2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC) | 978-1-6654-2292-5/20/$31.00 ©2020 IEEE | DOI: 10.1109/HIPC50609.2020.00018

2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)

Exploring Task Parallelism for the Multilevel Fast
Multipole Algorithm

Michael P. Lingg
Computer Science and Engineering
Michigan State University
East Lansing, MI
linggmic @msu.edu

Balasubramaniam Shanker
Electrical and Computer Engineering
Michigan State University
East Lansing, MI
bshanker @msu.edu

Abstract—The Multi-Level Fast Multipole Algorithm
(MLFMA), a variant of the fast multiple method (FMM) for
problems with oscillatory potentials, significantly accelerates
the solution of problems based on wave physics, such as those
in electromagnetics and acoustics. Existing shared memory
parallel approaches for MLFMA have adopted the bulk
synchronous parallel (BSP) model. While the BSP approach
has served well so far, it is prone to significant thread
synchronization overheads, but more importantly fails to
leverage the communication/computation overlap opportunities
due to complicated data dependencies in MLFMA. In this
paper, we develop a task parallel MLFMA implementation
for shared memory architectures, and discuss optimizations to
improve its performance. We then evaluate the new task parallel
MLFMA implementation against a BSP implementation for a
number of geometries. Our findings suggest that task parallelism
is generally superior to the BSP model, and considering its
potential advantages over the BSP model in a hybrid parallel
setting, we see it to be a promising approach in addressing the
scalability issues of MLFMA in large scale computations.

[. INTRODUCTION

Hyperbolic partial differential equations (PDEs) are used
in a wide range of physics simulations, including several
problems in electromagnetic and acoustics. These simulations
can range from basic simulations to accelerate prototype de-
velopment to very complex simulations to explore phenomena
that are otherwise impossible to observe experimentally. Many
modern technologies, such as as wireless communication de-
vices, passive and active RF-IDs, optical and terahertz devices,
sonar and radar emitters in automobiles, microwaves, medical
diagnostic and imaging tools, rely on a strong understanding
of electromagnetic interactions described by the Helmholtz
equations and requires analysis on increasingly larger and finer

This work was supported by the National Science Foundation under
Grant No. CCF-1822932. This research used resources of Michigan State
University’s High Performance Computing Center (MSU HPCC) and the
National Energy Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility operated under Contract
No. DE-AC02-05CH11231.

Stephen M. Hughey
Electrical and Computer Engineering
Michigan State University
East Lansing, MI
hugheyst@msu.edu

Doga Dikbayir
Computer Science and Engineering
Michigan State University
East Lansing, MI
dikbayir@msu.edu

Hasan Metin Aktulga
Computer Science and Engineering
Michigan State University
East Lansing, MI
hma@cse.msu.edu

structures. Such analysis are heavily reliant on high-fidelity
computational tools which in turn are reliant on improvements
in algorithmic and computational efficiency.

Many modern problems with interactions described by
the Helmholtz equation involve simulation domains covering
several thousand wavelengths. The most expensive component
in solving the Helmholtz integral equation is evaluating the os-
cillatory interactions in the N-body problem corresponding to
the PDE. The Multi-level Fast Multipole Algorithm (MLFMA)
for Helmholtz equations reduces the O(NN2) cost of the direct
potential evaluation down to O(N, log N;) [1] for surface dis-
tributions (which constitute the most relevant problem types),
with N being the number of degrees of freedom. While
MLFMA provides a highly favorable algorithmic complexity,
its overall computational and memory costs for applications
requires leveraging the computational power of HPC systems
through parallelization and performance optimizations. The
closely related Laplace FMM (L-FMM) method, which has
been developed for non-oscillatory potentials such as gravi-
tational or electrostatic fields, preceded the MLFMA variant.
Development of efficient L-FMM implementations has been
highly successful in terms of performance and scalability [2]-
[4], but this stands in stark contrast to MLFMA implementa-
tions [5]-[8], mainly due to the complex computation patterns
and memory requirements of MLFMA.

MLFMA belongs to the broader class of tree algorithms
[9]-[14] used to accelerate N-body computations. Broadly
speaking, there are two types of MLFMA implementations,
those using local interpolation [15]-[17] and those using
global interpolation [18]. As demonstrated in several related
works, in large-scale computations inter-process communica-
tion overheads significantly hamper the scalability of both
versions, but more so of the global interpolation based version
[19]. In this paper, we focus on the global interpolation
version of MLFMA, as it provides arbitrary error control
and is known to be favorable over the local interpolation

978-1-6654-2292-5/20/$31.00 ©2020 IEEE 41
DOI 10.1109/HiPC50609.2020.00018

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore. Restrictions apply.

version in terms of computational and memory costs [20],
[21]. As investigated in our recent study [19], despite careful
optimizations, the strong scaling efficiency of an MPI-only
parallel implementation of global interpolation based MLFMA
drops precipitously beyond a few thousand cores. Obviously,
on modern systems with massive on-node parallelism, a hybrid
process and thread parallel approach can help alleviate the
onset of communication overheads as threads on the same
node can share data through the shared memory address
space in place of inter-process communications. Furthermore,
a hybrid parallel approach can lead to significant memory
savings as it would be sufficient to store a single copy of
interaction tables (which are static across all processes) per
node, rather than a single copy per process as in an MPI-only
approach.

MLFMA is a complex algorithm with several stages, each
of which has different characteristics. While some stages
are computation-intensive, others involve frequent communi-
cation operations. Existing hybrid parallelization approaches
for MLFMA have adopted the bulk synchronous parallel
(BSP) model where expensive loops within each stage are
parallelized in a synchronous manner. While the BSP ap-
proach has served well so far, it fails to leverage the com-
munication/computation overlap opportunities across different
MLFMA stages or even within each stage for that matter
(unless one opts for a complicated implementation that re-
quires hand-tuning for the target architecture and problem).
Furthermore, frequent synchronizations across all threads as
required by the BSP model can hamper efficiency on many-
core architectures. On the other hand, a task parallel ap-
proach based on the dataflow model (which is supported
by several runtime systems) can alleviate both shortcomings
outlined above. By enumerating all tasks with their data
dependencies across all MLFMA stages, compute-intensive
and communication-intensive parts of MLFMA can progress
simultaneously which can potentially improve the scalability
of MLFMA. Moreover, in a dataflow model, threads would
need to synchronize only with those threads that are producers
of the data on which they depend.

For reasons outlined above, exploring the pros and cons of
task parallelism for MLFMA is of broad interest. In this paper,
we take a step in this direction and develop a task parallel
MLFMA implementation for shared memory architectures,
and discuss optimizations to improve its performance. We
then evaluate the new task parallel MLFMA implementation
against a BSP implementation for a number of geometries. Our
findings suggest that task parallelism is generally superior to
the BSP model and considering its potential advantages over
the BSP model in a distributed memory setting, we see it to
be a promising approach in addressing the scalability issues
of MLFMA in large scale computations.

II. BACKGROUND AND RELATED WORK

A. Fast Multipole Method (FMM)

The first step of the FMM algorithm is to recursively
subdivide the computational domain into cubes until the

42

Nearfield _—

Particles y \

Neame\d P —
M2
Particles \SM L2~ Observers
~

Nearfield—— _ P .

Fig. 1. Dependencies between boxes within an FMM octree due to the
nearfield and farfield computation process.

smallest desired box size, or a target number of particles
per box, is reached. This subdivision is then used to create
an octree structure to provide a hierarchical representation
of the domain. To accelerate the computation, interactions
among particles are approximated over the tree structure rather
evaluating them directly between all pairs. Within the tree
hierarchy, interactions are classified as near field and far field
interactions. Two boxes are considered within each other’s
near field, if they share any face, edge or corner; interactions
among particles inside such box pairs are evaluated directly.
Two boxes are considered in each other’s far field, if their
parent boxes are in each other’s near field, but the child boxes
themselves are not touching each other. In case of far field
boxes, interactions among particles are approximated through
multipole expansions. More specifically, the procedure below
is followed (further mathematical details can be found in [10],
[11], [22], [23]):

1) Compute charge to multipole information for each leaf
node based on the particles it encloses (C2M),
compute the multipole expansions for each node in the
tree by traversing up the tree and interpolating from the
multipole information of all of its children (M2M),
calculate interactions between far-field pairs by translat-
ing multipole expansions of sources to the observers’
locations (M2L), these translated expansions are then
referred to as local expansions

starting at the highest level nodes and traversing all the
way down to the leaves, distribute (anterpolate) local
expansions aggregated at non-leaf observer boxes as a
result of M2L translations to their children (L2L),
convert the resulting local expansions at each leaf box
to particles enclosed therein (L20).

2)

3)

4)

)

Figure 1 shows how the interaction information flows from
the multipole expansion tree on the left side through the local
expansion tree on the right side, through different stages of the
FMM algorithm (for illustration purposes, only a small subset
of interactions/information flow is shown). In MLFMA, mem-
ory and computation associated with each node quadruples at
each level as one ascends in the tree. Consequently, for surface
geometries that are typical in electromagnetics and acoustics

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore. Restrictions apply.

applications, each level has approximately the same amount
of memory and computation costs. Note that all nodes within
a given level can be processed independently, while traversing
up (M2M) or down (L2L) the tree. Therefore, it is relatively
straight-forward to apply the BSP model to MLFMA, as one
can loop through the tree level by level and divide up the
nodes at each level among threads using parallel-for loops.
This method may run into a bottleneck as there are fewer (but
significantly heavier) nodes available while moving up the tree,
leading to the possibility of more threads being available to
work than the number of nodes above a certain level. In levels
where this occurs, one can parallelize over operations within
each tree node at the expense of finer-grained synchronization
overheads among threads.

The information flow shown in Fig. 1 nicely illustrates the
dependencies among different computational steps associated
with the tree nodes. Dependencies among these tasks form a
directed acyclic graph (DAG) which can easily be expressed
through a runtime system with dataflow dependency support.
A task parallel approach is less prone to thread idling as it
can “fill in” any voids with useful work from other stages
of the computation, and finer parallelization of heavier few
nodes towards the top of the tree does not necessarily require
participation (and synchronization) by all threads. In this
sense, task parallelism provides a flexible and potentially
effective solution.

B. Related Work

To the best of our knowledge, task parallelism has not been
explored in detail in the context of MLFMA before, but there
are several prior works on task parallel L-FMM. Of those,
studies by Agullo et al. [24] and Yokota et al. [25] are
similar to this work. Agullo et al. evaluate multiple methods of
thread parallel approaches; in the first method they split all tree
nodes for each level between threads using a parallel-for, they
then expand this method by investigating a single thread only
processing of some of a parent node’s children or a portion of
a node’s far-field interactions. Finally, they interleave different
steps of FMM by using tasks with different DAG orderings
and priorities. Each approach shows good strong scaling of
up to 91% efficiency on a shared memory architecture, when
a geometry with a large number of particles is chosen. The
efficiency falls off when using a smaller number of particles.
This high efficiency is in part due to a majority of L-FMM
processing being at the lowest level of the tree where there
are a large number of tree nodes that can be parallelized
independently.

Yokota presents an L-FMM implementation using a dual
tree traversal scheme and task based parallelism [25]. The dual
tree approach provides greater flexibility in tree partitioning
and consequently in load balancing. The implementation is
shown to scale well on a shared memory system, and performs
better than other algorithms on the same hardware.

Pi et al. analyze a BSP implementation for MLFMA [26].
The implementation simply loop parallelizes the creation of
the near-field interaction matrix, and uses parallel-loops to

43

process nodes during each level of the far-field tree traversal.
With runs up to 16 threads on the Deep-Comp 7000 HPC at the
Chinese Academy of Sciences, the near-field parallel portion
shows efficiencies above 95%, while the far-field parallel
portion shows lower efficiencies of under 75%.

Abduljabbar et al. describe a solver for low-frequency 3D
Helmbholtz soft body acoustic problems [27], which is probably
the closest work reported in the literature to our work. They
outline the shared memory optimizations they have performed
on MLFMA to maximize node performance. They break down
these optimizations into two categories: Data-level and thread-
level parallelism. In the context of data-level parallelism, they
exploit the vectorization units in modern multi-core proces-
sors, mostly through compiler-aided techniques. Their thread-
level parallelization scheme extends the task based dual-tree
approach proposed by Yokota, but it lacks details in regards
to how they adopt the dual-tree approach to MLFMA. Even
though theirs is a distributed memory parallel implementation,
it is also not detailed if/how communications are performed
along with computational tasks being performed by multiple
threads. For these reasons, effective task parallelization strate-
gies for MLFMA warrant further in-depth analysis.

C. Contributions

Our contributions in this work can be summarized as
follows:

1) We develop an efficient task parallel implementation of
MLFMA,

2) we explore ideal task orderings and task granularities
for optimal performance, and

3) we present an in-depth comparison of BSP and task
parallel MLFMA implementations on modern shared
memory architectures.

III. METHODS

A. MLFMA with BSP

Applying the BSP model in MLFMA is relatively straight-
forward, as it mainly amounts to parallelizing over tree nodes
for each phase of MLFMA using parallel-for loops. Never-
theless, we provide some details to facilitate the performance
analysis and comparison discussions presented in the next
section. As the base MLFMA implementation is written in
Fortran, OpenMP was used for thread parallel development
for both BSP and task parallel.

1) Near-field Computations (NF): In this phase, point-to-
point interactions for all particles in a given leaf box with
particles in nearby leaf boxes are processed using direct
interactions. In doing so, we choose to sweep through all pairs
in an observer-first parallel loop, i.e., the effects of all source
particles on an individual observer particle is calculated by a
single thread. This avoids the write-after-write contention that
would have risen had we chosen to sweep through all pairs in
a source-first way.

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore. Restrictions apply.

2) Upward Tree Traversal (C2M and M2M): For the
upward tree traversal, we choose a level-by-level approach
over a post order traversal approach because it 1) can easily
exploit the independent parallel processing opportunity among
nodes in a particular level, and 2) does not suffer from
load imbalances among threads as all nodes in a level have
similar computational costs. In the upward tree traversal,
first all leaf nodes are processed in parallel, performing the
C2M operations for each leaf node. Then during M2M, the
multipole information of previously processed child nodes is
interpolated, shifted and aggregated to form the multipole
information of their parent nodes. This process is repeated
moving up one level at a time until all levels have been
processed. This scheme requires synchronization among all
threads at the end of each tree level.

3) Translations (M2L): M2L is very similar to near-field
computation, after all, these are the two MLFMA phases where
actual interactions take place. Observer boxes are looped over
in parallel and the translations from each source box which has
far-field interactions with the current observer are computed
and aggregated to the observer boxes. In this phase, observer
boxes are processed in a post-order traversal order as our
implementation has evolved from a serial implementation. For
M2L, there is no clear advantage of level-by-level processing
over post-order processing or vice versa, because all nodes
across the entire tree are fully independent of each other. The
only dependency for any observer box is that the upward
traversal phase (C2M and M2M) must be completed for
all source boxes before the M2L translation can safely be
performed.

4) Downward Tree Traversal (L2L and L20): The down-
ward tree traversal is almost the reverse operation of the
upward tree traversal. We loop though the tree level-by-level
in a top-down manner, and perform a parallel loop over nodes
in each level.

B. Task Parallel MLFMA

Creation of tasks in Helmholtz FMM requires a balance
between task granularity versus flexibility. For instance, for a
coarse granularity partitioning, a geometry with 16 nodes to
compute at its highest level of computation could have each of
the 16 nodes along with all their children defined as a task and
have them assigned to one of 16 threads available. While such
a partitioning provides coarse grained tasks, an unbalanced tree
would result in some threads completing their tasks at much
different times from others. Conversely, tasks can be limited
in scope to the interpolation of a single child node, or the
translation of one source to observer node. Tasks of this scale
would be fine-grained, but would have far fewer dependencies
within the tree. The reduced dependencies mean more tasks
would be available to threads for execution at any given time.
However, this would also mean more scheduling overheads at
runtime. As a guiding principle, we try to balance between the
flexibility of fine-grained tasks vs. their scheduling overheads.

1) Near-field Computations (NF): We have chosen to keep
the task parallel near-field implementation simple and straight-

44

forward. Much like the loop parallel implementation which
performs a parallel loop through all observer nodes, we make
near-field computations of each observer node a task. Near-
field computations implemented in this way only has output
dependencies with the L20 phase, thus they can be executed
at any other time. This provides great scheduling flexibility
and potential performance improvements as near-field compu-
tations can help fill-in the thread idlings during execution of
the far-field interactions that have complex dependencies.

2) Upward Tree Traversal (C2M and M2M): The C2M
step generates the multipole expansion of a leaf box from all
particles within it. We create a task for the C2M operation
of each leaf node. Even for a small geometry, the number
of leaves far exceeds the number of threads available on a
typical shared memory architecture. Thus, there is little point
in making C2M tasks finer grained than creating the entire
multipole expansion for a single leaf. Creating a task from
groups of leaves would yield larger granularity tasks, but it
would also increase the number of M2M and M2L tasks
dependent on each C2M task, restricting parallelism up the
tree.

The M2M step generates the multipole expansion of a
parent node from all its children. We create a separate task
for each child being interpolated, shifted and aggregated to
create a parent node. This means each task has a single input
dependency on the child node’s multipole data being ready and
a single output dependency on the parent node. The M2M
operation to produce the entire multipole data for a parent
node could be a single task as well, but then such a task
would depend on multipole data for all child nodes being
ready, instead of just one. As we demonstrate in SectionIV,
coarse-graining M2M tasks does not perform as well as the
fine-grain approach we adopt.

We provide the pseudocode for this initial version of our
task-parallel upward tree traversal algorithm in Alg. 1.

Algorithm 1 Task-based upward tree traversal

Require: p.center coordinates of the parent box center
Ensure: pmp is parent’s multipole representation

1: for each box p in post-order traversal do

2: if p is leaf box then

3 task Depend Out box p

4: pmp < C2M(p)

5: end task

6 else

7 for each child box c do

8 task Depend In all child box ¢ Depend Out
box p

9: mplc] « interpolation(c)

10: smplc] « shift(mp, p.center)

11: aggregate(pmp,smp|c])

12: end task

13: end for

14: end if

15: end for

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore. Restrictions apply.

One of the drawbacks of the above described upward tree
traversal scheme is interpolation of the nodes at the higher lev-
els of the tree. For instance, in a typical surface geometry, there
are likely to be 16 nodes at the highest level. Due to output
dependencies, only up to 16 threads can be actively working
on the interpolation of these high-level nodes. Therefore, we
apply a further refinement of M2M tasks for the high level
tree nodes. All samples within a node are fully independent
during the shifting and aggregating operations, therefore we
split these operations into many tasks for individual nodes.
Interpolation is more complex though. While it is beyond the
scope of this paper to go into too much detail, in MLFMA
multipole data take the form of functions sampled in two
angular dimensions; the data can be viewed as a rectangular
array of function samples which can be partitioned into block
columns or rows. FFT-based interpolation of these partitions
are also independent of each other [18], [19]. Hence, we create
tasks for interpolations of partitions. We illustrate the fine-
grained task parallel M2M method used for high level nodes
in Alg.2.

Algorithm 2 Parallel Interpolation
Ensure: c is the child box being interpolated
1: pts < partition(c)
: for each partition p in pts do
task
for each 6 vector v in p do
theta[v] < interpolate(v)
shiftl]v] < transposeandfold(theta[v])
end for
end task
: end for
. TaskWait
. pts < partition(shi ft1)

YRR AR RN

—

12: for each partition p in pts do

13: task

14: for each ¢ vector v in p do

15: phi[v] < interpolate(v)

16: shiftl[v] < transposeandfold(phi[v])
17: end for

18: end task

19: end for

20: TaskWait

3) Translations (M2L): The M2L phase translates the mul-
tipole expansion of each source box to the local expansions
of all observer boxes in its far-field. Following our previous
strategy of minimal dependencies would mean each translation
of source to observer box should be a separate task as in fine-
grained parallelization of M2M phase. On the other extreme,
all translations for a source node could be defined as a single
task which could potentially reduce the number of times
a source node needs to be loaded from memory. We have
found that a middle ground between the two, i.e., performing
translations in chunks, is the most efficient approach for M2L.

45

In MLFMA, the number of translations (interactions) re-
quired for a node changes significantly from a geometry to
another - while the average number of translations per node is
about 27 for a surface geometry, this number goes up to 189
for a volume geometry (which is not common in practice).
Therefore, we experimented with various bundling factors (bf)
for M2L, see SectionIV for further details. We provide the
pseudocode for our task-parallel M2L implementation with
bundling in Alg. 3.

Algorithm 3 Task-parallel translations

Ensure: bf is translation bundling factor
Ensure: [p is the local expansions of the box
1: for each box b do

2 for each box fb interacting with b in groups of bf do
3 task Depend In box b Depend Out box fb

4: int < compute_interaction(fb,b)

5: Ip[b] + add_interaction(int)

6 end task

7 end for

8: end for

4) Downward Tree Traversal (L2L and L20): As men-
tioned before, L2L and L20O steps are almost the reverse of
M2M and C2M operations, respectively. As such, their task
parallelization follows the same strategy as upward tree traver-
sal outlined above, albeit with some simplifications. For L2L,
the highest level nodes are read-only. Output dependencies are
on nodes the next level down, which will have a minimum of
64 nodes. This represents a sufficient degree of parallelism
for existing multi-core and many-core architectures, therefore
we have not adopted the fine-grained parallelization method
of M2M here, but it certainly can be done relatively easily.

5) Task ordering: A further consideration is the impact of
the order of tasks. Being able to influence the scheduling
of tasks is important for performance reasons because tasks
from different phases of the computation that do not have de-
pendencies between them may “fill-in” the voids encountered
during execution. Most task-based runtime systems, including
OpenMP which we have used for implementation of our ideas
described above, allow programmers to specify task priorities.
In OpenMP though, task priorities are only suggestions for the
runtime system and we have observed in general that these
priorities have little to no effect in terms of the scheduling
of tasks; at least, that has been the case for our task-parallel
implementation. However, we have found that the order in
which tasks are generated affects their execution order and
that is what we have used to modify the scheduling of tasks.

In this regard, near-field tasks provide the greatest flexibility
because they can only conflict with the L20 tasks writing the
tree-generated potential values. Therefore, near-field tasks can
be performed without race conditions at any time before or
after L20. The chosen time to perform nearfield processing
of our algorithm is after translations (M2L) and before starting
the downward traversal (L2L). At the top of the MLFMA tree,
the number of nodes is typically smaller than the number of

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore. Restrictions apply.

threads, but each node is very large and requires significant
amount of computation. As a result, there is a good chance
that some threads will be left without tasks to perform until
the upward traversal (M2M) and translations (M2L) of these
highest level nodes are completed. Performing near-field com-
putations during this time-frame fills in any potential gaps.

The remaining stages of the tree traversal have more de-
pendencies to deal with. A node cannot start its M2M com-
putations until the M2M computations of its child nodes have
finished. A node cannot perform its M2L translations until its
own M2M computations are completed. Finally, a node cannot
start its L2L phase until its parents have completed theirs
and the node has completed its M2L interactions. This limits
task ordering, but still allows some flexibility. The simplest
implementation is generating all upward traversal tasks first,
then all far-field interaction tasks, and finally all downward
traversal tasks. Alternatively, one can do the same thing but
at the level of individual nodes. As soon as a node has
interpolated, shifted and aggregated all of its children, farfield
interactions can be computed for that node. On the opposite
end, a high level node can perform its L2L operations as soon
as M2L has translated all of its source nodes, but before
any of its children have performed M2L translations. This
approach can be repeated, computing anterpolations before
translations where possible. The first method was chosen as it
was empirically found to perform better.

IV. RESULTS

In this section, we evaluate the performance of the task-
parallel MLFMA algorithm described. All results were ob-
tained on the Cori supercomputer at National Energy Research
Scientific Computing Center (NERSC). Each Haswell node
on this system contains two sockets, populated with Intel
Xeon E5-2698 v3 (Haswell) processors with a clock speed
of 2.3 GHz. Each node has 32 cores, plus hyperthreading, 128
GB 2133MHz DDR4 RAM, and 40M Cache. The code is
implemented in Fortran 90 using only OpenMP parallelization
and was compiled with the Intel compiler version 19.0.3.199.
The Cray FFTW library version 3.3.8.4 is used for all FFT
operations.

Performance was also measured using Cori’s KNL nodes.
Each KNL node contains a single socket, populated with an
Intel Xeon Phi Processor 7250 ("Knights Landing”) processor
with a clock speed of 1.4 GHz. Each node has 68 cores, with
4 hardware threads per node, 96 GB 2400 MHz DDR4 RAM,
and 64 KB L1 cache per core, plus IMB L2 cache per tile (2
cores per tile). The lower processor speed vs Haswell leads to
longer execution times.

A. Tuning the Task-Parallel MLFMA Implementation

As mentioned in III, there are two optimizations we used for
our task-parallel MLFMA implementation. These are ordering
of the creation of tasks, which in turn alters the scheduling
of tasks, and bundling of tasks. For tuning our implementa-
tion, we chose a 7-level sphere geometry, as spheres are a
commonly used benchmark for MLFMA codes. Our tuning

46

102 | —— NF First H
I om —+— NF after M2M |
3 \\ NF after M2L |4
| e NF Last |
_ i \ —— M2L after L2L ||
) I M2L during M2M ||
,qé ‘\ —x— Optimal
= 101

/

Ll
10!
Thread Counts

10°

Fig. 2. Impact of task order on execution time.

is empirical, certainly relying on the specific architecture and
geometry. However, we note that in applications, the MLFMA
is used as an inner kernel in long-running iterative solvers that
can take hundreds to thousands of iterations to converge for
large problems. Since our tuning parameter space is relatively
small, it is practical to tune the performance for the particular
geometry and architecture before the actual solver is launched.

1) Task Generation Ordering: Since the near-field (NF)
phase is the most flexible phase within MLFMA, we created
different flavors of task-parallel MLFMA where NF tasks are
generated between all tree computation phases. Starting with
“NF First”, these are “NF after M2M”, “NF after M2L"”,
“NF Last”. There are two other finer grain reorderings; they
interleave the execution of M2L with M2M (“M2L during
M2M”) or M2L with L2L (“M2L after L2L"”), rather than
executing each phase entirely separately.

As can be seen in Fig. 2, for most thread counts, generating
NF tasks at different phases has minimal impact, but for 64
threads “NF after M2L” results in a 5% performance im-
provement over the others. Executing L2L. wherever possible
before M2L produces good scaling, but poor execution times
overall. Executing M2L as soon as possible during the M2M
execution shows a slight improvement in performance. Finally,
combining the best of the two task orders, “NF after M2L” and
“M2L during M2M”, produces a 4% execution improvement
at 32 threads and over 18% improvement at 64 threads. This
method is labeled on the graph as “Optimal”, and is used for
the task-parallel MLFMA results reported.

2) Task Bundling for M2L: The second optimization we
implemented is bundling tree operations together in each
task. For the same sphere geometry, we experimented with
different bundling schemes. This included the extreme cases
of bundling all M2M operations of children of a single parent
node together on one side and creating a separate task for
each child on the other side. Both methods performed on par
with each other for small thread counts, but we observed that

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore. Restrictions apply.

T 17T ‘ T T T T 17 T T T T T 1T
- —e— M2M Block
—— M2L Block None
M2L Block 9
10%° |- N —&— M2L Block 27
NG |~ M2L Block 189
£ 10' | \ .
1005 | \>§]
[(| [
10° 10!
Thread Counts
Fig. 3. Impact of bundling on execution time. Performance of M2M

implementation with all children bundled into a single task (M2M with
Bundling) and M2L with various bundling factors (none, 9, 27, and 189)
are shown for different thread counts.

bundling all children into a single task during M2M performed
significantly worse at 64 threads (see Fig. 3). This is likely due
to the small number of tasks created at higher tree levels which
contain computationally expensive nodes. Therefore, we define
all children during M2M as individual tasks.

For M2L interactions, we experimented with different
bundling factors such as 9, 27 (which is the expected num-
ber of interactions for surface geometries), 189 (theoretical
maximum for M2L for any geometry) and compared them
with regular (non-bundled) M2L in terms of performance, see
Fig. 3. Grouping the translations of 9 observer nodes with a
common source node into a single task provides a notable
benefit. Any impact is barely noticeable through 16 threads,
but at 32 and 64 threads, the performance improvement over
the non-bundled version is nearly 33%. Increasing the bundling
factor to 27 interactions of a common source node decreases
the performance slightly, and the extreme case of bundling 189
interactions results in a significant performance falloff even at
small number of threads. All results presented in the rest of
this manuscript uses a bundling factor of 9 for the M2L phase.

B. Performance Comparison between BSP and Task Parallel
Implementations

In this subsection, we compare the performance of our task
parallel MLFMA implementation against the BSP version on
a number of geometries. Both versions use the same tree
construction methods (so the amount of work performed by
both methods is identical) and they use the same OpenMP
compilation and runtime settings. The potentials computed
by both versions were compared to ensure that the only
differences are due to floating point arithmetic precision.

For benchmarking, we used four different geometries. The
first geometry is a simple planar grid of particles (in the
z = 0 plane). The grid dimensions are 128\ x 128\, with

47

5,242,880 points uniformly distributed over the geometry and
smallest FMM box size of A/4. This produces a 10-level tree
with 20 points in each leaf box. The second geometry is a
sphere whose radius is 128\, with 7,264,954 points uniformly
distributed over the geometry and smallest FMM box size
of A/4. This also produces a 10-level tree, with an average
of 18 points in each leaf box. The third geometry is a 3D
volumetric distribution of particles. The box dimensions are
8A X 8\ x 8\, with 1,048,576 points randomly distributed over
the cube and smallest FMM box size of A\/4. This produces
a 6-level tree with an average of 32 points in each leaf box.
The last geometry is an airplane model which is of size 256
in length. It is discretized with over 4,459,776 points and the
smallest FMM box size is A/4. This produces an 11-level tree
with an average of 15 points in each leaf box, albeit with a
highly non-uniform distribution of points across leaves.

1) Performance on a Multicore Architecture (Cori-
Haswell): Figure 4 compares the execution times of BSP
and task-parallel MLFMA versions using 1 to 64 threads.
Note that the Haswell processors only have 32 physical cores
(on two sockets), so 64 thread executions use hyperthreading.
The airplane model, which is a real application, shows the
strongest performance advantage for task-parallel MLFMA as
it attains as much as 1.35x speedup over the BSP version.
Both the grid and volume geometries also show that the task
parallel version achieves consistently increasing speedups over
the BSP version with increasing number of threads. While we
initially observe significant gains with task parallelism over the
BSP version for the sphere geometry as well, to our surprise
these gains fade away at high number of threads. We try to
provide a more detailed insight into these results in the next
subsection.

2) Manycore Architecture (Cori-KNL): We performed the
same performance analysis using Cori-KNL nodes which have
a significantly different architecture than Cori-Haswell nodes.
We observe that for 2 to 32 threads, task parallel MLFMA
shows performance gains similar to those of Cori-Haswell
experiments (see Fig.5). However, its scalability falls off
slightly at 64 cores, which is potentially due to two cores
sharing the L2 cache on a tile when the number of threads is
increased from 32 to 64. Beyond 64 threads, KNL effectively
employs hyperthreading. In this regime (not shown in plots),
while the BSP implementation is able to keep performing at
a similar level, the performance of the task parallel MLFMA
actually starts dropping. This is likely because the scheduling
of tasks which must be done sequentially starts becoming a
bottleneck with the increase in the number of threads. The
use of many slow cores on KNL (as opposed to multiple high
performance cores like Xeon CPUs) can have a compounding
effect on this bottleneck, too.

C. Understanding the Reasons behind Observed Differences

To understand the performance benefits of task parallel
MLFMA over BSP version, we conducted timeline and cache
performance analyses, for which we used the perf-stat tool.

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore. Restrictions apply.

|] t1.25
2 108 E 5
= E E 1.2 2
St F 1 8
3 i | L15 &
102 g 1.1
Threads Threads
Volume Airplane
T T T T 3
1112 L 1
- . F1.3
3 111 10%F E)
S n = 1 3
()8) + 1.08 [1 1.2 é-‘
1106 | |
10% Ly | 1 |
0 20 40 60
Threads Threads
—x— Loop
o Task

—e— Task vs Loop

Fig. 4. Task vs Loop (BSP) parallel runs on Haswell compute nodes for four
different geometries.

Grid Sphere
104 E E [
2 ; ; 1.15 104 E 41.2 %
=} r] F 1 b=l
S N 111 F 1 2
S 10 g T 111 &
- B 10‘i E E
L 7105 £ I I e]
0 20 40 60
Threads Threads
Volume Airplane
r ad 1.4
| 104 | E
z 10°F E F 113 =
= 5 T 1.1 [1 3
St r b I 112 8
Utu) 102 | E 10° E E . r%
B 1105 1.1
Threads Threads
—x— Loop
—o— Task

—e— Task vs Loop

Fig. 5. Task vs Loop (BSP) parallel runs on KNL compute nodes for four
different geometries.

1) Timeline Analysis: Figure 6 shows the order of execution
of threads in the BSP version execution for a 7-level grid
geometry using 64 threads (hyperthreaded) on a Cori-Haswell
node. NF, C2M and L20 all perform well. Each of these
operations has a very large number of nodes that can all
be processed in parallel. M2M begins showing load balance
issues which become very significant at the highest level where

48

only 16 nodes can be processed. M2L shows a lesser extent
of thread idleness, likely due to thread dependencies as there
are a large number of M2L nodes that can be processed in
parallel, up to the highest level where we again see an issue
with there only being 16 nodes at the top level. Finally, L2L
shows similar thread inactivity as M2M, but in reverse.

Figure 7 shows the order of execution of the tasks during
task parallel MLFMA. Unlike the BSP version, C2M, M2M
and M2L tasks are mixed together as dependencies allow.
Further, NF is mixed in with other tasks, filling in some
the empty space during M2M computation of the top level
and M2L helping fill in more of the rest. The start of L2L
also shows the benefit of fine grain parallel at the top level
interpolation and anterpolation operations where more threads
are able to participate.

B Nearfield C2M s M2M
Em M2L mmm 2] mm 120

@
Nl
S
=
=
B
=
[_1
1.37
Time (Seconds)
Fig. 6. BSP timeline on grid geometry.
mm Nearfield C2M s M2M
mm M2L mm L2 mmm 120
@
e}
e
=
<
B
£
F

0 1:21

Time (Seconds)

Fig. 7. Task parallel timeline on grid geometry.

Figures 8 and 9 show how the BSP and task parallel
timelines change for a spherical geometry. The sphere fills
more of the highest level tree nodes. This means the BSP
approach has more nodes to process at the top level and is
more efficient at keeping all threads active. The dependencies
caused by lower level nodes having fewer child boxes than
higher level nodes, as the sphere acts more like a surface,
mean the task parallel approach has more tasks that cannot be
executed until dependent tasks complete. As a result, the task
parallel approach is not as efficient for this example.

Alternately, Figures 10 and 11 show how the BSP and task
parallel timeline behave for an airplane geometry. Unlike the

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore. Restrictions apply.

I Nearfield C2M s M2M
m M2L w20 mmm 120

o
o
S
a
9
g
=
=
Time (Seconds)
Fig. 8. BSP timeline on the sphere geometry.
mm Nearfield C2M s M2M
mm M2L mmm 2] mmm 120
o
o
S
8
9
g
=
=~

0 4.94

Time (Seconds)

Fig. 9. Task parallel timeline on the sphere geometry.

previous examples, this geometry is non-uniform, so many of
the particles are clustered in fewer nodes. The impact of this
can be seen in Figure 10 where the top levels of M2M and
L2L have fewer nodes that can be processed. Furthermore,
the next level down still has a limited number of nodes to
process. Figure 11 shows that tasks keep more threads active
by performing M2L and NF tasks during the times when there
are not enough high level nodes to occupy all threads.

I Nearfield C2M s M2M

EE M2L = 2L mmm .20

Thread ID (0-63)

Time (Seconds)
Fig. 10. BSP timeline on the airplane geometry.

2) Cache Analysis: To look further at why the task parallel
approach is more efficient, we analyzed the cache utilization of
the two versions. Cache analysis was performed using VTune
and 64-thread executions of the grid geometry on Cori-Haswell
nodes. The cache analysis runs in Fig. 12 show that the ratio

49

B Nearfield C2M s M2M
EE M2L mm L2 mmm 120

Thread ID (0-63)

0

11.10

Time (Seconds)

Fig. 11. Task parallel timeline on the airplane geometry.

of cache hits to misses is not always more favorable for task
parallel vs the BSP version. However, since L1 cache hits ratio
is as high as 99.8%, any differences are effectively a rounding
error. As such, we conclude that while task parallel MLFMA
makes less effective use of cache, this does not negatively
impact its performance at a significant degree.

10 10
1.5 4l
1 I
2 -
0.5
0 0
Grid Sphere Plane Grid Sphere Plane
10" L1 Hits 8-1010 L1 Misses
41 Ir Bsp
6 In Task
9l 4
2
0 0

Grid Sphere Plane
L2 Hits

Grid Sphere Plane
L2 Misses

Fig. 12. Comparison of the cache performance of BSP and task parallel
implementations on a Cori-Haswell node.

V. CONCLUSIONS

Due to the near constant amount of processing necessary
per level with the number of nodes per level decreasing while
moving up the tree, Helmholtz FMM presents challenges to
parallelization that are not present in Laplace FMM. In this
paper, we presented a task parallel MLFMA implementation
to address these parallelization challenges. Results on various
geometries have shown that in most cases, particularly for
the real world application case of an airplane geometry, the
task parallel implementation shows improved performance
and scalability for shared memory architectures compared to
a bulk synchronous parallel MLFMA implementation. Our

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore. Restrictions apply.

study provides evidence that task parallelism is a promising
approach for MLFMA, and it can be even more useful in a
hybrid shared and distributed memory parallel context because
it would allow great flexibility in terms of overlapping the
execution of communication-intensive parts of MLFMA with
its computation-intensive parts so as to minimize idle times
and achieve scaling to a large number of compute nodes.

REFERENCES

[1] B. Dembart and E. Yip, “The accuracy of fast multipole methods for
maxwell’s equations,” IEEE Computational Science and Engineering,
vol. 5, pp. 48-56, 1998.

I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen,

R. Sampath, A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros,

“A massively parallel adaptive fast-multipole method on heterogeneous

architectures,” in Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis. 1EEE, 2009, pp. 1-12.

T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori, and M. Taiji,

“42 tflops hierarchical n-body simulations on gpus with applications in

both astrophysics and turbulence,” in Proceedings of the Conference on

High Performance Computing Networking, Storage and Analysis, ser.

SC ’09. New York, NY, USA: ACM, 2009, pp. 62:1-62:12. [Online].

Available: http://doi.acm.org/10.1145/1654059.1654123

[4] A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran,
D. Malhotra, L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc
et al., “Petascale direct numerical simulation of blood flow on 200k cores
and heterogeneous architectures,” in SC’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. 1EEE, 2010, pp. 1-11.

[5] O. Ergul, “Parallel implementation of MLFMA for homogeneous ob-
jects with various material properties,” Progress In Electromagnetics
Research, vol. 121, pp. 505-520, 2011.

[6] V. Melapudi, B. Shanker, S. Seal, and S. Aluru, “A scalable parallel
wideband MLFMA for efficient electromagnetic simulations on large
scale clusters,” Antennas and Propagation, IEEE Transactions on,
vol. 59, no. 7, pp. 2565-2577, 2011.

[7]1 B. Michiels, J. Fostier, I. Bogaert, and D. De Zutter, “Performing large
full-wave simulations by means of a parallel MLFMA implementation,”
in Antennas and Propagation Society International Symposium (AP-
SURSI), 2013 IEEE. 1EEE, 2013, pp. 1880-1881.

[8] M.-L. Yang, B.-Y. Wu, H.-W. Gao, and X.-Q. Sheng, “A ternary

parallelization approach of mlfma for solving electromagnetic scatter-

ing problems with over 10 billion unknowns,” IEEE Transactions on

Antennas and Propagation, 2019.

B. Shanker and H. Huang, “Accelerated cartesian expansions - a fast

method for computing of potentials of the form r*{- v} for all real v,”

Journal of Computational Physics, vol. 226, pp. 732-753, 2007.

[10] M. Vikram and B. Shanker, “An incomplete review of fast multipole
methods from static to wideband as applied to problems in com-
putational electromagnetics,” Applied Computational Electromagnetics
Society Journal, vol. 27, p. 79, 2009.

[11] N. Nishimura, “Fast multipole accelerated boundary integral equation
methods,” Applied mechanics reviews, vol. 55, no. 4, pp. 299-324, 2002.

[12] A. Appel, “An efficient program for many-body simulations,” SIAM J.
Sci. Comput., vol. 6, pp. 85-103, 1985.

[13] J. Barnes and P. Hut, “A hierarchical ((nlogn) force calculation
algorithm,” Nature, vol. 324, pp. 446-449, 1986.

[14] L. Greengard, The rapid evaluation of potential fields in particle systems.
Cambridge, MA: MIT Press, 1988.

[15] W. C. Chew, E. Michielssen, J. Song, and J.-M. Jin, Fast and efficient
algorithms in computational electromagnetics. Artech House, Inc.,
2001.

[16] O. Ergiil and L. Giirel, “Hierarchical parallelisation strategy for mul-
tilevel fast multipole algorithm in computational electromagnetics,”
Electronics Letters, vol. 44, no. 1, pp. 3-5, 2008.

[17] B. Michiels, J. Fostier, I. Bogaert, and D. De Zutter, “Weak scalability
analysis of the distributed-memory parallel MLFMA,” Antennas and
Propagation, IEEE Transactions on, vol. 61, no. 11, pp. 5567-5574,
2013.

S}
N

[3

—

[9

—

50

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

S. Hughey, H. M. Aktulga, M. Vikram, M. Lu, B. Shanker, and
E. Michielssen, “Parallel wideband mlfma for analysis of electrically
large, nonuniform, multiscale structures,” IEEE Transactions on Anten-
nas and Propagation, vol. 67, no. 2, pp. 1094-1107, Feb 2019.

M. P. Lingg, S. M. Hughey, H. M. Aktulga, and B. Shanker, “High
performance evaluation of helmholtz potentials using the multi-level fast
multipole algorithm,” 2020.

J. Sarvas, “Performing interpolation and anterpolation by the fast fourier
transform in the 3d multilevel fast multipole algorithm,” SIAM J. Numer.
Anal., vol. 41, pp. 2180-2196, 2003.

M. Vikram, H. Huang, B. Shanker, and T. Van, “A novel wideband
fmm for fast integral equation solution of multiscale problems in
electromagnetics,” Antennas and Propagation, IEEE Transactions on,
vol. 57, no. 7, pp. 2094-2104, July 2009.

L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura, “Accelerating
fast multipole methods for the helmholtz equation at low frequencies,”
IEEE Computational Science and Engineering, vol. 5, pp. 32-38, 1998.
S. Wandzuraz, “The Fast Multipole Method for the Wave Equation:
A Pedestrian Prescription,” IEEE Antennas and Propagation Magazine,
vol. 35, no. 3, pp. 7-12, 1993.

E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Taka-
hashi, “Task-based fmm for multicore architectures,” SIAM Journal on
Scientific Computing, vol. 36, no. 1, pp. C66—-C93, 2014.

R. Yokota, “An fmm based on dual tree traversal for many-core archi-
tectures,” Journal of Algorithms & Computational Technology, vol. 7,
no. 3, pp. 301-324, 2013.

W.-C. Pi, X.-M. Pan, and X.-Q. Sheng, “A parallel multilevel fast multi-
pole algorithm based on openmp,” in 2010 International Conference on
Microwave and Millimeter Wave Technology. 1EEE, 2010, pp. 1356—
1359.

M. Abduljabbar, M. A. Farhan, N. Al-Harthi, R. Chen, R. Yokota,
H. Bagci, and D. Keyes, “Extreme scale fmm-accelerated boundary
integral equation solver for wave scattering,” SIAM Journal on Scientific
Computing, vol. 41, no. 3, pp. C245-C268, 2019.

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:48:44 UTC from IEEE Xplore. Restrictions apply.

