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Abstract. We provide a counterexample to the 1980 conjecture that the
CI operators can be chosen to commute on a sufficiently high truncation
of the minimal free resolution of a module over a complete intersection.

CI operators (Complete Intersection operators, sometimes called Eisenbud
operators) are used in the study of free resolutions over complete intersec-
tions. In this note, we provide a minimal counterexample to the 1980 con-
jecture that the CI operators commute on a sufficiently high truncation of
the minimal free resolution of any module over a local complete intersection.

Eisenbud showed in [Ei] that if S is a regular local ring and 0 6= f ∈ S,
then every minimal free resolution over the hypersurface S/(f) is eventually
periodic of period at most 2. In proving this result and trying to find its
analogue for complete intersections of higher codimension, he defined CI
operators as follows: Suppose that S is a local ring and f1, . . . , fc ∈ S. Set
R = S/(f1, . . . , fc). If

(F, ∂) : · · · −→ Fi+1

∂i+1

−−−→ Fi

∂i
−−→ Fi−1 −→ · · ·

is a complex of finitely generated free R-modules then, lifting the maps ∂i+1

to maps ∂̃i+1 : F̃i+1 −→ F̃i of free S-modules, it is possible to write

(1.1) ∂̃2 =
c∑

j=1

fj t̃j

for some maps t̃j : F̃i+1 −→ F̃i−1. Tensoring these maps with R we get maps
tj, called CI operators on F; a different construction of operators was previ-
ously introduced by Gulliksen [Gu]. When f1, . . . , fc is a regular sequence,
the CI operators tj are endomorphisms of the complex F having homological
degree -2. They are also independent of the choice of the expression (1.1),
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and, up to homotopy, they are functorial and independent of the choice of ∂̃
by [Ei, 1.2 and 1.5].

Let R = S/(f1, . . . , fc) be a complete intersection of codimension c in
a regular local ring S. We consider the CI operators on a minimal R-free
resolution F. Having established the homotopy commutativity of the CI
operators in [Ei], Eisenbud wrote:

Conjecture (1980): The minimal free resolution of any R-

module is a subcomplex of a standard resolution, in such a way

that the maps ti may be chosen to be induced by the standard

ti. In particular, the maps ti may be chosen to commute.

In the spirit of this paper, it would be interesting to prove

this conjecture just for some truncation of any minimal free

resolution.

Here the term “standard resolution” refers to the Eisenbud-Shamash con-
struction. We will call the full conjecture above the Embedding Conjecture,
and refer to the statement that the ti commute as the Commutativity Con-

jecture.
Consider a finitely generatedR-moduleM . In [AGP, Section 9], Avramov,

Gasharov and Peeva showed that the degeneration of a certain spectral se-
quence is an obstruction to the Embedding Conjecture, and observed that
the embeddability of the minimal resolution of M implies that ExtR(M, k) is
generated as a k[χ1, . . . , χc]-module in degrees at most the projective dimen-
sion of M as an S-module, where the action of the χ1, . . . , χc is induced
by the CI operators. This gives easy counterexamples to embeddability
over any complete intersection of codimension ≥ 2. For example, suppose
that R = k[[x, y]]/(x2, y2) and M is the second cosyzygy of k as an R-
module. If the embeddability conjecture held, then Ext∗R(M, k) would be

generated by Ext≤2

R (M, k), and in particular, ExtoddR (M, k) would be gener-
ated by Ext1R(M, k). However, as one easily computes, the CI operators act
trivially on Ext1R(M, k) but Ext3R(M, k) 6= 0.

On the other hand Avramov and Buchweitz showed in [AB, Theorem
5.3] that when c = 2 and ExtR(M, k) is generated in degrees ≤ 2, then
the minimal resolution of M is indeed embeddable in the Eisenbud-Shamash
construction and, in particular, commutativity holds in this case. Thus, the
hope in the last sentence quoted above is realized in the codimension 2 case.
Also, [EP, Theorem 5.1.4] proves a weaker commutativity property in any
codimension. Moreover, the obstruction defined in [AGP] vanishes for any
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sufficiently high truncation of the minimal resolution of M no matter what
the codimension ([AGP, Theorem 9.4]).

These results leave open the question whether the Commutativity Con-
jecture holds for high truncations in codimension ≥ 3. We settle this in the
negative:

Theorem 1.2. Let k be any field, let S be the localization of k[a, b, c] at
the maximal ideal (a, b, c) and let R = S/(a2, b2, c2). Let M be the module

R/(a, bc). The CI operators cannot be chosen to be commutative on any

truncation of the minimal R-free resolution of M .

Proof. Set R′ = k[a]/(a2) and R′′ = k[b, c]/(b2, c2). Consider the R′-module
M ′ := R′/(a) and the R′′-module M ′′ := R′′/(bc). Note that M ∼= M ′⊗k M

′′

as R = R′ ⊗k R
′′-modules, and thus the minimal R-free resolution of M can

be written F := F
′⊗kF

′′, where F′ and F
′′ are the minimal resolutions of M ′

and M ′′ over R′ and R′′, respectively. We will make use of this description
to understand the possible CI operators on F.

To begin, we may write F
′ as the polynomial ring R′[A] as graded free

R′-modules, with differential ∂(Ai) = aAi−1.
In the same spirit, we write the underlying graded module of the trun-

cation F
′′
≥1 as R′′[B,C], and F ′′

0 = R′′. To avoid confusion, we write ν
instead of 1 for the generator of F ′′

1 = R′′. We define the differential on
F ′′
1 and F ′′

2 by ∂(ν) = bc, ∂(B) = bν, ∂(C) = cν. For i ≥ 2 we de-
fine ∂(Bi) = bBi−1, ∂(C i) = cC i−1 , and, if i, j ≥ 1, then ∂(BiCj) =
bBi−1Cj + (−1)icBiCj−1. It is easy to check that ∂2 = 0 and that the
resulting complex is indeed a minimal free resolution of M ′′.

The first 4 terms F
′′
≤4 of the complex F

′′, with respect to the ordered

bases Bi, Bi−1C, . . . , Ci for F ′′
i+1, have the form

R′′4









b c 0 0
0 b −c 0
0 0 b c









−−−−−−−−−−−−→ R′′3





b −c 0
0 b c





−−−−−−−−−−→ R′′2

(

b c
)

−−−−−→ R′′
bc

−−→ R′′ .

To compute CI operators tb, tc for the regular sequence b2, c2 on F
′′
≤4 we

denote by ∂̃ the choice of lifting of ∂ to matrices over k[b, c] by the formulas
above. For example,

∂̃2(B) = ∂̃(bν) = b2c .
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Thus we can choose

tb(B) = c

tc(B) = 0.

Similarly, we can choose

tc(C) = b

tb(C) = 0 .

Furthermore,

∂̃2(BC2) = ∂̃(−cBC + bC2) = −cbC + c2B + bcC = c2B,

and thus we can choose

tb(BC2) = 0

tc(BC2) = B .

We have

(tbtc − tctb)(BC2) = c 6= 0 ,

so these CI operators do not commute. We will see that they cannot be made
to commute by a different choice of lifting. The idea in our proof is that this
non-commutativity is propelled to higher homological degrees by multiplying
by Ai.

The differential of the complex F is

∂p =
∑

m+i=p

∂i ⊗ Id + (−1)i Id⊗ ∂m ;

thus for f ∈ F ′′
m we get

∂(Aif) = aAi−1f + (−1)iAi∂(f) .

Hence we may take

∂̃2(Aif) = a2Ai−2f + Ai∂̃2(f) .

Therefore, we can define a CI operator ta corresponding to a2 and we can
extend the CI operators tb and tc constructed above to CI operators on F

′ ⊗

(F′′
≤4) as follows:

ta(A
if) = Ai−2f

tb(A
if) = Aitb(f)

tc(A
if) = Aitc(f) .
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We could define the operators on all of F similarly, but we will not need to
use these formulas.

We are now ready to prove the non-commutativity. Fix an i ≥ 0. Con-
sider the element AiBC2 ∈ Fi+4. By the formulas above we have

(tbtc − tctb)(A
iBC2) = cAi 6= 0 .

Thus the CI operators tb and tc do not commute.
Let t′b and t′c be another choice of CI operators with respect to the ele-

ments b2 and c2. By [Ei], they differ from the CI operators chosen above by
homotopies, that, is, there exist, for each index j, maps hb, hc : Fj −→ Fj−1

such that

t′b − tb = hb∂ + ∂hb and t′c − tc = hc∂ + ∂hc .

To complete the proof we will show that

(t′bt
′
c − t′ct

′
b)A

iBC2 6= 0.

We have the following equality, where we have labeled the lines so that we
can refer to them:

(1) (t′bt
′
c − t′ct

′
b)A

iBC2

(2) = (tbtc − tctb)A
iBC2

(3) + (hb∂hc∂ + ∂hbhc∂ + ∂hb∂hc − hc∂hb∂ − ∂hchb∂ − ∂hc∂hb)A
iBC2

(4) + (hb∂
2hc − hc∂

2hb)A
iBC2

(5) + ∂(hbtc − hctb)A
iBC2

(6) + (tbhc∂ + tb∂hc − tchb∂ − tc∂hb)A
iBC2

(7) − (hc∂tb)A
iBC2

(8) + (hb∂tc)A
iBC2 .

As computed above, the entry (tbtc − tctb)A
iBC2 in the second line is

equal to cAi ∈ F ′
i ⊗ F ′′

0 . We will show that all other terms on the right have
components in F ′

i ⊗ F ′′
0 that are contained in (a, b, c2)F ′

i ⊗ F ′′
0 , and thus the

sum is nonzero.
The terms in lines (3) and (4) are contained in (a, b, c)2F since ∂(F) ⊂

(a, b, c)F. (In fact the terms in the forth line vanish because ∂2 = 0.)
Consider the terms in line (5). Their components in F ′

i⊗F ′′
0 are contained

in (
∂(F ′

i+1)⊗ F ′′
0 )⊕

(
F ′
i ⊗ ∂(F ′′

1 )) ⊂ (a, bc)F ′
i ⊗ F ′′

0 .
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For the terms in line (6), note that tb(A
if) = Aitb(f), tc(A

if) = Aitc(f),
and also in the resolution F

′′ we have tb(F
′′
2 ) = cF ′′

0 and tc(F
′′
2 ) = bF ′′

0 .
Since ∂(F) ⊂ (a, b, c)F, it follows that the component in F ′

i ⊗ F ′′
0 is in

(b, c)(a, b, c)F ′
i ⊗ F ′′

0 .
The term in line (7) is 0 because tb(A

iBC2) = Aitb(BC2) = 0.
Since tc(A

iBC2) = Aitc(BC2) = AiB, the last term is

(hb∂tc)A
iBC2 = hb∂(A

iB) = hb

(
aAi−1B + (−1)iAibν

)
∈ (a, b)F .

This completes the proof that the CI operators cannot be made to commute
on any truncation of the resolution F. ut
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