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Abstract—The Multi-Level Fast Multipole Algorithm
(MLFMA), a variant of the fast multiple method (FMM) for
problems with oscillatory potentials, significantly accelerates
the solution of problems based on wave physics, such as those
in electromagnetics and acoustics. Existing shared memory
parallel approaches for MLFMA have adopted the bulk
synchronous parallel (BSP) model. While the BSP approach
has served well so far, it is prone to significant thread
synchronization overheads, but more importantly fails to
leverage the communication/computation overlap opportunities
due to complicated data dependencies in MLFMA. In this
paper, we develop a task parallel MLFMA implementation
for shared memory architectures, and discuss optimizations to
improve its performance. We then evaluate the new task parallel
MLFMA implementation against a BSP implementation for a
number of geometries. Our findings suggest that task parallelism
is generally superior to the BSP model, and considering its
potential advantages over the BSP model in a hybrid parallel
setting, we see it to be a promising approach in addressing the
scalability issues of MLFMA in large scale computations.

I. INTRODUCTION

Hyperbolic partial differential equations (PDEs) are used

in a wide range of physics simulations, including several

problems in electromagnetic and acoustics. These simulations

can range from basic simulations to accelerate prototype de-

velopment to very complex simulations to explore phenomena

that are otherwise impossible to observe experimentally. Many

modern technologies, such as as wireless communication de-

vices, passive and active RF-IDs, optical and terahertz devices,

sonar and radar emitters in automobiles, microwaves, medical

diagnostic and imaging tools, rely on a strong understanding

of electromagnetic interactions described by the Helmholtz

equations and requires analysis on increasingly larger and finer
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structures. Such analysis are heavily reliant on high-fidelity

computational tools which in turn are reliant on improvements

in algorithmic and computational efficiency.

Many modern problems with interactions described by

the Helmholtz equation involve simulation domains covering

several thousand wavelengths. The most expensive component

in solving the Helmholtz integral equation is evaluating the os-
cillatory interactions in the N-body problem corresponding to

the PDE. The Multi-level Fast Multipole Algorithm (MLFMA)

for Helmholtz equations reduces the O(N2
s ) cost of the direct

potential evaluation down to O(Ns logNs) [1] for surface dis-

tributions (which constitute the most relevant problem types),

with Ns being the number of degrees of freedom. While

MLFMA provides a highly favorable algorithmic complexity,

its overall computational and memory costs for applications

requires leveraging the computational power of HPC systems

through parallelization and performance optimizations. The

closely related Laplace FMM (L-FMM) method, which has

been developed for non-oscillatory potentials such as gravi-

tational or electrostatic fields, preceded the MLFMA variant.

Development of efficient L-FMM implementations has been

highly successful in terms of performance and scalability [2]–

[4], but this stands in stark contrast to MLFMA implementa-

tions [5]–[8], mainly due to the complex computation patterns

and memory requirements of MLFMA.

MLFMA belongs to the broader class of tree algorithms

[9]–[14] used to accelerate N-body computations. Broadly

speaking, there are two types of MLFMA implementations,

those using local interpolation [15]–[17] and those using

global interpolation [18]. As demonstrated in several related

works, in large-scale computations inter-process communica-

tion overheads significantly hamper the scalability of both

versions, but more so of the global interpolation based version

[19]. In this paper, we focus on the global interpolation

version of MLFMA, as it provides arbitrary error control

and is known to be favorable over the local interpolation
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version in terms of computational and memory costs [20],

[21]. As investigated in our recent study [19], despite careful

optimizations, the strong scaling efficiency of an MPI-only

parallel implementation of global interpolation based MLFMA

drops precipitously beyond a few thousand cores. Obviously,

on modern systems with massive on-node parallelism, a hybrid

process and thread parallel approach can help alleviate the

onset of communication overheads as threads on the same

node can share data through the shared memory address

space in place of inter-process communications. Furthermore,

a hybrid parallel approach can lead to significant memory

savings as it would be sufficient to store a single copy of

interaction tables (which are static across all processes) per

node, rather than a single copy per process as in an MPI-only

approach.

MLFMA is a complex algorithm with several stages, each

of which has different characteristics. While some stages

are computation-intensive, others involve frequent communi-

cation operations. Existing hybrid parallelization approaches

for MLFMA have adopted the bulk synchronous parallel

(BSP) model where expensive loops within each stage are

parallelized in a synchronous manner. While the BSP ap-

proach has served well so far, it fails to leverage the com-

munication/computation overlap opportunities across different

MLFMA stages or even within each stage for that matter

(unless one opts for a complicated implementation that re-

quires hand-tuning for the target architecture and problem).

Furthermore, frequent synchronizations across all threads as

required by the BSP model can hamper efficiency on many-

core architectures. On the other hand, a task parallel ap-

proach based on the dataflow model (which is supported

by several runtime systems) can alleviate both shortcomings

outlined above. By enumerating all tasks with their data

dependencies across all MLFMA stages, compute-intensive

and communication-intensive parts of MLFMA can progress

simultaneously which can potentially improve the scalability

of MLFMA. Moreover, in a dataflow model, threads would

need to synchronize only with those threads that are producers

of the data on which they depend.

For reasons outlined above, exploring the pros and cons of

task parallelism for MLFMA is of broad interest. In this paper,

we take a step in this direction and develop a task parallel

MLFMA implementation for shared memory architectures,

and discuss optimizations to improve its performance. We

then evaluate the new task parallel MLFMA implementation

against a BSP implementation for a number of geometries. Our

findings suggest that task parallelism is generally superior to

the BSP model and considering its potential advantages over

the BSP model in a distributed memory setting, we see it to

be a promising approach in addressing the scalability issues

of MLFMA in large scale computations.

II. BACKGROUND AND RELATED WORK

A. Fast Multipole Method (FMM)

The first step of the FMM algorithm is to recursively

subdivide the computational domain into cubes until the

Fig. 1. Dependencies between boxes within an FMM octree due to the
nearfield and farfield computation process.

smallest desired box size, or a target number of particles

per box, is reached. This subdivision is then used to create

an octree structure to provide a hierarchical representation

of the domain. To accelerate the computation, interactions

among particles are approximated over the tree structure rather

evaluating them directly between all pairs. Within the tree

hierarchy, interactions are classified as near field and far field
interactions. Two boxes are considered within each other’s

near field, if they share any face, edge or corner; interactions

among particles inside such box pairs are evaluated directly.

Two boxes are considered in each other’s far field, if their

parent boxes are in each other’s near field, but the child boxes

themselves are not touching each other. In case of far field

boxes, interactions among particles are approximated through

multipole expansions. More specifically, the procedure below

is followed (further mathematical details can be found in [10],

[11], [22], [23]):

1) Compute charge to multipole information for each leaf

node based on the particles it encloses (C2M),

2) compute the multipole expansions for each node in the

tree by traversing up the tree and interpolating from the

multipole information of all of its children (M2M),

3) calculate interactions between far-field pairs by translat-

ing multipole expansions of sources to the observers’

locations (M2L), these translated expansions are then

referred to as local expansions
4) starting at the highest level nodes and traversing all the

way down to the leaves, distribute (anterpolate) local

expansions aggregated at non-leaf observer boxes as a

result of M2L translations to their children (L2L),

5) convert the resulting local expansions at each leaf box

to particles enclosed therein (L2O).

Figure 1 shows how the interaction information flows from

the multipole expansion tree on the left side through the local

expansion tree on the right side, through different stages of the

FMM algorithm (for illustration purposes, only a small subset

of interactions/information flow is shown). In MLFMA, mem-

ory and computation associated with each node quadruples at

each level as one ascends in the tree. Consequently, for surface

geometries that are typical in electromagnetics and acoustics
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applications, each level has approximately the same amount

of memory and computation costs. Note that all nodes within

a given level can be processed independently, while traversing

up (M2M) or down (L2L) the tree. Therefore, it is relatively

straight-forward to apply the BSP model to MLFMA, as one

can loop through the tree level by level and divide up the

nodes at each level among threads using parallel-for loops.

This method may run into a bottleneck as there are fewer (but

significantly heavier) nodes available while moving up the tree,

leading to the possibility of more threads being available to

work than the number of nodes above a certain level. In levels

where this occurs, one can parallelize over operations within

each tree node at the expense of finer-grained synchronization

overheads among threads.

The information flow shown in Fig. 1 nicely illustrates the

dependencies among different computational steps associated

with the tree nodes. Dependencies among these tasks form a

directed acyclic graph (DAG) which can easily be expressed

through a runtime system with dataflow dependency support.

A task parallel approach is less prone to thread idling as it

can “fill in” any voids with useful work from other stages

of the computation, and finer parallelization of heavier few

nodes towards the top of the tree does not necessarily require

participation (and synchronization) by all threads. In this

sense, task parallelism provides a flexible and potentially

effective solution.

B. Related Work

To the best of our knowledge, task parallelism has not been

explored in detail in the context of MLFMA before, but there

are several prior works on task parallel L-FMM. Of those,

studies by Agullo et al. [24] and Yokota et al. [25] are

similar to this work. Agullo et al. evaluate multiple methods of

thread parallel approaches; in the first method they split all tree

nodes for each level between threads using a parallel-for, they

then expand this method by investigating a single thread only

processing of some of a parent node’s children or a portion of

a node’s far-field interactions. Finally, they interleave different

steps of FMM by using tasks with different DAG orderings

and priorities. Each approach shows good strong scaling of

up to 91% efficiency on a shared memory architecture, when

a geometry with a large number of particles is chosen. The

efficiency falls off when using a smaller number of particles.

This high efficiency is in part due to a majority of L-FMM

processing being at the lowest level of the tree where there

are a large number of tree nodes that can be parallelized

independently.

Yokota presents an L-FMM implementation using a dual

tree traversal scheme and task based parallelism [25]. The dual

tree approach provides greater flexibility in tree partitioning

and consequently in load balancing. The implementation is

shown to scale well on a shared memory system, and performs

better than other algorithms on the same hardware.

Pi et al. analyze a BSP implementation for MLFMA [26].

The implementation simply loop parallelizes the creation of

the near-field interaction matrix, and uses parallel-loops to

process nodes during each level of the far-field tree traversal.

With runs up to 16 threads on the Deep-Comp 7000 HPC at the

Chinese Academy of Sciences, the near-field parallel portion

shows efficiencies above 95%, while the far-field parallel

portion shows lower efficiencies of under 75%.

Abduljabbar et al. describe a solver for low-frequency 3D

Helmholtz soft body acoustic problems [27], which is probably

the closest work reported in the literature to our work. They

outline the shared memory optimizations they have performed

on MLFMA to maximize node performance. They break down

these optimizations into two categories: Data-level and thread-

level parallelism. In the context of data-level parallelism, they

exploit the vectorization units in modern multi-core proces-

sors, mostly through compiler-aided techniques. Their thread-

level parallelization scheme extends the task based dual-tree

approach proposed by Yokota, but it lacks details in regards

to how they adopt the dual-tree approach to MLFMA. Even

though theirs is a distributed memory parallel implementation,

it is also not detailed if/how communications are performed

along with computational tasks being performed by multiple

threads. For these reasons, effective task parallelization strate-

gies for MLFMA warrant further in-depth analysis.

C. Contributions

Our contributions in this work can be summarized as

follows:

1) We develop an efficient task parallel implementation of

MLFMA,

2) we explore ideal task orderings and task granularities

for optimal performance, and

3) we present an in-depth comparison of BSP and task

parallel MLFMA implementations on modern shared

memory architectures.

III. METHODS

A. MLFMA with BSP

Applying the BSP model in MLFMA is relatively straight-

forward, as it mainly amounts to parallelizing over tree nodes

for each phase of MLFMA using parallel-for loops. Never-

theless, we provide some details to facilitate the performance

analysis and comparison discussions presented in the next

section. As the base MLFMA implementation is written in

Fortran, OpenMP was used for thread parallel development

for both BSP and task parallel.

1) Near-field Computations (NF): In this phase, point-to-

point interactions for all particles in a given leaf box with

particles in nearby leaf boxes are processed using direct

interactions. In doing so, we choose to sweep through all pairs

in an observer-first parallel loop, i.e., the effects of all source

particles on an individual observer particle is calculated by a

single thread. This avoids the write-after-write contention that

would have risen had we chosen to sweep through all pairs in

a source-first way.
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2) Upward Tree Traversal (C2M and M2M): For the

upward tree traversal, we choose a level-by-level approach

over a post order traversal approach because it 1) can easily

exploit the independent parallel processing opportunity among

nodes in a particular level, and 2) does not suffer from

load imbalances among threads as all nodes in a level have

similar computational costs. In the upward tree traversal,

first all leaf nodes are processed in parallel, performing the

C2M operations for each leaf node. Then during M2M, the

multipole information of previously processed child nodes is

interpolated, shifted and aggregated to form the multipole

information of their parent nodes. This process is repeated

moving up one level at a time until all levels have been

processed. This scheme requires synchronization among all

threads at the end of each tree level.

3) Translations (M2L): M2L is very similar to near-field

computation, after all, these are the two MLFMA phases where

actual interactions take place. Observer boxes are looped over

in parallel and the translations from each source box which has

far-field interactions with the current observer are computed

and aggregated to the observer boxes. In this phase, observer

boxes are processed in a post-order traversal order as our

implementation has evolved from a serial implementation. For

M2L, there is no clear advantage of level-by-level processing

over post-order processing or vice versa, because all nodes

across the entire tree are fully independent of each other. The

only dependency for any observer box is that the upward

traversal phase (C2M and M2M) must be completed for

all source boxes before the M2L translation can safely be

performed.

4) Downward Tree Traversal (L2L and L2O): The down-

ward tree traversal is almost the reverse operation of the

upward tree traversal. We loop though the tree level-by-level

in a top-down manner, and perform a parallel loop over nodes

in each level.

B. Task Parallel MLFMA

Creation of tasks in Helmholtz FMM requires a balance

between task granularity versus flexibility. For instance, for a

coarse granularity partitioning, a geometry with 16 nodes to

compute at its highest level of computation could have each of

the 16 nodes along with all their children defined as a task and

have them assigned to one of 16 threads available. While such

a partitioning provides coarse grained tasks, an unbalanced tree

would result in some threads completing their tasks at much

different times from others. Conversely, tasks can be limited

in scope to the interpolation of a single child node, or the

translation of one source to observer node. Tasks of this scale

would be fine-grained, but would have far fewer dependencies

within the tree. The reduced dependencies mean more tasks

would be available to threads for execution at any given time.

However, this would also mean more scheduling overheads at

runtime. As a guiding principle, we try to balance between the

flexibility of fine-grained tasks vs. their scheduling overheads.

1) Near-field Computations (NF): We have chosen to keep

the task parallel near-field implementation simple and straight-

forward. Much like the loop parallel implementation which

performs a parallel loop through all observer nodes, we make

near-field computations of each observer node a task. Near-

field computations implemented in this way only has output

dependencies with the L2O phase, thus they can be executed

at any other time. This provides great scheduling flexibility

and potential performance improvements as near-field compu-

tations can help fill-in the thread idlings during execution of

the far-field interactions that have complex dependencies.

2) Upward Tree Traversal (C2M and M2M): The C2M

step generates the multipole expansion of a leaf box from all

particles within it. We create a task for the C2M operation

of each leaf node. Even for a small geometry, the number

of leaves far exceeds the number of threads available on a

typical shared memory architecture. Thus, there is little point

in making C2M tasks finer grained than creating the entire

multipole expansion for a single leaf. Creating a task from

groups of leaves would yield larger granularity tasks, but it

would also increase the number of M2M and M2L tasks

dependent on each C2M task, restricting parallelism up the

tree.

The M2M step generates the multipole expansion of a

parent node from all its children. We create a separate task

for each child being interpolated, shifted and aggregated to

create a parent node. This means each task has a single input

dependency on the child node’s multipole data being ready and

a single output dependency on the parent node. The M2M

operation to produce the entire multipole data for a parent

node could be a single task as well, but then such a task

would depend on multipole data for all child nodes being

ready, instead of just one. As we demonstrate in Section IV,

coarse-graining M2M tasks does not perform as well as the

fine-grain approach we adopt.

We provide the pseudocode for this initial version of our

task-parallel upward tree traversal algorithm in Alg. 1.

Algorithm 1 Task-based upward tree traversal

Require: p.center coordinates of the parent box center

Ensure: pmp is parent’s multipole representation

1: for each box p in post-order traversal do
2: if p is leaf box then
3: task Depend Out box p
4: pmp ← C2M(p)

5: end task
6: else
7: for each child box c do
8: task Depend In all child box c Depend Out

box p
9: mp[c] ← interpolation(c)

10: smp[c] ← shift(mp, p.center)

11: aggregate(pmp,smp[c])
12: end task
13: end for
14: end if
15: end for
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One of the drawbacks of the above described upward tree

traversal scheme is interpolation of the nodes at the higher lev-

els of the tree. For instance, in a typical surface geometry, there

are likely to be 16 nodes at the highest level. Due to output

dependencies, only up to 16 threads can be actively working

on the interpolation of these high-level nodes. Therefore, we

apply a further refinement of M2M tasks for the high level

tree nodes. All samples within a node are fully independent

during the shifting and aggregating operations, therefore we

split these operations into many tasks for individual nodes.

Interpolation is more complex though. While it is beyond the

scope of this paper to go into too much detail, in MLFMA

multipole data take the form of functions sampled in two

angular dimensions; the data can be viewed as a rectangular

array of function samples which can be partitioned into block

columns or rows. FFT-based interpolation of these partitions

are also independent of each other [18], [19]. Hence, we create

tasks for interpolations of partitions. We illustrate the fine-

grained task parallel M2M method used for high level nodes

in Alg.2.

Algorithm 2 Parallel Interpolation

Ensure: c is the child box being interpolated

1: pts ← partition(c)
2: for each partition p in pts do
3: task
4: for each θ vector v in p do
5: theta[v] ← interpolate(v)

6: shift1[v] ← transposeandfold(theta[v])
7: end for
8: end task
9: end for

10: TaskWait
11: pts ← partition(shift1)

12: for each partition p in pts do
13: task
14: for each φ vector v in p do
15: phi[v] ← interpolate(v)

16: shift1[v] ← transposeandfold(phi[v])
17: end for
18: end task
19: end for
20: TaskWait

3) Translations (M2L): The M2L phase translates the mul-

tipole expansion of each source box to the local expansions

of all observer boxes in its far-field. Following our previous

strategy of minimal dependencies would mean each translation

of source to observer box should be a separate task as in fine-

grained parallelization of M2M phase. On the other extreme,

all translations for a source node could be defined as a single

task which could potentially reduce the number of times

a source node needs to be loaded from memory. We have

found that a middle ground between the two, i.e., performing

translations in chunks, is the most efficient approach for M2L.

In MLFMA, the number of translations (interactions) re-

quired for a node changes significantly from a geometry to

another - while the average number of translations per node is

about 27 for a surface geometry, this number goes up to 189

for a volume geometry (which is not common in practice).

Therefore, we experimented with various bundling factors (bf )

for M2L, see Section IV for further details. We provide the

pseudocode for our task-parallel M2L implementation with

bundling in Alg. 3.

Algorithm 3 Task-parallel translations

Ensure: bf is translation bundling factor

Ensure: lp is the local expansions of the box

1: for each box b do
2: for each box fb interacting with b in groups of bf do
3: task Depend In box b Depend Out box fb
4: int ← compute interaction(fb,b)
5: lp[b] ← add interaction(int)
6: end task
7: end for
8: end for

4) Downward Tree Traversal (L2L and L2O): As men-

tioned before, L2L and L2O steps are almost the reverse of

M2M and C2M operations, respectively. As such, their task

parallelization follows the same strategy as upward tree traver-

sal outlined above, albeit with some simplifications. For L2L,

the highest level nodes are read-only. Output dependencies are

on nodes the next level down, which will have a minimum of

64 nodes. This represents a sufficient degree of parallelism

for existing multi-core and many-core architectures, therefore

we have not adopted the fine-grained parallelization method

of M2M here, but it certainly can be done relatively easily.

5) Task ordering: A further consideration is the impact of

the order of tasks. Being able to influence the scheduling

of tasks is important for performance reasons because tasks

from different phases of the computation that do not have de-

pendencies between them may “fill-in” the voids encountered

during execution. Most task-based runtime systems, including

OpenMP which we have used for implementation of our ideas

described above, allow programmers to specify task priorities.

In OpenMP though, task priorities are only suggestions for the

runtime system and we have observed in general that these

priorities have little to no effect in terms of the scheduling

of tasks; at least, that has been the case for our task-parallel

implementation. However, we have found that the order in

which tasks are generated affects their execution order and

that is what we have used to modify the scheduling of tasks.

In this regard, near-field tasks provide the greatest flexibility

because they can only conflict with the L2O tasks writing the

tree-generated potential values. Therefore, near-field tasks can

be performed without race conditions at any time before or

after L2O. The chosen time to perform nearfield processing

of our algorithm is after translations (M2L) and before starting

the downward traversal (L2L). At the top of the MLFMA tree,

the number of nodes is typically smaller than the number of
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threads, but each node is very large and requires significant

amount of computation. As a result, there is a good chance

that some threads will be left without tasks to perform until

the upward traversal (M2M) and translations (M2L) of these

highest level nodes are completed. Performing near-field com-

putations during this time-frame fills in any potential gaps.

The remaining stages of the tree traversal have more de-

pendencies to deal with. A node cannot start its M2M com-

putations until the M2M computations of its child nodes have

finished. A node cannot perform its M2L translations until its

own M2M computations are completed. Finally, a node cannot

start its L2L phase until its parents have completed theirs

and the node has completed its M2L interactions. This limits

task ordering, but still allows some flexibility. The simplest

implementation is generating all upward traversal tasks first,

then all far-field interaction tasks, and finally all downward

traversal tasks. Alternatively, one can do the same thing but

at the level of individual nodes. As soon as a node has

interpolated, shifted and aggregated all of its children, farfield

interactions can be computed for that node. On the opposite

end, a high level node can perform its L2L operations as soon

as M2L has translated all of its source nodes, but before

any of its children have performed M2L translations. This

approach can be repeated, computing anterpolations before

translations where possible. The first method was chosen as it

was empirically found to perform better.

IV. RESULTS

In this section, we evaluate the performance of the task-

parallel MLFMA algorithm described. All results were ob-

tained on the Cori supercomputer at National Energy Research

Scientific Computing Center (NERSC). Each Haswell node

on this system contains two sockets, populated with Intel

Xeon E5-2698 v3 (Haswell) processors with a clock speed

of 2.3 GHz. Each node has 32 cores, plus hyperthreading, 128

GB 2133MHz DDR4 RAM, and 40M Cache. The code is

implemented in Fortran 90 using only OpenMP parallelization

and was compiled with the Intel compiler version 19.0.3.199.

The Cray FFTW library version 3.3.8.4 is used for all FFT

operations.

Performance was also measured using Cori’s KNL nodes.

Each KNL node contains a single socket, populated with an

Intel Xeon Phi Processor 7250 (”Knights Landing”) processor

with a clock speed of 1.4 GHz. Each node has 68 cores, with

4 hardware threads per node, 96 GB 2400 MHz DDR4 RAM,

and 64 KB L1 cache per core, plus 1MB L2 cache per tile (2

cores per tile). The lower processor speed vs Haswell leads to

longer execution times.

A. Tuning the Task-Parallel MLFMA Implementation

As mentioned in III, there are two optimizations we used for

our task-parallel MLFMA implementation. These are ordering

of the creation of tasks, which in turn alters the scheduling

of tasks, and bundling of tasks. For tuning our implementa-

tion, we chose a 7-level sphere geometry, as spheres are a

commonly used benchmark for MLFMA codes. Our tuning
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Fig. 2. Impact of task order on execution time.

is empirical, certainly relying on the specific architecture and

geometry. However, we note that in applications, the MLFMA

is used as an inner kernel in long-running iterative solvers that

can take hundreds to thousands of iterations to converge for

large problems. Since our tuning parameter space is relatively

small, it is practical to tune the performance for the particular

geometry and architecture before the actual solver is launched.

1) Task Generation Ordering: Since the near-field (NF)

phase is the most flexible phase within MLFMA, we created

different flavors of task-parallel MLFMA where NF tasks are

generated between all tree computation phases. Starting with

“NF First”, these are “NF after M2M”, “NF after M2L”,

“NF Last”. There are two other finer grain reorderings; they

interleave the execution of M2L with M2M (“M2L during

M2M”) or M2L with L2L (“M2L after L2L”), rather than

executing each phase entirely separately.

As can be seen in Fig. 2, for most thread counts, generating

NF tasks at different phases has minimal impact, but for 64

threads “NF after M2L” results in a 5% performance im-

provement over the others. Executing L2L wherever possible

before M2L produces good scaling, but poor execution times

overall. Executing M2L as soon as possible during the M2M

execution shows a slight improvement in performance. Finally,

combining the best of the two task orders, “NF after M2L” and

“M2L during M2M”, produces a 4% execution improvement

at 32 threads and over 18% improvement at 64 threads. This

method is labeled on the graph as “Optimal”, and is used for

the task-parallel MLFMA results reported.

2) Task Bundling for M2L: The second optimization we

implemented is bundling tree operations together in each

task. For the same sphere geometry, we experimented with

different bundling schemes. This included the extreme cases

of bundling all M2M operations of children of a single parent

node together on one side and creating a separate task for

each child on the other side. Both methods performed on par

with each other for small thread counts, but we observed that
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bundling all children into a single task during M2M performed

significantly worse at 64 threads (see Fig. 3). This is likely due

to the small number of tasks created at higher tree levels which

contain computationally expensive nodes. Therefore, we define

all children during M2M as individual tasks.

For M2L interactions, we experimented with different

bundling factors such as 9, 27 (which is the expected num-

ber of interactions for surface geometries), 189 (theoretical

maximum for M2L for any geometry) and compared them

with regular (non-bundled) M2L in terms of performance, see

Fig. 3. Grouping the translations of 9 observer nodes with a

common source node into a single task provides a notable

benefit. Any impact is barely noticeable through 16 threads,

but at 32 and 64 threads, the performance improvement over

the non-bundled version is nearly 33%. Increasing the bundling

factor to 27 interactions of a common source node decreases

the performance slightly, and the extreme case of bundling 189

interactions results in a significant performance falloff even at

small number of threads. All results presented in the rest of

this manuscript uses a bundling factor of 9 for the M2L phase.

B. Performance Comparison between BSP and Task Parallel
Implementations

In this subsection, we compare the performance of our task

parallel MLFMA implementation against the BSP version on

a number of geometries. Both versions use the same tree

construction methods (so the amount of work performed by

both methods is identical) and they use the same OpenMP

compilation and runtime settings. The potentials computed

by both versions were compared to ensure that the only

differences are due to floating point arithmetic precision.

For benchmarking, we used four different geometries. The

first geometry is a simple planar grid of particles (in the

z = 0 plane). The grid dimensions are 128λ × 128λ, with

5,242,880 points uniformly distributed over the geometry and

smallest FMM box size of λ/4. This produces a 10-level tree

with 20 points in each leaf box. The second geometry is a

sphere whose radius is 128λ, with 7,264,954 points uniformly

distributed over the geometry and smallest FMM box size

of λ/4. This also produces a 10-level tree, with an average

of 18 points in each leaf box. The third geometry is a 3D

volumetric distribution of particles. The box dimensions are

8λ×8λ×8λ, with 1,048,576 points randomly distributed over

the cube and smallest FMM box size of λ/4. This produces

a 6-level tree with an average of 32 points in each leaf box.

The last geometry is an airplane model which is of size 256λ
in length. It is discretized with over 4,459,776 points and the

smallest FMM box size is λ/4. This produces an 11-level tree

with an average of 15 points in each leaf box, albeit with a

highly non-uniform distribution of points across leaves.

1) Performance on a Multicore Architecture (Cori-
Haswell): Figure 4 compares the execution times of BSP

and task-parallel MLFMA versions using 1 to 64 threads.

Note that the Haswell processors only have 32 physical cores

(on two sockets), so 64 thread executions use hyperthreading.

The airplane model, which is a real application, shows the

strongest performance advantage for task-parallel MLFMA as

it attains as much as 1.35x speedup over the BSP version.

Both the grid and volume geometries also show that the task

parallel version achieves consistently increasing speedups over

the BSP version with increasing number of threads. While we

initially observe significant gains with task parallelism over the

BSP version for the sphere geometry as well, to our surprise

these gains fade away at high number of threads. We try to

provide a more detailed insight into these results in the next

subsection.

2) Manycore Architecture (Cori-KNL): We performed the

same performance analysis using Cori-KNL nodes which have

a significantly different architecture than Cori-Haswell nodes.

We observe that for 2 to 32 threads, task parallel MLFMA

shows performance gains similar to those of Cori-Haswell

experiments (see Fig. 5). However, its scalability falls off

slightly at 64 cores, which is potentially due to two cores

sharing the L2 cache on a tile when the number of threads is

increased from 32 to 64. Beyond 64 threads, KNL effectively

employs hyperthreading. In this regime (not shown in plots),

while the BSP implementation is able to keep performing at

a similar level, the performance of the task parallel MLFMA

actually starts dropping. This is likely because the scheduling

of tasks which must be done sequentially starts becoming a

bottleneck with the increase in the number of threads. The

use of many slow cores on KNL (as opposed to multiple high

performance cores like Xeon CPUs) can have a compounding

effect on this bottleneck, too.

C. Understanding the Reasons behind Observed Differences

To understand the performance benefits of task parallel

MLFMA over BSP version, we conducted timeline and cache

performance analyses, for which we used the perf-stat tool.
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Fig. 4. Task vs Loop (BSP) parallel runs on Haswell compute nodes for four
different geometries.
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Fig. 5. Task vs Loop (BSP) parallel runs on KNL compute nodes for four
different geometries.

1) Timeline Analysis: Figure 6 shows the order of execution

of threads in the BSP version execution for a 7-level grid

geometry using 64 threads (hyperthreaded) on a Cori-Haswell

node. NF, C2M and L2O all perform well. Each of these

operations has a very large number of nodes that can all

be processed in parallel. M2M begins showing load balance

issues which become very significant at the highest level where

only 16 nodes can be processed. M2L shows a lesser extent

of thread idleness, likely due to thread dependencies as there

are a large number of M2L nodes that can be processed in

parallel, up to the highest level where we again see an issue

with there only being 16 nodes at the top level. Finally, L2L

shows similar thread inactivity as M2M, but in reverse.

Figure 7 shows the order of execution of the tasks during

task parallel MLFMA. Unlike the BSP version, C2M, M2M

and M2L tasks are mixed together as dependencies allow.

Further, NF is mixed in with other tasks, filling in some

the empty space during M2M computation of the top level

and M2L helping fill in more of the rest. The start of L2L

also shows the benefit of fine grain parallel at the top level

interpolation and anterpolation operations where more threads

are able to participate.
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Fig. 6. BSP timeline on grid geometry.
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Fig. 7. Task parallel timeline on grid geometry.

Figures 8 and 9 show how the BSP and task parallel

timelines change for a spherical geometry. The sphere fills

more of the highest level tree nodes. This means the BSP

approach has more nodes to process at the top level and is

more efficient at keeping all threads active. The dependencies

caused by lower level nodes having fewer child boxes than

higher level nodes, as the sphere acts more like a surface,

mean the task parallel approach has more tasks that cannot be

executed until dependent tasks complete. As a result, the task

parallel approach is not as efficient for this example.

Alternately, Figures 10 and 11 show how the BSP and task

parallel timeline behave for an airplane geometry. Unlike the

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore.  Restrictions apply. 



Nearfield C2M M2M

M2L L2L L2O

Time (Seconds)

T
h
re

ad
ID

(0
-6

3
)

Fig. 8. BSP timeline on the sphere geometry.
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Fig. 9. Task parallel timeline on the sphere geometry.

previous examples, this geometry is non-uniform, so many of

the particles are clustered in fewer nodes. The impact of this

can be seen in Figure 10 where the top levels of M2M and

L2L have fewer nodes that can be processed. Furthermore,

the next level down still has a limited number of nodes to

process. Figure 11 shows that tasks keep more threads active

by performing M2L and NF tasks during the times when there

are not enough high level nodes to occupy all threads.
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Fig. 10. BSP timeline on the airplane geometry.

2) Cache Analysis: To look further at why the task parallel

approach is more efficient, we analyzed the cache utilization of

the two versions. Cache analysis was performed using VTune

and 64-thread executions of the grid geometry on Cori-Haswell

nodes. The cache analysis runs in Fig. 12 show that the ratio
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Fig. 11. Task parallel timeline on the airplane geometry.

of cache hits to misses is not always more favorable for task

parallel vs the BSP version. However, since L1 cache hits ratio

is as high as 99.8%, any differences are effectively a rounding

error. As such, we conclude that while task parallel MLFMA

makes less effective use of cache, this does not negatively

impact its performance at a significant degree.
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Fig. 12. Comparison of the cache performance of BSP and task parallel
implementations on a Cori-Haswell node.

V. CONCLUSIONS

Due to the near constant amount of processing necessary

per level with the number of nodes per level decreasing while

moving up the tree, Helmholtz FMM presents challenges to

parallelization that are not present in Laplace FMM. In this

paper, we presented a task parallel MLFMA implementation

to address these parallelization challenges. Results on various

geometries have shown that in most cases, particularly for

the real world application case of an airplane geometry, the

task parallel implementation shows improved performance

and scalability for shared memory architectures compared to

a bulk synchronous parallel MLFMA implementation. Our
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study provides evidence that task parallelism is a promising

approach for MLFMA, and it can be even more useful in a

hybrid shared and distributed memory parallel context because

it would allow great flexibility in terms of overlapping the

execution of communication-intensive parts of MLFMA with

its computation-intensive parts so as to minimize idle times

and achieve scaling to a large number of compute nodes.
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