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Abstract: We report the investigation of an all-dielectric metasurface (ADM) based on an array of 
Ge2Sb2Te5 (GST) meta-molecules exhibiting a tunable electromagnetically induced transparency (EIT) 
effect in the infrared frequency regime. 
OCIS codes: (000.0000) General; (000.0000) General [8-pt. type] For codes, see http://www.osapublishing.org/submit/ocis/ 

 
1. Introduction  

Electromagnetically induced transparency (EIT) effect is initially observed in atomic systems and arises due to 
quantum interference, resulting in a narrowband transparency window for light propagating through an originally 
opaque medium [1]. This concept was later extended to classical optical systems such as plasmonic structures and 
metamaterials (MMs) [2,3].  

Most terahertz (THz) and optical MMs reported so far were based on miniaturizing the concept of structured 
composites with patterned metallic subwavelength inclusions [4,5], first introduced at microwave frequencies [6]. 
The properties of MMs rely on strong electromagnetic resonances and consequently, their effective electromagnetic 
behavior and the aimed applications are restricted to narrow spectral intervals. Active spectral tuning of the MM 
resonance then appears as highly desirable for broadband applications. Several techniques of tunability have been 
explored and demonstrated in literature such as integrating graphene and transition metal dichalcogenides (TMDCs) 
[7,8], localized active components [9], electrically [10], optically [11] and thermally-driven materials [12,13].  

In this paper, we report on a demonstration of a tunable MM exhibiting an analogue of electromagnetically 
induced transparency in the infrared spectral range. The tunability property of the proposed metamaterial is achieved 
by using the phase-change material (PCM) Ge2Sb2Te5 (GST) alloy. GST is known to exhibit a high dielectric 
tunability in the infrared range while its dielectric losses remain at an acceptable level [14]. 

2. Design, results and discussions 

The unit cell of the investigated metadevice is schematically shown in Fig. 1(a). It is composed of a disk resonator 
(DR) and a pair of cut wire resonators (CWRs) deposited on the top side of a silicon (Si) substrate. The 
nanoresonators are made of 50-nm-thick GST and the relevant geometrical dimensions are: px = py = 1 µm, l1 = 4.1 
µm, l2 = 3.2 µm, l3 = 2.3 µm and w = 0.75 µm. Such periodic structure does not diffract normally incident 
electromagnetic radiation for frequencies less than 300 THz.  

Numerical calculations were carried out using the finite difference time domain (FDTD) technique. In these 
calculations, the elementary cell of the designed metasurface was irradiated at normal incidence, under TE-
polarization (E || y-axis), as indicated in Fig. 1(a). Periodic boundary conditions were applied in the numerical model 
in order to mimic the functioning of a 2D infinite structure. In simulations, the silicon substrate was treated as a 
lossless dielectric with H = 11.9. The dielectric constant (H = Hc + iHs) of the GST was measured experimentally using 
ellipsometry and annealed at various temperatures between 130 °C and 220 °C [14] and implemented in the 
numerical model.  

The simulated transmission spectrum of the device is plotted in Fig. 1(d). One can observe a narrow 
transparency peak at around 178.5 THz with an amplitude as high as 83% between two resonance dips at around 
177.7 THz and 179.2 THz, respectively, which is considered to be an EIT-like effect. Here, we investigate the EIT 
effect under the following conditions: the resonance frequencies of the two coupled sub-resonators (DR and CWRs) 
are nearly identical, with minor deviation [Fig. 1(b)]. When the two resonators are arrayed within one unit cell, an 
EIT-like transparency window appears in the transmission spectrum instead of the transmission dips of the DR and 
the CWRs. The validity of the underlying EIT effect is also demonstrated by an analytical model based on the 
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coupled oscillator theory [ref], which shows good agreement with the simulation [Fig. 1(d)]. Figure 1(c) shows the 
simulated transmission spectra of the device for different annealing temperatures and one can clearly observe that 
the transmission spectrum shifts to lower frequencies when increasing the annealing temperature.  

 
 Fig. 1. (a) Unit cell of the designed metadevice with the corresponding electromagnetic excitation configuration. 
The relevant geometrical dimensions are: px = py = 1 µm, a = 450 nm, b = 150 nm, c = 500 nm and r = 185 nm. (b) 
Simulated transmission spectra of the sole DR array and the sole CWR array. (c) Evolution of the simulated 
transmission spectra for different annealing temperatures. (d) Simulated (red line) and analytically fitted data (blue 
line) using the two-oscillator model. 
 

3.  Conclusion 
In conclusion, we have demonstrated numerically and in the context of an analytical coupled oscillator model a 
frequency-agile EIT-like metadevice in the infrared regime. The frequency-tunability property of the proposed 
metadevice is performed due to the GST temperature-driven phase change material (PCM). Our results pave the way 
towards the development of compact delay lines and slow-light active metadevices.   
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