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ABSTRACT. We answer several natural questions which arise from the recent paper [MP]
of McCullough and Peeva providing counterexamples to the Eisenbud-Goto Regularity
Conjecture. We give counterexamples using Rees algebras, and also construct counterex-
amples that do not rely on the Mayr-Meyer construction. Furthermore, examples of prime
ideals for which the difference between the maximal degree of a minimal generator and the
maximal degree of a minimal first syzygy can be made arbitrarily large are given. Using
a result of Ananyan-Hochster we show that there exists an upper bound on regularity of
prime ideals in terms of the multiplicity alone.

1. Introduction

Regularity is a numerical invariant that measures the complexity of the structure of ho-
mogeneous ideals in a polynomial ring. It has been studied in Algebraic Geometry and
Commutative Algebra; see the expository paper [Ch]. We consider a standard graded poly-
nomial ring U = k[zy, ..., 2,] over a field k, where all variables have degree one. Let L be
a homogeneous ideal in the ring U, and let §;;(L) = dimy, TorZU(L, k); be its graded Betti
numbers. The (Castelnuovo-Mumford) regularity of L is

reg(L) = max {j ‘ Bi, it (L) # O} .

Alternatively, regularity can be defined using local cohomology. Papers of Bayer-Mumford,
Bayer-Stillman, and Koh, give examples of families of ideals attaining doubly exponential
regularity. In contrast, Bertram-Ein-Lazarsfeld, Chardin-Ulrich, and Mumford have proved
that there are nice bounds on the regularity of the ideals of smooth (or nearly smooth)
projective varieties; see the expository paper [Ch2]. As discussed in the influential paper
[BM] by Bayer and Mumford (1993), the biggest missing link between the general case and
the smooth case is to obtain a decent bound on the regularity of all prime ideals (the ideals
that define irreducible projective varieties). The long standing Eisenbud-Goto Regularity
Conjecture predicts an elegant linear bound, in terms of the degree of the variety:
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The Regularity Conjecture 1.1. (Eisenbud-Goto [EG], 1984) Suppose that the field k is
algebraically closed. If L C (zy, ..., zp)2 is a homogeneous prime ideal in U, then

(1.1) reg(L) < deg(U/L) — codim(L) + 1,

where deg(U/L) is the multiplicity of U/L (also called the degree of U/L, or the degree of
X =Proj(U/L)), and codim(L) is the codimension (also called height) of L.

The conjecture is proved for curves by Gruson-Lazarsfeld-Peskine, for smooth surfaces
by Lazarsfeld and Pinkham, for most smooth 3-folds by Ran and Kwak, if U/L is Cohen-
Macaulay by Eisenbud-Goto, and in many other special cases.

Recently, McCullough and Peeva [MP] introduced two new techniques and used them
to provide many counterexamples to the Eisenbud-Goto Regularity Conjecture. In this note
we answer some natural questions which arise from the paper [MP].

The counterexamples in [MP] come from Rees-like algebras, which were introduced in
[MP, Section 3|. Rees-like algebras, unlike the usual Rees algebras, have well-structured
defining equations and minimal free resolutions. The properties of Rees algebras are of
high interest and can be quite intricate (see for example [Hu], [KPU]). Several mathe-
maticians have asked us if the defining ideals of Rees algebras contain counterexamples as
well or whether the Regularity Conjecture holds for them. In Sections 3 and 4 we provide
counterexamples using Rees algebras. In the latter section we study standard graded Rees
algebras that arise as Rees algebras of ideals generated in one degree.

The main theorem in [MP] shows that the regularity of prime ideals is not bounded by
any polynomial function of the multiplicity. It is natural to ask if there exists a bound on
regularity in terms of the multiplicity alone. Such a bound does not exist for primary ideals
(Example 5.4). However, we prove in Section 5 that the recent work of Ananyan-Hochster
[AH] (who solved Stillman’s Conjecture) implies the existence of the desired bound for prime
ideals. Other proofs of Stillman’s Conjecture are given in [ESS, DLL].

In the counterexamples in [MP] the multiplicity is smaller than the maximal degree of
a minimal generator of a prime ideal. One may wonder whether there are prime ideals for
which the difference between the maximal degree of a minimal generator and the maximal
degree of a minimal (first) syzygy can be made arbitrarily large. In Section 6 we show that
such prime ideals exist. We obtain them by starting with Ullery’s designer ideals (which
are not prime) [Ul] and applying to them the method by McCullough-Peeva in order to get
prime ideals.

In Section 7 we construct a family of three-generated ideals whose regularity grows
faster than the product of the degrees of the generators. To our knowledge, this is the only
known such family other than those based on the Mayr-Meyer construction. Applying the
construction in [MP] we use this family to construct an infinite family of counterexamples to

the Eisenbud-Goto Regularity Conjecture that do not rely on the Mayr-Meyer construction.
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2. Multiplicity of prime ideals

Throughout this section, we consider a polynomial ring W = k[wy, ..., w,] over an arbitrary
field k and positively graded with deg(w;) € N for every i. Suppose ¢; := deg(w;) > 1 for
i < q and deg(w;) = 1 for i > ¢ (for some ¢ < p).

A function Q : Z — Q is a quasipolynomial (over Q) of degree r if

Q(n) = a, ()0’ +a,_(n)n

where a; : Z — Q is a periodic function for each ¢ = 0,...,r and a, # 0. A natural number

r—1

+ -+ ay(n)n + ag(n),

v is called a period of Q) if
a;(n+v) =a;(n) foralln € Z and for all i = 0,...,r.

Let M be a homogeneous ideal in the polynomial ring W. The Hilbert function hyy s
Lo — L of W/M is hyypr(n) = dimy, (W/M),,. Tt is often studied via the Hilbert series

Hilbyy/as (1) = Y  u"dimy (W/M),, .
n>0
By a theorem of Hilbert-Serre, there is a quasipolynomial Q(n) of degree dim(W /M) — 1
and period lem(cy, ..., c,) such that

hw/(n) = Q(n) for n>> 0.

For a proof, see for example [BI].
Set d := ged(cy, ..., c,), and observe that Q(dj +t) = 0 for 0 < ¢ < d.

Proposition 2.1. If M is a prime ideal, then a,(dj) is a constant (independent of the
parameter j), which we denote a,..

Proof. We may easily reduce to the case d = 1 by dividing the degrees of the variables by
their greatest common divisor.

Assume the opposite. Set a(n) = a,(n). Let m and m + s be two different integers
for which the Hilbert function agrees with the quasipolynomial @ and such that a(m) >
a(m + s). Since ged(cq,...,c,) = 1, there exist ¢; € Z such that s = Y{ £;¢;. Hence,
m+s = m+ Y.{ {;c;, Adding a large positive multiple of b := lem(cy,...,c,) to the
righthand-side, we get

q q
alm+s) = a<m + Z lic; + vb> = a(m + Z é;cZ)
i=1 i=1

where each ¢, is positive. Foir each 4, as w; is a non-zerodivisor, we have an inclusion
w;(W/M); € (W/M);,.. and thus dimy (W/M); < dimy (W/M); .. for every j > 0.
Hence,
q
a(m+s) = a<m + Z EQCZ) > a(m),

i=1
which is a contradiction. O



If M is a prime ideal in W, then we call
ey (M) ==rla,
the Hilbert multiplicity of S/M or of M, and also denote it by deg(M) or ey, (W/M).

On the other hand, recall the construction of the Euler polynomial:

Notation 2.2. Fix a finite graded complex V of finitely generated W-free modules and
with V; = 0 for ¢ < 0. We may write V, = @jezW(—j)b"f. The Fuler polynomial of V is
By => Y (-1)byu’.
i>0 jEZ
Let N be a graded finitely generated W-module, and let V be a finite graded free resolution
of N. Since every graded free resolution of N is isomorphic to the direct sum of the minimal
graded free resolution and a trivial complex, it follows that the Euler polynomial does not

depend on the choice of the resolution, so we call it the Fuler polynomial of N. We factor
out a maximal possible power of 1 — u and write

EV = (1 - u)C hV(u) )
where hy (1) # 0.

We set N = W/M and in the notation above, we call

eEulcr(M) = hV(l)

the Fuler multiplicity of S/M or of M, and also denote it by ey e, (W/M).
A prime ideal M is called non-degenerate if M C (wy, ... ,wp)Q.

Theorem 2.3. If M is a non-degenerate homogeneous prime ideal in W, then
P
eguler (M) = epipp (M) H deg(w;) -
=1

The proof uses the technique of step-by-step homogenization introduced in [MP]. The-
orem 2.3 is an immediate corollary of Theorem 2.5.
The following result from [MP] describes the step-by-step homogenization technique:

Step-by-step Homogenization Theorem 2.4. [MP] Let M be a homogeneous non-
degenerate prime ideal, and let K be a minimal set of homogeneous generators of M. Con-
sider the homogenous map (of degree 0)

/
v W =k[wy,...,w,] — W= klwy,...,wpy,vq,...,7]
w; — wivfeg‘”(w")*l for1<i<ygq,

where vy, ..., v, are new variables and W' is standard graded. The ideal M' € W' generated
by the elements of v(K) is a homogeneous non-degenerate prime ideal in W'. Furthermore,
the graded Betti numbers of W,/M' over W' are the same as those of W/M over W.
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We say that M’ is obtained from M by step-by-step homogenization or by relabeling.
The relation between the multiplicities of M and M’ is given in the next result:

Theorem 2.5. In the notation and under the assumptions of Theorem 2.4 we have

eguter (M) = ex (M)
eEuler(M/) = eEuler(M)

p
exin(M') = eqg (M) [ deg(w;).
=1

Proof. The first equality holds because M’ is a homogeneous ideal in a standard graded
ring. The second equality holds because step-by-step homogenization preserves the graded
Betti numbers by Theorem 2.4. We will prove the third equality.

We have the same Euler polynomial E(u) := Eyy = Eyp by Theorem 2.4. We get the
Hilbert series

' B E(u)
HﬂbW/M(U) = (1 _ u>p_q (‘1—1 (1 _ udeg(wi))
. E(u)
Hilbwar ) =~ e
Therefore,
q,1 (1 udEg(wl))
Hilbyr )y (u) = (1—u)* Hilbyyar ()

= 1li=1 = Hilbyy /s () -

Note that the factor in front of Hilbyy s/ (u) is a series with positive coefficients. Apply
Lemma 2.6. U

If S/M has Hilbert multiplicity a, we say that its Hilbert series has it too.

Lemma 2.6. Let h be a Hilbert function given by a quasipolynomial Q(n) of degree r and
with constant leading coefficient a := rla,. Let g be the Hilbert series of h.

(1) The Hilbert multiplicity of the Hilbert series is the same.

(2) The Hilbert multiplicity of the Hilbert series (1 +u+--- + ub)g is (b+ 1)a.

Proof. We have g = 3 -, Q(n)u".
(1) Since

Itut+u’+--)g=> u"(QO)+ Q1)+ -+ Q(n))
n>0
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the quasipolynomial for the considered Hilbert series is
Q)+ +Q0)=a,(n"+(n—1)"+---+1)
ta, (T =) T 1)

J’_ . e
= %" 4 terms of lower degree .
r+1
Thus the Hilbert multiplicity is (r + 1)!;%5 = rla,.

(2) Since
(Itut-tu')g= u"(Qn)++Q(n—"b)

n>0
the quasipolynomial for the considered Hilbert series is

Q)+ +Qn—b)=a,(n" +(n—1)"+--+(n—"b)")
+ar_1(nr_1+(n—1)r_1—|—---+(n—b)r_1)

=a,(b+ 1)n" + terms of lower degree.

3. Multiplicities of Rees algebras and Rees-like algebras

In this section we provide counterexamples to the Eisenbud-Goto Regularity Conjecture
[EG] using Rees algebras.

Notation 3.1. We follow the notation in [MP]. Consider the polynomial ring

S = ]C[[Bl,...,l'n]
over a field k with a standard grading defined by deg(z;) = 1 for every i. Let I be a
homogeneous ideal minimally generated by forms fy,..., f,, of degrees a4,...,a,,, where

m > 2.
Theorem 3.2. Consider the Rees algebra S[It] and the Rees-like algebra S[It,t*]. We have:
erin (S[T1]) < emun (S[IE, £°]) = 1

m

epuer(STT]) < Jepuee(S174, %) = [ (des(f) + 1)
=1

Denote by Q and L the defining ideals of S[It,t2] and S[It] respectively. Then
1
degL' < ideg Q'

where L' and Q' (Q/ is denoted by P in [MP]) are the respective step-by-step homogenizations

of L and Q.
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Proof. Note that

dim (S[t]) = dim (S[It]) = dim (sm, t2]> =n+1

since they are domains of the same transcendence degree. Since S[It] C S[It,t*] C S[t] we
conclude

0 < egin (S[1]) < e (SIL,1]) < e (S[t]) = 1.

The first and second equalities below come from Theorem 2.3:

eguter (S[1t]) = exn, (S[11]) H deg(y;) < e (S[It, £°]) H deg(y;)
i=1 i=1

1 9 1 -
= §€Eu1er(S[Itat ]) eEuler H deg fz + 1
i=1

The factor % comes from the variable z which has degree 2. The last equality holds by [MP
Theorem 1.6(2)], and the equality before holds by Theorem 2.5.
The inequality deg L' < %deg Q' now follows from Theorem 2.5. [l

For a graded ideal N (in a positively graded polynomial ring), we denote by maxdeg(V)

the maximal degree of an element in a minimal system of homogeneous generators of V.

Theorem 3.3. For r € N we consider the step-by-step homogenization L. of the defining
ideal L, of the Rees algebra S[I,t], where I, is the Koh ideal used in Counterexample 1.8(1)
in [MP]. Then multiplicity and mazxdeg of the prime ideal L, satisfy

deg L <2 x 3% 3

! 27!
maxdeg L, > 2 +1.
Thus it is a counterexample to the Regularity Conjecture (see [MP, 1.2]) for r > 10.

Proof. Note that L, contains all the y-linear minimal generators listed in [MP, (3.4)]. They
are minimal generators of L, by [MP, Proposition 2.9] and since L, cannot contain any
elements in which no yq,...,y,, appears.

Let P, be the prime ideal used in Counterexample 1.8(1) in [MP]. Then

1 _
deg L. < idegP,. <2 x 3¥r—3

by Theorem 3.2 and [MP, Counterexample 1.8(1)]. O

Similarly, Counterexample 1.8(2) in [MP] leads to Rees-algebra counterexamples to the

Regularity Conjecture.
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4. Standard graded Rees Algebras

In this section, we provide a different view than Theorem 3.3 on using Rees Algebras to
produce examples of large regularity. We focus on standard graded Rees Algebras, which
arise as the Rees algebras of ideals generated in one degree.

First, we observe how to reduce to the case of ideals generated in one degree:

Construction 4.1. We follow the notation in [MP]. Consider the standard graded polyno-
mial ring S = k[zq,...,x,] over a field k. Let I be a homogeneous ideal minimally generated
by forms fi,..., f,, of degrees aq,...,a,,, where m > 2. Set d = max;{a;}. Consider a
new ideal generated by the forms {xd_ai fi} of degree d in the polynomial ring S=5 [z].
We bigrade S by deg(z;) = (1,1) for every i and deg(x) = (0,1). The ideal I is bigraded,
and therefore S / I has a bigraded minimal free resolution U over S. The regularity 7 of
S / I (assuming standard grading) is equal to the regularity of U with respect to the second
coordinate of the bigrading. It follows that it is bigger than the regularity r’ of U with
respect to the first coordinate of the bigrading since deg(xz) = (0,1). Observe that z — 1 is
a non-zerodivisor (for degree reasons using the second coordinate of the bigrading) on S / I.
Therefore, U ® S/(x — 1) is a graded (posibly non-minimal) free resolution of S/I over S.
Hence, the regularity r of S/I is smaller than 7'. We showed that

regg(l) < regg(S/1).

In fact, we have such an inequality in every homological degree, that is,

maxdeg(SyziS(S/I)) < maxdeg(SyZiS(g/f)),

where maxdeg(N) stands for the maximal degree in a system of minimal homogeneous
generators of a graded finitely generated module N.

Now, we consider the Rees Algebra R := S [T t] as a standard graded ring. Its prime
graded (with respect to the standard grading) defining ideal 7" satisfies

maxdeg(T) > maxdeg(Syz> (1)) — (d — 1) > maxdeg(SyzS (I)) — (d — 1).

Example 4.2. We will apply Construction 4.1 to Koh’s examples based on the Mayr-Meyer
[MM] construction. For r > 1, Koh constructed in [Ko| an ideal I, generated by 22r — 3
quadrics and one linear form in a polynomial ring with 22r — 1 variables, and such that

r—1 ~
maxdeg(Syz,(I,)) > 2° . The construction above produces an ideal I, generated by 22r—2
r—1
quadrics in a polynomial ring with 227 variables, and such that maxdeg(7,) > 22 1.
On the other hand, by Theorem 4.3,
deg(T ) < 2min{22r—2722r} 1= 2227’—2 1
1) < = .
Thus, deg(7,) < maxdeg(7;.) for r > 10.

Now, we turn to Rees Algebras.



Theorem 4.3. Let M be an ideal generated by m > 1 forms of the same degree d > 2 in
R = k[Xy,...,X,], and Ry, = R[Mt] be the Rees Algebra of M which is considered as a
standard graded quotient of the polynomial ring R[Y,...,Y,,]. Then,

min{m,n} 1
deg(Ry/) < ———
and equality holds if further M is (X, ..., X,,)-primary or its m generators form a regular

sequence.

Proof. Call gq,...,g,, the given m generators of M.

First give bidegree (1,0) to the X,’s and bidegree (0, 1) to the Y;’s.

Notice that each bigraded component (R,;), ; for this bigrading has at most a vector
space dimension equal to the one of the Rees algebra associated to generic forms (ones
with indeterminate coefficients). Indeed, this dimension can be computed as the rank of a
Sylvester matrix associated to the collection of elements g;, - - 9i, with 4; <--- <, in the
degree p + jd.

This inequality in turn shows that the Hilbert function of R;; is bounded above by the
one given by generic forms (over the extension of k generated by the coefficients).

If m < n the generic forms are providing a regular sequence. And any complete inter-
section has its Rees algebra resolved by the Eagon-Northcott complex of the (2 x m)-matrix
with maximal minors Y,g, — Y, g,.

Let Hilbg,  (u) be the Hilbert series of R;;. Whenever m < n this shows the (term by
term) inequality :

(1 _ ud)m—l + ud( 2262(1 - ud)i(l _ u)m—i—l) |

Hilb <
1 R]w (U) — (1 _ u)m—i-n

As M # 0, the dimension of the Rees algebra of M is the same as the one of a complete
intersection and hence the inequality above shows that the degree of R,; is bounded above
by the one corresponding to a complete intersection, whose value is A" d" T d 1
by the above formula for the complete intersection case.

Notice further that any graded ideal generated in degree d is a subideal of J :=
(X1, .. ,Xn)d. It follows that the Hilbert series of Rj; is bounded above by the one of
R ;. Again, recall that R); and R; have same dimension, hence

d"—1
d—1"

deg(Rys) < deg(R;) =

We computed the multiplicity in the complete intersection case, and if M is (X1, ..., X,,)-
primary, it contains an ideal M’ generated by a regular sequence of forms of degree d. The
degree of R, is hence bounded below by the degree of R;,» and above by the one R;; these

are both equal to % and the conclusion follows. [l
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5. Regularity is bounded in terms of multiplicity

In this section we show that an upper bound on regularity of non-degenerate prime ideals
in terms of the multiplicity alone follows from the recent work of Ananyan and Hochster
[AH], who solved Stillman’s Conjecture. From now on, the polynomial rings occurring in
the paper are standard graded.

Lemma 5.1. Let L, and Ly be two homogeneous ideals of U = k[ X1, ..., Xy| whose number
and degrees of generators are bounded by a constant c. Then the number and the degrees of
the generators of L1 N Ly are bounded by a constant depending only on c.

Proof. Looking at the exact sequence

we infer the following inequality for any j € Z:

dikaorg <L[F]1L’k> < dimy, Torg (g,k:) + dimy, Torg (g,k:)
1 2 7 1 j 2 j

+ dimy, Torllj (U k) .
J

Li+ Ly
By [AH, Theorem D (a)] the regularity and the graded Betti numbers of ﬁ are bounded
by a constant depending only on ¢, so we get the desired property. O

Theorem 5.2. Let e and h be positive integers and k be a field. There exist constants,
depending only on e and h, bounding respectively the projective dimension, reqularity, and
the graded Betti numbers of every homogeneous unmized radical ideal of multiplicity e and
height h in a standard graded polynomial Ting over k.

Proof. We may assume e > 2. Let L be a homogeneous unmixed radical ideal of U =
k[X1,...,Xy] of multiplicity e and height h.

First, we will show that the ideal L contains a regular sequence gy, ..., g, of forms of
degrees less than or equal to e. Choose a Noether normalization k[X7,..., X | (this may
need a finite extension of the base field to change coordinates if |k| < e, but this extension
keeps L unmixed and radical and does not affect the invariants we are bounding). Then
the generators of L Nk[Xy,..., Xy, X4, = (g;) for i = 1,...h form a regular sequence of
forms of degrees at most e.

Let b := (g1,...,9,) and

h
m =) (degg; — 1) = reg(U/b).
i=1
If L = b the assertion is clear, so suppose L # b. If p; is a minimal prime of b, then there

exists a form f; of degree m such that p, = b : (f;) (by [Ch3, 4.1] or [CU, 1.2], for instance).
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Hence, if L = Ni_1p;, then L =b: (f) with f:= 7, fi. The exact sequence
0—U/L(—m) —U/b— U/(b+(f)) — 0

then shows that reg(U/L) = reg(U/(b+(f))) —m+ 1. Hence the regularity of L is bounded
by the one of an ideal generated in degrees (e,...,e,m) such that e is repeated h times,
and m < h(e —1).

By [AH, Theorem D (a)] it follows that the projective dimension, regularity, and Betti
numbers of L are bounded as well by constants depending only on e and h. (I

Corollary 5.3. Let e be a positive integer and k be an algebraically closed field. There exist
constants, depending only on e, bounding the projective dimension, reqularity and graded
Betti numbers of every homogeneous non-degenerate prime ideal in a polynomial Ting over
k of multiplicity e.

Proof. The claim follows immediately by Theorem 5.2 since the height of a homogeneous
non-degenerate prime ideal in a polynomial ring over an algebraically closed field is less
than its multiplicity. O

This corollary also holds for reduced, equidimensionnal ideals that are connected in
codimension 1 (or connected in codimension r, for any given r > 1). Also the conclusion
concerning the regularity holds without the condition of being non-degenerate.

Examples 5.4. We give three examples. They show that Corollary 5.3 cannot be general-
ized to radical ideals, nor to primary ideals.

(1) Fix n € N and let
M= (zq,....,2,) N (Y1,---,Yp) CU =Eklz;,y; |1 =1,...,n].
Then M is a non-degenerate unmixed radical ideal of multiplicity 2, but
projdimU/M =2n — 1.
(2) Fix n € N and let
M = (ac2, zy, y2, za" +yb") CU = klz,y,a,b].

It follows from [En, Lemma 10] that

(i) M is a non-degenerate ideal of regularity equal to n + 1;
(i) e(U/M) = 2;
(iii) M is (z,y)-primary.
(3) Fix n,e € N with e > 3. By [HMMS, Theorem 1.2] there exists an ideal M in a
polynomial ring U over k such that:
(i) M is a non-degenerate ideal of projective dimension at least n;
(i) e(U/M) = e;

(iii) M is (z,y)-primary, where x and y are independent linear forms.
11



These examples still leave open the question whether there exists a bound on the regu-
larity of unmixed radical ideals (over an algebraically closed field) in terms of the multiplicity
alone.

Remarks 5.5. We provide three upper bounds on regularity. Use the notation in the
introduction.

(1) According to a lemma which Mumford attributes to Castelnuovo [Mu, Lemma,
p.101] and a lemma which appears in his joint work with Bayer [BM], one has for any graded
ideal L a procedure to estimate the regularity of U/L by induction on the dimension.

If k£ is infinite (one can reduce to this case), choose a general linear form ¢ and set
r:=reg(U/L+ (£)) and v’ := reg(U/(L + (1))**). Then

(i) reg(U/L) < r + dimy (Ho(U/L),) if dim(U/L) > 1,
with H3(U/L), = (L**/L), ¢ (U/L), .
(it) reg(U/L**) <+ + dimy,(Hy(U/L),»), if dim(U/L) > 2,
with dimy, Hy, (U/L) » = dim, H(X, Ox (') — dimy,(U/L**),
where X := proj(U/L).
Estimates are precise and easy to get whenever dim(U/L) < 1. Item (i) gives an estimate
of the form (2d)("71)! for the regularity of an ideal generated in degrees at most d in a
polynomial ring in n variables. Introducing (implicitely) an invariant measuring both the
regularity and the defect of saturation, Caviglia-Sbarra [CS] proved a refinement of this

"1 or close to 24™U/L)

estimate, reducing the exponent of 2d to 2
To use (ii), one notices that whenever X is reduced, then proj(U/L + (¢)) is reduced as
well, and if the X;’s for ¢ = 1,...,s are the irreducible components of X, then
dimy, H'(X, Ox () < Y dim H(X, Ox,, (1))
i

and
dim, H°(X, Oy, (1)) <

< dimX; >6(Xi)
for p > 0.

This last estimate is valid for any symbolic power of a prime ideal (i.e., for the unmixed
part of the scheme defined by a power of a prime ideal). If L is a homogeneous radical ideal
or, more generally, an intersection of symbolic powers of prime ideals and e is the sum of
their multiplicities, it implies

reg(L) < (e + 1) m/B),
The existence of a bound in these terms traces back to work of Kleiman (see Rossi-Valla-
Trung [RTV, Section 3]).
(2) It follows from results of Lazarsfeld that, in characteristic zero, if an homogeneous
equidimensionnal ideal L of height h is defined in degree at most d, then there exists another
ideal I with same radical such that L and I coincide locally at primes p such that (U/L),

is regular and reg(U/I) < h(d—1). See Chardin-D’Cruz [CD] for a more precise statement.
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As a consequence reg(U/ Lsat) < h(d —1) if the projective scheme defined by L has at most
isolated singularities.

(3) Assume X C P" is reduced and equidimensionnal of dimension d over an alge-
braically closed field and ¢; is the number of connected components of scheme X(j) :=
XNH N---NHjfor j=0,---,d:=dimX and general hyperplanes H;. Then ¢y < ¢; <
o < ¢g = deg(X) and X(d) is not contained in any linear space of dimension < n — o
with o := Z;l;é cj. Thus deg(X) > n — . Also c4_; is bounded above by the number s of
irreducible components of X. If X is the union of irreducible components X, we thus have

QL
—_

D deg(X;) + Y (¢ — 1) > codim(X)
=1

<
I
o

It follows that if X is connected in codimension r, then

codim(X) < deg(X)+ (r—1)(s—1) <rdeg(X) —r+1.

6. Prime ideals from designer ideals

In this section, we apply the method in [MP] to the designer ideals constructed by Ullery
in [Ul].

First we define notation related to maximal shifts. Let T' = k[zy,...,x,] and let M be
a finitely generated T-module. Set

t; (M) = max{j | Tor; (M, k); # 0} = max{j | 8;(M) # 0}.

Thus tg(M ) is the maximal degree of an element in a minimal generating set of M and
tip(M ) is the maximal degree of a minimal first syzygy of M. The mazimal shifts t;“F(M )
are related to regularity by

M) = Ty - i,
veg(M) 0<i<projdim(M) {t: () =4}

We state a version of a result of Ullery:

Theorem 6.1 ([Ul, Theorem 1.3]). Let T' = k[zq,...,x,]| and let M be a finitely gener-
ated T-module generated in a single non-negative degree with strictly increasing sequence
of maximal graded shifts (tOT(M),t{(M),...,tg(M)). Set a =t (M) and fiz a positive
integer N such that the number of elements in a minimal homogeneous generating set of M

is < (N+g_1). Then there exists an ideal Jy; in S =T[yy,...,yn] such that
P 0 fo<i<r—1
ti (Ja) =91 , : ,
t,(M)+i—r+1 ifr<i<N+r-—1.

In particular, if we pick M to be generated in degree a = 1, and N sufficiently large, then
there exists an ideal J,; generated by homogeneous quadrics with any strictly increasing

sequence as an initial sequence of its maximal graded shifts.
13



We now take the step-by-step homogenization of the defining prime ideal of the Rees-
like algebra of J; to produce prime ideals over any field with generators in degree at most
6 and arbitrarily large degree of first syzygies:

Theorem 6.2. Fiz a positive integer s > 9 and field k. There exists a non-degenerate
prime ideal P in a polynomial ring R over k with t3(P) = 6 and t]'(P) = s.

Proof. Take T' = klzy, 2y, 23] and M = Ext}(T/(z1, 9, 25)° %, 5)(4 — 5) (where (4 — s)
denotes a shift of degrees). Then M is a Cohen-Macaulay module with Betti table of the
form:

2 3
L% x x -
200 - - - -
3l- - - -
s4: |- - - %
where “x” denotes a non-zero entry and “-” denotes a zero entry. Thus,

to (M) =1, t{ (M) =2, t5(M) =3, t; (M) =s—1.
By Theorem 6.1, there is an ideal J in a larger polynomial ring S with
to(J) =2, #/(J) =3, t5(J) = 5 - 1

and t7(J) = s+ — 3 for 3 <i < projdim J.

Now let P be the step-by-step homogenization of the defining prime ideal of the Rees-
like algebra of J in a larger polynomial ring R, as constructed in [MP]. By [MP, Theorem
1.6],

#(P) = max {Q(tOS(J) +1), () + 1} = max{6,4} = 6.
The structure of the minimal free resolution of P in [MP, Theorem 3.10] implies that

#7(P) = max {B(tg(J) F1), () 15 () + 2, 85 () + 1} = max{9,7,5} = 5.

7. Ideals with Large Regularity

In this section we provide an infinite family of counterexamples to the Eisenbud-Goto Reg-
ularity Conjecture that do not rely on the Mayr-Meyer construction.

Proposition 7.1. Let T be a polynomial ring over a field k and let J = (f,g,h) be a
homogeneous ideal of T such that f, g, h all have the same degree. Let x,y be new variables
and set S = T[x,y|. Let

=" 2 f + xyg + v*h).
14



Then
regg(S/I) > regp(T/J) + 4.

Proof. Note that S/I is finitely generated as a T-module. In fact, z*y*(S/I) = (T/J)(—4)
is a T-direct summand of S/I. Since S is faithfully flat over T', we have

regs(S/1) > regp(e*y*(S/1)) = regp(T/ ) + 4.

In [Ca, Example 4.2.1] Caviglia showed that if 7' = k[zy, 29, 23, 24| and
J= (A, 25 ;e — )
with d > 2, then reg(T/J) = d* — 2. We set S = T'[z,y] and
I= (mS, yd 22l b ay(z 28— 22t + yQZg) .
By the previous proposition we see that reg(S/I) > d? + 2 for d > 2, while the degrees of

the three generators of I are 3,3, and d+ 2. By [MP, Theorem 1.6] we obtain the following
result:

Theorem 7.2. Let P be the step-by-step homogenization of the Rees-like algebra of the
ideal I above, in the polynomial ring R (as constructed in [MP]). Then

deg(R/P) = 32(d + 3)
reg(R/P) > d* +d+12.

In particular, the Eisenbud-Goto conjecture fails when d > 34.

Acknowledgements. We are very grateful to David Eisenbud for useful discussions.
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