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Abstract. We answer several natural questions which arise from the recent paper [MP]
of McCullough and Peeva providing counterexamples to the Eisenbud-Goto Regularity
Conjecture. We give counterexamples using Rees algebras, and also construct counterex-
amples that do not rely on the Mayr-Meyer construction. Furthermore, examples of prime
ideals for which the difference between the maximal degree of a minimal generator and the
maximal degree of a minimal first syzygy can be made arbitrarily large are given. Using
a result of Ananyan-Hochster we show that there exists an upper bound on regularity of
prime ideals in terms of the multiplicity alone.

1. Introduction

Regularity is a numerical invariant that measures the complexity of the structure of ho-

mogeneous ideals in a polynomial ring. It has been studied in Algebraic Geometry and

Commutative Algebra; see the expository paper [Ch]. We consider a standard graded poly-

nomial ring U = k[z1, . . . , zp] over a field k, where all variables have degree one. Let L be

a homogeneous ideal in the ring U , and let βij(L) = dimk Tor
U
i (L, k)j be its graded Betti

numbers. The (Castelnuovo-Mumford) regularity of L is

reg(L) = max
{
j
∣∣∣βi, i+j(L) 6= 0

}
.

Alternatively, regularity can be defined using local cohomology. Papers of Bayer-Mumford,

Bayer-Stillman, and Koh, give examples of families of ideals attaining doubly exponential

regularity. In contrast, Bertram-Ein-Lazarsfeld, Chardin-Ulrich, and Mumford have proved

that there are nice bounds on the regularity of the ideals of smooth (or nearly smooth)

projective varieties; see the expository paper [Ch2]. As discussed in the influential paper

[BM] by Bayer and Mumford (1993), the biggest missing link between the general case and

the smooth case is to obtain a decent bound on the regularity of all prime ideals (the ideals

that define irreducible projective varieties). The long standing Eisenbud-Goto Regularity

Conjecture predicts an elegant linear bound, in terms of the degree of the variety:
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The Regularity Conjecture 1.1. (Eisenbud-Goto [EG], 1984) Suppose that the field k is

algebraically closed. If L ⊂ (z1, . . . , zp)
2 is a homogeneous prime ideal in U , then

(1.1) reg(L) ≤ deg(U/L)− codim(L) + 1 ,

where deg(U/L) is the multiplicity of U/L (also called the degree of U/L, or the degree of

X = Proj(U/L)), and codim(L) is the codimension (also called height) of L.

The conjecture is proved for curves by Gruson-Lazarsfeld-Peskine, for smooth surfaces

by Lazarsfeld and Pinkham, for most smooth 3-folds by Ran and Kwak, if U/L is Cohen-

Macaulay by Eisenbud-Goto, and in many other special cases.

Recently, McCullough and Peeva [MP] introduced two new techniques and used them

to provide many counterexamples to the Eisenbud-Goto Regularity Conjecture. In this note

we answer some natural questions which arise from the paper [MP].

The counterexamples in [MP] come from Rees-like algebras, which were introduced in

[MP, Section 3]. Rees-like algebras, unlike the usual Rees algebras, have well-structured

defining equations and minimal free resolutions. The properties of Rees algebras are of

high interest and can be quite intricate (see for example [Hu], [KPU]). Several mathe-

maticians have asked us if the defining ideals of Rees algebras contain counterexamples as

well or whether the Regularity Conjecture holds for them. In Sections 3 and 4 we provide

counterexamples using Rees algebras. In the latter section we study standard graded Rees

algebras that arise as Rees algebras of ideals generated in one degree.

The main theorem in [MP] shows that the regularity of prime ideals is not bounded by

any polynomial function of the multiplicity. It is natural to ask if there exists a bound on

regularity in terms of the multiplicity alone. Such a bound does not exist for primary ideals

(Example 5.4). However, we prove in Section 5 that the recent work of Ananyan-Hochster

[AH] (who solved Stillman’s Conjecture) implies the existence of the desired bound for prime

ideals. Other proofs of Stillman’s Conjecture are given in [ESS, DLL].

In the counterexamples in [MP] the multiplicity is smaller than the maximal degree of

a minimal generator of a prime ideal. One may wonder whether there are prime ideals for

which the difference between the maximal degree of a minimal generator and the maximal

degree of a minimal (first) syzygy can be made arbitrarily large. In Section 6 we show that

such prime ideals exist. We obtain them by starting with Ullery’s designer ideals (which

are not prime) [Ul] and applying to them the method by McCullough-Peeva in order to get

prime ideals.

In Section 7 we construct a family of three-generated ideals whose regularity grows

faster than the product of the degrees of the generators. To our knowledge, this is the only

known such family other than those based on the Mayr-Meyer construction. Applying the

construction in [MP] we use this family to construct an infinite family of counterexamples to

the Eisenbud-Goto Regularity Conjecture that do not rely on the Mayr-Meyer construction.
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2. Multiplicity of prime ideals

Throughout this section, we consider a polynomial ring W = k[w1, . . . , wp] over an arbitrary

field k and positively graded with deg(wi) ∈ N for every i. Suppose ci := deg(wi) > 1 for

i ≤ q and deg(wi) = 1 for i > q (for some q ≤ p).

A function Q : Z −→ Q is a quasipolynomial (over Q) of degree r if

Q(n) = ar(n)n
r + ar−1(n)n

r−1 + · · ·+ a1(n)n+ a0(n),

where ai : Z −→ Q is a periodic function for each i = 0, . . . , r and ar 6= 0. A natural number

v is called a period of Q if

ai(n+ v) = ai(n) for all n ∈ Z and for all i = 0, . . . , r.

Let M be a homogeneous ideal in the polynomial ring W . The Hilbert function hW/M :

Z≥0 −→ Z≥0 of W/M is hW/M (n) = dimk (W/M)n. It is often studied via the Hilbert series

HilbW/M (u) =
∑

n≥0

undimk (W/M)n .

By a theorem of Hilbert-Serre, there is a quasipolynomial Q(n) of degree dim(W/M) − 1

and period lcm(c1, . . . , cp) such that

hW/M (n) = Q(n) for n � 0.

For a proof, see for example [BI].

Set d := gcd(c1, . . . , cp), and observe that Q(dj + t) = 0 for 0 < t < d.

Proposition 2.1. If M is a prime ideal, then ar(dj) is a constant (independent of the

parameter j), which we denote ar.

Proof. We may easily reduce to the case d = 1 by dividing the degrees of the variables by

their greatest common divisor.

Assume the opposite. Set a(n) = ar(n). Let m and m + s be two different integers

for which the Hilbert function agrees with the quasipolynomial Q and such that a(m) >

a(m + s). Since gcd(c1, . . . , cp) = 1, there exist `i ∈ Z such that s =
∑q

1 `ici. Hence,

m + s = m +
∑q

1 `ici. Adding a large positive multiple of b := lcm(c1, . . . , cp) to the

righthand-side, we get

a(m+ s) = a

(
m+

q∑

i=1

`ici + vb

)
= a

(
m+

q∑

i=1

`′ici

)

where each `′i is positive. Foir each i, as wi is a non-zerodivisor, we have an inclusion

wi(W/M)j ⊆ (W/M)j+ci
and thus dimk (W/M)j ≤ dimk (W/M)j+ci

for every j ≥ 0.

Hence,

a(m+ s) = a

(
m+

q∑

i=1

`′ici

)
≥ a(m) ,

which is a contradiction. �
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If M is a prime ideal in W , then we call

eHilb(M) := r!ar

the Hilbert multiplicity of S/M or of M , and also denote it by deg(M) or eHilb(W/M).

On the other hand, recall the construction of the Euler polynomial:

Notation 2.2. Fix a finite graded complex V of finitely generated W -free modules and

with Vi = 0 for i < 0. We may write Vi = ⊕j∈ZW (−j)bij . The Euler polynomial of V is

EV =
∑

i≥0

∑

j∈Z

(−1)ibiju
j .

Let N be a graded finitely generated W -module, and let V be a finite graded free resolution

of N . Since every graded free resolution of N is isomorphic to the direct sum of the minimal

graded free resolution and a trivial complex, it follows that the Euler polynomial does not

depend on the choice of the resolution, so we call it the Euler polynomial of N . We factor

out a maximal possible power of 1− u and write

EV = (1− u)c hV(u) ,

where hV(1) 6= 0.

We set N = W/M and in the notation above, we call

eEuler(M) := hV(1)

the Euler multiplicity of S/M or of M , and also denote it by eEuler(W/M).

A prime ideal M is called non-degenerate if M ⊂ (w1, . . . , wp)
2.

Theorem 2.3. If M is a non-degenerate homogeneous prime ideal in W , then

eEuler(M) = eHilb(M)

p∏

i=1

deg(wi) .

The proof uses the technique of step-by-step homogenization introduced in [MP]. The-

orem 2.3 is an immediate corollary of Theorem 2.5.

The following result from [MP] describes the step-by-step homogenization technique:

Step-by-step Homogenization Theorem 2.4. [MP] Let M be a homogeneous non-

degenerate prime ideal, and let K be a minimal set of homogeneous generators of M . Con-

sider the homogenous map (of degree 0)

ν : W = k[w1, . . . , wp] −→ W ′ := k[w1, . . . , wp, v1, . . . , vq]

wi 7−→ wiv
degW (wi)−1
i for 1 ≤ i ≤ q ,

where v1, . . . , vq are new variables and W ′ is standard graded. The ideal M ′ ⊂ W ′ generated

by the elements of ν(K) is a homogeneous non-degenerate prime ideal in W ′. Furthermore,

the graded Betti numbers of W ′/M ′ over W ′ are the same as those of W/M over W .
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We say that M ′ is obtained from M by step-by-step homogenization or by relabeling.

The relation between the multiplicities of M and M ′ is given in the next result:

Theorem 2.5. In the notation and under the assumptions of Theorem 2.4 we have

eEuler(M
′) = eHilb(M

′)

eEuler(M
′) = eEuler(M)

eHilb(M
′) = eHilb(M)

p∏

i=1

deg(wi) .

Proof. The first equality holds because M ′ is a homogeneous ideal in a standard graded

ring. The second equality holds because step-by-step homogenization preserves the graded

Betti numbers by Theorem 2.4. We will prove the third equality.

We have the same Euler polynomial E(u) := EM = E
M

′ by Theorem 2.4. We get the

Hilbert series

HilbW/M (u) =
E(u)

(1− u)p−q ∏q
i=1

(
1− udeg(wi)

)

HilbW ′

/M
′(u) =

E(u)

(1− u)p+q .

Therefore,

HilbW ′

/M
′(u) =

∏q
i=1

(
1− udeg(wi)

)

(1− u)2q
HilbW/M (u)

=

∏q
i=1

(
1 + u+ · · ·+ udeg(wi)−1)

(1− u)q
HilbW/M (u) .

Note that the factor in front of HilbW/M (u) is a series with positive coefficients. Apply

Lemma 2.6. �

If S/M has Hilbert multiplicity a, we say that its Hilbert series has it too.

Lemma 2.6. Let h be a Hilbert function given by a quasipolynomial Q(n) of degree r and

with constant leading coefficient a := r!ar. Let g be the Hilbert series of h.

(1) The Hilbert multiplicity of the Hilbert series
g

1− u
is the same.

(2) The Hilbert multiplicity of the Hilbert series
(
1 + u+ · · ·+ ub

)
g is (b+ 1)a.

Proof. We have g =
∑

n≥0 Q(n)un.

(1) Since

(1 + u+ u2 + · · · )g =
∑

n≥0

un
(
Q(0) +Q(1) + · · ·+Q(n)

)
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the quasipolynomial for the considered Hilbert series is

Q(n) + · · ·+Q(0) = ar
(
nr + (n− 1)r + · · ·+ 1

)

+ ar−1

(
nr−1 + (n− 1)r−1 + · · ·+ 1

)

+ · · ·

=
ar

r + 1
nr+1 + terms of lower degree .

Thus the Hilbert multiplicity is (r + 1)! ar
r+1 = r!ar.

(2) Since

(1 + u+ · · ·+ ub)g =
∑

n≥0

un
(
Q(n) + · · ·+Q(n− b)

)

the quasipolynomial for the considered Hilbert series is

Q(n) + · · ·+Q(n− b) = ar
(
nr + (n− 1)r + · · ·+ (n− b)r

)

+ ar−1

(
nr−1 + (n− 1)r−1 + · · ·+ (n− b)r−1)

+ · · ·

= ar(b+ 1)nr + terms of lower degree .

�

3. Multiplicities of Rees algebras and Rees-like algebras

In this section we provide counterexamples to the Eisenbud-Goto Regularity Conjecture

[EG] using Rees algebras.

Notation 3.1. We follow the notation in [MP]. Consider the polynomial ring

S = k[x1, . . . , xn]

over a field k with a standard grading defined by deg(xi) = 1 for every i. Let I be a

homogeneous ideal minimally generated by forms f1, . . . , fm of degrees a1, . . . , am, where

m ≥ 2.

Theorem 3.2. Consider the Rees algebra S[It] and the Rees-like algebra S[It, t2]. We have:

eHilb(S[It]) ≤ eHilb(S[It, t
2]) = 1

eEuler(S[It]) ≤
1

2
eEuler(S[It, t

2]) =
m∏

i=1

(deg(fi) + 1) .

Denote by Q and L the defining ideals of S[It, t2] and S[It] respectively. Then

degL′ ≤
1

2
degQ′ ,

where L′ and Q′ (Q′ is denoted by P in [MP]) are the respective step-by-step homogenizations

of L and Q.
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Proof. Note that

dim (S[t]) = dim (S[It]) = dim
(
S[It, t2]

)
= n+ 1

since they are domains of the same transcendence degree. Since S[It] ⊂ S[It, t2] ⊂ S[t] we

conclude

0 < eHilb(S[It]) ≤ eHilb(S[It, t
2]) ≤ eHilb(S[t]) = 1 .

The first and second equalities below come from Theorem 2.3:

eEuler(S[It]) = eHilb(S[It])
m∏

i=1

deg(yi) ≤ eHilb(S[It, t
2])

m∏

i=1

deg(yi)

=
1

2
eEuler(S[It, t

2]) =
1

2
eEuler(Q

′) =
m∏

i=1

(deg(fi) + 1) .

The factor 1
2 comes from the variable z which has degree 2. The last equality holds by [MP,

Theorem 1.6(2)], and the equality before holds by Theorem 2.5.

The inequality degL′ ≤ 1
2degQ

′ now follows from Theorem 2.5. �

For a graded ideal N (in a positively graded polynomial ring), we denote by maxdeg(N)

the maximal degree of an element in a minimal system of homogeneous generators of N .

Theorem 3.3. For r ∈ N we consider the step-by-step homogenization L′
r of the defining

ideal Lr of the Rees algebra S[Irt], where Ir is the Koh ideal used in Counterexample 1.8(1)

in [MP]. Then multiplicity and maxdeg of the prime ideal L′
r satisfy

degL′
r ≤ 2× 322r−3

maxdegL′
r ≥ 22

r−1

+ 1 .

Thus it is a counterexample to the Regularity Conjecture (see [MP, 1.2]) for r ≥ 10.

Proof. Note that Lr contains all the y-linear minimal generators listed in [MP, (3.4)]. They

are minimal generators of Lr by [MP, Proposition 2.9] and since Lr cannot contain any

elements in which no y1, . . . , ym appears.

Let Pr be the prime ideal used in Counterexample 1.8(1) in [MP]. Then

degL′
r ≤

1

2
degPr ≤ 2× 322r−3

by Theorem 3.2 and [MP, Counterexample 1.8(1)]. �

Similarly, Counterexample 1.8(2) in [MP] leads to Rees-algebra counterexamples to the

Regularity Conjecture.
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4. Standard graded Rees Algebras

In this section, we provide a different view than Theorem 3.3 on using Rees Algebras to

produce examples of large regularity. We focus on standard graded Rees Algebras, which

arise as the Rees algebras of ideals generated in one degree.

First, we observe how to reduce to the case of ideals generated in one degree:

Construction 4.1. We follow the notation in [MP]. Consider the standard graded polyno-

mial ring S = k[x1, . . . , xn] over a field k. Let I be a homogeneous ideal minimally generated

by forms f1, . . . , fm of degrees a1, . . . , am, where m ≥ 2. Set d = maxi{ai}. Consider a

new ideal Ĩ generated by the forms {xd−aifi} of degree d in the polynomial ring S̃ = S[x].

We bigrade S̃ by deg(xi) = (1, 1) for every i and deg(x) = (0, 1). The ideal Ĩ is bigraded,

and therefore S̃/Ĩ has a bigraded minimal free resolution Ũ over S̃. The regularity r̃ of

S̃/Ĩ (assuming standard grading) is equal to the regularity of Ũ with respect to the second

coordinate of the bigrading. It follows that it is bigger than the regularity r′ of Ũ with

respect to the first coordinate of the bigrading since deg(x) = (0, 1). Observe that x− 1 is

a non-zerodivisor (for degree reasons using the second coordinate of the bigrading) on S̃/Ĩ.

Therefore, Ũ⊗ S̃/(x− 1) is a graded (posibly non-minimal) free resolution of S/I over S.

Hence, the regularity r of S/I is smaller than r′. We showed that

regS(I) ≤ reg
S̃
(S̃/Ĩ) .

In fact, we have such an inequality in every homological degree, that is,

maxdeg(SyzSi (S/I)) ≤ maxdeg(SyzS̃i (S̃/Ĩ)) ,

where maxdeg(N) stands for the maximal degree in a system of minimal homogeneous

generators of a graded finitely generated module N .

Now, we consider the Rees Algebra R := S̃[Ĩt] as a standard graded ring. Its prime

graded (with respect to the standard grading) defining ideal T satisfies

maxdeg(T ) ≥ maxdeg(SyzS̃1 (Ĩ))− (d− 1) ≥ maxdeg(SyzS1 (I))− (d− 1) .

Example 4.2. We will apply Construction 4.1 to Koh’s examples based on the Mayr-Meyer

[MM] construction. For r ≥ 1, Koh constructed in [Ko] an ideal Ir generated by 22r − 3

quadrics and one linear form in a polynomial ring with 22r − 1 variables, and such that

maxdeg(Syz1(Ir)) ≥ 22
r−1

. The construction above produces an ideal Ĩr generated by 22r−2

quadrics in a polynomial ring with 22r variables, and such that maxdeg(Tr) ≥ 22
r−1

− 1.

On the other hand, by Theorem 4.3,

deg(Tr) ≤ 2min{22r−2, 22r} − 1 = 222r−2 − 1 .

Thus, deg(Tr) < maxdeg(Tr) for r ≥ 10.

Now, we turn to Rees Algebras.
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Theorem 4.3. Let M be an ideal generated by m ≥ 1 forms of the same degree d ≥ 2 in

R = k[X1, . . . , Xn], and RM
∼= R[Mt] be the Rees Algebra of M which is considered as a

standard graded quotient of the polynomial ring R[Y1, . . . , Ym]. Then,

deg(RM ) ≤
dmin{m,n} − 1

d− 1
,

and equality holds if further M is (X1, . . . , Xn)-primary or its m generators form a regular

sequence.

Proof. Call g1, . . . , gm the given m generators of M .

First give bidegree (1, 0) to the Xi’s and bidegree (0, 1) to the Yi’s.

Notice that each bigraded component (RM )p,j for this bigrading has at most a vector

space dimension equal to the one of the Rees algebra associated to generic forms (ones

with indeterminate coefficients). Indeed, this dimension can be computed as the rank of a

Sylvester matrix associated to the collection of elements gi1 · · · gij with i1 ≤ · · · ≤ ij in the

degree p+ jd.

This inequality in turn shows that the Hilbert function of RM is bounded above by the

one given by generic forms (over the extension of k generated by the coefficients).

If m ≤ n the generic forms are providing a regular sequence. And any complete inter-

section has its Rees algebra resolved by the Eagon-Northcott complex of the (2×m)-matrix

with maximal minors Ysgr − Yrgs.

Let HilbRM
(u) be the Hilbert series of RM . Whenever m ≤ n this shows the (term by

term) inequality :

HilbRM
(u) ≤

(1− ud)m−1 + ud
(∑m−2

i=0 (1− ud)i(1− u)m−i−1)

(1− u)m+n .

As M 6= 0, the dimension of the Rees algebra of M is the same as the one of a complete

intersection and hence the inequality above shows that the degree of RM is bounded above

by the one corresponding to a complete intersection, whose value is dm−1+dm−2+ · · ·+d+1

by the above formula for the complete intersection case.

Notice further that any graded ideal generated in degree d is a subideal of J :=

(X1, . . . , Xn)
d. It follows that the Hilbert series of RM is bounded above by the one of

RJ . Again, recall that RM and RJ have same dimension, hence

deg(RM ) ≤ deg(RJ) =
dn − 1

d− 1
.

We computed the multiplicity in the complete intersection case, and ifM is (X1, . . . , Xn)-

primary, it contains an ideal M ′ generated by a regular sequence of forms of degree d. The

degree of RM is hence bounded below by the degree of RM
′ and above by the one RJ ; these

are both equal to d
n
−1

d−1 and the conclusion follows. �
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5. Regularity is bounded in terms of multiplicity

In this section we show that an upper bound on regularity of non-degenerate prime ideals

in terms of the multiplicity alone follows from the recent work of Ananyan and Hochster

[AH], who solved Stillman’s Conjecture. From now on, the polynomial rings occurring in

the paper are standard graded.

Lemma 5.1. Let L1 and L2 be two homogeneous ideals of U = k[X1, . . . , XN ] whose number

and degrees of generators are bounded by a constant c. Then the number and the degrees of

the generators of L1 ∩ L2 are bounded by a constant depending only on c.

Proof. Looking at the exact sequence

0 −→
U

L1 ∩ L2
−→

U

L1
⊕

U

L2
−→

U

L1 + L2
−→ 0

we infer the following inequality for any j ∈ Z:

dimk Tor
U
0

(
U

L1 ∩ L2
, k

)

j

≤ dimk Tor
U
0

(
U

L1
, k

)

j

+ dimk Tor
U
0

(
U

L2
, k

)

j

+ dimk Tor
U
1

(
U

L1 + L2
, k

)

j

.

By [AH, Theorem D (a)] the regularity and the graded Betti numbers of U
L1+L2

are bounded

by a constant depending only on c, so we get the desired property. �

Theorem 5.2. Let e and h be positive integers and k be a field. There exist constants,

depending only on e and h, bounding respectively the projective dimension, regularity, and

the graded Betti numbers of every homogeneous unmixed radical ideal of multiplicity e and

height h in a standard graded polynomial ring over k.

Proof. We may assume e ≥ 2. Let L be a homogeneous unmixed radical ideal of U =

k[X1, . . . , XN ] of multiplicity e and height h.

First, we will show that the ideal L contains a regular sequence g1, . . . , gh of forms of

degrees less than or equal to e. Choose a Noether normalization k[X1, . . . , Xd] (this may

need a finite extension of the base field to change coordinates if |k| ≤ e, but this extension

keeps L unmixed and radical and does not affect the invariants we are bounding). Then

the generators of L ∩ k[X1, . . . , Xd, Xd+i] = (gi) for i = 1, . . . h form a regular sequence of

forms of degrees at most e.

Let b := (g1, . . . , gh) and

m :=
h∑

i=1

(deg gi − 1) = reg(U/b) .

If L = b the assertion is clear, so suppose L 6= b. If pi is a minimal prime of b, then there

exists a form fi of degree m such that pi = b : (fi) (by [Ch3, 4.1] or [CU, 1.2], for instance).
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Hence, if L = ∩a
i=1pi, then L = b : (f) with f :=

∑a
i=1 fi. The exact sequence

0 −→ U/L(−m) −→ U/b −→ U/(b+ (f)) −→ 0

then shows that reg(U/L) = reg
(
U/(b+(f))

)
−m+1. Hence the regularity of L is bounded

by the one of an ideal generated in degrees (e, . . . , e,m) such that e is repeated h times,

and m ≤ h(e− 1).

By [AH, Theorem D (a)] it follows that the projective dimension, regularity, and Betti

numbers of L are bounded as well by constants depending only on e and h. �

Corollary 5.3. Let e be a positive integer and k be an algebraically closed field. There exist

constants, depending only on e, bounding the projective dimension, regularity and graded

Betti numbers of every homogeneous non-degenerate prime ideal in a polynomial ring over

k of multiplicity e.

Proof. The claim follows immediately by Theorem 5.2 since the height of a homogeneous

non-degenerate prime ideal in a polynomial ring over an algebraically closed field is less

than its multiplicity. �

This corollary also holds for reduced, equidimensionnal ideals that are connected in

codimension 1 (or connected in codimension r, for any given r ≥ 1). Also the conclusion

concerning the regularity holds without the condition of being non-degenerate.

Examples 5.4. We give three examples. They show that Corollary 5.3 cannot be general-

ized to radical ideals, nor to primary ideals.

(1) Fix n ∈ N and let

M = (x1, . . . , xn) ∩ (y1, . . . , yn) ⊆ U = k[xi, yi | i = 1, . . . , n] .

Then M is a non-degenerate unmixed radical ideal of multiplicity 2, but

projdimU/M = 2n− 1 .

(2) Fix n ∈ N and let

M = (x2, xy, y2, xan + ybn) ⊆ U = k[x, y, a, b] .

It follows from [En, Lemma 10] that

(i) M is a non-degenerate ideal of regularity equal to n+ 1;

(ii) e(U/M) = 2;

(iii) M is (x, y)-primary.

(3) Fix n, e ∈ N with e ≥ 3. By [HMMS, Theorem 1.2] there exists an ideal M in a

polynomial ring U over k such that:

(i) M is a non-degenerate ideal of projective dimension at least n;

(ii) e(U/M) = e;

(iii) M is (x, y)-primary, where x and y are independent linear forms.
11



These examples still leave open the question whether there exists a bound on the regu-

larity of unmixed radical ideals (over an algebraically closed field) in terms of the multiplicity

alone.

Remarks 5.5. We provide three upper bounds on regularity. Use the notation in the

introduction.

(1) According to a lemma which Mumford attributes to Castelnuovo [Mu, Lemma,

p.101] and a lemma which appears in his joint work with Bayer [BM], one has for any graded

ideal L a procedure to estimate the regularity of U/L by induction on the dimension.

If k is infinite (one can reduce to this case), choose a general linear form ` and set

r := reg(U/L+ (`)) and r′ := reg(U/(L+ (l))sat). Then

(i) reg(U/L) ≤ r + dimk(H
0
m(U/L)r) if dim(U/L) ≥ 1,

with H0
m(U/L)r = (Lsat/L)r ⊂ (U/L)r .

(ii) reg(U/Lsat) ≤ r′ + dimk(H
1
m(U/L)r′), if dim(U/L) ≥ 2,

with dimkH
1
m(U/L)r′ = dimkH

0(X,OX(r′))− dimk(U/L
sat),

where X := proj(U/L).

Estimates are precise and easy to get whenever dim(U/L) ≤ 1. Item (i) gives an estimate

of the form (2d)(n−1)! for the regularity of an ideal generated in degrees at most d in a

polynomial ring in n variables. Introducing (implicitely) an invariant measuring both the

regularity and the defect of saturation, Caviglia-Sbarra [CS] proved a refinement of this

estimate, reducing the exponent of 2d to 2n−1 or close to 2dim(U/L).

To use (ii), one notices that whenever X is reduced, then proj(U/L+(`)) is reduced as

well, and if the Xi’s for i = 1, . . . , s are the irreducible components of X, then

dimkH
0(X,OX(µ)) ≤

∑

i

dimkH
0(X,OXi

(µ))

and

dimkH
0(X,OXi

(µ)) ≤

(
µ+ dimXi

dimXi

)
e(Xi)

for µ ≥ 0.

This last estimate is valid for any symbolic power of a prime ideal (i.e., for the unmixed

part of the scheme defined by a power of a prime ideal). If L is a homogeneous radical ideal

or, more generally, an intersection of symbolic powers of prime ideals and e is the sum of

their multiplicities, it implies

reg(L) ≤ (e+ 1)(dim(U/L))!.

The existence of a bound in these terms traces back to work of Kleiman (see Rossi-Valla-

Trung [RTV, Section 3]).

(2) It follows from results of Lazarsfeld that, in characteristic zero, if an homogeneous

equidimensionnal ideal L of height h is defined in degree at most d, then there exists another

ideal I with same radical such that L and I coincide locally at primes p such that (U/L)p
is regular and reg(U/I) ≤ h(d−1). See Chardin-D’Cruz [CD] for a more precise statement.

12



As a consequence reg(U/Lsat) ≤ h(d− 1) if the projective scheme defined by L has at most

isolated singularities.

(3) Assume X ⊆ P
n is reduced and equidimensionnal of dimension d over an alge-

braically closed field and cj is the number of connected components of scheme X(j) :=

X ∩H1 ∩ · · · ∩Hj for j = 0, · · · , d := dimX and general hyperplanes Hi. Then c0 ≤ c1 ≤

· · · ≤ cd = deg(X) and X(d) is not contained in any linear space of dimension < n − σ

with σ :=
∑d−1

j=0 cj . Thus deg(X) ≥ n− σ. Also cd−1 is bounded above by the number s of

irreducible components of X. If X is the union of irreducible components Xi, we thus have

s∑

i=1

deg(Xi) +

d−1∑

j=0

(cj − 1) ≥ codim(X)

It follows that if X is connected in codimension r, then

codim(X) ≤ deg(X) + (r − 1)(s− 1) ≤ r deg(X)− r + 1.

6. Prime ideals from designer ideals

In this section, we apply the method in [MP] to the designer ideals constructed by Ullery

in [Ul].

First we define notation related to maximal shifts. Let T = k[x1, . . . , xn] and let M be

a finitely generated T -module. Set

tTi (M) = max{j |TorTi (M,k)j 6= 0} = max{j |βT
ij(M) 6= 0}.

Thus tT0 (M) is the maximal degree of an element in a minimal generating set of M and

tT1 (M) is the maximal degree of a minimal first syzygy of M . The maximal shifts tTi (M)

are related to regularity by

reg(M) = max
0≤i≤projdim(M)

{
tTi (M)− i

}
.

We state a version of a result of Ullery:

Theorem 6.1 ([Ul, Theorem 1.3]). Let T = k[x1, . . . , xn] and let M be a finitely gener-

ated T -module generated in a single non-negative degree with strictly increasing sequence

of maximal graded shifts
(
tT0 (M), tT1 (M), . . . , tTr (M)

)
. Set a = tT0 (M) and fix a positive

integer N such that the number of elements in a minimal homogeneous generating set of M

is ≤
(
N+a−1

a

)
. Then there exists an ideal JM in S = T [y1, . . . , yN ] such that

tSi (JM ) =

{
tTi+1(M) if 0 ≤ i ≤ r − 1

tTr (M) + i− r + 1 if r ≤ i ≤ N + r − 1.

In particular, if we pickM to be generated in degree a = 1, andN sufficiently large, then

there exists an ideal JM generated by homogeneous quadrics with any strictly increasing

sequence as an initial sequence of its maximal graded shifts.
13



We now take the step-by-step homogenization of the defining prime ideal of the Rees-

like algebra of JM to produce prime ideals over any field with generators in degree at most

6 and arbitrarily large degree of first syzygies:

Theorem 6.2. Fix a positive integer s ≥ 9 and field k. There exists a non-degenerate

prime ideal P in a polynomial ring R over k with tR0 (P ) = 6 and tR1 (P ) = s.

Proof. Take T = k[x1, x2, x3] and M = Ext3S
(
T/(x1, x2, x3)

s−3, S
)
(4 − s) (where (4 − s)

denotes a shift of degrees). Then M is a Cohen-Macaulay module with Betti table of the

form:

0 1 2 3
1: ∗ ∗ ∗ -
2: - - - -
3: - - - -
... - - - -

s-4: - - - ∗

where “∗” denotes a non-zero entry and “-” denotes a zero entry. Thus,

tT0 (M) = 1, tT1 (M) = 2, tT2 (M) = 3, tT4 (M) = s− 1 .

By Theorem 6.1, there is an ideal J in a larger polynomial ring S with

tS0 (J) = 2, tS1 (J) = 3, tS2 (J) = s− 1

and tSi (J) = s+ i− 3 for 3 ≤ i ≤ projdim J .

Now let P be the step-by-step homogenization of the defining prime ideal of the Rees-

like algebra of J in a larger polynomial ring R, as constructed in [MP]. By [MP, Theorem

1.6],

tR0 (P ) = max
{
2
(
tS0 (J) + 1

)
, tS1 (J) + 1

}
= max{6, 4} = 6.

The structure of the minimal free resolution of P in [MP, Theorem 3.10] implies that

tR1 (P ) = max
{
3
(
tS0 (J) + 1

)
, tS1 (J) + tS0 (J) + 2, tS2 (J) + 1

}
= max{9, 7, s} = s .

�

7. Ideals with Large Regularity

In this section we provide an infinite family of counterexamples to the Eisenbud-Goto Reg-

ularity Conjecture that do not rely on the Mayr-Meyer construction.

Proposition 7.1. Let T be a polynomial ring over a field k and let J = (f, g, h) be a

homogeneous ideal of T such that f, g, h all have the same degree. Let x, y be new variables

and set S = T [x, y]. Let

I = (x3, y3, x2f + xyg + y2h) .
14



Then

regS(S/I) ≥ regT (T/J) + 4 .

Proof. Note that S/I is finitely generated as a T -module. In fact, x2y2(S/I) ∼= (T/J)(−4)

is a T -direct summand of S/I. Since S is faithfully flat over T , we have

regS(S/I) ≥ regT (x
2y2(S/I)) = regT (T/J) + 4.

�

In [Ca, Example 4.2.1] Caviglia showed that if T = k[z1, z2, z3, z4] and

J = (zd1 , z
d
2 , z1z

d−1
3 − z2z

d−1
4 )

with d ≥ 2, then reg(T/J) = d2 − 2. We set S = T [x, y] and

I =
(
x3, y3, x2zd1 + xy(z1z

d−1
3 − z2z

d−1
4 ) + y2zd2

)
.

By the previous proposition we see that reg(S/I) ≥ d2 + 2 for d ≥ 2, while the degrees of

the three generators of I are 3, 3, and d+2. By [MP, Theorem 1.6] we obtain the following

result:

Theorem 7.2. Let P be the step-by-step homogenization of the Rees-like algebra of the

ideal I above, in the polynomial ring R (as constructed in [MP]). Then

deg(R/P ) = 32(d+ 3)

reg(R/P ) ≥ d2 + d+ 12 .

In particular, the Eisenbud-Goto conjecture fails when d ≥ 34.

Acknowledgements. We are very grateful to David Eisenbud for useful discussions.
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