/apple-events/.
2After the influence propagation of the seed group for the first promotion

finishes, the second follows, and so on.

users’ perceptions of item relationships may vary according

to the changes in users’ demand indicated by research in the

marketing field [4]. First, the complementary and substitutable
relationships between items affect users’ preferences on items

[4], [5], [6]. In economics, cross elasticity of demand [7] indi-

cates that adopting complementary items of an item increases

the preference for it, while adopting its substitutable items has

the opposite effect. For example, users who own iPhones with

no headphone jack may be interested in AirPods (due to its

complementary relationship with iPhones), while users who

have iPhones may have less interest in iPads (due to their

substitutable relationship). Second, the association between

items may trigger extra adoptions without promotions [8], [9].

For example, AirPods may be directly adopted together with

iPhones due to their complementary relationship.

Third, the perceptions of these relationships between items

are usually personal and dynamic [4], [10], [11], as the items

got newly adopted usually bring fresh experiences to users.

For example, users who care more about large screens than

mobility may treat iPhones as substitutable items of iPads;

when these iPad users start to care about the mobility, they may

tend to regard iPhones as complementary items of iPads. In

turn, the changes in personal perceptions of item relationships

lead to changes in users’ preferences. Fourth, the dynamic

personal perceptions of item relationships also affect users’

social influence strength over friends, since friends adopting

similar items and sharing similar perceptions tend to become

closer [12], [13]. To address IM in a sequence of promotions

on relevant items, it is essential to carefully examine dynamic

personal perceptions of item relationships, together with their

ripple effect on personal preferences for items, social influence

strength, and item associations.

Knowledge graph (KG) (along with weighted meta-graphs)

to capture the relationships (e.g., the complementary and

substitutable relationships) has been well-explored in recom-

mendation systems [10]. As illustrated in Fig. 1, KG represents

facts (e.g., ITEM iPhone and ITEM AirPods SUPPORT the

FEATURE Bluetooth in Fig. 1(a)), while meta-graphs capture

relationships in the KG (e.g., m1 in Fig. 1(b) describes two
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Fig. 1. (a) A tiny KG describing facts about the iPhone, AirPods, wireless
charger, and charging cable. (b) Three meta-graphs specifying the comple-
mentary relationship. (c) Bob’s initial personal item network, where a dotted
edge denotes a complementary relationship. (d) Update of Bob’s personal item
network: after adopting iPhone and AirPods, Bob’s weightings on m1 and
m2 grow, which increases the relevance scores between iPhone, AirPods, and
the wireless charger.

ITEMs SUPPORTing the same FEATURE are complementary).

Note that these meta-graphs can be used to reflect the percep-

tion of item relationships, in forms of personal item network,

for each individual. The personal weighting on each meta-

graph describes the significance of this meta-graph to an

individual (e.g., the values next to m1, . . . ,m3 in Fig. 1(c)),

while the relevance scores between items describe the strength

of their relationships in the mind of this individual [10], [11]

(e.g., the values on dotted edges in Fig. 1(c)). By adjusting the

weightings on meta-graphs according to previous adoptions

[10], [11], dynamic personal perceptions of item relationships

in individual users can be updated (in Fig. 1(d)). In this paper,

we aim to leverage dynamic personal item networks for a

sequence of IM promotions.

Following up the example in Fig. 1, Fig. 2 illustrates the

IM process considering dynamic personal perceptions of item

relationships, personal preferences for items, social influence

strength, and item associations. As shown, the number of

hearts indicates Bob’s preference for a not-yet-adopted item,

and a solid arrow represents the social influence between users

(thickness implies strength). After Bob is promoted iPhone

by Alice, Bob’s purchase decision depends not only on the

influence strength from Alice but also on his own preference

for iPhone (in Fig. 2(a)). Meanwhile, item associations usually

trigger extra adoptions of relevant items, such as AirPods,

according to Bob’s item network (in Fig. 1(c)). After Bob

purchases iPhone and AirPods, his perception of the comple-

mentary relationship changes (i.e., he becomes to regard items

supporting common features or belonging to the same brand

as complementary), which increases the relevance between

iPhone, AirPods, and the wireless charger (in Fig. 1(d)).

After that, as Bob has adopted iPhone and AirPods, and their

relevance to the wireless charger increases, Bob’s preference

Adopted
Alice
Bob
Cindy

Bob

Alice

Cindy

(a)

Adopted
Alice
Bob
Cindy

Bob

Alice

Cindy

(b)

Fig. 2. Illustration of the IMDPP problem. (a) The states before Bob adopts
iPhone and AirPods. (b) The states after Bob adopts iPhone and AirPods.

for the wireless charger grows accordingly.3 Moreover, if

Cindy acts as a seed to promote the wireless charger, as Bob

and Cindy have similar adopted items (in Fig. 2(b)) (indicating

Bob shares a similar perception of item relationships with

Cindy and tends to behave similarly with Cindy), the influence

strength from Cindy to Bob thus becomes stronger. It is easier

for Cindy to promote the wireless charger to Bob now, since

both Cindy’s influence strength to Bob and Bob’s preference

for the wireless charger increase.

To incorporate factors depicted in the example above, sev-

eral new challenges arise. (i) Propagation of item impact (i.e.,
impact due to item adoption): Item adoptions change users’

personal perceptions of item relationships, their preferences for

other items, their strength of social influence among friends,

and the item associations. In other words, the promotion of an

item may affect the adoptions of subsequent items and thereby

the planning for the next promotions. The order of items

being promoted matters. (ii) Antagonism of the substitutable
relationship: Promoting an item after adopting a substitutable

item is not beneficial when the first item has met the users’

needs. It is thus vital to avoid promoting substitutable items to

the same users in consecutive promotions. (iii) Determination
of promotional timing: As the promotions are dependent on

previous ones, a seed in early promotions should facilitate

subsequent promotions, while a seed in later promotions

should focus on potential adoptions benefited from previous

promotions. Therefore, determining the proper promotional

timing for each seed is essential.

In this work, we formulate a new problem, named Influence
Maximization based on Dynamic Personal Perception (referred

to as IMDPP). In contrast to most previous works [14]

focusing on one item, given the social network, KG, and meta-

graphs for different item relationships, IMDPP targets on mul-

tiple promotions to maximize the overall spread of influence

by choosing items and selecting seed users for promotion at

proper timings under a total budget, where users have differ-

ent costs as seeds [3], and each promotion allows multiple

items to be promoted. We exploit personal item networks to

capture dynamic personal perceptions of complementary and

substitutable relationships between items. The adoptions of

items dynamically adjust users’ weightings on meta-graphs,

reflecting dynamic personal perceptions and updating personal

item networks. Also, users’ preferences for other items, their

social influence strength over friends, and the item associations

change accordingly, in turn affecting other users’ adoptions,

their personal weightings on meta-graphs, their preferences

3A real example is in https://amzn.to/3fW7JLC.
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for other items, their social influence strength, and the item

associations in a ripple effect. For the ease of understanding,

we first present the fundamental problem of IMDPP, referred

to as Simple IMDPP (SIMDPP), by focusing on the important

factors of dynamic personal perceptions of item relationships

and their fundamental ripple effect on dynamic preferences

for items, i.e., neglecting dynamic social influence strength

and item associations.

We prove that SIMDPP and IMDPP are NP-hard and

inapproximable within O( 1
|V |1−ε ), where |V | is the number

of users and ε is an arbitrarily small constant. We design

an approximation algorithm, named Dynamic perception for
seeding in target markets (Dysim), to tackle the above chal-

lenges of IMDPP. For the first challenge in the propagation

of item impacts, Dysim introduces dynamic reachability to

evaluate the impacts from previously promoted items on

the currently chosen item, as well as the potential impact

from the current item on any candidate item in subsequent

promotions. For the second challenge in the antagonism of

the substitutable relationship, Dysim identifies target markets
to promote complementary items to socially close users in

consecutive promotions. For the third challenge in determining

the promotional timing, Dysim introduces substantial influence
to evaluate both immediate and subsequent adoptions under

the impact of a candidate seed (assigned at some promotional

timing). For SIMDPP, where dynamic social influence strength

and item associations are not considered, we develop an

approximation algorithm, namely Simple Dysim (SDysim), in

this paper as well. We evaluate the performance of SDysim and

Dysim on real social networks with KGs, i.e., Amazon, Yelp,

Douban, and Gowalla. Due to the space constraint, the details

of IMDPP and Dysim are presented in the full-length version

[15] of this paper. The contributions of this work include:

• To the best of our knowledge, IMDPP is the first attempt

to study the IM problem under a sequence of promotions

on relevant items, where the personal perceptions of

item relationships are dynamically captured from users’

previously adopted items by KG and meta-graphs, and

the changes in preferences for items, social influence

strength, and item associations are considered as a ripple

effect in the diffusion process.

• We prove that SIMDPP and IMDPP are inapproximable

within O( 1
|V |1−ε ) even for a simple case with only the

complementary relationship and only one promotion.

• We design an approximation algorithm Dysim, which

plans a distinct effective promotional strategy for each

target market to avoid antagonism between substitutable

items. Dysim carefully examines the dynamic reachability

of items to prioritize the promotion of relevant items, and

evaluates the substantial influence of candidate seeds to

properly determine the promotional timing.

• Via real social networks and real KGs, experimental

results demonstrate that SDysim and Dysim effectively

achieve at least 6 times of the influence spread over the

state-of-the-arts.

II. RELATED WORK

Influence maximization (IM) aims at maximizing the num-

ber of influenced users by selecting seed users. It was first

formulated as a discrete optimization problem and proved as

NP-hard by Kempe et al. [1]. Since then, various issues in

IM have been actively studied. To address the inefficiency

in computing influence spread, some exploit the submodular

property and certain heuristics [16]. Recent works further

introduce the reverse influence sampling to approximate the

influence with guarantees [17].4 Recently, Huang et al. [14]

point out that users’ adopting probabilities of the promoted

item should depend on users’ previously adopted complemen-

tary and substitutable items (which is modeled as dynamic

preferences for items in IMDPP). However, [14] targets only

on a specified item in only one promotion with fixed item

relationships, whereas IMDPP explores multiple promotions

on relevant items and carefully examines the dynamic user per-

ceptions of item relationships. Although various issues, e.g.,

target audience, scalability, and complementary/substitutable

items, are studied, previous works [1], [3], [14], [16], [17]

promote only one target item in only a single promotion,

instead of multiple target items in multiple promotions, and

the phenomenon of dynamic personal perceptions of item

relationships together with its ripple effect are not considered.

By contrast, IMDPP aims at a sequence of promotions on

relevant items modeled by Knowledge Graph, where the item

relationships and promotional timings are able to alter users

adoption decisions.

Some studies investigate IM on promoting multiple target

items, e.g., making exclusive adoption among items [18],

avoiding spamming seeds by overwhelming promotions [19],

learning diffusion probabilities of different items [20], and

maximizing utility-based adoption among desired items [21].

However, they focus on a single promotion and do not con-

sider multiple promotions to promote a sequence of relevant

items modeled by KG and meta-graphs. Moreover, they study

the problems under simpler scenarios without capturing the

dynamic changes in personal perceptions of item relation-

ships, personal preferences for items, social influence strength,

and item associations. By contrast, in IMDPP, the adoption

of items dynamically changes the personal perceptions of

complementary and substitutable relationships between items.

The changed perceptions of item relationships affect users’

preferences for items and users’ social influence strength over

time, in turn affecting other users’ adoptions, their preferences

for other items, and their social influence strength as a ripple

effect. Therefore, the above works have limitations to IMDPP,

since the promotional timing is critical as users’ perceptions

of item relationships, preferences for items, and influence

strength on friends are dynamic.

Research on adaptive IM [22], [23], [24] aims to select

the seeds adaptively based on the adoptions in the previous

influence diffusion. However, although multiple promotional

timings are considered, they consider only one item in the IM

4More introduction on other IM problems is presented in [15].
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problem and ignore multiple target items, item relationships,

and dynamic preference for items. Moreover, adaptive IM

requires a predefined budget allocation to different promo-

tions, and it does not have the adaptive monotonicity and

the adaptive submodularity (or even the adaptive bounded

weak-submodularity).5 By contrast, IMDPP does not require a

predefined budget allocation to promotions and can be solved

by Dysim with an approximation guarantee (detailed in [15]).

Knowledge graph (KG) is employed to describe facts in a

wide spectrum of applications, e.g., relevance measures and

search [11], [25], and recommendation [10]. Shi et al. [10]

present a new similarity measure through personal weighted

meta-paths to include different semantics of similarity. Users’

own preferences can thus be derived from these meta-paths. Gu

et al. [11] point out that a user may have different perceptions

of similarity due to the change in her interests. They propose

to automatically pick up meta-paths to best characterize the

similarity by user-provided examples. Huang et al. [25] further

extend meta-paths to meta-graphs to measure similarity with

more complex connections. Note that these works focus on

predicting the ratings of unknown items for users, which is

essentially different from the IM problem. Inspired by the

above research, we first attempt to incorporate the above

relevance measurements and adopt the above meta-graphs with

dynamic personal weightings in influence diffusion of multiple

relevant items.

III. FUNDAMENTAL PROBLEM FORMULATION

To study various issues in multiple promotions of relevant

items, we first introduce two important factors, which can

be easily incorporated into existing diffusion models, e.g.,

triggering models [1], by extending the diffusion process, to

consider dynamic changes in personal perceptions of item

relationships [4], [10], [11] and their fundamental ripple

effect on personal preferences for items [4], [5], [6], [7].6

(1) Relevance measurement: KG is leveraged to measure the

relevance between two items and find personal item networks,

by learning the personal weightings on meta-graphs from

users’ previously adopted items.7 (2) Preference estimation:

Users’ preferences for not-yet-adopted items are derived and

updated based on previously adopted items and personal item

networks. The dependency of these factors is illustrated in

Fig. 3, while the discussion of deriving and updating them

is detailed in [15]. For ease of discussion, we summarize the

notations in Table I.

5The adaptive monotonicity is a property that conditional expected marginal
adoptions of any item are non-negative. The adaptive submodularity (or
the adaptive bounded weak-submodularity) is the property that conditional
expected marginal adoptions of any fixed item do not increase (or boundedly
increase) as more items are selected and their states are observed.

6The complete problem that considers the comprehensive ripple effect on
social influence strength [12], [13], [26] and item associations [8], [9] is
presented in the full version [15].

7Instead of KG, some lightweight alternatives, such as Tagging algo-
rithm [27], Sceptre [28], PMSC [29], and DecGCN [30] can also be adopted
to learn item relationships. Since the above works derive the item relationships
according to all users’ adoption history, the item network is no longer
personalized. When they are adopted in our problem, all personal item
networks will be identical.

Adopted items

Personal item network
(updated by 

(1) relevance measurement)

Preferences for items
(updated by 

(2) preference estimation)

Fig. 3. Illustration of the two dependent factors.

Accordingly, we elaborate on the diffusion process as fol-

lows. A campaign includes T promotions. The t-th promotion

contains multiple steps ζt = 0, 1, . . ., where each step rep-

resents an influence propagation from users adopting items

to their friends that haven’t adopted those items yet.8 As a

promotion depends on previous promotions, the initial state of

a user in the t-th promotion (i.e., adopted item, perceptions,

and preferences at ζt = 0) is the same as the state at the

end of the (t− 1)-th promotion, while the seeded users in the

t-th promotion newly adopt the promoted items at ζt = 0.

When the diffusion starts at step ζt ≥ 1, a user u may

be promoted x by any friend u′ who newly adopted x at

ζt − 1 only if u has not adopted x yet. The probability that

u will adopt x is derived according to the social influence

strength from u′ (denoted as pu′,u) and u’s preference for x
(denoted as Ppref(u, x, ζt − 1)), i.e., pu′,u ×Ppref(u, x, ζt − 1).
Then, at the end of this step, u’s personal perceptions of item

relationships (i.e., personal item network) are updated by (1)
relevance measurement (detailed in [15]) if u newly adopts

any item, while her preferences for not-yet-adopted items also

change accordingly by (2) preference estimation (detailed in

[15]). If there is any new adoption at ζt, the next step ζt + 1
starts with users having new adoptions at ζt to promote their

newly adopted items to their friends (who have not yet adopted

those items).9 In other words, the diffusion of t-th promotion

stops when no new adoptions happen since users cannot be

promoted the adopted items again. Thus, the diffusion of the

(t+ 1)-th promotion follows.

Based on the above diffusion process for relevant items in

multiple promotions, we aim to choose a number of items,

seed suitable users, and decide the proper timing, such that

the influence spread (defined below) is maximized. Formally,

S = {(u, x, t)} is a seed group, where a seed (u, x, t) indicates

that an item x is chosen for promotion starting at a seeded

user u in the decided t-th promotion.10 Let St ⊆ S denote

a subgroup of seeds chosen for the t-th promotion. We first

define the influence spread and then formulate the problem as

follows.

Definition 1 (Influence function). Let T denote the num-
ber of promotions. For a seed group S, the influence
spread in the social network GSN = (V,E), denoted as

8Note that ζt − 1 ≡ ζ last
t−1 if ζt = 0, where ζ last

t−1 is the last step of the
(t− 1)-th promotion.

9Following other IM problems [1], [16], these users promote items to their
friends without costs.

10An item x can be assigned to multiple seeded users at multiple promo-
tions; each promotion can promote multiple chosen items by multiple seeded
users.
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TABLE I
SUMMARY OF NOTATIONS IN SECTIONS III-IV.

Notation Description
ζt Step ζ of the t-th promotion
Ppref(u, y, ζt) u’s preference for y updated at ζt
pu,v u’s influence strength on v
(u, x, t); (u, x) Seed; nominee
S = {(u, x, t)};
St

Seed group; subgroup of seeds in the t-th
promotion

σGSN(S); T Influence function; number of promotions

{mC} / {mS} Sets of meta-graphs for describing comple-
mentary/substitutable relationships

τ ; G Target market; set of target markets with
common users

r̄Cx,y / r̄Sx,y Average complementary/substitutable rele-
vance between x and y per user (the timing
is specified from context)

DRW,τ (SG , x) x’s dynamic reachability of τ ’s users given
SG and W

t̂ Latest promotional timing in SG

σGSN(S), is the expected adoptions in all T promotions, i.e.,

σGSN(S) =
T∑

t=1
σGSN
t (St | S1, S2, . . . , St−1) =

T∑
t=1

∑
x∈I

nx(St |
S1, S2, . . . , St−1), where nx(St | S1, S2, . . . , St−1) is the
expected new adoptions of x for St in the t-th promotion
conditioned on S1, . . . , St−1 in previous promotions.11 (When
GSN is clear from context, we write σ(S) for short.)

Definition 2 (Simple IMDPP (SIMDPP)). Let mC and mS

denote the meta-graphs for describing the complementary and
substitutable relationships between items, respectively. Based
on the diffusion process described earlier, given a social
network GSN = (V,E) with the influence strength pu,v for all
u, v ∈ V , a KG GKG = (V, E ,Φ,Ψ), two sets of meta-graphs
{mC} and {mS}, a target item set I = {x}, the cost cu,x of
hiring a user u ∈ V to promote an item x ∈ I , the budget b,
and the total number of promotions T , the SIMDPP problem
is to find the seed group S =

⋃T
t=1 St such that the influence

spread σ(S) is maximized within the budget constraint b, i.e.,∑T
t=1

∑
(u,x,t)∈St

cu,x ≤ b.12

Theorem 1. SIMDPP cannot be approximated within
O( 1

|V |1−ε ) in polynomial time unless P = NP , even with
only the complementary relationship and Pext ≡ 0 in only one
promotion.

Proof Sketch. We prove the theorem with the gap-introducing

reduction from the decision problem of Set Cover. Given a set

cover instance, by constructing a corresponding special case

of SIMDPP, we prove that if there is a set cover solution with

at most k sets, there is a feasible solution of SIMDPP with the

total influence at least |U |c+2|U |+2, where |U | is the size of

the ground set of set cover instance, and c is a large constant.

11Following [1], [16], σ is estimated by the Monte Carlo method, which
simulates the influence diffusion of seeds according to the probabilities.

12As stated in Sec. II, adaptive IM problems may incur an unbounded cost
and require a predefined budget allocation. By contrast, SIMDPP does not
require a predefined budget allocation and can be solved (by our proposed
algorithm) with a limited approximation ratio (as stated in Theorem 2 later).

Otherwise, if there exists no set cover solution with at most k
sets, the optimal value of SIMDPP is at most 2|U | + k + 2.

Then, we assign c suitably to satisfy |V |1−ε ≤ |U |c+2|U |+2
2|U |+k+2 ,

where |V | and ε are related to |U | and c. Consequently, if there

is a |V |1−ε approximation algorithm of SIMDPP, we can solve

the decision problem of set cover in polynomial time, implying

P = NP , which is a contradiction. For more details, please

refer to [15].

IV. APPROXIMATION ALGORITHM

A. Algorithm Overview

To efficiently solve SIMDPP, we design an approximation

algorithm, namely Simple Dysim (SDysim), which embodies a

number of ideas. (i) To tackle the challenge in the propagation

of item impacts, SDysim introduces Dynamic Reachability
(DR) to measure the impact made by an item promotion and

the impacts resulted from the promotions of other items based

on users’ dynamic perceptions of item relationships (detailed

later in Eq. (1)). Specifically, DR evaluates both proactive
and reactive impacts for each item. For an item, the proactive

impact is the probability for this item to result in an increase

of users’ preferences on other items. The reactive impact is

the probability to increase users’ preferences on this item
resulted from other items promoted previously. The item with

the highest DR is prioritized for promotion. Previous works

[18], [20], [21] select users only and do not consider the items

in IM.

(ii) To avoid antagonism between substitutable items,

SDysim identifies target markets, each of which consists of

socially close users to promote complementary items in con-

secutive promotions. Specifically, it identifies some nominees
(where a nominee is a user-item pair (u, x)) as candidate

seeds, denoted by (u, x, t), for an incoming promotion at

time t (decided later). Note that a target market targets on a

cluster of nominees in order to promote complementary items

to socially close users. Since different target markets may

share some common users, it is important to avoid promoting

substitutable items to them. Accordingly, SDysim prioritizes

the target market promoting items with the least substitutable

relevance to items in the overlapping target markets (i.e., the

target markets sharing many common users). By contrast,

prior works [18], [20], [21] consider only one relationship and

thereby may promote substitutable items to the same users.

Equipped with the above strategies, SDysim includes two

phases: Target Market Identification (TMI) and Dynamic

Reachability Evaluation (DRE).13 Since users in social net-

works usually have different needs and diverse purchase inten-

tions, a promotional strategy is planned more sophisticatedly

if the target users are identified first. Intuitively, intensively

promoting a few items within a short period can better

draw users’ attention. Hence, SDysim first exploits TMI to

identify target markets and then leverages DRE to plan the

13The complete algorithm Dysim to tackle all challenges is presented in
[15]. Besides, our proposed algorithm can deal with adaptive IM (even without
a predefined budget allocation to different promotions), detailed in [15].
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Algorithm 1: SDysim

Input: Social network GSN = (V,E); knowledge graph

GKG = (V, E ,Φ,Ψ); item set I; total budget b; total

number of promotions T
Output: Seed group

/* TMI phase */

1 U ← {(u, x) | u ∈ V, x ∈ I}
2 N ← selectNominees(U, b)
3 {Nτ} ← clusterNominees(N)
4 for each Nτ do
5 Identify the target market τ by Nτ

6 CG ← prioritizeTargetMarket({τ})
7 for each G in CG do
8 SG ← ∅
9 for each τk ∈ G, where k = 1, 2, . . . do

/* DRE phase */

10 Nτk ← nominees in τk
11 Iτk ← {x | (u, x) ∈ Nτk}
12 while Iτk �= ∅ do
13 xp ← argmaxx∈Iτk DRτk (SG , x)
14 Iτk ← Iτk \ {xp}
15 if SG �= ∅ then
16 t̂ ← max{t | (u, x, t) ∈ SG}
17 tp ← min{t̂+ 1, T}
18 else
19 tp ← 1

20 for each (u, xp) ∈ Nτk do
21 SG ← SG ∪ {(u, xp, tp)}
22 return

⋃
G SG

distinct effective promotional strategy for each target market.

Specifically, TMI selects and clusters nominees to promote

complementary items to each target market and prioritizes

target markets with fewer substitutable items to the nominees

in the overlapping target markets. For each target market, DRE

finds the item with the highest DR to exploit item impacts

and decides the promotional timings for the corresponding

nominees to be seeds. Algorithm 1 presents the pseudo-code

of SDysim.14

B. Algorithm Description

1. Target Market Identification (TMI): TMI selects the

nominees that exert large influence spread, clusters select

nominees to identify each target market for promoting com-

plementary items to socially close users, and prioritizes the

target market with fewer substitutable items to the nominees

in the overlapping target markets.

For nominee selection, TMI carefully examines the marginal

gain of influence for each nominee. It’s crucial to select

a cost-effective nominee due to different costs of nominees

and a limited budget. Therefore, we propose marginal cost-
performance ratio (MCP) to jointly consider the above factors

and ensure the approximation ratio of SDysim in Theorem 2.

Specifically, given a set N of selected nominees, MCP of a

nominee (u, x) is
f(N∪{(u,x)})−f(N)

cu,x
, where f is the influence

spread σ with the nominees placed in the first promotion

14Please refer to [15] for more pseudo-codes.
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(c)

Fig. 4. An example of TMI. (a) A social network. (b) Average relevance over
all users in the whole social network. (c) Average relevance in τ3.

as the seeds and Ppref assigned at the beginning of this

promotion. For the nominees with the costs satisfying cu,x <
b−∑

(u′,x′)∈N cu′,x′ , TMI iteratively extracts the one with the

highest MCP into N .

Afterward, TMI identifies the target markets by clustering

the nominees. To promote complementary items to the users in

a target market, TMI first clusters the nominees in N (e.g., by

clustering methods POT [31] and FGCC [32])15 according to

the social distances between the nominees and the relevance

between their promoting items, i.e., r̄Cx,y − r̄Sx,y , where r̄Cx,y
and r̄Sx,y are the average complementary and substitutable

relevance between x and y over all users, respectively.16

Larger complementary and smaller substitutable relevance are

encouraged. For each cluster, a target market τ is identified

by exploring the influenced users from the nominees Nτ (e.g.,

by MIOA [16]).17 Note that with TMI, the budget allocation

of SDysim is realistic since a larger target market is inclined

to have a larger budget to promote items. In TMI, the target

markets are identified by the influence of nominees, where

more nominees and influential nominees lead to a larger target

market. As more nominees and influential nominees usually

incur a larger cost [3], SDysim allocates larger budgets to those

target markets accordingly.

Afterward, TMI prioritizes the target market with fewer

substitutable items to the nominees in the overlapping target

markets. Let G denote a set of target markets with common

users. A target market τi is in G if there is another target mar-

ket τj ∈ G with the common user number above a threshold

θ.18 TMI arranges the promoting order for the target markets

in each G by deriving Antagonistic Extent (AE) of each target

market τi according to the substitutable relationship between

every promoting item x and the items of other target market τj ,

i.e., AE(τi) =
∑

x∈τi,y∈τj
r̄Sx,y , where τi, τj ∈ G, i �= j. The

target market (and the items in the corresponding nominees)

with a smaller AE is promoted earlier in G.19

Example 1. Figs. 4(a) and 4(b) present an example of TMI

with a social network and the average relevance over all users

in the whole social network, where the dotted and dashed

edges are the complementary and substitutable relationships,

respectively. The number beside each edge is the relevance.

15More details of POT and FGCC are presented in [15].
16The derivation of relevance is described in [15].
17More details of MIOA are presented in [15].
18The sensitivity of SDysim to θ is evaluated in [15].
19Alternatively, according to research in the marketing field, the profitabil-

ity [33] of a target market is also a good metric to prioritize target markets.
The comparison of different marketing orders is presented in Sec. V-D.
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Assume N = {(u1, iPad), (u2, AirPods), (u4, iPhone), (u6,
AirPods), (u7, iPad)} by TMI according to MCP. Then, TMI

finds three clusters Nτ1 = {(u1, iPad)}, Nτ2 = {(u7, iPad)},

and Nτ3 = {(u2, AirPods), (u4, iPhone), (u6, AirPods)} from

Figs. 4(a) and 4(b), and identifies τ1, τ2, and τ3 accordingly,

as shown in Fig. 4(a). Assume θ = 1. Then, τ1, τ2, and τ3
belong to the same G since τ1 and τ3 have two common users,

and τ2 and τ3 have two common users. After that, according

to the substitutable relevance in Fig. 4(b), AE(τ1) = 0.5 since

iPad promoted in τ1 is substitutable to iPhone promoted in τ3.

Similarly, AE(τ2) = 0.5 and AE(τ3) = 0.5 + 0.5 = 1. TMI

thereby promotes τ1, τ2, and τ3 sequentially. �
2. Dynamic Reachability Evaluation (DRE): For each target

market τk ∈ G selected by TMI, DRE evaluates Dynamic
Reachability (DR) of each item in τk, and the nominees (in

Nτk ) promoting the item with the highest DR serve as the

candidate seeds. In other words, after TMI has identified target

markets with socially close users to promote complementary

items and has prioritized the target markets using AE, DRE

allows each target market to prioritize its promoting items

differently and lets the nominees promoting items with higher

DR be the seeds earlier. Specifically, let dτk denote the

diameter of the target market τk, and SG is the seed group

determined so far for all the target markets in G. Let Iτk denote

the items that have not yet been promoted in τk. DR of an item

x ∈ Iτk is

DRτk(SG , x) = PIτk(SG , x, dτk) +RIτk(SG , x, dτk). (1)

The proactive impact PIτk(SG , x, dτk) is the probability of x
to increase the preferences of users in τk for other items. The

reactive impact RIτk(SG , x, dτk) is the probability to increase

the preferences of users in τk for x under the impact from

other items in SG .20 The adoption of x increases (decreases)

the preferences for the items complementary (substitutable)

to x [7]. Given SG , the likelihood of regarding x and y as

complementary (substitutable) for each user is proportional to

the complementary (substitutable) relevance between x and

y, i.e., LC,τk(x, y, SG) =
r̄Cx,y

r̄Cx,y+r̄Sx,y
and LS,τk(x, y, SG) =

r̄Sx,y

r̄Cx,y+r̄Sx,y
, where r̄Cx,y and r̄Sx,y are the average complementary

and substitutable relevance between x and y over all users in

τk after the promotion of SG , respectively.21 Therefore, PI is

recursively formulated as follows.

PIτk(SG , x, d) (2)

=
∑
y

(
LC,τk(x, y, SG)r̄Cx,y − LS,τk(x, y, SG)r̄Sx,y

+ PIτk(SG , y, d− 1)
)
,

where y represents each item relevant to x. The first two terms

are the likelihood to increase and decrease the preferences of

the users in τk for y (weighted by the corresponding relevance

20dτk appears in PI and RI to restrict the item impact propagation to the
users at most dτk away in τk .

21The update of relevance is described in [15].
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Fig. 5. An example of DRE: an illustration of the dynamics in u5’s personal
item network. (a) Initially. (b) After u5 adopts iPad. (c) Expectation.

between x and y). The last term PIτk(SG , y, d−1) recursively

captures the likelihood to increase or decrease the preferences

(of users in τk) for other items via item impact propagation

from y, where PIτk(SG , y, 0) = 0.22

Similarly, RI evaluates the item impact propagation from

any promoted item z to x according to r̄Cz,x and r̄Sz,x as follows.

RIτk(SG , x, d) (3)

=
∑
z

(
LC,τk(z, x, SG)r̄Cz,x − LS,τk(z, x, SG)r̄Sz,x

+RIτk(SG , z, d− 1)
)
,

where z is each item relevant to x and RIτk(SG , y, 0) = 0.

Consequently, for each τk selected by TMI, DRE ex-

tracts the nominees {(u, xp) | xp = argmax
x∈Iτk

DRτk(SG , x),

(u, xp) ∈ Nτk} with the highest DR as the candidate seeds

iteratively, and this property (i.e., the highest DR) is important

to approximate the optimal solution in Theorem 2.

Example 2. Following Example 1, this example shows how

the DRE of SDysim works based on the diffusion model

to solve SIMDPP. Assume that the seed group becomes

SG = {(u1, iPad, 1)} after τ1 is promoted. To update the

complementary and substitutable relevance in each user’s dy-

namic perception, SDysim employs the Monte Carlo method to

generate different cases of users’ adoption decisions according

to their preferences for items and the influence strength. For

example, suppose that, due to the seed u1’s promotion at

t = 1, u2 adopts iPad and promotes to u5 by her social

influence. For the case that u5 adopts iPad, the update of her

adopting item (referring Fig. 3) in turn changes her personal

item network from Fig. 5(a) to Fig. 5(b). Meanwhile, u5’s

preference for AirPods increases due to the adopted item

{iPad} and her changed personal item network (Fig. 5(b)),

where the complementary relevance between iPad and AirPods

increases from 0.05 to 0.1. By contrast, for the case that u5

does not adopt iPad at t = 1, her personal item network and

her preference for AirPods remains unchanged. Based on the

number of times these cases being observed, SDysim computes

the expectation of u5’ personal item network, as shown in

Fig. 5(c).

After that, assume that SG = {(u1, iPad, 1), (u7, iPad, 2)}
after τ2 is also promoted. SDysim now concentrates on τ3,

where Nτ3 = {(u2, AirPods), (u4, iPhone), (u6, AirPods)},

22Here it is d− 1 because item impact has propagated 1-hop from x to y.
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dτ3 = 3, and Iτ3 = {iPhone, AirPods} (due to the items

not yet promoted by the nominees in Nτ3 ). DRE calculates

the DR for iPhone and AirPods, i.e., DRτ3(SG , iPhone) and

DRτ3(SG , AirPods), respectively, according to the updated

(same as above) personal item networks.

DRτ3(SG , iPhone)

=
( 0.2 · 0.2
0.4 + 0.2

− 0.4 · 0.4
0.4 + 0.2

+ PIτ3(SG , iPad, 2)
)

+
(
1 · 0.4 + PIτ3(SG ,AirPods, 2)

)

+
( 0.2 · 0.2
0.4 + 0.2

− 0.4 · 0.4
0.4 + 0.2

+RIτ3(SG , iPad, 2)
)

= 1.4 + (−0.2) = 1.2.

Since DRτ3(SG , AirPods) = 1.8 > DRτ3(SG , iPhone) =
1.2, DRE then extracts {(u2, AirPods), (u6, AirPods)} for

promotion first. �
After a set of nominees {(u, xp)} are extracted by DRE,

SDysim finds the promotional timing for them. Since the target

markets have been arranged in a promoting order (by TMI)

and the items with higher DR have been promoted with higher

priority (by DRE), the promotional timing tp for {(u, xp)} is

assigned right after the latest promotion in SG to ensure the

influence spread of the seeds in SG is not reduced. Let t̂ denote

the latest promotion in SG , i.e., t̂ = max{t | (u, x, t) ∈ SG}.

SDysim assigns {(u, xp)} in the promotion tp = min{t̂+1, T}
to be the seeds, i.e., SG ∪ {(u, xp, tp)}. Then, SDysim selects

the next item with DRE and determines the timing for the

corresponding nominees. After all nominees in τk are assigned

their promotional timings as the seeds, TMI moves on to the

next target market τk+1 ∈ G. It returns the seed group S =⋃
G SG as the solution after all target markets are examined.23

Theorem 2. SDysim is a (1− 1√
e
− ε)(min{P c

minpref, P
c
minext})

approximation algorithm for SIMDPP in O(M |V | |I| kmax)
time, where Pminpref > 0 and Pminext > 0 are the minimum
preference and extra adoption probability, respectively. c is
the maximum hop of influence propagation, M is the time to
evaluate σ depending on the evaluation error ε > 0,24 and
kmax is the maximum size of a feasible solution.

Proof. For more details, please refer to [15].

V. EXPERIMENTS

A. Experiment Setup

The experiment includes four datasets, where each one

consists of a KG and a social network: i) Douban [20],

ii) Gowalla, iii) Yelp, and iv) Amazon.25 Since there are no

23SG of different G can be derived in parallel due to the independency of
different G.

24Note that the technique of reverse influence sampling cannot support
multiple promotions since the dependency among different promotions makes
positive propagation irreversible.

25Gowalla, Yelp, and Amazon are from https://www.yongliu.org/datasets,
https://www.yelp.com/dataset, and https://jmcauley.ucsd.edu/data/amazon,
respectively. KGs are HINs in the datasets, where the HINs contain diverse
node types like items, categories, brands, etc.

TABLE II
THE STATISTICS OF DATASETS.

Dataset Douban Gowalla Yelp Amazon
# of node types 3 3 6 6

# of nodes 7.6M 3.2M 251K 260K
# of users 5.5M 407K 17K 1.6M
# of items 2.1M 2.8M 22K 20K

# of edge types 3 3 6 6
# of edges 100M 42M 1.6M 1.4M

# of friendships 86M 4.4M 140K 30.6M
Directed friendship? No No No Yes

Avg. initial influence strength 0.011 0.092 0.121 0.050

social relationships in Amazon, we supplement it with Pokec26

according to the user profiles. To capture the complementary

and substitutable relationships between items, the meta-graphs

are generated according to [28], and the relevance of a certain

relationship regarding a meta-graph is derived according to

[25]. For the diffusion models, the two factors, relevance

measurement (including the learning of personal weightings on

meta-graphs and the constructions of personal item networks)

and preference estimation are learned and updated based on

[10] and [34], respectively. The statistics of the datasets are

listed in Table II. Following [3], the costs of hiring users

to promote items are set proportional to users’ out-degree

and their preferences for items, since users who are more

influential and who prefer the item less may need more

incentive to be seeds. In the implementation of Dysim, we

exploit the submodularity to speed up the nominee selection,

and follow [31] and [16] to cluster nominees and explore

influenced users, respectively, in TMI.

We compare SDysim with OPT (derived from a brute-force

approach) and four state-of-the-art approaches: BGRD [21],

HAG [20], PS [18], and DRHGA [14] as the baselines.27

We extend [14], [18], [20], [21] to consider different costs

of selecting a user to promote an item by selecting from

the user-item pairs or the users that satisfy the remaining

budget. Furthermore, since they cannot be directly applied

to our problem, we augment [14], [18], [20], [21] with CR-

Greedy [22] to support multiple promotions and determine the

promotion timings of the user-item pairs as the seeds in each

baseline. The performance metrics include the 1) influence

spread σ (Def. 1) and 2) execution time. We perform a series

of sensitivity tests in terms of the budget b and the number

of promotions T . To verify our algorithm, we further conduct

an empirical study on course promotion in viral marketing

for the course selection system. The complete experiments for

IMDPP (including the case study on Amazon) are shown in

[15] due to the space constraint. We conduct all experiments

on an HP DL580 server with an Intel 2.10GHz CPU and 1TB

RAM. Each simulation result is averaged over 100 samples.

B. Performance Comparison

First, we compare all approaches and OPT on small datasets

sampled from Amazon with 100 users. Fig. 6(a) shows the

influence under different budgets. SDysim has the closest

26https://snap.stanford.edu/data/soc-Pokec.html.
27Codes and datasets are available on https://tinyurl.com/y26fx2mp.
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Fig. 6. Comparisons with optimal solutions.

performance to OPT, and outperforms BGRD, HAG, PS, and

DRHGA, because TMI of SDysim carefully selects influential

nominees by MCP, and DRE of SDysim then prioritizes nom-

inees based on dynamic perceptions of item relationships. In

contrast, the baselines neglect the changes in item relationships

and do not promote items beneficial to each other over time.

Fig. 6(b) compares the influence under various numbers of

promotions. SDysim creates a larger influence spread as T
increases because TMI avoids promoting substitutable items

to the same users in near promotions. All baselines do not

incorporate the item impact propagation to achieve a larger

influence spread as T grows even a sophisticated algorithm

based on CR-Greedy [22] is employed to schedule promotions

at different timings.

Figs. 7(a)-7(c) compare the influence in large datasets under

different budgets.28 For all datasets, SDysim achieves the

largest influence spread, followed by DRHGA, BGRD, HAG,

and PS, because SDysim is able to exploit the changes in

users’ preferences. PS fails to obtain a large influence spread

because it only estimates the influence of a seed alone and

cannot utilize the impact of items from other promotions

to find seeds. BGRD usually achieves smaller than half of

the influence compared with SDysim, because it neglects the

substitutable relationship and regards all items as a bundle to

be promoted. Although DRHGA also promotes all items, it

is usually better than BGRD since DRHGA is able to select

appropriate users to promote each item, instead of regarding

all items as a bundle in BGRD. However, as DRHGA does

not choose items to be promoted, it still generate a smaller

influence spread compared with SDysim. HAG outperforms

BGRD in Yelp with low budgets and in Amazon when the

budget is relatively low to the social network size. This is

because HAG greedily selects the most influential combination

of user-item pairs as the seeds, instead of the most influential

user to promote a bundle of items, making the solutions

of HAG more cost-effective. BGRD fails to achieve a large

influence spread for a large b in Douban since items (e.g.,

songs and books) in Douban are usually complementary, but

BGRD still allocates the budget to the same users to promote

a bundle of complementary items.

Figs. 7(e)-7(f) present the influence in large datasets under

different numbers of promotions with the maximal T as 40

(following [22]). SDysim achieves the largest influence spread

for all T with significant increments as T grows, because

28Fig. 7(c) doesn’t include HAG due to execution time longer than 12 hours.

TMI of SDysim first arranges the promoting order of target

markets, and SDysim then exploits DR to prioritize items to

be promoted for each target market. In contrast, the influ-

ence spreads grow slowly for the baselines, especially when

T ≥ 20, because they cannot arrange the promoting order

holistically and fail to utilize more promotions to properly

gain more adoptions.

Figs. 7(d) and 7(g)-7(h) compare the execution time under

different budgets and different numbers of promotions, respec-

tively. As shown in Fig. 7(d), when b varies, SDysim requires

the least execution time for most cases. HAG suffers from

finding numerous combinations of seeds for a large budget.

PS requires much time to search for maximum influence paths

to evaluate the influence of a user. Although DRHGA only

selects users, it takes more time than BGRD since the selection

process is repeated for each item. As b becomes larger, the

execution time of SDysim only slightly increases since TMI

quickly selects influential nominees by MCP according to the

cost and increment on influence for each candidate nominee.

PS is less sensitive to b since it employs a discounting strategy

to estimate a seed’s influence under the impact of selected

seeds. On the other hand, as shown in Fig. 7(g), SDysim

requires a low overhead to find promotional timings since

it assigns the promotions by TMI and DRE, which are less

sensitive to T , whereas the baselines greedily assigning the

promotional timings tend to suffer from larger T . To show the

scalability of SDysim, Fig. 7(h) compares the execution time

of SDysim on different datasets (in the order of the number of

users in the social network). The time increases not only as the

number of users increases but also as that of items increases

(e.g., so the time on Gowalla and Amazon are similar) due to

the propagation of item impact.

C. Ablation Study

Fig. 8 compares SDysim, SDysim without target markets

(i.e., w/o TM), and SDysim without item priority (i.e., w/o IP).

We have the following three observations. First, the influence

spread is smaller when target markets are not identified, since

the selected nominees may promote substitutable items to the

same users in consecutive promotions, which detracts from

users’ preferences for the posterior items to be promoted.

By contrast, SDysim effectively avoids the antagonism of

the substitutable relationship by identifying and prioritizing

the target markets. Second, the influence spread of SDysim

without item priority is also smaller than that of SDysim,

because all items in a target market are promoted simulta-

neously, and therefore the promotion of an item is hardly

facilitated by promoting its complementary items first. In

contrast, SDysim determines the item priority by exploiting

DR, which carefully measures the impact from previously

promoted items on an item and also the potential impact from

this item on other items in subsequent promotions. Third, as T
increases, the gaps between SDysim and SDysim w/o TM/IP

increase. This is because the number of promotions in SDysim

w/o TM/IP is limited, i.e., at most the number of items/target

markets, implying that more promotions are not beneficial
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Fig. 7. Comparisons on large datasets.

for a larger influence spread. By contrast, SDysim effectively

schedules the promotional timings of different target markets

and different items to exploit the propagation of item impacts.

D. Comparison of Different Market Orders
To compare with Antagonistic Extent (AE), we leverage the

following metrics to evaluate additional promotional orders

of target markets: profitability (PF) [33], size of the market

(SZ) [33], relative market share (RMS) [35], and random

(RD). PF and SZ are two of the most common criteria

to prioritize target markets in the marketing research field.

PF is the expected adoptions under the promotion from the

corresponding nominees minus the cost of the nominees. SZ is

the number of customers in the target market. A target market

with a larger PF or SZ is preferred to be promoted earlier.

RMS is widely used to assess the value of a firm’s item in the

product management field. RMS of an item x is defined as

the ratio of x’s market share to the largest market share of its

substitutable item, where the market share is evaluated by the

number of users preferring the item most. The target market

that promotes items with a higher RMS is prioritized.
Fig. 9 manifests that AE and PF usually achieve the largest

influence spread, followed by SZ, RMS, and RD. AE and PF

outperform the others since AE prioritizes the target markets

that have less substitutable relationship on the subsequent

target markets, while PF prioritizes the target markets with

more profits to ensure their influence spread. When there exist

excessively large target markets (e.g., identified by plenty of

nominees), PF is suggested as the ordering metric, since PF

can accurately prioritize these large target markets to maximize

the influence. In general cases, AE is usually a better metric to

prioritize the target markets since the impact from the substi-

tutable items promoted by prior target markets is minimized.

By contrast, SZ, RMS, and RD, without carefully examining

the relationships of items promoted in other target markets,

cannot avoid the antagonism of the substitutable relationship.

The results manifest that promoting target markets with a

smaller AE or a larger PF earlier in TMI is beneficial to

achieve a larger influence spread.

E. Empirical Study

In this study, we have recruited five classes for promoting

courses by viral marketing to evaluate the effectiveness of

SDysim in real-world settings. There were 30 elective courses

for computer science college students, including artificial

intelligence (AI), objective-oriented programming (OOP), and

big data, to name a few. The goal of the campaigns is to

encourage the students in Taiwan University to select those

courses, i.e., maximizing the total number of students selecting

the elective courses. The statistics of all classes are presented

in Table III.

To construct KG of these courses, we crawled their syl-

labuses from Taiwan University, and extracted keywords of

courses, related compulsory courses, and research fields of

teachers. The meta-graphs were defined according to the

curriculum guidelines in Taiwan.29 Following [3], the costs

of hiring users to promote courses are set as users’ out-degree

over their initial preferences for courses, since users who are

more influential and who prefer the course less may need more

incentive to be the seeds.

To evaluate the effectiveness of different approaches, we

have launched campaigns based on the following approaches:

1) SDysim, 2) BGRD [21], 3) HAG [20], and 4) PS [18].

In this study, the budget and the number of promotions

were set to 50 and 3, respectively. For SDysim, relevance

measurement (including the learning of personal weightings on

meta-graphs and the constructions of personal item networks)

and preference estimation are updated according to [10] and

[34], respectively. TMI of SDysim follows [31] and [16] to

cluster nominees and explore influenced users, respectively.

29https://cirn.moe.edu.tw/Upload/file/32077/83646.pdf.
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Fig. 9. Comparisons of different market orders.

Fig. 10 reports the total number of students selecting the

elective courses for different approaches in each class. For

all classes, SDysim induces the most students who selected

those courses, followed by BGRD, HAG, and PS. These results

validate that SDysim is able to encourage students to select

those courses by carefully evaluating the dynamic changes in

the relationships between courses. For instance, we observe

that a student in Class A initially regarded the complementary

relevance between AI and software design for cloud computing

(SDCC) as 0.1. After he selected AI and big data, the

complementary relevance between AI and SDCC increased

to 0.6 (derived according to [10]). He then selected SDCC

accordingly. In Class D, another student initially reported that

the influence from one of her classmates is 0.2. During the

promotions, both of them selected cloud computing and IoT,

which increased the classmate’s influence to this student to

0.7 (derived according to [36]). Then, this student selected big

data after being informed that the classmate selected big data

as well. By contrast, BGRD, HAG, and PS do not capture the

dynamic changes in the relationships between courses and the

ripple effect, resulting in fewer students selecting the elective

courses in the end.

Besides, although BGRD is able to select influential stu-

dents in each class, all courses are promoted as a bundle

without considering their relationships. For example, in Class

B, BGRD selects a student to promote python and C++

in a bundle, but the two courses were usually regarded as

substitutable for most students (i.e., the average substitutable

relevance between python and C++ was 0.7). We observe that

more than two-thirds of the students who selected python

did not select C++ when they were promoted C++ by their

classmates. Similar to BGRD, HAG does not examine the

substitutable relationship when promoting courses. In Class B,

TABLE III
THE STATISTICS OF RECRUITED CLASSES.

Class ID A B C D E
# of users 33 26 22 20 20
# of edges 293 420 387 227 308

HAG also promoted OOP and C++ to the same set of students.

However, more than half of the students selected only one of

OOP and C++, indicating the waste of simultaneous promo-

tions for substitutable items. PS induces the fewest students to

select the elective courses, since it does not facilitate students

to promote multiple courses and cannot properly utilize the

course promotion from other seeds. For example, in Class C,

PS selected a student to promote deep learning (DL) to a set

of students who were very interested in DL (i.e., their average

initial preference for DL was 0.9). As DL and natural language

processing (NLP) were regarded as highly complementary for

this set of students (i.e., the average complementary relevance

between DL and NLP was 0.75), a good strategy is to let the

students selected by PS to promote NLP as well. However,

PS did not promote any other course to this set of students

in Class C. The above results lead to conclusions consistent

with the experiments in Sec. V-B, indicating that exploring the

dynamic personal perceptions of item relationships, dynamic

preference for items, dynamic social influence strength, and

item associations is the cornerstone of influence maximization

under a sequence of promotions on relevant items.

VI. CONCLUSION

To the best of our knowledge, this paper makes the first

attempt to study the problem of influence maximization under

a sequence of promotions for multiple relevant items. By

exploring KG and meta-graphs to capture dynamic personal

perceptions of item relationships, we formulate a new problem,
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named IMDPP, and its fundamental problem, namely SIMDPP,

to choose items and select seed users for promotions at proper

timings. We prove the hardness of SIMDPP and IMDPP and

design an approximation algorithm Dysim to solve IMDPP.

Dysim first identifies nominees and target markets to promote

complementary items to socially close users in consecutive

promotions. For each target market, Dysim prioritizes the

items to be promoted by dynamic reachability of items. Then,

Dysim determines proper promotional timings with the highest

substantial influence for each nominee. We also design an

approximation algorithm SDysim for SIMDPP. Experiments

on real social networks and KGs demonstrate that SDysim and

Dysim can effectively achieve at least 6 times of the influence

spread. Furthermore, the empirical study validates that explor-

ing the dynamic personal perceptions of item relationships, dy-

namic preference for items, dynamic social influence strength,

and item associations is crucial for influence maximization

under a sequence of promotions on relevant items.
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