NON-COMMUTATIVE CI OPERATORS
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ABSTRACT. We provide a counterexample to the 1980 conjecture that the
CI operators can be chosen to commute on a sufficiently high truncation
of the minimal free resolution of a module over a complete intersection.

CI operators (Complete Intersection operators, sometimes called Eisenbud
operators) are used in the study of free resolutions over complete intersec-
tions. In this note, we provide a minimal counterexample to the 1980 con-
jecture that the CI operators commute on a sufficiently high truncation of
the minimal free resolution of any module over a local complete intersection.

Eisenbud showed in [Ei| that if S is a regular local ring and 0 # f € S,
then every minimal free resolution over the hypersurface S/(f) is eventually
periodic of period at most 2. In proving this result and trying to find its
analogue for complete intersections of higher codimension, he defined CI
operators as follows: Suppose that S is a local ring and f;,...,f. € S. Set

R=S/(f1,.... f.). If
(F,0) i — Fiypy — B, 20 B —s

is a complex of finitely generated free R-modules then, lifting the maps 0;
to maps 0, : F;,.; — F; of free S-modules, it is possible to write

(L.1) 0" = i:fjgj

for some maps %; cF — E,l. Tensoring these maps with R we get maps
t;, called CI operators on F; a different construction of operators was previ-
ously introduced by Gulliksen [Gu]. When f,..., f. is a regular sequence,
the CI operators t; are endomorphisms of the complex F having homological
degree -2. They are also independent of the choice of the expression (1.1),
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and, up to homotopy, they are functorial and independent of the choice of d
by [Ei, 1.2 and 1.5].

Let R = S/(fi,...,f.) be a complete intersection of codimension ¢ in
a regular local ring S. We consider the CI operators on a minimal R-free
resolution F. Having established the homotopy commutativity of the CI
operators in [Ei], Eisenbud wrote:

Conjecture (1980): The minimal free resolution of any R-
module 1s a subcomplex of a standard resolution, in such a way
that the maps t; may be chosen to be induced by the standard
t;. In particular, the maps t; may be chosen to commute.

In the spirit of this paper, it would be interesting to prove
this conjecture just for some truncation of any minimal free
resolution.

Here the term “standard resolution” refers to the Eisenbud-Shamash con-
struction. We will call the full conjecture above the Embedding Conjecture,
and refer to the statement that the ¢; commute as the Commutativity Con-
jecture.

Consider a finitely generated R-module M. In [AGP, Section 9], Avramov,
Gasharov and Peeva showed that the degeneration of a certain spectral se-
quence is an obstruction to the Embedding Conjecture, and observed that
the embeddability of the minimal resolution of M implies that Extz(M, k) is
generated as a k[xq,. .., X.]-module in degrees at most the projective dimen-
sion of M as an S-module, where the action of the x;,...,x. is induced
by the CI operators. This gives easy counterexamples to embeddability
over any complete intersection of codimension > 2. For example, suppose
that R = k[[x,y]]/(2°,4°) and M is the second cosyzygy of k as an R-
module. If the embeddability conjecture held, then Extr(M, k) would be
generated by Ext%(M ,k), and in particular, Ext®%(M, k) would be gener-
ated by EXt}{(M , k). However, as one easily computes, the CI operators act
trivially on Extp(M, k) but Exth(M, k) # 0.

On the other hand Avramov and Buchweitz showed in [AB, Theorem
5.3] that when ¢ = 2 and Extg(M, k) is generated in degrees < 2, then
the minimal resolution of M is indeed embeddable in the Eisenbud-Shamash
construction and, in particular, commutativity holds in this case. Thus, the
hope in the last sentence quoted above is realized in the codimension 2 case.
Also, [EP, Theorem 5.1.4] proves a weaker commutativity property in any

codimension. Moreover, the obstruction defined in [AGP] vanishes for any
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sufficiently high truncation of the minimal resolution of M no matter what
the codimension ([AGP, Theorem 9.4]).

These results leave open the question whether the Commutativity Con-
jecture holds for high truncations in codimension > 3. We settle this in the
negative:

Theorem 1.2. Let k be any field, let S be the localization of kla,b,c] at
the mazimal ideal (a,b,¢) and let R = S/(a* b%,¢*). Let M be the module
R/(a,bc). The CI operators cannot be chosen to be commutative on any
truncation of the minimal R-free resolution of M.

Proof. Set R' = k[a]/(a®) and R" = k[b, c]/(b*,¢*). Consider the R-module
M’ := R'/(a) and the R"-module M" := R"/(bc). Note that M = M' @, M"
as R = R' ®, R"-modules, and thus the minimal R-free resolution of M can
be written F := F'®, F”, where F' and F” are the minimal resolutions of M’
and M" over R' and R”, respectively. We will make use of this description
to understand the possible CI operators on F.

To begin, we may write F’ as the polynomial ring R'[A] as graded free
R'-modules, with differential 9(A") = a A"

In the same spirit, we write the underlying graded module of the trun-
cation F%, as R"[B,C], and Fy = R". To avoid confusion, we write v
instead of 1 for the generator of F' = R”. We define the differential on
F{ and F; by O(v) = be, d(B) = by, 9(C) = cv. For i > 2 we de-
fine O(B") = bB"', 9(C") = ¢C"', and, if i,j > 1, then 9(B'CY) =
bB'CY 4 (=1)'e¢B'C?7'. Tt is easy to check that 9 = 0 and that the
resulting complex is indeed a minimal free resolution of M".

The first 4 terms F’é4 of the complex F”, with respect to the ordered
bases B', B 'C, ..., C" for F!\1, have the form

b ¢ 0 O
0 b —c O (b —c O)
00 b ¢ R 0 b ¢ . (b c) Y be Y

RrR™ s R R".

To compute CI operators ¢y, t, for the regular sequence b*, ¢ on F;4 we

denote by d the choice of lifting of O to matrices over k[b, c| by the formulas
above. For example,

& (B) = d(bv) = bc.
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Thus we can choose

t,(B) =c¢

t(B) =0
Similarly, we can choose

t.(C)=1b

t,(C)=0

Furthermore,
& (BC?) = d(—cBC + bC?) = —cbC + B + beC = *B,
and thus we can choose
t,(BC*) =0
t.(BC?) = B.
We have
(tyte — tety)(BC?) = ¢ # 0,
so these CI operators do not commute. We will see that they cannot be made

to commute by a different choice of lifting. The idea in our proof is that this
non-commutativity is propelled to higher homological degrees by multiplying

by A"
The differential of the complex F is

9,= Y 0,0Id+(-1)'1d®d,,;

thus for f € F). we get
OA'f) =aA ™ f+ (1) A'0(f).
Hence we may take
P(Af) = a® A2 f + AP(f).

Therefore, we can define a CI operator ¢, corresponding to a® and we can
extend the CI operators t, and ¢, constructed above to CI operators on F' ®
(FZ,) as follows:



We could define the operators on all of F similarly, but we will not need to
use these formulas.

We are now ready to prove the non-commutativity. Fix an ¢ > 0. Con-
sider the element A'BC? € F, 44. By the formulas above we have

(tyt, — toty) (A'BC?) = cA" # 0.

Thus the CI operators t, and t, do not commute.

Let t, and t. be another choice of CI operators with respect to the ele-
ments b* and 2. By [Ei], they differ from the CI operators chosen above by
homotopies, that, is, there exist, for each index j, maps hy, h. : F; — F;_4
such that

ty —ty, = h,0+0h, and  t.—t,=h.0+ Oh,.
To complete the proof we will show that
(tyt!. — tit))A'BC? # 0.

We have the following equality, where we have labeled the lines so that we
can refer to them:

(1) (tyt, — tity)A'BC®

(2) = (tyt, — t.ty,)A'BC?

(3)  + (hydh.O + Ohyh.0 + Ohydh, — hOhyd — Oh hyd — Oh,Ohy) A'BC?
4)  + (h0*h. — h.0’h,) A'BC?

(5)  + O(hyt, — ht,)A'BC?

(6)  + (t,he0 + t,Oh, — t.hyO — t.0hy)A'BC?

(7) = (h.0Ot,)A'BC?

(8) + (hot.)A'BC? .

As computed above, the entry (t,t. — tt,)A'’BC? in the second line is
equal to cA" € F] ® F)/. We will show that all other terms on the right have
components in F; @ Fy that are contained in (a, b, cQ)Fi' ® Fy, and thus the
sum is nonzero.

The terms in lines (3) and (4) are contained in (a, b, ¢)’F since O(F) C
(a,b,c)F. (In fact the terms in the forth line vanish because 9° = 0.)

Consider the terms in line (5). Their components in F; ® [y, are contained
in

(0(Fiy1) ® F) @ (F{ @ 9(FY)) C (a,be) F} ® Fy.
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For the terms in line (6), note that t,(A’f) = A't,(f), t.(A'f) = A't.(f),
and also in the resolution F” we have t,(Fy) = cF, and t.(Fy) = bF;.
Since O(F) C (a,b,c)F, it follows that the component in F; ® Fj is in
(b,c)(a,b,c)F, @ Fy.

The term in line (7) is 0 because t,(A'BC?) = A't,(BC?) = 0.

Since t.(A'BC?) = At (BC?) = A'B, the last term is

(hy0t)A'BC? = h,0(A'B) = hy(aA™'B + (—1)'A'bv) € (a,b)F.

This completes the proof that the CI operators cannot be made to commute

on any truncation of the resolution F. O
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