NON-COMMUTATIVE CI OPERATORS

DAVID EISENBUD, IRENA PEEVA, AND FRANK-OLAF SCHREYER

ABSTRACT. We provide a counterexample to the 1980 conjecture that the CI operators can be chosen to commute on a sufficiently high truncation of the minimal free resolution of a module over a complete intersection.

CI operators (Complete Intersection operators, sometimes called Eisenbud operators) are used in the study of free resolutions over complete intersections. In this note, we provide a minimal counterexample to the 1980 conjecture that the CI operators commute on a sufficiently high truncation of the minimal free resolution of any module over a local complete intersection.

Eisenbud showed in [Ei] that if S is a regular local ring and $0 \neq f \in S$, then every minimal free resolution over the hypersurface S/(f) is eventually periodic of period at most 2. In proving this result and trying to find its analogue for complete intersections of higher codimension, he defined CI operators as follows: Suppose that S is a local ring and $f_1, \ldots, f_c \in S$. Set $R = S/(f_1, \ldots, f_c)$. If

$$(\mathbf{F}, \partial) : \cdots \longrightarrow F_{i+1} \xrightarrow{\partial_{i+1}} F_i \xrightarrow{\partial_i} F_{i-1} \longrightarrow \cdots$$

is a complex of finitely generated free R-modules then, lifting the maps ∂_{i+1} to maps $\widetilde{\partial}_{i+1}: \widetilde{F}_{i+1} \longrightarrow \widetilde{F}_i$ of free S-modules, it is possible to write

(1.1)
$$\widetilde{\partial}^2 = \sum_{j=1}^c f_j \widetilde{t}_j$$

for some maps $\widetilde{t}_j: \widetilde{F}_{i+1} \longrightarrow \widetilde{F}_{i-1}$. Tensoring these maps with R we get maps t_j , called CI operators on \mathbf{F} ; a different construction of operators was previously introduced by Gulliksen [Gu]. When f_1, \ldots, f_c is a regular sequence, the CI operators t_j are endomorphisms of the complex \mathbf{F} having homological degree -2. They are also independent of the choice of the expression (1.1),

²⁰¹⁰ Mathematics Subject Classification. Primary: 13D02.

Key words and phrases. Syzygies, Complete intersections.

Eisenbud is partially supported by NSF grant DMS-1001867, and Peeva is partially supported by NSF grants DMS-1702125 and DMS-1406062. All authors are partially supported by NSF grant 0932078000 while in residence at MSRI.

and, up to homotopy, they are functorial and independent of the choice of $\widehat{\partial}$ by [Ei, 1.2 and 1.5].

Let $R = S/(f_1, \ldots, f_c)$ be a complete intersection of codimension c in a regular local ring S. We consider the CI operators on a minimal R-free resolution \mathbf{F} . Having established the homotopy commutativity of the CI operators in [Ei], Eisenbud wrote:

Conjecture (1980): The minimal free resolution of any Rmodule is a subcomplex of a standard resolution, in such a way
that the maps t_i may be chosen to be induced by the standard t_i . In particular, the maps t_i may be chosen to commute.

In the spirit of this paper, it would be interesting to prove this conjecture just for some truncation of any minimal free resolution.

Here the term "standard resolution" refers to the Eisenbud-Shamash construction. We will call the full conjecture above the Embedding Conjecture, and refer to the statement that the t_i commute as the Commutativity Conjecture.

Consider a finitely generated R-module M. In [AGP, Section 9], Avramov, Gasharov and Peeva showed that the degeneration of a certain spectral sequence is an obstruction to the Embedding Conjecture, and observed that the embeddability of the minimal resolution of M implies that $\operatorname{Ext}_R(M,k)$ is generated as a $k[\chi_1,\ldots,\chi_c]$ -module in degrees at most the projective dimension of M as an S-module, where the action of the χ_1,\ldots,χ_c is induced by the CI operators. This gives easy counterexamples to embeddability over any complete intersection of codimension ≥ 2 . For example, suppose that $R = k[[x,y]]/(x^2,y^2)$ and M is the second cosyzygy of k as an k-module. If the embeddability conjecture held, then $\operatorname{Ext}_R^*(M,k)$ would be generated by $\operatorname{Ext}_R^{\leq 2}(M,k)$, and in particular, $\operatorname{Ext}_R^{odd}(M,k)$ would be generated by $\operatorname{Ext}_R^1(M,k)$. However, as one easily computes, the CI operators act trivially on $\operatorname{Ext}_R^1(M,k)$ but $\operatorname{Ext}_R^3(M,k) \neq 0$.

On the other hand Avramov and Buchweitz showed in [AB, Theorem 5.3] that when c=2 and $\operatorname{Ext}_R(M,k)$ is generated in degrees ≤ 2 , then the minimal resolution of M is indeed embeddable in the Eisenbud-Shamash construction and, in particular, commutativity holds in this case. Thus, the hope in the last sentence quoted above is realized in the codimension 2 case. Also, [EP, Theorem 5.1.4] proves a weaker commutativity property in any codimension. Moreover, the obstruction defined in [AGP] vanishes for any

sufficiently high truncation of the minimal resolution of M no matter what the codimension ([AGP, Theorem 9.4]).

These results leave open the question whether the Commutativity Conjecture holds for high truncations in codimension ≥ 3 . We settle this in the negative:

Theorem 1.2. Let k be any field, let S be the localization of k[a,b,c] at the maximal ideal (a,b,c) and let $R = S/(a^2,b^2,c^2)$. Let M be the module R/(a,bc). The CI operators cannot be chosen to be commutative on any truncation of the minimal R-free resolution of M.

Proof. Set $R' = k[a]/(a^2)$ and $R'' = k[b,c]/(b^2,c^2)$. Consider the R'-module M' := R'/(a) and the R''-module M'' := R''/(bc). Note that $M \cong M' \otimes_k M''$ as $R = R' \otimes_k R''$ -modules, and thus the minimal R-free resolution of M can be written $\mathbf{F} := \mathbf{F}' \otimes_k \mathbf{F}''$, where \mathbf{F}' and \mathbf{F}'' are the minimal resolutions of M' and M'' over R' and R'', respectively. We will make use of this description to understand the possible CI operators on \mathbf{F} .

To begin, we may write \mathbf{F}' as the polynomial ring R'[A] as graded free R'-modules, with differential $\partial(A^i) = aA^{i-1}$.

In the same spirit, we write the underlying graded module of the truncation $\mathbf{F}_{\geq 1}''$ as R''[B,C], and $F_0''=R''$. To avoid confusion, we write ν instead of 1 for the generator of $F_1''=R''$. We define the differential on F_1'' and F_2'' by $\partial(\nu)=bc$, $\partial(B)=b\nu$, $\partial(C)=c\nu$. For $i\geq 2$ we define $\partial(B^i)=bB^{i-1}$, $\partial(C^i)=cC^{i-1}$, and, if $i,j\geq 1$, then $\partial(B^iC^j)=bB^{i-1}C^j+(-1)^icB^iC^{j-1}$. It is easy to check that $\partial^2=0$ and that the resulting complex is indeed a minimal free resolution of M''.

The first 4 terms $\mathbf{F}''_{\leq 4}$ of the complex \mathbf{F}'' , with respect to the ordered bases $B^i, B^{i-1}C, \ldots, C^i$ for F''_{i+1} , have the form

$$R''^{4} \xrightarrow{\begin{pmatrix} b & c & 0 & 0 \\ 0 & b & -c & 0 \\ 0 & 0 & b & c \end{pmatrix}} R''^{3} \xrightarrow{\begin{pmatrix} b & -c & 0 \\ 0 & b & c \end{pmatrix}} R''^{2} \xrightarrow{\begin{pmatrix} b & c \\ b & c \end{pmatrix}} R'' \xrightarrow{bc} R''$$

To compute CI operators t_b, t_c for the regular sequence b^2, c^2 on $\mathbf{F}''_{\leq 4}$ we denote by $\widetilde{\partial}$ the choice of lifting of ∂ to matrices over k[b, c] by the formulas above. For example,

$$\widetilde{\partial}^2(B) = \widetilde{\partial}(b\nu) = b^2c.$$

Thus we can choose

$$t_b(B) = c$$
$$t_c(B) = 0.$$

Similarly, we can choose

$$t_c(C) = b$$
$$t_b(C) = 0.$$

Furthermore,

$$\widetilde{\partial}^2(BC^2) = \widetilde{\partial}(-cBC + bC^2) = -cbC + c^2B + bcC = c^2B,$$

and thus we can choose

$$t_b(BC^2) = 0$$

$$t_c(BC^2) = B.$$

We have

$$(t_b t_c - t_c t_b)(BC^2) = c \neq 0,$$

so these CI operators do not commute. We will see that they cannot be made to commute by a different choice of lifting. The idea in our proof is that this non-commutativity is propelled to higher homological degrees by multiplying by A^i .

The differential of the complex \mathbf{F} is

$$\partial_p = \sum_{m+i=p} \partial_i \otimes \operatorname{Id} + (-1)^i \operatorname{Id} \otimes \partial_m;$$

thus for $f \in F''_m$ we get

$$\partial(A^i f) = aA^{i-1} f + (-1)^i A^i \partial(f).$$

Hence we may take

$$\widetilde{\partial}^2(A^i f) = a^2 A^{i-2} f + A^i \widetilde{\partial}^2(f)$$
.

Therefore, we can define a CI operator t_a corresponding to a^2 and we can extend the CI operators t_b and t_c constructed above to CI operators on $\mathbf{F}' \otimes (\mathbf{F}''_{\leq 4})$ as follows:

$$t_a(A^i f) = A^{i-2} f$$

$$t_b(A^i f) = A^i t_b(f)$$

$$t_c(A^i f) = A^i t_c(f).$$

We could define the operators on all of **F** similarly, but we will not need to use these formulas.

We are now ready to prove the non-commutativity. Fix an $i \geq 0$. Consider the element $A^iBC^2 \in F_{i+4}$. By the formulas above we have

$$(t_b t_c - t_c t_b)(A^i B C^2) = c A^i \neq 0.$$

Thus the CI operators t_b and t_c do not commute.

Let t_b' and t_c' be another choice of CI operators with respect to the elements b^2 and c^2 . By [Ei], they differ from the CI operators chosen above by homotopies, that, is, there exist, for each index j, maps $h_b, h_c: F_j \longrightarrow F_{j-1}$ such that

$$t_b' - t_b = h_b \partial + \partial h_b$$
 and $t_c' - t_c = h_c \partial + \partial h_c$.

To complete the proof we will show that

$$(t_b't_c' - t_c't_b')A^iBC^2 \neq 0.$$

We have the following equality, where we have labeled the lines so that we can refer to them:

- (1) $(t_b't_c' t_c't_b')A^iBC^2$
- $(2) = (t_h t_c t_c t_h) A^i B C^2$
- $(3) + (h_b\partial h_c\partial + \partial h_b h_c\partial + \partial h_b\partial h_c h_c\partial h_b\partial \partial h_c h_b\partial \partial h_c\partial h_b)A^iBC^2$
- $(4) + (h_b \partial^2 h_c h_c \partial^2 h_b) A^i B C^2$
- (5) $+\partial(h_bt_c-h_ct_b)A^iBC^2$
- $(6) + (t_b h_c \partial + t_b \partial h_c t_c h_b \partial t_c \partial h_b) A^i B C^2$
- $(7) (h_c \partial t_b) A^i B C^2$
- $(8) + (h_b \partial t_c) A^i B C^2.$

As computed above, the entry $(t_bt_c - t_ct_b)A^iBC^2$ in the second line is equal to $cA^i \in F_i' \otimes F_0''$. We will show that all other terms on the right have components in $F_i' \otimes F_0''$ that are contained in $(a, b, c^2)F_i' \otimes F_0''$, and thus the sum is nonzero.

The terms in lines (3) and (4) are contained in $(a, b, c)^2 \mathbf{F}$ since $\partial(\mathbf{F}) \subset (a, b, c) \mathbf{F}$. (In fact the terms in the forth line vanish because $\partial^2 = 0$.)

Consider the terms in line (5). Their components in $F_i' \otimes F_0''$ are contained in

$$\left(\partial(F'_{i+1})\otimes F''_0\right)\oplus \left(F'_i\otimes \partial(F''_1)\right)\subset (a,bc)F'_i\otimes F''_0.$$

For the terms in line (6), note that $t_b(A^i f) = A^i t_b(f)$, $t_c(A^i f) = A^i t_c(f)$, and also in the resolution \mathbf{F}'' we have $t_b(F_2'') = cF_0''$ and $t_c(F_2'') = bF_0''$. Since $\partial(\mathbf{F}) \subset (a, b, c)\mathbf{F}$, it follows that the component in $F_i' \otimes F_0''$ is in $(b, c)(a, b, c)F_i' \otimes F_0''$.

The term in line (7) is 0 because $t_b(A^iBC^2) = A^it_b(BC^2) = 0$. Since $t_c(A^iBC^2) = A^it_c(BC^2) = A^iB$, the last term is $(h_b\partial t_c)A^iBC^2 = h_b\partial(A^iB) = h_b(aA^{i-1}B + (-1)^iA^ib\nu) \in (a,b)\mathbf{F}$.

This completes the proof that the CI operators cannot be made to commute on any truncation of the resolution \mathbf{F} .

References

- [AB] L. Avramov and R.-O. Buchweitz: Homological algebra modulo a regular sequence with special attention to codimension two, J. Algebra 230 (2000), 24–67.
- [AGP] L. Avramov, V. Gasharov, and I. Peeva: Complete intersection dimension, Publ. Math. IHES 86 (1997), 67–114.
- [Ei] D. Eisenbud: Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35–64.
- [EP] D. Eisenbud, I. Peeva: Minimal Free Resolutions over Complete Intersections, research monograph, Springer Lecture Notes in Math. 2152, Springer, 2016.
- [Gu] T. Gulliksen: A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167–183.

Mathematics Department, University of California at Berkeley, Berkeley, CA 94720, USA

MATHEMATICS DEPARTMENT, CORNELL UNIVERSITY, ITHACA, NY 14853, USA

MATHEMATICS DEPARTMENT, UNIVERSITÄT DES SAARLANDES, CAMPUS E2 4, D-66123, SAARBRÜCKEN, GERMANY