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Abstract—The t-Distributed Stochastic Neighbor Embedding
(t-SNE) is known to be a successful method at visualizing high-
dimensional data, making it very popular in the machine-learning
and data analysis community, especially recently. However,
there are two glaring unaddressed problems: (a) Existing GPU
accelerated implementations of t-SNE do not account for the
poor data locality present in the computation. This results in
sparse matrix computations being a bottleneck during execution,
especially for large data sets. (b) Another problem is the
lack of an effective stopping criterion in the literature. In
this paper, we report an improved GPU implementation that
uses sparse matrix re-ordering to improve t-SNE’s memory
access pattern and a novel termination criterion that is better
suited for visualization purposes. The proposed methods result
in up to 4.63× end-to-end speedup and provide a practical
stopping metric, potentially preventing the algorithm from
terminating prematurely or running for an excessive amount of
iterations. These developments enable high-quality visualizations
and accurate analyses of complex large data sets containing up
to 10 million data points and requiring thousands of iterations
for convergence.

Index Terms—t-SNE, data visualization, big data

I. INTRODUCTION

In recent years, as problems that apply machine-learning

and deep-learning tools become increasingly complex, they

require large-scale and high-dimensional training data to

produce accurate results. Knowing the global and local

structures in the data sets enables researchers to develop

more sophisticated models that are tailored specifically for

each problem, decreasing the fine-tuning costs for the models.

Such exploration of the data can be done through data

visualization techniques. The high-dimensionality of the input

data makes visualization tasks very challenging on modern

machine learning data sets. In machine learning, data usually

lie on a low-dimensional manifold embedded in the original

high-dimensional space. For such data sets, preserving local,

pairwise similarities in the low-dimensional representation is

crucial to generate high-quality visualizations [1].

The t-distributed Stochastic Neighbor Embedding (t-SNE)

algorithm [2] is a powerful method designed to overcome the

issues mentioned above. It can embed high-dimensional data

This work was supported by the National Science Foundation under
Grant No. CCF-1822932. This research used resources of Michigan State
University’s High Performance Computing Center (MSU HPCC).

sets into two or three dimensions very effectively. It does

so by computing the pairwise similarity distribution in the

high-dimensional data set and using this information to fit

a low-dimensional representation with a matching similarity

distribution. The t-SNE algorithm is proven to preserve the

local structures in the data sets, resulting in high-quality

visualizations. Over the years, many improvements have been

proposed to optimize the execution time of t-SNE. These

include using the Barnes-Hut and dual-tree based t-SNE

implementations [3]. The popular Barnes-Hut t-SNE, which

is implemented in widely-used libraries like sklearn API [4],

was later replaced with the interpolation-based t-SNE [5],

significantly improving the overall execution time. Recently,

Chan et. al. proposed BH-tSNE-cuda, a GPU implementation

for Barnes-Hut t-SNE [1] and interpolation-based FI-tSNE-

cuda [6] which resulted in execution time accelerations of

several orders of magnitude, enabling, for the first time, the

visualization of data sets containing millions of data points.

However, both BH-tSNE-cuda and FI-tSNE-cuda suffer from

poor data locality in the attractive forces kernel. The attractive

forces kernel serves as one of the key components as it

contributes to the gradient used to minimize the divergence

between the high-dimensional data set and its embedding. The

pairwise similarity matrix that is used to compute the attractive

forces has a sparse structure as many data-points only have

a limited number of neighbors. For this reason, for large

data sets that require a large number of iterations for visual

stabilization, the attractive forces kernel starts dominating

the overall execution time. As such, there is still room for

significant performance improvements.

Furthermore, existing work, including BH-tSNE-cuda and

FI-tSNE-cuda, do not provide a good stopping criterion that

guarantees visually converged results. Looking solely at the

average gradient norm (intuitively speaking, the higher the

average gradient norm should indicate the more unsettled the

points are) may result in an excessive number of iterations

that continue moving data-points in the low dimensional

space, even after visual stabilization is achieved. This leads to

the aforementioned data locality problem being increasingly

evident, since significantly more iterations than that are

required in practice may be performed.

In this paper, we propose a performance optimization
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that is applicable for both BH-tSNE-cuda and FI-tSNE-cuda

implementations that utilizes the sparse matrix reordering

idea to improve the memory access pattern of its attractive

forces kernel. We also explore an effective stopping criteria,

preventing excessive computations in practice. The proposed

techniques result in an optimized and generic framework for

analysis of very large data sets, potentially saving significant

amounts of exploration time.

The outline of this paper is as follows: In Section II, we

give background information on t-SNE, define the problems

present in existing implementations, and discuss the motivation

behind our proposed techniques to overcome these problems.

In Section III, we describe our algorithms and methods, and

detail their implementation. In Section IV, we evaluate the

proposed techniques on both real-world and synthetic data

sets, containing up to 10 million elements. We present related

literature in Section V, and finally conclude and give future

directions in Section VI.

II. BACKGROUND AND MOTIVATION

A. The t-distributed Stochastic Neighbor Embedding

Algorithm

The t-distributed Stochastic Neighbor Embedding (t-SNE)

algorithm is a powerful dimensionality reduction technique

that was designed primarily for visualization purposes. In

contrast to other popular dimensionality reduction techniques,

t-SNE works well with real-world data sets and is able

to preserve the local structure in the low-dimensional

space. t-SNE computes pair-wise similarities between high-

dimensional data points X = {x1, x2, ..., xn} using the k
Nearest Neighbor (k-NN) information and tries to match

the probability distribution of the low-dimensional points

Y = {y1, y2, ..., yn} by minimizing the Kullback–Leibler

(KL) divergence between the two distributions. The theoretical

background of the method is described in detail in previous

works [7] [2]. Below, we give a brief summary.

The pairwise similarities between points i and j in high

and low-dimensional spaces are represented as two conditional

probabilities pj|i and qj|i, respectively. Each denotes the

probability of point j being a neighbor of point i in its

respective space. For pj|i, a Gaussian distribution is centered

at each high-dimensional data point in X:

pj|i =
exp(−||xi − xj ||

2/2σ2
i )∑

k �=i exp(−||xi − xk||2/2σ2
i

(1)

Very small values for pj|i (instances without any nearby

points) cause the position of the instance in the low-

dimensional mapping to be vague. This is prevented by using

joint probabilities for high-dimensional data points:

pij =
pj|i + pi|j

2N
(2)

Similarly, a Student’s t-distribution 1 with 1 degree of freedom

is centered at each low-dimensional data point to model the

probability distribution:

qij =
(1 + ||yi − yj ||

2)−1

∑
k �=l(1 + ||yk − yl||2)−1

(3)

The gradient then can be computed using the following

equation where C is the cost function for the KL-divergence

between P and Q:

∂C

∂yi
= 4

∑

j

(pij − qij)(yi − yj)(1 + ||yi − yj ||
2)−1 (4)

Eq. 4 can also be represented as,

Fattr =
∑

j∈[1,..,N ],j �=i

pijqijZ(yi − yj) (5)

Frep = −
∑

j∈[1,..,N ],j �=i

q2ijZ(yi − yj) (6)

∂C

∂yi
= 4(Fattr + Frep) (7)

where Z =
∑

k �=l(1 + ||yk − yl||
2)−1 is the normalization

term and Fattr and Frep represent the attractive and repulsive

forces between the data points, respectively.

B. FI-tSNE-cuda Implementation

Algorithm 1: FI-tSNE-cuda

Data:

X = {x1, x2, x3, ..., xN}
#iterations: maxIter
Result: Y = {y1, y2, y3, ..., yN}

1 init Y randomly;

2 find k-NN ;

3 compute sparse matrix P;

4 for t ← 1 to maxIter do

5 Compute polynomial interpolant coefficients

6 Compute FFT of the coefficients

7 Compute the potentials for low-dimensional data

points

8 call atomicAdd() to accumulate sum Fattr =∑
j∈[1,..,N ],j �=i pijqijZ(yi − yj)

9
∂C
∂Y

= 4(Fattr + Frep);
10 apply forces on Y

FI-tSNE-cuda (FFT-accelerated Interpolation-based t-SNE

on GPU) is the fastest implementation of t-SNE. Algorithm

1 demonstrates the steps of the procedure. First, points are

initialized in the low-dimensional space randomly. Then, the

approximate k-nearest neighbor information for the high-

dimensional data set is calculated on the GPU using the FAISS

library [8]. The elements of the P matrix, which contain the

pij values, are computed using the k-NN information and

equation 2. The P matrix is stored as a sparse matrix using

1https://en.wikipedia.org/wiki/Student%27s t-distribution

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:58:10 UTC from IEEE Xplore.  Restrictions apply. 



the coordinate (COO) format in cuSPARSE. The COO format

stores only the location (row and column indices) information

of the non-zero pairs (neighbors) in the sparse matrix, ignoring

the zeros (non-neighbors). At each step of the optimization

loop (lines 4-16), the repulsive and attractive forces are used to

calculate the KL-divergence gradient (Equation 4). The details

of the repulsive force computation (lines 5-7) can be found in

[5]. The repulsive forces also leverage batched cuFFT calls

on the GPU which improves GPU utilization significantly

[6]. The attractive forces are accumulated over j (line 8)

for the non-zero interactions using CUDA atomicAdd() calls,

which are highly optimized hardware instructions in recent

GPU architectures. Finally, the gradient is computed and the

resulting forces are applied to the low-dimensional points,

moving them to their new positions in the low-dimensional

space.

The FI-tSNE-cuda code provides a full GPU based pipeline

to compute t-SNE orders of magnitudes faster than previously

reported implementations. Despite its excellent performance,

the sparsity of the affinity matrix P used in the attractive forces

computation often results in a poor memory access pattern.

The severity of this performance problem is proportional to

the size and variation in the input data set. As the size of

the input data set increases, more irregular memory accesses

are performed at each iteration. As the variation in the data

set increases, t-SNE requires more iterations to converge, thus

keeps reusing the previously described poor memory access

pattern which exacerbate the impact of the poor data access

patterns even further.

Fig. 1: The kernel percentage relative to the total execution

time of the t-SNE algorithm for Deep10M data set consisting

of 10 million 96-dimensional points.

The k-NN computation is performed only once, before

the iterative process begins. Since the number of iterations

required to reach visual stabilization varies between the input

data sets, we focus on the performance of the iterative loop

and attractive forces kernel. Figure 1 shows each kernel’s

percentages with respect to the total execution times for

different number of iterations. Although the k-NN computation

step dominates the total execution time for lower number

of iterations, we can clearly see that the attractive forces

computation is the most expensive kernel in the long-run,

accounting to more than 75% of the end-to-end execution time.

This serves as a motivation to focus on this portion of the

implementation.

C. When to Stop?

The visual representations presented in previous works on t-

SNE are generated using a fixed number of iterations, usually

1000. As mentioned before, this is an important issue because

most data sets, especially large ones, require a large number

of steps to produce good visuals. Figure 2 compares three 2D

visualizations of the same data set containing 1 million 300-

dimensional data points from the GloVe word embeddings [9]

at different iterations.

Fig. 2: 1 million GloVe word embeddings at iterations 1000,

2000 and 3000.

As it can be easily observed from this example, the

three representations are qualitatively very different from

each other. At 1000 iterations, even the most evident

global structures are completely absent, making the visual

useless. As t-SNE continues executing, more details are

revealed about the data set in 2D. These details can be

potentially important, depending on the target machine-

learning application. Therefore being able to make an informed

decision on the number of iterations to run the t-SNE algorithm

is an important consideration, both from a data analysis point

of view, as well as from a performance point of view.

III. METHODS AND IMPLEMENTATION

In this section, we propose new methods to overcome the

data locality and stopping criterion issues described above.

A. Sparse Matrix Reordering

Sparse matrix reordering is a well studied topic in

the high-performance and scientific computing community

aiming at improving data-locality of large-scale applications.

Methods such as the Reverse Cuthill-McKee (RCM) [10] and

Approximate Minimum Degree algorithms [11] are known to

improve the memory access patterns of sparse linear algebra

kernels such as sparse matrix vector multiplication (SpMV)

by reducing the bandwidth of the matrix.

For reordering P, a scalable and efficient algorithm is

desirable to minimize the permutation overhead. Parallel

implementations of the popular RCM algorithm for both

distributed [12] and shared-memory [13] systems are available

in the literature and are able to provide decent speedups over

the sequential version, while preserving the reordering quality.

However, the RCM algorithm is breadth-first-search based,

thus only considers the connections between the vertices of the
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graph. This non-agglomerative approach fails to capture the

community structures in the data set, which are very common

for real-world data sets. Rabbit Reordering algorithm [14]

on the other hand is a parallel, community-detection based,

sparse matrix reordering algorithm. Rabbit Reorder rearranges

the non-zero elements in the input sparse matrix as recursive

dense-blocks around the diagonal. The denser the blocks get,

the finer grain the corresponding community is. This approach

improves cache utilization which is important for GPUs due to

their hierarchical memory architectures. The finer grain blocks

are loaded into higher level caches, while the global clusters

reside in lower level cache memory. Moreover, Rabbit Reorder

scales and performs better than the state-of-the-art parallel

reordering methods, thus is practical to use for the case of

large-scale data sets with t-SNE.

We integrated the multi-core Rabbit Reordering algorithm

into the FI-tSNE-cuda codebase. Before starting the gradient

optimization iterations, we rearrange the elements of P using

the reordering kernel. We perform this operation only once,

since the P matrix is computed at the beginning of the

algorithm (as part of K-NN) and does not change during the

course of gradient iterations. It is worth mentioning that the

resulting embedding of the t-SNE algorithm is independent

from this optimization. Since there are no changes in the KNN

computation and accessed elements of the P matrix during

attractive forces computation, the sequence of calculations

performed in the optimization loop remain identical for matrix

reordered version of t-SNE. Unfortunately, the tSNE-cuda

library does not support true deterministic runs due to high

amount of parallelism and third-party dependencies 2. Thus,

we cannot perform a direct comparison by feeding the same

random seed to vanilla and matrix reordered t-SNE. Instead,

we run matrix reordered t-SNE on data sets with known

ground-truth labels and structures (see Table I), to present

some form of empirical evidence to our claim. The resulting

embeddings are listed in Figure 3. Even for the slightly large

data sets DBPedia and Yahoo, the amount of noise is low and

most of the data points belonging to the same category are

tightly grouped together, as an expected result of the standard

t-SNE algorithm.

Table I: Datasets with known ground-truth labels.

Name Dims Size Categories

MNIST 3 784 70K 10

Fashion-MNIST 4 784 70K 10

CIFAR-10 5 [15] 1024 60K 10

AG’s News 6 [15] 100 120K 4

DBPedia 7 [15] 100 560K 14

Yahoo 8 [15] 100 1.4M 10

2https://github.com/rapidsai/cuml/issues/2980
3http://yann.lecun.com/exdb/mnist/
4https://github.com/zalandoresearch/fashion-mnist
5https://www.cs.toronto.edu/ kriz/cifar.html
6http://www.di.unipi.it/gulli/AG corpus of news articles.html
7https://wiki.dbpedia.org
8https://webscope.sandbox.yahoo.com/

Fig. 3: Visualization of the datasets with known ground-truth

labels in Table I using matrix reordered tSNE.

Figure 4 shows the sparsity patterns for P matrices with and

without Rabbit Reordering using randomly sub-sampled 500

thousand points from the GoogleNews9 [16] and Deep1B 10

[17] data sets. For both data sets, the temporal and spatial

locality significantly improves as we observe dense blocks

forming around the diagonal. Nevertheless, we still observe

off-diagonal regions being filled. This is because the real-

world data sets have many more inter-cluster connections

which account for the noise present in the reordered sparsity

patterns of the GoogleNews and Deep1B data sets. In Section

IV, we evaluate the performance of the reordering on data sets

containing up to 10 million data points. We discuss the effect

of the reordering on both attractive forces computation and

end-to-end application performance. Overall, we observe it to

be a highly effective optimization.

B. A Better Termination Criterion

Modern machine learning tasks are very difficult, requiring

complex models and large number of samples to prevent

over-fitting the training data. This issue pushed the scientific

community to design and curate data sets consisting of

millions to billions of samples [18], [19]. Despite their huge

sizes, visualization of these data sets is often done on a limited

screen or image resolution. Therefore, for very large data sets,

many points map to the same pixel. These overlaps, cause

distortions in the visualization of the data. To overcome these

problems, visualization libraries such as Datashader [20] use

binning techniques to represent the data set by highlighting

regions that contain a large number of points. Techniques like

these compress the original data set, while proving themselves

to be visually effective. This, however, makes the stabilization

problem we discussed in Section II-C more difficult in a

practical setup.

To the best of our knowledge, there is no method developed

specifically for determining when to terminate the t-SNE

9https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/
10http://sites.skoltech.ru/compvision/noimi/
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Fig. 4: Original (left) and Rabbit reordered (right) sparsity

patterns of the P matrix for GoogleNews (first row) and

Deep1B (second row) data sets.

algorithm. Existing work on t-SNE such as [6] and [5] run

the algorithm for a fixed number of iterations and do not

discuss the visual stabilization issue. For large data sets,

however, being able to terminate the algorithm at the right

moment is critical for obtaining good results without excessive

computations. The latest implementation of FI-tSNE-cuda [6]

has an optional parameter to determine the minimum value

of the gradient norm to stop the iterative optimization loop.

This parameter could easily be used to implement a patience-

based early-termination mechanism, where the iterations stop

if the gradient norm does not change sufficiently in a user-

determined patience-interval. However, it can also become

inefficient for real-world scenarios. The gradient norm is

related to the forces applied to each individual point in the

embedding. This causes the gradient norm to potentially be

too fine granular as a visual stabilization criterion. The t-SNE

algorithm is primarily utilized for exploring structures in data

sets and for visualization purposes. Therefore, it is important to

note that we focus on visual stabilization in this section and our

analysis should not be interpreted as a numerical convergence

analysis. Local (but relatively significant) changes may occur

deep into the optimization cycle, even when these changes are

not visually noticeable in the global structure.

Figure 5 shows the value of the gradient norm (averaged

over a window of ten iterations) for t-SNE ran on the MNIST

data set for 2000 iterations, and also shows three snapshots

of the mapped 2D data points from iterations 300, 800 and

2000. By looking at the snapshots from iterations 300 and

800, we clearly see that the visualization drastically changes.

MNIST contains 10 clusters, but, at iteration 300, we don’t

see all of these clusters because the algorithm did not visually

stabilize yet. If we iterate for 500 more steps to step 800,

we can clearly see the 10 different clusters, and members of

the clusters assigned correctly. However, the gradient norm

plot tells a different story. There is a steep decline around

iteration 1750, which should indicate a significant change in

the resulting embedding. However, if we look at the snapshots

from iterations 800 and 2000, we do not see any major

changes in the global structure. In other words, the necessity

of the iterations between 800 and 2000 seems arguable from

a practical perspective.

Fig. 5: The gradient norm and snapshots from iterations 300,

800 and 2000 in order.

We address the issue described above by introducing

an alternative termination metric that is potentially better

suited for visualization. Even with very high resolution

configurations, plotting data sets containing millions of points

without any overlaps is not possible. Following this intuition,

we implement a simple binning approach that transforms the

set of point coordinates into a 2D histogram. We divide the

entire 2D space into n square bins such that n << N ,

where N is the total number of points. Each bin contains the

frequency of the data points within its borders. This way, we

are able to monitor the global structure of the visualization in

a computationally inexpensive manner.

The 2D histogram is essentially a compressed representation

of the visual and can be used as an early termination criterion,

replacing the standard numerical methods. To do this, we

take the Frobenius Norm (which is the matrix analog of the

L2-norm of a vector) of the difference matrix between two

consecutive histograms and inspect its change in a log-scale

plot.

Figure 6 shows the stabilization of the proposed metric for

the MNIST data set [21]. The histogram difference metric

forms a clear plateau that stabilizes much earlier than iteration

1800 as indicated by the gradient norm metric. When we

inspect the range of iterations where the histogram difference

metric indicates stabilization (at around 600 iterations and

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:58:10 UTC from IEEE Xplore.  Restrictions apply. 



after), we observe visually stabilized representations of the

data set. For instance, comparing the snapshots from iterations

500 (in Figure 6), and 800 and 2000 (in Figure 5), we don’t

see major structural changes, which supports our hypothesis.

In the next section, we provide more empirical evidence in

this regard.

Fig. 6: The bin difference norm and MNIST snapshot at

iteration 500.

We note that calculating the Frobenius norm of the

histogram difference matrix is a computationally inexpensive

operation compared to the t-SNE iterations and one does not

have to calculate it at every iteration of the optimization

loop. As such, the proposed method requires a very small

overhead. Moreover, it can easily be parallelized as the

required computations are simple data-parallel loops. We

observe that for very large data sets, an OpenMP based parallel

implementation on multi-core processors may not be able

to provide real-time feedback. Therefore, we developed a

simple GPU kernel that computes the Frobenius norm of the

2D histogram differences. Our implementation has negligible

overhead compared to the main t-SNE loop. We again provide

detailed performance evaluation results in the next section.

IV. EVALUATION

In this section we evaluate the performance of the proposed

methods on both synthetic and real-world data sets. The

baseline implementations that we compare our optimized

version to are FI-tSNE and BH-tSNE. We give more details

about these algorithms in the Matrix Reordering subsection.

To make the comparisons fair with respect to the results

presented in literature, we fixed the values 200 and 50 for the

learning rate and perplexity parameters of t-SNE, respectively,

which are the default values in the vanilla t-SNE code. These

parameters are important and should be carefully picked for

different target data sets. However, as we mentioned previously

in Section III, our optimizations do not really affect the internal

mechanics of the iterative optimizations. Therefore, we do

not expect a fine-tuning experiment to be in the scope of

this work. Our focus in these evaluation is to analyze the

speedups gained by optimizing data locality and the efficiency

of the proposed stopping metric over average gradient norm for

visual stabilization purposes, in experiments with fixed control

parameters.

A. Experimentation Environment

All of the experiments are run on a single node with two

Intel Xeon Gold 6148 CPUs (each with 20 cores) and an

NVIDIA V100 32GB GPU. The V100 GPU has 5120 CUDA

cores and 900GB/s memory bandwidth.

B. Data sets

• Amazon : The Amazon Electronics reviews data set 11.

It consists of 1689188 text reviews, embedded into 100-

dimensional word vectors using FastText [22]. The pre-

trained FastText model can be downloaded from here 12

• GloVe : A very popular natural language processing data

set, containing 2.2 million 300-dimensional word vectors

trained with the GloVe [9] algorithm.

• GoogleNews: A text corpus containing about 100 billion

words. The corpus is trained on a word2vec [23] model

and there are in total 3 million word vectors with 300

dimensions.

• Deep1B: The Deep1B is a data set containing deep

descriptors for 1 billion images from the Web. These

descriptors are pulled from the last fully-connected layer

of the GoogleNet DNN [24]. The data set creators

also compressed the dimensionality from 1000 to 96.

We sample 10 million deep descriptors to use in our

experiments.

• SIFT1B : SIFT1B is a data set containing 1 billion

128-dimensional SIFT features [25] used for image

recognition. We randomly sample 10 million data points

for our experiments

• Synthetic: A 10 million point, 50-dimensional synthetic

data set from ten different Gaussian distributions.

C. Stopping Criterion

In Section 2, we showed that using the gradient norm metric

as a stopping criterion may result in executing a significant

number of unnecessary iterations on a small instance. In this

subsection, we test the proposed stopping criterion on our

evaluation data sets. We compare the proposed metric to the

average gradient norm by analyzing the output at different

iterations. The number of iterations required for achieving

visual stabilization differs depending on the target data set.

This number might depend on multiple factors such as data

11http://jmcauley.ucsd.edu/data/amazon/
12https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.vec
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set size, dimensionality and structural complexity. While these

properties play a role in the optimization, this subsection

simply focuses on the comparison of the proposed metric with

the average gradient norm metric as a stopping criterion for

visual purposes. We do not present a convergence analysis for

t-SNE.

We start by comparing the plots of the proposed method

and gradient norm for 20 thousand iterations. We utilize these

plots to determine snapshots to take from the execution and

do further analysis. At this scale, standard plotting tools like

the matplotlib library fail to represent inner dynamics

in the resulting embeddings. We use the Datashader 13

library which is utilized in plotting large amounts of data.

Datashader plots the density of data-points instead of

explicitly drawing each one on the screen, enabling a more

detailed comparison.

The proposed bin difference metric is able to capture the

visual stabilization for all of the data sets, even for a data set

like MNIST (Section III) that does not have many overlaps in

the resulting embedding image due to its small size. Since its

impact is the most evident, we evaluate the proposed metric on

the larger data sets, namely the Deep10M and SIFT10M data

sets. These two data sets are used to evaluate similarity queries

between word and image descriptor vectors, respectively. To

the best of our knowledge, there are no known visualizations

of these two data sets at this scale. The data is also unlabeled.

Therefore, we cannot show the categories on the plots, or

present a known structure. Nevertheless, the two metrics show

very different stabilization behaviours for these cases as can

be seen in Figure 7. We utilize these two data sets as stretch

tests for our optimizations as they contain a massive amount

of data points.

Fig. 7: Gradient Norm (left) compared to Bin Difference Norm

(right), 20K iterations

Figure 8 shows the snapshots of iterations 4000, 8000,

12000 and 16000 for the Deep10M data set run. We can see

that at iteration 4000, the algorithm is far from convergence.

At iteration 8000, the global structure is obtained. Between

iterations 8000 and 12000, we still see some noticeable

changes, especially inside the south-central region of the

global structure but there are no significant changes between

13https://datashader.org/

Fig. 8: The Deep10M Data set visualization for iterations

4000, 8000, 12000 and 16000

Fig. 9: The SIFT10M data set visualization for iterations 6000,

12000, 15000 and 18000

iterations 12000 and 16000. By looking at the average

gradient norm in Figure 7, capturing this information about

the stabilization of the algorithm seems difficult. The proposed

metric however, better reflects these observations as it indicates

stabilization at around 10000 iterations.

For the SIFT10M data set, we observe a slightly later

stabilization than Deep10M despite the two data sets having
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similar sizes and dimensions. The proposed histogram

difference metric is able to capture the transitions in the

visuals once again while the gradient norm seems to continue

decreasing again, even after 20000 iterations. There is a

clear transition between iterations 6000-12000 and 12000-

15000 which is reflected as a constant decrease in the

histogram difference norm plot in Figure 7. Again, we observe

no significant changes between iterations 15000 and 18000,

and the histogram difference metric indicates stabilization at

around 15000 iterations. The bin-difference metric consistently

drops to a certain value and shows little change after that

point (note the log scale on the y-axis), while the average

gradient norm metric steeply declines even well after the

global structure of the embedding has stabilized. The same

behaviour can be seen in Section III in the MNIST data

set experiment which contains only 0.7% of the elements in

SIFT10M and Deep10M data sets and has a much simpler

structure.

It is also worth mentioning that the change in the gradient

norm metric stays almost constant for a very long period

of time, for both runs. This might render the application

of patience-based early termination methods harder since the

patience-interval would require to be very large to avoid local

minima and premature termination. This behaviour is also

observed in Section III with the MNIST data set, containing

only 70000 elements.

D. Matrix Reordering

We analyze the effect of reordering the rows and columns of

the P matrix on the data sets described above. We also evaluate

the effect of the reordering for two different implementations:

FI-tSNE and BH-tSNE. We already explained the FI-

tSNE algorithm in detail in Section II. The BH-tSNE

algorithm utilizes a Barnes-Hut tree to compute the repulsive

forces and the compressed sparse row (CSR) based SPMV

implementation in the cuSPARSE library to compute the

attractive forces, instead of the COO based SPMV in FI-tSNE

that relies on CUDA atomicAdd [1] operations. We believe

this comparative evaluation could be helpful since some related

work such as [26] in literature consider the Barnes-Hut version

of the algorithm as a baseline.

Since the number of iterations required for the algorithm

to converge differs from data set to data set, we present

the speedups for a fixed number of iterations. From our

experiments with the listed data sets, we discovered that

most of them visually stabilize between 10 thousand and 20

thousand iterations. We run the algorithm for 20 thousand

iterations to stretch-test and evaluate the overall speedup

achieved by reordering the sparse matrix. Note that this is

a significantly higher number of iterations than that is used in

previous work, but it is necessary to obtain proper convergence

due to the large size of the data sets as we demonstrated in

the previous subsection.

In Figure 10 and Figure 11 we break down the end-to-

end execution time into different parts. For FI-tSNE-cuda,

these parts include the k nearest neighbors (knn), the attractive

forces (attr f ), repulsive forces (rep f ), binning for histogram

differences (bin) and matrix reordering (reorder) parts. All

kernels which are responsible for an insignificant percentage

are accumulated into “other”. For BH-tSNE-cuda, we consider

the kernels evaluated in [26]. These parts are mostly the same

with FI-tSNE-cuda, while having the Barnes-Hut tree building

(build tree) part in addition.

First of all, comparing the solid bars in Figures 10 and 11,

we can see that vanilla FI-tSNE-cuda clearly outperforms the

vanilla BH-tSNE-cuda, even without any matrix reordering.

For both versions, we observe that rabbit-reordering (hatched

bars) delivers important end-to-end speedups. The percentage

of the attractive forces computation time constitutes a

significant portion of the vanilla BH-tSNE-cuda time, more

than 75% of the total time for all runs. This results in better

overall speedups in all experiments for the BH-tSNE case.

Moreover, “reorder” time is an insignificant fraction of the

overall execution time for both evaluations, and the improved

memory access pattern amortizes its overhead even in the

worst-case scenario, i.e., for the GloVe data set.

Fig. 10: Performance breakdown of the kernels for vanilla

(solid bars) and rabbit re-ordered (hatched bars) runs for FI-

tSNE.

Fig. 11: Performance breakdown of the kernels for vanilla

(solid bars) and rabbit re-ordered (hatched bars) runs for BH-

tSNE.

The above table summarizes the impact of improving data

locality through matrix reordering both for BH-tSNE and FI-

Authorized licensed use limited to: Michigan State University. Downloaded on November 28,2021 at 11:58:10 UTC from IEEE Xplore.  Restrictions apply. 



Table II: Speedup values after matrix reordering is applied to

FI-tSNE and BH-tSNE, both for attractive forces computation

and overall end-to-end running time.

Amazon GloVe GN S10M D10M Synth

attr f FI 1.40× 1.17× 1.94× 1.74× 2.13× 3.82×

end-to-end FI 1.20× 1.06× 1.25× 1.50× 1.68× 2.63×

attr f BH 1.65× 1.42× 2.70× - 2.12× 5.97×

end-to-end BH 1.46× 1.35× 1.85× - 1.94× 4.63×

tSNE-cuda. We note that we sample 5 million points from

the synthetic data set and do not include SIFT10M results

for BH-tSNE-cuda due to high requirement of resources and

long computation time. For both implementations, among all

kernels, attractive forces kernel (attr f ) is most affected by

the reordering as computations with the P matrix constitute

the majority of the operations there. For this kernel, matrix

reordering gives 1.17× to 3.82× speedup for the FI-tSNE-cuda

case and 1.42× to 5.97× speedup for the BH-tSNE-cuda case,

typically yielding higher speedups for larger data sets. Since

attr f is the most expensive part, these speed-ups translate to

good end-to-end execution time improvements, too, especially

in the BH-tSNE-cuda case. The proposed locality optimization

results in 1.20x to 2.63x overall speedup for FI-tSNE-cuda

while giving 1.46× to 4.63× improvement for the BH-tSNE-

cuda case.

It is also worth mentioning that the GPU device used in

this experiment could have a significant effect on the speedup.

Since V100 has significantly more memory bandwidth than

its counterparts and supports very fast atomic operations, the

effects of the poor data-locality are diminished in comparison

to most other NVIDIA GPU devices. Therefore, we expect

that these improvements will be magnified on GPU devices

having less memory bandwidth.

V. RELATED WORK

The t-SNE algorithm has been extensively studied since

its first appearance. The size of the target data set, however,

has many implications for the state-of-the-art implementations.

Here we discuss the current state of the GPU implementation

and the stopping criterion, both of which are key factors for

utilizing t-SNE for large data sets.

As we discussed and demonstrated, the number of iterations

is one of the key hyper-parameters for t-SNE. However,

to the best of our knowledge, this aspect of t-SNE has

not been studied in detail before. In the BH-tSNE-cuda [1]

and FI-tSNE-cuda [6] papers, the authors do not provide

a convergence analysis for the experiments they perform.

However, they present performance scalability tests where

the number of iterations was fixed to 1000 by default in

their implementation. While 1000 iterations can be more than

enough for small data sets like MNIST, it is very likely

that it will cause a premature termination in large data sets,

far before the visual stabilization occurs. In this regard, our

proposed histogram difference metric is a novel contribution,

as we tried to demonstrate its merit by examining the visual

stabilization of the low-dimensional embeddings along with

plots of histogram difference and gradient norm metrics over

iterations.

To improve the memory access pattern of BH-tSNE-cuda,

Meyer et al. replace the Barnes-Hut implementation, which is

based on [27], with an alternate version using ImplicitT ree
representation [28]. This representation improves the memory

access pattern, and hence the overall performance of the

application [26]. While the authors are able to achieve around

2× end-to-end speed-up for the Amazon Electronics data set,

the method is not applicable for FI-tSNE-cuda, which is the

state-of-the-art t-SNE implementation. Since the performance

of the FI-tSNE-cuda is significantly better (more than 2×) than

BH-tSNE-cuda overall, the applicability of the optimization

becomes critically important. As we demonstrated in Section

IV, if we compare vanilla BH-tSNE-cuda (the baseline in [26])

to matrix reordered FI-tSNE-cuda, we observe combined end-

to-end speedups ranging from 2× to more than 4×, for real-

world data sets.

VI. CONCLUSION

In recent years, GPU implementations of the t-SNE

algorithm sped up the execution time by several orders of

magnitude, enabling the visualization of data sets containing

millions of data points. We investigated and optimized the t-

sne-cuda code for very large data sets containing up to 10

million points. The size of such data sets makes the t-SNE

computation very expensive, even on GPUs. There are two

main factors affecting the overall computation cost: Number

of iterations and the sparse memory access pattern of the P

matrix.

Currently, the only available stopping criterion is the

gradient norm. While this metric can be used to terminate the

algorithm, we discover that it is prone to the local changes

occurring very late in the execution, making the metric not

practical. We proposed a new stopping criterion using 2D

binning difference norm on the low-dimensional embeddings

produced by t-SNE. We implemented the proposed metric on

GPU using CUDA, achieving negligible overhead in the t-SNE

loop. We finally compared the proposed metric to the gradient

norm and discussed its effectiveness for visual stabilization.

We also addressed the inefficient memory access pattern

issue in the attractive forces kernel, both for BH-tSNE-cuda

and FI-tSNE-cuda implementations. Since many real-world

data sets have community structures, we integrated the multi-

core Rabbit Order matrix-reordering algorithm to FI-tSNE-

cuda and BH-tSNE-cuda codebase to improve the data locality

of the P matrix. The optimizations resulted in up to 1.68× and

1.94× end-to-end speedup for FI-tSNE-cuda and BH-tSNE-

cuda, respectively, for very large real-world data sets, while

amortizing the reordering overheads for all runs.

The proposed methods, both for stopping the algorithm and

improving the memory access pattern, could serve as a generic

framework to analyze very large real-world data sets more

efficiently. As future work, we plan to investigate methods

to reduce memory utilization of the program and possibly

integrate multi-GPU solutions to support even larger data sets.
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