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Abstract
A new class of electromechanically coupled metamaterial is presented which relies on magnetic
field interactions between the host structure and a local resonator circuit to realize novel
vibration control capabilities. The metamaterial chain exhibits a highly tunable vibration band
gap which can be easily placed at a desired frequency using the resonant circuit parameters,
providing a robust mechanism to independently alter the band gap width, depth, and frequency
of maximum attenuation. In its dissipative form, the electromechanical metamaterial is shown to
exhibit electrical metadamping as a function of the local resonance circuit resistance. The
impact of the damping ratio as a function of the electrical resistance is characterized in
frequency and time domains, and related to the infinite system dynamics. A robust experimental
realization of the system is constructed which achieves electromechanical coupling through a
moving coil and magnet system. The apparatus is used to show that the band gap location and
depth can be readily tuned with the circuit elements. The presented metamaterial has potential
for meaningful vibroacoustic practical applications in addition to revealing fundamentally new
properties of damped electrically-resonant structures.

Keywords: metametamaterials, electromechanical coupling, tunable band gap,
negative impedance, metadamping

(Some figures may appear in colour only in the online journal)

1. Introduction

Metamaterials comprise a class of engineered materials which
exhibit properties that are beyond those expected of nor-
mal materials, such as reflective or absorptive properties that
seem to defy the conventional laws of physics imposed on

∗
Author to whom any correspondence should be addressed.

bulk materials. In structural systems, metamaterials have been
shown to possess remarkable vibration absorption properties
stemming from their ability to exhibit band gaps, i.e. frequency
regions within which wave propagation is heavily attenuated
[1, 2]. Band gaps can stem from material or geometric peri-
odicity in phononic crystals (PCs) [3–6] or from local reson-
ances in acoustic metamaterials (AMs) [7–11]; the latter is the
main focus of this study. Band gaps in AMs can be tuned by
adjusting the inertial and elastic properties of the local res-
onators, allowing them to exhibit desirable vibration control
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capabilities that extend to lower frequencies while using smal-
ler geometric scales than PCs [12]. As a result, they have
been recently utilized in various applications ranging from dir-
ectional filtering [13, 14] and energy harvesting [15–18], to
underwater sound absorption [19] and nonreciprocal systems
[20, 21].

System tunability is a critical property if metamaterials
are to fully realize their potential. The motivation to develop
metamaterials which alter their dynamic behavior or disper-
sion profiles in response to changing excitations has spurred a
number of efforts aiming to integrate smart transducers within
metamaterial designs, including piezoelectrics [22, 23], mag-
netoelastic [24], and magnetorheological materials [25]. Elec-
trically tunable metamaterials are particularly attractive due to
the accessibility of electrical parameters; the wave propaga-
tion behavior can also be adjusted instantaneously, which
is a significant advantage over thermally tunable metama-
terials (e.g. shape memory polymers [26] and alloys [27]).
This, for example, has been shown in the tunable behavior
of piezoelectric wave guides [28], the auxetic behavior of
piezoelectric elements [29], and the longitudinal wave con-
trol of soft dielectric elastomers [30]. Electrical band gap con-
trol has been successfully demonstrated using stiffening and
softening negative impedance circuits [31] as well as negat-
ive capacitance piezoelectric shunting [32]. Using the latter,
a hybrid metamaterial with negative effective mass density
and tunable bending stiffness was designed [33]. Further-
more, it was experimentally shown that digital control cir-
cuits can be used to create a self-adaptive metamaterial beam
with broadband flexural wave attenuation at subwavelength
scales [34], most recently via synchronized switching damp-
ing on inductor dual-connected electronic networks [35]. The
utility of electromechanically coupled metamaterials (EMMs)
for forming both mechanical and electrical band gaps was
recently demonstrated [36], albeit for undamped and very
lightly damped mechanical resonators (maximum damping
ratio of 2%), and in the complete absence of electrical
damping.

The vast majority of analysis of locally resonant metama-
terials is conducted on the undamped (lossless) version of the
unit cell under consideration. Consequently, interpretation of
band gaps in damped systems has remained a largely under-
explored area. The presence of material damping provides
a second dimension to the wave attenuation problem in the
form of a temporal decay of oscillations outside band gap
regions. This is typically accompanied with additional com-
plexity in the treatment and interpretation of the dispersion
equations, which inevitably makes for a challenging mathem-
atical problem involving complex frequencies, wavenumbers,
or both [37]. However, such interpretation has shed light onto
an intriguing interplay between damping and local resonances
which has been shown to amplify the dissipation level in a res-
onant metamaterial corresponding to a fixed damping amount.
This ability of a locally resonant metamaterial to exhibit a
superior dissipative response compared to a PC of the same
damping composition is commonly referred to as metadamp-
ing, and was first conceptualized in simple mass-in-mass lat-
tices [38], and later in continuous [39], non-local [40, 41], and

multi-resonator metamaterials [42]. To date, the above treat-
ment has been solely limited to mechanical damping, partic-
ularly focusing on material loss and viscous-to-viscoelastic
transitions [43]. The dynamics of electrically damped local
resonances will be carefully studied in this work, provid-
ing a connecting chapter for the domains of electromechan-
ical metamaterials as well as metamaterials augmented with
damped resonances.

This work presents a comprehensive theoretical and experi-
mental analysis of an electrically-tunable AM which achieves
electromechanical coupling through a moving coil and mag-
net system. The novel configuration has several features
that render it an attractive candidate for practical vibration
isolation, including low barrier-to-entry construction mater-
ials (affordable consumer grade electronics) and powerful
vibration suppression capabilities. The theoretical description
yields new insight into the fundamental physics of electrically-
dissipative structures. The equations of motion are derived
from first principles and the dispersion relations for the
undamped and electrically damped system are presented. Fol-
lowing which, a finite system model is derived and used to
investigate the various means of tuning the emergent band
gap. Finally, an experimental setup is described which lever-
ages a negative impedance converter (NIC) circuit to negate
the inherent resistance in the commercial unit cell coils, and is
used to demonstrate the tunability of the electrically-resonant
metamaterial.

2. Electromechanical system description

2.1. Lagrangian mechanics and governing equations

An illustration of the general concept for the EMM is shown
in figure 1(a). The system is composed of repeating identical
unit cells which consist of a mass m and are connected to the
preceding and subsequent masses via a spring of stiffness k,
a dashpot of damping coefficient c, and a special, idealized,
electromechanical coupling element with coefficient b which
captures the interaction of a moving coil and permanent mag-
net coupling mechanism. The mechanical degree of freedom
un is the position of the nth mass in the chain relative to its rest
location. Each unit cell has length a which represents the lat-
tice constant. The electromechanical coupling element itself
houses the electrical degree of freedom, the charge in the nth
circuit, qn. The circuits in each electromechanical coupling
element are independent and electrically isolated; the nth cir-
cuit is shown in figure 1(b). The circuit consists of an effect-
ive voltage source (which represents the voltage induced in
the circuit by the electromechanical coupling), inductance L,
resistance R, and capacitance C (given by the elastance, S, the
inverse of capacitance). Themechanical and electrical systems
are coupled through a permanent magnet which is fixed to the
unit cell mass, and an electrical coil which is fixed to the pre-
vious mass in the chain such that relative motion between the
two results in an induced voltage in the coil and an additional
magnetic field generated by the current through the coil.

To derive the governing equations for the chain of elec-
tromechanically coupled moving-coil speakers, the models
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Figure 1. Proposed electromechanical metamaterial chain: (a) schematic of three unit cells in a uniform chain; each unit cell has mass m,
spring stiffness k, mechanical damping c, and electromechanical coupling element with coefficient b which encompasses the electrical
degree of freedom, (b) electrical resonator circuit with inductance L, resistance R, and elastance S (inverse capacitance).

given in Mechatronics [44] (which describe a single magnet-
coil system) and current literature [45] (which describe
damped, lumped, periodic structures) are referenced. The
derivation adopts Lagrangian mechanics, which first requires
identifying the total energy in the system.We define the gener-
alized coordinates to be the displacements of the magnet mass
un and the charge in the circuit coil qn. The kinetic energy and
potential energy can be expressed as:

T=
1
2
mu̇2n (1a)

V=
1
2
k(un− un−1)

2 +
1
2
k(un− un+1)

2 +
1
2
Sq2n. (1b)

The magnetic energy in the nth circuit must be included as
an additional term in the Lagrangian. The magnetic energy is
often analyzed in terms of the magnetic coenergy, and the two
terms are equivalent if the flux linkage is assumed to be lin-
early related to the current [46]. In this work the displacements
of the mass are assumed to be small enough to maintain lin-
earity in the springs as well as in the flux-current relationship.
The magnetic coenergy W∗

m is defined in terms of the current
q̇n and the flux linkage λn as:

W∗
m =

q̇nˆ

0

λn dq̇n, (2)

where the asterisk explicitly denotes that this is a coenergy
quantity. The magnetic flux linkage in the circuit is defined as
the integral of the voltage with respect to time [44, 47]. The
voltage generated in the circuit (from Faraday’s Law) is:

Vn,magnet = b(u̇n− u̇n−1), (3)

with the constant coupling coefficient defined as:

b= 2 πNtrcα, (4)

where N t and rc are the number of turns and the radius of the
wire coil and α is the permanent magnetic field flux density.
The voltage from the current in the coil is:

Vn,current = Lq̈n. (5)

As such, the magnetic flux linkage λ is the integral of the sum
of the voltage from the relative motion of the coil and magnet
plus the voltage from the current in the coil:

λn =

ˆ
(Vn,magnet +Vn,current) dt. (6)

Since the motion of both the previous and subsequent mass
in the chain influence the coil voltage from the magnet, the
flux linkage in both the nth circuit and the (n+ 1)th circuit
must be considered. Alternatively, the argument can be made
to consider any flux linkage which is related to either of the
generalized coordinates; the result is that both λn and λn+1

should be written, which yields:

λn = Lq̇n+ b(un− un−1) (7a)

λn+1 = Lq̇n+1 + b(un+1 − un). (7b)

Finally, the total magnetic coenergy and the dissipation
function are defined as:

W∗
m =

1
2
Lq̇2n+

1
2
Lq̇2n+1

+ bq̇n(un− un−1)+ bq̇n+1(un+1 − un) (8a)

D=
1
2
c(u̇n− u̇n−1)

2 +
1
2
c(u̇n+1 − u̇n)

2 +
1
2
Rq̇2n, (8b)

respectively, and the Lagrangian is defined as:

L= T+W∗
m−V, (9)

which has been written directly with the magnetic coenergy
since it is equivalent to the magnetic energy [46, 47]. Sub-
stituting equations (1a), (1b), and (8a) into equation (9), the
Lagrangian can be written as:

L=
1
2
mu̇2n+

1
2
Lq̇2n+

1
2
Lq̇2n+1

+ bq̇n(un− un−1)+ bq̇n+1(un+1 − un)

− 1
2
k(un− un−1)

2 − 1
2
k(un− un−1)

2 − 1
2
Sq2n, (10)
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and Largrange’s equations become:

d
dt

∂L
∂u̇n

+
∂D
∂u̇n

− ∂L
∂un

= 0 (11a)

d
dt

∂L
∂q̇n

+
∂D
∂q̇n

− ∂L
∂qn

= 0. (11b)

Evaluating the Lagrangian for both degrees of freedom
yields:

mün+ 2 cu̇n− c(u̇n+1 + u̇n−1)+ 2 kun
−k(un+1 + un−1)− bq̇n+ bq̇n+1 = 0 (12a)

Lq̈n+Rq̇n+ Sqn+ bu̇n− bu̇n−1 = 0. (12b)

Equations (12a) and (12b) represent the set of governing
equations for the two degrees of freedom of the EMM unit
cell. It is worth noting that there are key differences here from
previously published efforts: the equations are coupled by the
damping terms, the velocity and current, and the equations of
motion are asymmetric (but still Hermitian in matrix form). It
is also interesting to note that that the local resonance coupling
is dependent on the mechanical degree of freedom of the nth
and (n− 1)th cell, while depending on the electrical degree
of freedom in the nth and (n+ 1)th cell. This is distinct from
traditional fully-mechanical locally resonant systems which
include no coupling between adjacent cells in the locally res-
onant degree of freedom [10].

2.2. Unit cell analysis

Owing to their periodic nature, several hallmark features of
metamaterials can be extracted from a dispersion analysis of
a single unit cell. Such analysis depicts the behavior of an
infinite chain comprised of such cells connected in series,
and forgoes any boundary conditions or truncation effects, but
provides a commonly-used blueprint for the design of the finite
system during later stages. A Bloch-wave solution of the form:

un(n, t) = Ũ eiµan−γt (13a)

qn(n, t) = Q̃ eiµan−γt, (13b)

can be assumedwhich exploits the fact that the solution field of
a periodic system is inherently periodic (i.e. a planewavemod-
ulated by a periodic function). Here, Ũ and Q̃ are the complex
wave amplitudes for the mass displacement and charge waves,
respectively, µ is the wavenumber, and γ is the complex oscil-
lation frequency. The displacement of the nth unit cell, un, and
the charge on the associated coil, qn, are defined at the location
of the nth unit cell an (unit cell index multiplied by unit cell
length) at time t. After substituting equations (13a) and (13b)
into the governing equations, equations (12a) and (12b), we
arrive at:

MBẍB+CBẋB+KBxB = 0, (14)

where

MB =

[
m 0
0 L

]
,

CB =

[
2 c(1− cosµa) b(eiµa− 1)
b(1− e−iµa) R

]
,

KB =

[
2k(1− cosµa) 0

0 S

]
,

xB =
{

Ũeγt

Q̃eγt

}
(15)

where the subscript B denotes the Bloch solution for the infin-
ite chain case, with matrix variables written in blackboard-
bold font and vectors in roman bold font, and 0 is the zero
vector. To determine the relationship between the wavenum-
ber µ and the oscillation frequency γ, this matrix differential
equation can be recast into an eigenvalue problem by applying
a state-space transformation [37]. First, let yB = {xB, ẋB}T,
and define yB = ỸBeγt, where ỸB = {Ũ, Q̃, γŨ, γQ̃}T, such
that the matrix equation above can be written as:([

O MB

MB O

]
γ+

[
KB CB

O −MB

])
ỸB = 0, (16)

where O is a 2 × 2 zero matrix.

2.3. Undamped dispersion analysis

The eigenvalues can be found analytically for the undamped
cases, i.e. setting c= 0 and R= 0 in equation (15) and solving
for the values of γ that satisfy equation (16) while specifying
explicitly γ = iω, where ω is the angular frequency. The poly-
nomial that defines the eigenvalues for the undamped, infinite
length, electromechanically coupled chain evaluates to:

mLγ4 + γ2
[
2 kL(1− cosµa)

+ 2b2(1− cosµa)+ Sm
]

+ 2 kS(1− cosµa) = 0. (17)

The above equation can be cast in a normalized form for better
interpretation. By defining:

ω2
m =

k
m
, ω2

e =
S
L
, β2 =

b2

mL
, (18)

and the unitless parameters:

Ω=
ω

ωm
, E=

ωe
ωm

, B=
β

ωm
, (19)

equation (17) can be rewritten as:

Ω4 −Ω2
[
2(1− cosµa)+ 2B2(1− cosµa)+E2

]
+ 2 E(1− cosµa) = 0, (20)

where µa denotes the dimensionless wavenumber. The roots
of this expression for a givenµa define the dispersion bands for
this unit cell. In practice, one can either specify a real µa and
solve for Ω, or specify real Ω and solve for a complex µa. The
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Figure 2. Dispersion relation for an infinite EMM chain with no damping: (a) band gap shift as external capacitance is varied and (b) band
gap growth as magnetic field strength is increased.

latter is known as the driven-wave approach since the incident
wave frequency is dictated as an input to the problem [6, 39]. In
a completely undamped chain with no energy dissipation over
time, we expect a purely real oscillation frequency. Therefore,
we specify a real Ω and solve for (generally complex but not
always) µa. Henceforth, we use the symbols ℜ( ·) and ℑ( ·)
to indicate the real and imaginary parts of a given argument,
respectively. In this scenario, and in the absence of temporal
attenuation due to the lack of material or electrical damping, a
non-zero imaginary part of the wavenumber indicates a spatial
attenuation mechanismwhich is indicative of a band gap span-
ning the frequency range within which ℑ(µa) exists, whereas
ℜ(µa) plot the dispersion bands for any frequency Ω outside
such gaps. Solving equation (20) for µa yields:

cos µa=
Ω4 −Ω2(2+ 2B2 +E2)+ 2 E2

−2Ω2(1+B2)+ 2E2
, (21)

which leads to a specific frequency where the wavenumber
is undefined, i.e. cosµa=∞, by defining the asymptote fre-
quency:

ΩA =

√
E2

1+B2
=

√
mS

kL+ b2
, (22)

where ΩA denotes the frequency of maximum attenuation
within the band gap. The lower limit of the band gap can
be computed by solving for the frequency ΩL where the
wavenumber is equal to π, i.e. cosµa=−1 [48], to find:

ΩL =
(
P−

√
P2 − 4E2

) 1
2
, (23)

where P= 2(1+B2 +E2/4). As will be discussed shortly, the
band gap emerging in this system is a local resonance band
gap, which is uniquely identified with a π phase shift in µa on

both ends of the gap. As such, the band gap closes when µ= 0.
Solving equation (21) for cos µa= 1, we get:

ΩE = E, (24)

as the upper limit of the band gap. For completeness, we
also define the frequency of the upper limit of the acous-
tic mode, ΩS, which indicates the starting frequency of the
stop band, i.e. an unbounded band gap which constitutes
the end of the dispersion profile of any lumped-parameter
system [2].

Figure 2(a) shows the dispersion bands for varying external
capacitance. The bands are computed by sweeping the fre-
quency Ω over a range of real values in equation (20) and
solving for the complex wavenumber µa. Note that the dis-
persion relation polynomial, equation (20), was found with no
mechanical or electrical damping, i.e. c = 0 and R = 0, but
still accounts for the electromechanical coupling in the sys-
tem. The electrical circuit resonance frequency is shown to
be the upper limit of the band gap, and thus the wave atten-
uation region can be controlled by varying the electrical capa-
citance in the external circuit of each unit cell. Increasing the
capacitance leads to a lower electrical resonance frequency,
E, and consequently the band gap upper limit ΩE moves down
on the frequency axis. Figure 2(b) shows the impact of vary-
ing the magnetic field strength coefficient, b, (represented in
terms of the non-dimensional magnetic parameter B) on the
dispersion bands. The upper limit of the band gap, ΩE, does
not depend on the magnetic coupling coefficient b and so it
does not change. However, the asymptote frequency ΩA does
depend on b: increasing the magnetic field strength (defined
as α but tuned using b for simplicity) decreases the magnitude
of the asymptote frequency (and lower limit ΩL), therefore
increasing thewidth of the band gap. Note thismust not change
the coil parameters, otherwise L and consequently E would
change.
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Figure 3. Evolution of key band gap parameters as (a) circuit
capacitance and (b) magnet strength are increased. The frequency of
the stop band ΩS above which no waves will propagate, upper band
gap limit ΩE, asymptote frequency (maximum attenuation) ΩA, and
lower band gap limit ΩL as predicted by the dispersion relation are
graphed as functions of a single variable system parameter as
indicated by the tables adjacent to each plot.

The tunability of the electrical local resonance band gap
is summarized in figure 3. Four key parameters of the disper-
sion curves are computed as either the external circuit capa-
citance or the magnet strength is varied. The key parameters
are the frequency at which the stop band begins, ΩS, the upper
and lower band gap limits ΩE and ΩL, respectively, and the
frequency of maximum attenuation ΩA. A set of system para-
meters are chosen in order to provide some idea for system
design as well as place this figure in context with the exper-
imental results presented in later sections. In figure 3(a), the
capacitance is varied while the other parameters are held con-
stant. The undamped band gap region is shaded for clarity.
In figure 3(b) the magnetic field strength is varied while the
other parameters are held constant. The fixed location ofΩE in
figure 3(b) highlights the independence of the electrical reson-
ance frequency from the magnetic field strength parameter b,
while the significant variation in both ΩA and ΩL indicates the

utility of selecting a magnetic field strength based on system
performance requirements.

2.4. Damped dispersion and electrical metadamping

The eigenvalue problem which dictates the relationship
between the temporal oscillation frequency and the (complex)
spatial wavenumber was investigated analytically in the pre-
vious section for a completely undamped case. It is of signi-
ficant interest to examine the impact of electrical damping on
the EMM chain for several reasons: first, the electrical resist-
ance of each unit cell can be easily tuned in a practical setting
and, second, the effects of damping within a locally resonant
metamaterial have been an intriguing topic of investigation in
several recently published efforts (a comprehensive review of
such efforts can be found in [41]). The following section sheds
insight into the wave dispersion mechanics of EMMs compris-
ing electrically damped resonances and discusses the notion of
electrical metadamping; a mechanism to achieve a desirable
dissipative behavior (reminiscent ofmechanical metadamping
systems) with tuning capabilities given its sole dependence on
easily-changeable resistive elements.

The eigenvalues of the damped dispersion relation can be
found numerically using equation (16). The damped natural
frequency, Ωd, and the damping ratio, ζd, are computed as:

Ωd = ℑ(γ(µa))/ωm (25a)

ζd =−ℜ(γ(µa))∣∣γ(µa)∣∣ , (25b)

where the eigenvalues γ(µa) are explicitly functions of the real
wavenumber µa [39]. If a computational tool (e.g. matlab) is
used to compute the eigenvalues in an iterative manner (i.e.
sweeping through a µa vector in a for loop), the algorithm
must maintain the order of the eigenvalues with their respect-
ive mode shapes in order to have a meaningful result. It is
likely that the solver will return the eigenvalues in different
vector indices if left to chance. To track the modes, the modal
assurance criterion is adopted, which is defined as [49]:

M(a, b) =

∣∣vTavb∣∣2
(vTava)

(
vTbvb

) , (26)

and is essentially a normalized dot product between the eigen-
vectors va and vb. If the eigenvectors are the same, then
M(a,a) = 1. If they are orthogonal, thenM(a,b) = 0. To track
the system eigenvalues through multiple iterations (as the sys-
tem parameters are varied), we compute the eigenvalues of
the state matrix, then arrange them in an order that minimizes
M(a,b) when compared to the previous iteration. This sorting
step takes place for each new wavenumber value that is sub-
stituted into the mass, stiffness and damping matrices when
computing the dispersion curves. Figure 4 shows the variation
of Ωd and ζd with µa, as well as ζd as a function of Ωd, for
different value of the electrical resistance, R. Given the focus
on electrical damping, we set c= 0 for simplicity. Figure 4(a)

6
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Figure 4. Dispersion relation for electrically damped, mechanically undamped (c= 0), infinite chain of electromechanically coupled
metamaterial cells: (a) variation in dispersion curves as electrical resistance is decreased, (b) variation in damping ratio, (c) damping ratio as
a function of damped frequency.

depicts the damped dispersion behavior, i.e. the damped oscil-
lation frequency Ωd against µa. Figure 4(b) provides the cor-
responding variation of the damping ratio ζd of the infinite
EMM chain with µa. In figures 4(a) and (b), solid lines indic-
ate the acoustic mode (branch), and the dashed lines indic-
ate the optic mode (branch) of the metamaterial. The close-
ups highlight the behavior of the branches in the vicinity of
the electrical local resonance band gap region, which reveal
a narrowing band gap with an increasing electrical resistance
R. Furthermore, the analysis shows that the gap ultimately
closes beyond a critical R value which initiates a branch cross-
ing (similar to the branch overtaking phenomenon described
in [41] for mechanically damped metamaterials). Figure 4(c)
shows the damping ratio graphed as a function of the damped
frequency [39], and signals a unique and potentially useful
feature of damped locally resonant structures: the damping
ratio is unchanged at low oscillation frequencies and relatively
unaffected at high frequencies, but in the region surrounding

the band gap the damping ratio can be increased substantially
via a fine tuning of the electrical resistance R. The lightly
damped case R= 0.10 Ohm shows a band gap (vertical break
in the close-up inset of figure 4(c) where there is no damp-
ing ratio because the damped frequency is undefined; as the
electrical resistance increases, the band gap remains (i.e. for
R= 0.60 Ohm) and the damping ratio increases from roughly
0.05 to a maximum of ζd = 0.25 immediately before and after
the band gap. The shaded region labeled ‘Damped BG’ illus-
trates the change in band gap width and location, which is an
inevitable trade-off of the resistance increase. As the electrical
resistance is increased toR= 1.00Ohm and above (henceforth
referred to as the high resistance regime), the band gap closes
and the damping ratio is significantly reduced. However, a
small region near the frequency where the band gap would
exist breaks off and continues to follow the trend of increased
damping ratio and decreasing frequency for R= 1.00 Ohm
and above, as shown in figure 4(c). Although the band gap
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is closed and the spatial attenuation is not expected along the
length of the EMM chain, the temporal damping ratio is still
controlled by the electrical resistance within this regime. In
practice, it is difficult to make use of this parabolic satellite
region because: (a) it spans an increasingly narrow frequency
range which must be directly excited, and (b) targeting the
highly damped mode which corresponds to the satellite region
also necessarily targets the underdamped mode as well. How-
ever, the metadamping for lower resistances remains a power-
ful tool which will be explored further for a finite system in
the following sections.

3. Dynamics of the finite metamaterial

3.1. Finite EMM model

Consider a chain of N EMM unit cells. The system para-
meters are the unit cell mass m, spring stiffness k, damp-
ing constant c, coil inductance Lc, capacitance Cc or elast-
ance Sc = 1/Cc, resistanceRc, and electromechanical coupling
factor b as described earlier. The mass, damping, and stiffness
matrices, M, C and K, respectively, can be constructed from
the governing equations [50]. The governing equations for the
finite system can be written in matrix form as:

Mẍ+Cẋ+Kx= F, (27)

where the vector x is:

x= {u1, q1, u2, q2, . . . uN, qN}T, (28)

with un being the displacement of the nth unit cell mass and
qn being the charge on the nth coil, and the input vector is:

F= {f0(t), 0, 0, . . . 0, 0}T, (29)

where the force acting on the first cell, f 0, is a harmonic func-
tion of time representing an incident excitation at one end of
the EMM chain.

Another state-space realization is adopted for the finite
chain case by defining the new state vector z= {x, ẋ}T and
the new output vector (i.e. states that are available for meas-
urement) y so that equation (27) can be written as:

ż= Asz+Bs f0 (30a)

y= Csz+Ds f0, (30b)

The state matrix As and input matrix Bs define the system
dynamics, and the output matrix Cs and direct feedforward
matrix Ds define the states that are available for measurement.
In the present case, the output states are the position of the first

mass and the last mass in the chain. The system is therefore
represented by:

As =

[
O M
M O

]−1 [ −K −C
O M

]
,

Bs =

[
O M
M O

]−1{
F
0

}
,

Cs =

[
1 ... 0 ... 0
0 ... 1 ... 0

]
,

Ds =

[
0
0

]
, (31)

where Cs is zero except elements (1,1) and (2,2N− 1). The
output vector, written explicitly in terms of the EMM chain
degrees of freedom variables, is y= {u1, uN}T. Note that the
position of the first mass is u1 = x1 = z1, the first element of
the vector x, and the position of the last mass is uN = x2N−1 =
z2N−1, the second-to-last element of the vector x (the charge for
that unit cell is the last element). This state space realization
can be used to find the transfer functions between the output
states and the input force applied to the first cell. The transfer
function is traditionally written in the Laplace domain. Tak-
ing the Laplace transform of equations (30a) and (30b) and
solving for y yields:

y(s) = Cs (sI−As)
−1Bs f(s), (32)

where s is the Laplace variable. This relationship readily
provides two (in this case) transfer functions after dividing by
the scalar Laplace domain forcing function:

G1(s) =
u1
f0

=
n1(s)
d(s)

(33a)

GN(s) =
uN
f0

=
nN(s)
d(s)

, (33b)

where each transfer function is a ratio of polynomials, n1, n2,
and d, expressed in terms of the Laplace variable s; the trans-
fer functions have the same denominator. To find the end-to-
end transfer function, which is physically relevant for vibra-
tion isolation applications, GN/G1 is evaluated to find:

GN,1(s) =
nN(s)
n1(s)

, (34)

which defines the transfer function between the motion of
the first mass in the chain and the motion of the last mass.
For vibration isolation, the steady-state response is commonly
extracted from Laplace transfer functions [10], which yields
the frequency response function:

HN,1(ω) = GN,1(iω). (35)

The end-to-end frequency response functions, HN,1, are
shown in figure 5 for varying system parameters. Figure 5(a)

8



Smart Mater. Struct. 31 (2022) 015002 J Callanan et al

Figure 5. Acceleration frequency response functions for varying electrical parameters: (a) varying electrical resonance frequency by
changing tuning capacitance places band gap at chosen frequency, and (b) varying tuning resistance changes depth of attenuation.

shows the frequency response function in dB for a given set
of system parameters and three different capacitor values.
The total series resistance in the electrical circuit is set to
Rc = 0.025 Ohm in figure 5(a). In figure 5(b) the capacitance
is set to Cc = 2000 µF and the resistance is varied. When the
external circuit capacitance is changed, the location of the zero
(or collection of zeros) in the frequency response function,
i.e. the band gap, shifts according to the change in resonance
frequency of the locally resonant electrical system. The fre-
quency of maximum attenuation, ωA =ΩAωm, as predicted by
the dispersion relation, is represented by a dotted line for each
capacitance value. Note that the region of maximum attenu-
ation is not located at the natural frequency of the local res-
onators, ωe, but instead the upper limit of the band gap is ωe.
In figure 5(b), the impact of increasing damping within the
local resonance system is shown: with high damping, there
is no local resonance effect and the frequency response func-
tion resembles that of a uniform chain of spring-masses. As
the electrical damping is decreased, the current in the coil
increases and as such the magnetic force between the coil and
magnet becomes relevant which results in a variation in the
end to end acceleration frequency response function. The finite
system frequency response functions demonstrate the utility
of the EMM system. In most published experimental efforts,
tuning the band gap location is difficult and requires sophist-
icated (or expensive) equipment. With the EMM as described,
the band gap can be placed at any frequency with the appropri-
ate selection of the tuning circuit inductance and capacitance.
Further, the band gap can be completely suppressed (i.e. the
structure behaves as a traditional lumped mechanical system)
or exaggerated by changing the resistance in the tuning circuit.
This level of control, achievable through electrical switches
and potentiometers, is unprecedented in its accessibility and
versatility.

The end-to-end frequency response functions provide valu-
able information for steady-state operation of the EMM chain,
but time-domain simulations lend significant insight into the

system dynamics. The frequency response function under a
given force is also of significant interest depending on the
application. The displacement-force FRF is:

HN,f (ω) = GN (iω). (36)

The displacement–force FRF is shown in figure 6(a) for a
range of low-magnitude resistance values. This FRF is similar
to figure 5(b) but spans a narrower range of resistances such
that the band gap is open for every case. The zoomed view in
figure 6(c) highlights two important factors that are depend-
ent on the electrical resistance: band gap depth, or degree of
attenuation, and the amplitude of the pre-band gap (pre-BG)
resonance. As the resistance is increased from 0.01 Ohm to
0.60 Ohm, the band gap becomes shallower and the amp-
litude of the pre-BG resonance decreases as well. Both of these
observations perfectly align with the infinite chain damped
dispersion analysis summarized in figure 4(c). The undamped
band gap region (as predicted by the dispersion relation) is
highlighted in the FRF charts. For confirmation, figure 6(b)
shows the damping ratio as a function of frequency for the
same resistance values, and also highlights the evolution of
the damped band gap. In addition to the infinite chain analysis
and the corresponding frequency response of the finite realiz-
ation, the EMM’s response in the time-domain is investigated
via two distinct Gaussian pulse excitations that cater to differ-
ent narrow frequency regions. The EMM’s response is shown
in figures 6(d) and (e). The excitation signals are shown in
the first column of the same subfigures. The frequency con-
tent of the excitation signal is shown on the right-vertical axis
of figure 6(a). Each pulse is defined by:

g1,2(t) = ℜ
(
e−(t−t0)

2/(2σ2
c )+i2πfc(t−t0)

)
, (37)

where the center frequencies, f c, are 56.0 Hz and 63.3 Hz,
and the standard deviations σc are 0.35 and 0.5 for g1 and
g2, respectively. The excitation g1 (Excitation A) is chosen to
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Figure 6. Finite system end-mass displacement over input force transfer function with impact of varying electrical resistance on
time-domain response: (a) frequency response function for displacement of end mass relative to input force for low resistance values (left
vertical axis) and two narrow-band excitation pulses (right vertical axis), (b) evolution of damping ratio with band gap for varying electrical
resistance, (c) zoomed view of displacement/force FRF with undamped band gap prediction, (d) time-domain excitation A, g1(t) [N], input
and time-domain simulation results (whole top row) for increasing electrical resistance which causes reduction in amplitude for frequency
range just before band gap, and (e) excitation B, g2(t) [N], with time-domain simulation results for increasing resistance which demonstrate
stronger attenuation within band gap at lower resistance.

excite the pre-BG resonance, and g2 (Excitation B) has nar-
rower bandwidth and is centered around the band gap. The
upper row of time domain responses, figure 6(d), shows the
excitation which targets the resonance just before the band gap
and the system response for varying electrical resistance. Ini-
tially, with very low resistance, the response of the last mass
in the chain has relatively large amplitude; as the resistance is

increased, the response amplitude decreases and the settling
time grows shorter (the system reaches uN = 0 in less time
with higher electrical resistance in this regime). This is directly
attributed to the electrical metadamping phenomenon which
causes the frequencies immediately above and below the band
gap to exhibit significantly higher temporal damping. In the
second row of charts, Excitation B, which is centered within
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Figure 7. Evolution of state-matrix complex eigenvalues for varying electrical parameters; each eigenvalue is assigned one color, markers
indicate electrical parameter value of interest: (a) with decreasing electrical resistance, one subset of eigenvalues start on real axis and break
out to follow (roughly) circular path of radius ωe/2π, (b) zoomed view near imaginary axis and (c) damping ratio graphed against frequency
which shows one group of eigenvalues with very high damping ratio at high resistance corresponding to the subset which lies on or near the
real axis for that Rc value; (d) path of eigenvalues for constant resistance and varying capacitance, dashed circular lines have radius of each
electrical resonant frequency, (e) zoomed view shows subset of eigenvalues lies at distance ωe/2π from origin and moves as capacitance is
varied, (f) plot of damping ratio vs. frequency show subset of eigenvalues that are influenced by electrical parameters moves primarily
horizontally for increasing capacitance which is shown via the angle of the eigenvalue from the real axis in the complex plane.

the band gap, shows the opposite trend in response amplitude.
As the electrical resistance is increased, the impact of the local
resonance has less impact on the system dynamics within the
band gap region and the response amplitude grows (the settling
time remains the same).

To further characterize the behavior of the EMM chain
under varying electrical parameters, the eigenvalues of the
state matrix As are graphed in the complex plane. From the
definition of the transfer functions in equation (32), the eigen-
values can be interpreted as the roots of the polynomial d(s),
sometimes referred to as the system ‘poles.’ The state mat-
rix eigenvalues, defined as γn for n= [1,2, . . . ,4N− 1,4N]

describe the system dynamics independent of the output state
variable configuration. The set of γn are computed for a range
of electrical resistance values and graphed with the real part
on the horizontal axis and the imaginary part on the vertical
axis in figure 7(a). The eigenvalues generally fall into two dis-
tinct groups: one group remains very close to the imaginary
axis regardless of the electrical resistance, and the other group
shows significant variation in both real and imaginary parts
as the electrical resistance is changed. In this chart the real
part of the eigenvalue represents a temporal damping effect:
any γn with a large magnitude real value (i.e. far to the left in
figure 7(a)) will be heavily damped out, and a γn (or conjugate
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pair of γn) with zero real part will be undamped. The eigen-
values which are influenced by the electrical resistance all
start on the real axis, which indicates there is no oscillatory
motion for these poles. As the resistance is decreased below
Rc = 2.4 Ohm (exact value depends on the eigenvalue pair in
question) the eigenvalues collide on the real axis and break out
into the complex plane with a non-zero imaginary compon-
ent. As the resistance is decreased further, these poles trace a
(roughly) circular path around the origin. The close-up view in
figure 7(b) shows the behavior of the eigenvalues for low res-
istance values. Pointed markers indicate the location of each
eigenvalue at some specific resistance value. The damping
ratio as a function of frequency is shown in the series of charts
in figure 7(c), with a solid line from the dispersion relation
prediction and an × marker for the value computed with the
finite system poles. In the uppermost chart of figure 7(c), with
the lowest resistance, all the eigenvalues lie near the imagin-
ary axis which corresponds to low damping ratio as expected.
As the resistance is increased, such as theRc = 0.60Ohm case,
one group of eigenvalues moves away from the imaginary axis
and the damping ratio increases, but only at the frequencies
(vertical coordinate in figure 7(b) and horizontal coordinate
in figure 7(c)) near that group of eigenvalues. At some res-
istance value (roughly 0.65 Ohm), even though that group of
eigenvalues continues on their path toward higher damping
ratio (greater magnitude real part) and lower frequency (smal-
ler magnitude imaginary part) they are too far from the ima-
ginary axis to be relevant to the system response, and become
a satellite group as observed in figure 4.

The impact of varying the circuit capacitance is shown in
figure 7(d) and with a zoom view in figure 7(e). Changing
the electrical capacitance directly causes a change in the elec-
trical resonant frequency (inverse square root relationship).
The closely packed group of eigenvalues that are influenced
by the electrical parameters, therefore, moves vertically in the
complex plane and each new capacitance value can be tied to a
circular trace around the origin on which the eigenvalues all lie
(roughly). The imaginary part of this group of poles dictates
the frequency at which the band gap is located, and the angle
they make with the real axis indicates the depth of the band
gap. This explains the decreasing magnitude of attenuation as
the capacitance was increased in figure 5(a): as the capacit-
ance is increased, these eigenvalues move to lower frequen-
cies but their angle with respect to the positive real axis also
increases, and as such their impact is lower. The same effect
is demonstrated in the damping ratio charts in figure 7(f). At
low capacitance, the satellite group of eigenvalues has relat-
ively low damping ratio, but as the capacitance is increased
the damping ratio is as well.

3.2. Summary of theoretical EMM results

The results presented thus far can be summarized by consid-
ering the complex plane eigenvalue plots as being a gener-
alized representation of the behavior of the finite EMM sys-
tem under varying electrical parameters. The detailed plots
of figures 2 through 6 show important performance charac-
teristics from the dispersion relations and frequency response

function and provide a framework for making specific design
decisions or dissecting system strengths and limitations. For
example, the band gap ending frequency can be directly con-
trolled by the electrical resonance frequency as shown in the
dispersion diagrams and confirmed by the end-to-end FRFs,
and the band gap width can be set by choosing the permanent
magnet field strength. The attenuation depth can be tuned by
varying the resistance. Importantly, the time domain results
of figure 6 highlight the need for understanding the impact
of damping with respect to the anticipated excitation fre-
quencies. The high-level performance of the system is cap-
tured in the complex plane charts, albeit with less detail (or
at least less explicitly obvious detail). The damping ratio—
which determines that important time-domain response—can
be computed from the location of the group of satellite poles.
The undamped band gap frequency can be seen in the radial
distance of that satellite group from the origin, and the atten-
uation depth is correlated with the horizontal location of that
group of poles. In a sense, representing the EMM system in
the abstract, generalized framework of the poles in the com-
plex plane opens upmany new avenues for leveraging classical
control strategies within the context of metamaterials. Signi-
ficantly more research is required to firmly ground this class
of system within the context of control theory, or to apply such
techniques in a reliable and predictable way (pole placement
controller design in the context of the locally resonant sys-
tem as a feedback controller, for example) but the connections
between the familiar representation of FRF performance, new
band structures which are increasingly important in recent lit-
erature such as damping ratio as a function of frequency, and
the complex plane representation are certainly strong enough
to warrant such future investigations.

4. Experimental performance of the EMM

One of themost attractive features of the proposed EMMchain
is the accessibility of construction using commonly available
materials without sacrificing system performance. The elec-
tromechanical coupling as presented in the previous sections
is readily achieved through a moving coil and magnet sys-
tem; such systems are common in audio applications and can
be purchased at low cost and constructed into an EMM chain
with few additional parts. Figure 8(a) shows a block diagram
representation of the requirements of the EMM unit cell. The
mechanical system is represented by the key parameters m, c,
and k in the upper block as a multi-input multi-output block.
The mechanical system has inputs for mechanical force and
a magnetic force, and outputs for the mass acceleration and
velocity. The mechanical system is coupled to an electrical
block represented by L, R, and C which has an input of voltage
and output of current. The two subsystems are tied together
through the electromechanical coupling coefficient b.

4.1. DAEX unit cell

The experimental unit cell and accompanying tuning circuit
are shown in figure 8. The unit cell is a commonly available
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Figure 8. Experimental unit cell: (a) block diagram of unit cell operation, (b) idealized equivalent RLC circuit with internal lumped
parameters and external tuning elements, (c) schematic of NIC circuit with negative resistor op-amp configuration as implemented in the
experiment, (d) DAEX32Q-8 actuator which acts as unit cell, and (e) illustration of electrical unit cell.

tactile actuator from Dayton Audio: the DAEX32Q-8 (or
DAEX for short). An exploded view of the DAEX is shown in
figure 8(d). The DAEX is very well described by the lumped
element model of one unit cell of the EMM: it consists of a
large, concentrated mass (a powerful permanent magnet), four
pairs of springs in parallel (total of eight curved thin beams)
which have some damping, and a tightly wound electrical coil
that is perfectly placed in the magnetic field of the perman-
ent magnet but attached only to the springs such that the coil
and magnet move relative to each other when one side of
the actuator is fixed and the other is under some net force.
The DAEX, as purchased, is equipped with a rubber mech-
anical damping ‘boot’ that connects the magnet assembly to
the coil assembly, in parallel with the spring elements. The
rubber boots were removed from the DAEX actuators after
purchase, but this is the only modification necessary for the
off-the-shelf part to function in the EMM chain. Reducing the
mechanical damping inherent to the commercial DAEX actu-
ator is simple; however, it was found that the electrical coil has
a relatively large resistance which completely damps the elec-
trical oscillations in the tuning circuit (as is common in audio

actuators, speakers, etc). The electrical domain for the exper-
imental EMM unit cell is shown in figures 8(b) and (c). The
upper circuit diagram, figure 8(b), shows an ideal circuit which
differentiates between the internal, inaccessible electrical ele-
ments of the DAEX—i.e. the effective inductance and resist-
ance of the coil, as well as an idealized voltage source which
represents the voltage generated from the time varying mag-
netic flux which is due to the motion of the magnet [45, 51]—
and the tuning arm of the circuit. The intrinsic parameters are
the coil inductance Ld and resistance Rd which are specified
by the manufacturer as 0.36 mH and 6.5 Ohm, respectively.
The tuning circuit consists of a capacitor Ct, inductor Lt, and
resistor Rt. The capacitor and inductor are traditional passive
lumped elements, but the resistor is considered to be variable
and can take a negative value (hence the representation as a
box). It was found through early experimentation, and con-
firmed by the theoretical frequency response functions shown
in figure 5, that the total series electrical resistance in the unit
cell must be less than roughly 0.50 Ohm for the EMM chain to
exhibit a noticeable band gap. Therefore, the most significant
barrier to overcome when employing this commercial actuator
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in an EMM application is reducing the series resistance of the
electrical circuit. To overcome the electrical damping, a NIC
circuit was used [52].

4.2. Negative resistor tuning circuit

Negative impedance converters have been employed in many
published works to realize special system properties [31–33,
53]. The NIC used in this work is unique in that it only modi-
fies the circuit resistance: all of the desired resonant properties
exist within the unit cell electrical domain already, and can be
revealed with a reduction in damping. Adding a parallel res-
istor would be the most straightforward method of reducing
the overall resistance, but a resistor cannot be placed in paral-
lel with the inaccessible DAEX electrical system as shown in
figure 8. Therefore the NIC circuit, outlined in a dashed box in
figure 8(c), was employed to act as a negative resistor, thereby
reducing the overall resistance. A similar tuning circuit was
used byWu et alwith a moving coil system to attenuate acous-
tic waves [30]; the circuit employed here is used with the same
motivation but implemented in a slightly different manner.

The gain of the operational amplifier (op-amp), OPA547T,
in figure 8(c), is:

gOA = 1+
R2

R3
, (38)

and the voltage drop across the resistor R1 is:

VI−VA = i1 R1, (39)

where i1 = q̇n is the current through the resistor, V I is the
voltage at the input terminals of the op-amp (assumed to be
the same at both terminals [52]), and VA is the amplified out-
put voltage. Combining equations (38) and (39) we have:

VI =−i1 R1
R3

R2
. (40)

By recognizing that the voltage at the input terminals of the
op-amp, V I , relative to ground, is the same as the voltage drop
over an equivalent resistor RN as shown in figure 8(b), we can
write:

VI = i1 RN, (41)

with:

RN =−R1
R3

R2
. (42)

Therefore we can directly control the overall series circuit res-
istance,

Rc = Rd+RN, (43)

and set it to any arbitrary value through appropriate selection
of the resistor values in the op-amp NIC. The total inductance
is:

Lc = Ld+Lt, (44)

and the capacitance of the series RLC circuit is Cc = Ct.

4.3. Experimental EMM unit cell

Artistic illustrations of the equipment used for one unit cell
are shown in figures 8(d) and (e). The DAEX actuator (after
removal of rubber boot) is shown in an exploded view and the
electrical tuning circuit with op-amp and circuit elements is
shown below. A single circuit part for each key element of
the tuning circuit is drawn in figure 8(e) for clarity, but the
physical apparatus consists of many sub-elements (i.e. sev-
eral inductors in series) as shown in figure 9(a). Each unit
cell tuning circuit utilizes an OPA547T from Texas Instru-
ments. This op-amp was specifically selected for its output
current capabilities (the OPA547T is specified to be capable
of sourcing 750 mA with a 6 Vµs−1 slew rate). For the exper-
iments presented in this work the op-amps were supplied with
+10V and−10V from independent switching DC power sup-
plies. Due to the relatively large current through the RLC cir-
cuit, 5 W metal oxide resistors in the range 1–10 Ohm were
used for the resistorR1. The resistorsR2 andR3 are common 10
kOhm elements. The inductors are standard monolayer toroid
wire-wound elements rated for 10 A; several 1 mH inductors
were placed in series to achieve the desired value. The capa-
citors used in each unit cell were electrolytic with capacitance
in the range 220–1000 µF.

4.4. EMM chain apparatus

The desired band gap tunability was experimentally verified
by measuring the frequency response function of the end-mass
relative to the motion of the first mass (which can be thought
of in terms of the end-to-end transfer function under steady-
state excitation). An EMM chain with N= 6 unit cells was
constructed and fixed to an electrodynamic shaker (LabWorks
ET126-HF) as shown in figure 9(b). The magnet of the first
mass (n= 1) is fastened to the shaker such that its motion is
controlled. Each unit cell was securely fastened to the pre-
vious one using VeroClear 3D printed brackets, and the unit
cells were suspended from a support structure (out of view at
top of figure 9(b) with copper wire. Five electrical unit cells
were assembled on a breadboard, shown in figure 9(a) (the first
unit cell has no electrical component since the magnet motion
is dictated by the shaker). PCB Piezotronics 352A24 accel-
erometers were placed on the shaker armature fixture and on
the last mass in the chain, the end-mass accelerometer is vis-
ible in figure 9(c). A schematic of the experimental setup is
shown in figure 9(d), with the second unit cell and the sixth
(final) unit cell highlighted. The tuning circuits, acceleromet-
ers, and excitation source are labeled in both the schematic
and photographs of the setup. The shaker and accelerometers
are both interfaced with a Stanford Research Systems SR780
signal analyzer, pictured in figure 9(e) along with both DC
power supplies and the accelerometer sensor signal condi-
tioner. The SR780 is equipped with a built-in transfer function
measurement feature which automatically sends an excitation
voltage to the source (PA151 shaker amplifier, which controls
shaker) and reads the voltage on two input channels; the sys-
tem then computes the magnitude and phase of the ratio of
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Figure 9. Experimental EMM chain apparatus: (a) close-up photo of two electrical unit cells, (b) photo of six-cell EMM chain as tested, (c)
close-up photo of end mass with accelerometer, (d) schematic representation of frequency response function measurement setup, (e) signal
analyzer, power supplies, and sensor signal conditioner, (f) block diagram of experimental layout.

those two channels. The experiment block diagram is shown
in figure 9(f).

4.5. Theoretical data fitting methods

In order to verify the theoretical model and gain insight into the
system dynamics, the experimental data was fit by solving for
the optimal model parameters. The optimization was carried
out using a constrained gradient based interior-point algorithm
with the command fmincon in matlab. The experimental
FRFmagnitude and phase (assumed at steady state) was expor-
ted directly from the SR780, along with the associated fre-
quency data. The experimental data set for one trial is defined
as Fw(f) which is a 1500 element vector of FRF magnitudes
(in dB) and an accompanying frequency vector f in Hz, and
each vector has elements Fj and f j for j ∈ [1, 1500]. The the-
oretical FRF is Hw(2πf), where the subscript is included to
distinguish between different theoretical transfer functions for
different experimental cases. The theoretical FRF is a function

of frequency f and depends on the theoretical parameters pw =
[m, c, k, Lc, Rc, Cc, b] as defined in equation (35); the FRF
can be computed from the finite system state space realization.
The cost function is:

Jw =
∑
j

(
Hw ( fj)−Fj

)2
, (45)

where each trial, indicated by w, gets a set of optimal system
parameters pw. The sum is carried out over the vector index j,
but the sum limits (starting and ending term) are constrained
such that the cost function depends on a specific frequency
range, i.e. fj ∈ [fmin, fmax]. The initial guess for the optimizer
was set to the nominal value as specified by the compon-
ent manufacturer, except for in the case of the damping con-
stant c and the magnetic coupling coefficient b which were
determined from separate system identification experiments
on a single DAEX actuator.

The optimization step is intended to highlight the tunabil-
ity of the structure. Since only one feature of the experimental
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Figure10.ExperimentalEMMchainresults:(a)frequencyresponsefunctionmagnitudesand(b)frequencyresponsefunctionphases.The
toprowshowsthesystemFRFwiththeNICpoweredoff(largecircuitresistance),andtheremainingrowscorrespondtothesystemwith
theNICpoweredonandvaryingexternalcapacitance.Experimentaldataissolidlinewithsomepointshighlightedwithmarkers,theoretical
predictionisdashedline.Thetheoreticalbandgaplimitsareindicatedbyashadedareawithadottedverticallineatthemaximum
attenuationfrequencyaspredictedbythedispersionrelation.Notethatlegendentryforexperimentaldatashowsnominalcapacitancevalue,
butthetheoreticalitwasimprovedbyusingslightlydifferentparametervalues,seetable1.

Table1.Theoreticalfrequencyresponsefunctionparametersusedtomatchexperimentaldataforvaryingelectricalresonantfrequency.For
valueswhichwereexperimentallymeasuredorspeciiedbythemanufacturer,theexpectedvalueisindicatedinthetoprow,exceptforthe
capacitancewhichwasvariedthroughoutthetrials;theexpectedcapacitance,Cexp,isshowninparenthesesnexttothetheoreticalvalue.
Largeresistancefortrial1(H1)meansthatinductanceandcapacitanceLandChavenegligibleimpactonfrequencyresponsecurve(note
thattheexpectedresistanceforthiscaseisactuallyover7Ohmandnot0.25OhmsincetheNICwaspoweredoff).Increasingcapacitance
forremainingtrials(H2,H3,H4)shiftsbandgaptolowerfrequency,seeigure10.Thevalueofthecostfunctionforthewthtrial,Jw,
computedwiththeparametersshowninthesamerow,isgiveninthelastcolumn.

Hw m(kg) c(kgs−1) k(kNm−1) Lc(mH) Rc(Ohm) Cc(Cexp)(µF) b(Tm) Jw×10
−3

Exp. 0.175 3.36 0.25 Var.
H1 0.170 2.56 18.49 4.49 7.99 680(N/A) 1.00 21.8
H2 0.186 3.96 18.22 4.19 0.27 890(680) 3.44 98.2
H3 0.194 3.87 18.51 4.49 0.15 1015(1000) 3.21 178.6
H4 0.195 2.86 18.53 4.50 0.15 1141(1220) 3.27 168.6

apparatuswaschangedbetweentrials(i.e.replacingthecapa-
citorsineachunitcellforalargervaluedelementofthesame
type),itwouldbereasonabletoixthealltheothertheoret-
icalparametersandoptimizeonlythelumpedparameterthat
correspondsthechangedelementinthesetup.However,since
thelumpedmodelisanapproximation,allowingallthethe-
oreticalparameterstobevariedbytheoptimizationalgorithm
hastwobeneits:irst,itprovidesawaytoaccountforuncer-
taintiesintheactualvalueofanexperimentalelement.The
electricalparametersareespeciallysensitivetomanufactur-
ingtolerancesandmayvaryslightlybetweentheactualparts.
Othermodelparameters,suchasthedampingcoeficientand
magneticcouplingcoeficient,canonlybedeterminedthrough
systemidentiication.Second,varyingalltheparametersin
themodelduringtheoptimizationstepprovidesawayto

accountforcouplingbetweenexperimentalelementsthatis
notpresentinthetheoreticalmodel.Theelectrolyticcapacit-
ors,forexample,havesomenon-negligibleresistancewhich
variesdependingontheelementitselfandtheircombination
inseriesorparallel.
Thefocusofittingthetheoreticaldatatotheexperimental

curvesistoshowquantitativelythatvaryingtheelectrical
tuningcircuitaltersthesystemFRFaccordingtothetrends
predictedbythemodel.Thepurposeofittingthetheoret-
icalFRFisnottopreciselyidentifytheactualmodelpara-
meters;conductingathoroughsystemidentiicationanda
highlyaccuratemodelparameterestimationwouldrequire
additionaltestingandmorerobustmethodologythatisbeyond
thescopeofthiswork.Themodeloptimizationisincluded
heretodemonstratethatthesimpliiedlumped-elementmodel
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Figure11.ExperimentalEMMchainresults:(a)frequencyresponsefunctionmagnitudesand(b)frequencyresponsefunctionphases.The
bandgapdepth,ordegreeofattenuation,canbecontrolledbychangingthetotalseriesresistanceinthecircuitofeachlocalresonator.The
theoreticalfrequencyofmaximumattenuationisshownasadottedlineforeachcaseinthemagnitudeandphasechart,butnotshowninthe
close-upview.

Table2.Theoreticalfrequencyresponsefunctionparametersusedtomatchexperimentaldataforvaryingelectricaldamping.Forvalues
whichwereexperimentallymeasuredorspeciiedbythemanufacturer,theexpectedvalueisshownintheirstrow,withtheexceptionofthe
electricalresistancewhichvariedbetweentrials;theexpectedresistanceRexpbasedonthemanufacturerspeciicationsisshownin
parenthesesnexttothetheoreticalvalue.Largeresistancefortrial1(H5)meansthatinductanceandcapacitanceLandChavenegligible
impactonfrequencyresponsecurve.Decreasingresistanceforremainingtrialsincreasesbandgapdepth,seeigure11.Thevalueofthe
costfunctionforthewthtrial,Jw,computedwiththeparametersshowninthesamerow,isgiveninthelastcolumn.

Hw m(kg) c(kgs−1) k(kNm−1) Lc(mH) Rc(Rexp)(Ohm) Cc(µF) b(Tm) Jw×10
−3

Exp. 0.175 3.36 Var. 1000
H5 0.159 2.00 18.50 4.99 7.79(7.00) 1100 3.09 8.68
H6 0.158 3.96 18.49 4.97 4.64(5.20) 1101 3.98 7.67
H7 0.158 3.74 18.50 4.99 3.99(4.20) 1100 3.99 9.16
H8 0.157 4.00 18.49 4.99 3.46(3.20) 1099 3.99 24.51
H9 0.156 3.83 18.50 4.99 2.08(1.70) 1105 3.99 14.27
H10 0.169 3.76 18.50 4.99 0.62(0.55) 1109 3.61 7.85
H11 0.186 3.99 18.49 4.00 0.35(0.21) 1049 4.00 68.7

asderivedprovidesaqualitativelygooddescriptionofthesys-
temdynamics,andquantitativelyfollowsthetrendspredicted
intheprevioussections.Further,astheoptimizationalgorithm
itselfisrelativelysimple,itisexpectedthatvariationsbetween
trialswilloccurduetotheintricatenumericaldependencies
andthebasiccostfunctionformulation.

4.6.Variableelectricallocalresonancefrequency

Asetofexperimentaltransferfunctionsareshownin
igure10forfourexperimentaltrials,alongwiththetheoret-
icalpredictionsforthesamecases.Theexperimentalcurves
areshownassolidlineswithintermittentmarkersforclar-
ity,andthetheoreticaltransferfunctionsaresuperimposedon
theexperimentalchartsasadot-dashedlines.Theplotlegend
indicatesthenominalcapacitancevalueinthetuningRLCcir-
cuitfortheexperimentaldata,andthetransferfunctionname

forthetheoreticalcurves.Thetheoreticaltransferfunctions
areallHN,1asgiveninequation(35),buteachhasadifferent
setofsystemparametervalues,hencethenewnamesubscript
Hwwherewindicatesthespeciictrialofinterest(1,2,3,or
4).Thetheoreticaltransferfunctionswereittotheexperi-
mentaldatawithinthefrequencyrangef∈[30,100]Hz.The
theoreticalpredictionsfortheEMMbehaviorusetheparamet-
erslistedintable1,andthetheoreticalcurvesagreeverywell
withtheexperimentaldata.Theirstrowofmodelparamet-
ers,H1,correspondstotheexperimentaltrialconductedwith
theNICpoweredoff;forthiscasetheresistanceisexpectedto
besubstantiallyhigherthananyothertrial,andtheelectrical
parametershavealmostnoimpactontheFRF.
Thecapacitancecolumnintable1isthemostimportant

forplacingthelocallyresonantbandgapintheseexperiments:
sincetheinductanceofthetuningcircuitwasnotvaried,the
bandgapfrequencyrangecanbeshiftedbyincreasingor
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decreasing the tuning capacitor. The nominal values shown in
the legend of figure 10 differ slightly from the theoretical val-
ues which provide the best fit shown in table 1, but the trend
predicted in the previous sections is confirmed: when the capa-
citance of the tuning circuit is increased, the FRF band gap
can be observed to shift to lower frequencies. Additionally,
the band gap bounds and frequency of maximum attenuation,
computed from the dispersion relation, are in good agreement
with the visible band gap region in the FRFs and the frequency
of minimum FRF magnitude.

4.7. Variable electrical local resonator damping

A similar set of experimental trials was conducted with vary-
ing electrical resistance, the results of which are shown in
figure 11. The total series resistance was reduced by increas-
ing the value of the feedback resistor R1 in the NIC circuit; the
resistors were 7, 5.1, 3.3, 1.0, and parallel 1.2 and 1.0 Ohm ele-
ments. Figure 11(a) shows the frequency response function,
and the zoomed view demonstrates the dramatic variation in
frequency attenuation within the band gap region. The FRF
phase is shown in figure 11(b). The theoretical transfer func-
tions were fit to the experimental data within the frequency
range f ∈ [60,85] Hz. The vertical dotted lines indicate the
frequency of maximum attenuation as predicted by the dis-
persion relation for the optimal theoretical parameters in each
case. The theoretical system parameters which yield the dot-
dashed curves are given in table 2. The tunability of the band
gap depth is shown quantitatively in table 2: as the total series
resistance in the electrical system is decreased from 7 to 0.21
Ohm (corresponding to model parameter values of 7.79 and
0.35 Ohm), the band gap opens where there was previously a
resonant peak. The variation in the other model parameters is
notable, but they are generally near the expected value.

It is important to note that the model parameter optimiza-
tion is not intended to provide a comprehensive or quantitat-
ively precise description of the experimental system. Such a
detailed and thorough system identification procedure would
require a more in depth analysis of the experimental results.
The values given in tables 1 and 2 are intended to demonstrate
that the key traits of the system, the dependence of the band
gap on tuning circuit resonance frequency and resistance, have
been experimentally verified and the model is in good agree-
ment with the experimental FRF.

5. Conclusion

This work presented the theoretical description and experi-
mental validation for a new class of EMM chain. The metama-
terial chain is distinct from those presented in previously pub-
lished works in that it relies on magnetic field interactions
between a permanent magnet fixed to the mechanical unit
cell and the field generated within an electrical coil that is
coupled to an external resonant electrical circuit. The EMM
chain exhibits a tunable band gap that can be placed at a
desired frequency via appropriate selection of circuit induct-
ance and capacitance. Additionally, the magnetic field strength

was shown to directly control the band gap width, and the elec-
trical resistance was shown to directly control the band gap
depth. The local resonance frequency was proven, theoretic-
ally and experimentally, to control the upper limit of the band
gap–not the frequency of maximum attenuation, as would be
the case in a mechanical local resonance system. The the-
oretical description of the metamaterial chain also revealed
that the system dynamics are highly dependent on the elec-
trical damping; a thorough investigation into this new form
of electrically damped unit cell showed that the system can
readily exhibit electrical metadamping. The critical interac-
tion between damping and local resonances, which results in
the electrical metadamping phenomenon, was shown to amp-
lify the dissipation level without the need to introduce addi-
tional lossy, soft, or weak materials. Finally, the experimental
apparatus was constructed from commonly available materi-
als available from audio parts retailers at a significantly lower
cost than what is commonly required for metamaterial struc-
tures, and exhibited a desirable low-frequency vibration band
gap. The results of this effort indicate a significant advance-
ment in the overall tunability and potential for simplicity and
affordability in construction within the domain of EMMs, and
the potential for numerous future research efforts focused on
metadamping in electrically local resonant systems.
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