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1. Introduction

Over the last several years, significant attention has been given
to the calculation of cusp and collinear anomalous dimensions in
massless perturbation theory. The light-like cusp anomalous dimen-
sions [1] enter the leading infrared poles of massless scattering am-
plitudes and have recently been calculated to four-loop order both
in Quantum Chromodynamics (QCD) and N = 4 supersymmetric
Yang-Mills theory (A =4 SYM) [2-17]. The collinear anomalous di-
mensions enter the subleading infrared poles and can be extracted
from the 1/€ poles of vertex form factors [18-28]. Partial results are
available at four-loop order both in QCD [3,6,7,11,8,29,30,17] and
N =4 supersymmetric Yang-Mills theory (N =4 SYM) [31-33]. In
this article, we consider the analytically unknown four-loop con-
tributions to the collinear anomalous dimensions.

In QCD, the basic quark and gluon form factors are the normal-
ized amplitudes for, respectively, a virtual photon decaying into a
pair of massless quarks, y*(q) — q(p1)q(p2), and a Higgs boson
decaying into two gluons in the limit of infinite top quark mass,
h(q) — g(p1)g(p2), whereas in N =4 SYM, the Sudakov form fac-
tor is the normalized amplitude
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where field superscripts denote adjoint SU(N.) color indices, field
subscripts denote SU(4)g indices, and the constant N is chosen
such that V=4 is one at leading order.

In QCD, the perturbative expansion of the bare form factors is

L
o bare 2
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where r =q or g for quarks or gluons, aEare is the bare cou-
pling, g% = (p1 + p2)? is the virtuality, pe is the 'tHooft scale,
€ = (4 —d)/2 is the parameter of dimensional regularization, and
ye is Euler’s constant. In N'= 4 SYM, the expansion is
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in terms of the modified bare 't Hooft coupling
NC gjz\[74 - €
r=—2N= (4meVE)" 4
1672 ( ) “)

and g,-_, is the bare coupling of the A/ =4 SYM model.
The collinear anomalous dimensions of QCD receive the four-
loop contributions

¥4 = G4[0] — BoG5[1] — p1GL[1] — oG (1]
+ B2GH12] + 28081 G} [2] — 3G (3] + 8835, 5)

where we follow [25], see also [34]. In Eq. (5), G}[k] denotes the
€ coefficient of the resummation function G} (€) as defined in Egs.
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(2.14)-(2.17) of [25], and B;—1 denotes the massless QCD beta func-
tion coefficient of order L, see e.g. [35,36] for explicit results. In
N =4 SYM, the absence of a running coupling implies

yiV=t =Gy =40). (6)

The 1/¢ poles of the form factors allow for a determination of the
resummation functions and thus the collinear anomalous dimen-
sions.

The remainder of this article is organized as follows. In Sec-
tion 2, we describe our computational methods based on integra-
tion by parts reductions and direct integration of Feynman para-
metric representations; we also give results for some master inte-
grals. In Section 3, we present analytic results for the 1/¢ poles of
the four-loop form factors Fi(e), F5(€), and F)¥=4(¢), and the
corresponding collinear anomalous dimensions yf, y4g, and y‘{\/:“
Our analytic results are expressed in terms of zeta values and
a single leading-order-in-¢ coefficient of a finite master integral,
which could not be straightforwardly handled by the HyperInt
program [37]. In Section 4, we employ a very precise numeri-
cal approximation of this integral coefficient to provide complete
numerical results for all form factors and collinear anomalous di-
mensions. In Section 5, we perform a PSLQ analysis [38] to lift our
precise numerical data to conjectured analytic results and describe
a number of plausibility arguments which support our conjecture.
Finally, in Section 6, we conclude.

2. Computational methods

Our analytic calculation of the form factors follows that of [17],
employing a primary integration by parts reduction [39-46,5,47-
49] and a subsequent rotation [50-52] to a judiciously-chosen ba-
sis of finite master integrals [53-56], computed with a private
implementation, Finred. We make heavy use of HyperInt for
the analytic evaluation of the master integrals. However, for the
two topologies shown in Fig. 1 the generic Feynman parametric
representation that we use is not linearly reducible [57,58], that
is, it cannot be directly integrated with the algorithm [37]. We
have been able to find linearly reducible integrands only for the
leading-order e-expansion coefficients of specific integrals in these
topologies as will be explained in the following. However, we do
not know whether generic integrals in these topologies can be ren-
dered linearly reducible to all orders by changing variables.

For the topology on the left-hand side of Fig. 1, we found a
basis of two finite integrals in d = 6 — 2¢ dimensions, which ap-
pear for the first time at the level of the 1/¢ poles and which
each have 15 as the sum of their propagator exponents. Due to
this choice, the exponent of the Symanzik polynomial ¢/ vanishes
at zeroth order in the € expansion of these integrals - the only or-
der which we need to obtain results for y;, ¥, and y;V=%. The
remaining polynomial F, it turns out, is by itself linearly reducible
for this topology, therefore allowing for a straightforward applica-
tion of HyperInt.

For the topology on the right-hand side of Fig. 1, the situation is
more complicated, despite the fact that we find a change of vari-
ables which renders the F polynomial linearly reducible in this
case as well. First, we count four master integrals for the topol-
ogy in d dimensions, but we were able to choose a basis such that
only three of them contribute to the 1/€ poles of the form factors.
Unfortunately, we did not find a suitable basis of integrals for the
1/€ pole such that all of them are independent of the ¢/ polyno-
mial, e.g. by choosing 15 for the sum of the propagator exponents
for all integrals in d = 6 — 2¢ dimensions.

Instead, the best-case scenario seems to allow for a straight-
forward treatment of two out of three finite integrals only; the
remaining finite integral which contributes to the 1/€ poles can be
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Fig. 1. Top-level topologies whose Feynman parametric representation is not linearly
reducible and therefore not directly accessible to HyperInt for generic integrals.

chosen to have 13, the minimal number, as the sum of its propaga-
tor exponents. Unfortunately, an additional complication arises due
to the fact that making such a choice of finite integrals requires the
computation of some finite integrals in subtopologies to higher or-
ders in the € expansion than would have been necessary in the
finite integral basis of [17], i.e. one constructed to be compatible
with a basis of uniform weight as suggested in [55].
Our auxiliary results include, for example, the O (62) term of

6—2¢
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T 2268 &+ 324 557 108 392~ WQ 324 53

+ 25 0) +0(€), (7)

where a dot indicates a squared propagator, the integral normal-
ization follows the conventions of [54], and

=1
§5,3: Z m*
m=1

To obtain this and other results, we ran HyperInt in a highly
parallelized setup, accumulating several CPU years in total. For the
most complicated topology, we determined two integrals with a
propagator exponent sum of 15 analytically,

18467 5

m

— 1
Z a3 ~ 0.0377076729848.... (8)

6—2¢
4221 159
T Vi e 1 —§3§2
631 535
— 1455 — 253 + 705 — 690382 + O (€), 9)
6—2¢
252 5
= 053 +19505(3 — 18050,
202807 959
= 10500 §2 __§7+50§5§2__§3§2 + O (e), (10)

leaving only a single, finite integral, that we choose as
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6—2¢

=H+ O (e). (11)

We were able to evaluate A to high precision numerically by
running the pySecDec program [59] for several months in a dis-
tributed manner on high-performance GPUs,

H ~ —0.7015802723647 & 6.98 - 1011 (12)

where, with some foresight, we have appropriately rounded our
numerical result and the provided estimate of its statistical un-
certainty. While we expect our numerical results to suffice for
phenomenological applications, we will see later that the precision
of our results even allows us to put forth a plausible conjecture for
the analytical form of H and, therefore, of the four-loop collinear
anomalous dimensions.

In contrast to the case of QCD, the reduced integrand for the
Sudakov form factor of the A =4 SYM model is known as a simple
linear combination of (conjecturally) uniform weight Feynman in-
tegrals defined in [32] and evaluated through to weight six in [16]:

FY=Me) =61y +a1?) — a1F + a1l + 18] + 410

10) | (1) | ,(12) | ,(13)
Ay + 20050+ 2105 + 415
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a4l — 4l 4l s — 4l je 200 T + 21

(25) (30) (13) (14) (14) (14)
1579 + 41550 415 51 + 815 5 — 4l 53 =21 5,

an an an a7 19) 19)
+81p 25_2113 26 4Ip 27 4Ip 28 ZIp 29_21p 30
(19) (30)
+20, 51 =153
12
. F[21521) L 2AP 1P 29 4 (2D (29

o

+81(7) + a1} —
144

— 199 4+ 818" + S + 161y +al Y + 41
— 20 + 418 4412 1 a0 4 a3 a1

4412 4412 415214)+1<24)+21<28)]' (13)

The integral H enters both Iézs) and 1526) in the non-planar-
color part of Eq. (13), allowing for an over-determination of the
lower-weight power products of zeta values which enter H. Let us
emphasize that a rotation to a basis of finite integrals is still of
paramount importance for our A/ =4 SYM calculation, but, due to
the uniform weight property, it is convenient to organize the cal-
culation of the A" =4 Sudakov form factor in terms of the master
integrals entering Eq. (13).

Note that, while the most complicated, non-linearly reducible
integral topologies appeared in all four-loop form factors we cal-
culated through to weight seven, the calculation of the QCD mas-
ter integrals to sufficiently high orders in € was harder overall,
because it involved a significant number of computationally chal-
lenging, non-planar integral topologies that do not appear in the
four-loop A =4 SYM Sudakov form factor.

3. Analytical results

In this section, we present results for the 1/¢ poles of the four-
loop form factors we consider, .7-_'q(e) ]:'g(e) and ]:'N_“(E) and
the correspondmg four-loop collinear anomalous dimensions, y4,
y4 , and y4 , as a function of H. In fact, we write § = H — Hcon;
for the dlfference between H and our conjectured expression dis-
cussed in section 5, such that § =0 if our conjecture is true. Fur-
ther, we employ the SU(N.) color factors
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=Nl n
F= 2N, ’ A= Nc,
Na=NZ—1, Np=Nc,
dipeddpd (N2 - 1)(N? +6)
Nr 48 ’
dpeddP™ _ NZ(NZ +36) (14)
Na 24

and set Tr = 1/2. The number of light quark flavors is denoted by
Ny and their charge-weighted sum, normalized to the charge of
the external quark g, by Ng), = Zq, eq/eq.

For the 1/€ poles of the four-loop form factors, we find
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+ fermionic terms, (15)
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126 7 a5

FN =4(e)’

1 2613
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For the quark and gluon form factors, we omitted non-singlet
and singlet pole terms involving one, two or three closed fermion
loops, they can be obtained from Ref. [17]. To the best of our
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knowledge, we provide exact and unconditional results for the 1/¢
pole of the C‘F1 color structure, and therefore massless Quantum
Electrodynamics, for the first time.

For the collinear anomalous dimensions of QCD and A/ =4 SYM
we obtain

dabcddabcd

g d9eddt 736, 3344 ,
y{ = At [3a8a0, + 1020050, - So0s0d - S04
Nr 5 3
27808 3 1840 224 , 7808
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315 9
2176 1648 45511
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L 15400, 186742 5 1751224 1062149
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We used the Supplementary Material of [17] to extract the resum-
mation functions in Eq. (5) from our results for the poles of the
form factors. The omitted fermionic terms in yf and yf are due
to non-singlet contributions involving one, two, or three closed
fermion loops; they are available from Ref. [17]. To the best of our
knowledge, our planar-color A" =4 SYM calculation is the first to
independently confirm the analytic analysis of [33].

Let us now compare the maximal transcendental weight (seven)
part of the collinear anomalous dimensions in QCD to the A" =4
SYM result. Here, the QCD contributions involving a closed fermion
loop do not contribute since they are of weight six at most. Select-
ing the weight seven terms in the expression (19) for yf, replacing
Ca and d%qebcd /N, by their SU(Nc) values (14), and dividing by
N4 due to the different normallzatlon used for the N =4 SYM
reproduces the expression (20) for y4 =4 In a similar way, the
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maximal weight terms in (18) for yf coincide with the result (20)
for yzf\/ 4, if one first changes from the fundamental to the adjoint
color representation by substituting Cr — C, and d%¢4d%cd /Ny —
debedqabed /N, We note that these relations are fulfilled without
putting any constraint on the maximal weight part of §, assuming
its weight is not greater than seven. In summary, we observe that
the principle of maximal transcendentality [60,61] is fulfilled for
the four-loop collinear anomalous dimensions, at leading and also
at subleading color.

4. Numerical results

In this section, we compile the explicit numerical results for
the 1/€ poles of the form factors and collinear anomalous dimen-
sions, which we obtain using the numerical approximation for ‘H
(12). We provide twelve digits for the color structures where exact
analytic results are available (i.e. from [17] for the N¢-dependent
terms). For the form factors we have

dabcddabcd
[274.4588169341 £ 5.6 - 10 9]

Fi @],

F
+ C3 Cr[ — 13274.5995371593 £ 1.6 - 107

+ C5C2[19661.7351772000 + 4.2 - 10 ]
+ CACE[ — 1602.0556057677 + 2.8 - 107

+ CF[ — 2212.79784915...]

dabcd dabcd

+ Ny % [53.1274437988...]

+ Ny C5CF[10203.6391859...]
+ N;CaCE[ — 125515075480...]
+ N ;C3[2095.46596925...]

abc qabc

+ Ngy Ca FNiF [ —235381562912...]
F

dabc abc

+ Ngy Cr FNiF [ — 243.738662819...]
F

+ N}CACF[ — 2304.68219272...]
+ N7 C7[1604.85115658... ]

abc qabc

+ Ngy Ny % [42.7966478022...

+ N}CF [158.065537245...], (21)

dabcddabcd
Na

+ C[ — 1081.02280574667 £ 2.3 - 10717]

dabcd dabcd

+Np-4 NAF

+ NfCh[ — 532.481107793...]

J—‘g(e)’ [579.5738867755 £ 5.6 - 107

[ — 604.701004352... ]

+ Ny C5CF[ — 650.895247054...]
+ N ;CaCE[14.9978706950...]

+ NyC3[17.25]
dabcddabcd

+N? FNiF [05.1966169377....]
A

+ N7C3[1574.06171919...]
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+ NiCA Cr[282.052204632... ]

+ N7 C7[23.4647858335...]

+ N?Ca[ — 261955705460...]

+ N} Ce[ — 12.7425646335...], (22)

V=) ‘ | ¥ 4687.07846404...
€

+ — [ — 896.4243270825 £ 8.4 - 107]. (23)

N2
Comparing Eq. (21) and Eq. (22) to, respectively, Eq. (3.27) of [29]
and Eq. (11) of [30], we find that our results agree completely
to within their given error estimates. We note that our Egs. (21)
and (22) significantly improve upon the QCD results of [29,30], as
the numerical approximations provided therein are, depending on
the color structure, accurate to, at best, six significant digits (e.g.
C2C2) and, at worst, one significant digit (e.g. d%®/d%*d/N ). For
the collinear anomalous dimensions we have

bed qabed
dl]:lq C d(} Ci

Nf

+ C3 Cr[ — 13809312037 £ 13 - 1078]

v~ [ — 2195670535473 £ 4.5 - 1078]

+ C5C#[2438.569338812 3.3 - 10 %]
+ CACE[ — 1373.764650948 £ 2.2 - 10~ %]

+ C}[392.899478384...

abcd jabcd
dF dF

Ng
+ N;C4CF[ —274.147360589...]

+ Ny [ — 425.019550390... |

+ NfCaCE[ — 912.844845636...]

+ NfC}[151933788877...]

+ N?CACF[109.081415293...]

+ N7 CE[ — 12.5342425083...

+ N} Cr[488682798281...], (24)
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A
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+ C;[1557.4287417889 £ 1.9 - 1077
dt[qucddabcd

yE~ [ — 2451040712450 £ 4.5 - 107%]

F
Ng

+ NyC3[ — 1033.98729659...]

+ Ny [ — 41.2080190194...]

+ N C4CF[ — 57.9377499658...]
+ NfCaCF[ — 100315097910...]

+ N¢C[46]

abcd qabed
dF dF

A
+ N7 C3[70.7744401902...

+ N7 [253.857645167...]

+ N7CaCr[73.9372035966...

+ N7 CE[ — 219767440643...]

+N -’f’C 4[0.405507202650...]

+ N}CF[1.26748971193...], (25)
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yiV=4 ~ —1238.74771725...

+ iz [7171.394616660 £ 6.7 - 10°] . (26)
N¢
The errors provided in the above equations are all statistical errors
from the pySecDec evaluation of A given in Eq. (12). For the
non-planar-color part of the N'=4 SYM collinear anomalous di-
mension, Eq. (26) is consistent with the result of [32] within their
provided error estimate, but it is a vast improvement over Eq. (5.8)
of [32] as the latter gives essentially only an order of magnitude
estimate for this quantity. Besides our comparisons to the existing
literature, we also carried out direct numerical cross-checks on all
of the contributing four-loop form factor master integral expansion
coefficients using either pySecDec or FIESTA 4 [62].

5. Lifting numerical data to analytic expressions

In this section, we analyze the unknown analytic form of H.
First, assuming that the e-expansion coefficients of Iézﬁ) and I§26)
are multiple zeta values of uniform weight implies that # has the
form

223

Heonj = at7 +bisla + 3¢5 +1085 + T75¢5

3
— 2505 — 64382 + 1543 +9¢3 (27)

for some rational numbers a, b and c. This constraint will be cen-
tral to the following discussion.
Let us consider the unknown part of Eq. (27),

ag7 4+ bestr + cr3¢? ~ 6279370861144 £ 70 - 10711 (28)

and fit the constants a, b, and ¢ using the PSLQ algorithm. Our first
task will be to assess the uncertainty of our high-precision run of
pySecDec by comparing approximation (12) to a preliminary run
of the program at a somewhat lower precision,

H ~ —0.7015802399 £ 2.75 - 1075 . (29)

Subtracting the central value of (12) from the central value of (29)
and dividing by the uncertainty of (29), we find a ratio of 1.2. This
indicates that the initial estimate produced by pySecDec was a
bit too large but that the uncertainty estimate produced by the
program seems trustworthy. We will proceed under the assump-
tion that the given statistical error faithfully represents the actual
uncertainty of the approximation, excluding in particular the logi-
cal possibility of a substantial but hidden systematic shift. In par-
ticular, we consider 11 digits in (28) to be significant and 10 digits
to be safe.

In order to obtain a rough estimate for the required number of
digits for a successful fit, we considered the complexity of rational
numbers appearing in a sample set of analytically known integrals
from other topologies. Here, we selected all 318 integrals whose
leading term in the € expansion involves weight 7 zeta values, and
which might therefore be similar to the unknown integral. We find
that, on average, 10 digits were required to successfully reconstruct
the rational coefficients of weight 7 zeta values. It therefore seems
possible that the right-hand side of (28) could suffice to fit the
rational constants on the left-hand side.

While retaining ten digits of approximation (28) is not quite
good enough, retaining eleven digits results in the very promising
fit:

161 5 5
_ﬁ’ b—i, C__E' (30)
We now attempt to quantify whether these putative values for a,
b, and c are reasonable or not using statistical arguments and nu-

merical extrapolation. This analysis is of considerable importance,
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as our fit stretches approximation (28) to its limit. As a start, note
that subtracting the presumptive exact value Hcqpj obtained from
fit (30) from the central value of (12) leaves the difference

8 =M —Heonj~7.75-10"11 +£6.98 - 10711, (31)
\

The ratio of § divided by its uncertainty is 1.1, which seems rea-
sonable and compatible with § =0 in light of the discussion after
Eq. (29).

Our PSLQ fit (30) seems plausible in the sense, that the ra-
tional numbers involve relatively small integers and are rather
similar in structure to what we observe for the rational prefac-
tors of {§7,§5§2,§3§22} in our sample of 318 superficially-similar
leading-order integral expansion coefficients.! Indeed, we observe
that for all 318 elements of our sample, the denominators of the
rational prefactors in front of {¢7, ¢5¢2, §3§22} are never larger than
{75,12,240} and the prime factors which appear in the prime
factorizations of the denominators are never larger than {5, 3, 5}.
Moreover, the number 161/16 we found for a is actually a quite
typical one with respect to our 318 samples of ¢7 coefficients; its
numerator appears in front of ¢7 10 times in our sample and its
denominator is actually the most common one in our sample, ap-
pearing 111 times as the denominator of the rational prefactor of
7.

In order to explore the robustness of the fit (30), we systemat-
ically extrapolated the ten significant digits of approximation (28).
To be precise, we continue its decimal expansion in all possible
ways out to a maximum of fifteen significant digits.> After each
digit is added by our trial code, a PSLQ fit is attempted and then
judged according to the simplicity and similarity criteria of the
previous paragraph. We find it remarkable that, all the way out
to fifteen decimal digits, no other possible PSLQ fit looks nearly
as natural as (30) above. For this extrapolation analysis, we only
considered decimal expansions lying within plus or minus two
times the reported statistical uncertainty on . In an abundance of
caution, we repeated our analysis with only nine digits of approx-
imation (28) and found nothing different for extrapolations out to
fourteen decimal digits lying within plus or minus five times the
reported statistical uncertainty on .

In terms of H = & + Hconj, oOur result (20) for the collinear
anomalous dimension in A/ =4 SYM reads

N=4 768 2 1
Vi = —30087 — 256458y — Tg'g{z + F [14886{7
c

13104 _ 5 5 7136 5
+ 39368582 — TQQ + 960043 + T;Z
— 2400085 — 57604387 + 288¢5 + 86403 — 9607-[].

We see that our conjecture, corresponding to § =0 in Eq. (20),
achieves two simplifications: The expression becomes homoge-
neous in the transcendental weight of the zeta values, and their
coefficients are integers if one chooses the basis element ¢4¢3 in-
stead of ¢3¢3.

6. Conclusion

In this work, we obtained precise numerical approximations for
the four-loop collinear anomalous dimensions of QCD and N =4
SYM as well as conjectures for the full analytic results in terms

1 By experimenting with our sample expressions, we found that fewer significant
digits are generally required for a fit in terms of {¢7, {5¢2, 4¢3}, which is therefore
the default ansatz for our actual PSLQ runs.

2 It turns out that all weight seven terms of our 318 sample expansion coeffi-
cients can be reconstructed by running the PSLQ algorithm with fifteen significant
digit input precision.
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of zeta values. We observe that the principle of maximal tran-
scendality holds for both the leading and the subleading color
contributions. Our experiments with pySecDec suggest that it
should be possible to numerically evaluate the finite parts of the
QCD form factors to sufficiently high precision for phenomenolog-
ical purposes.
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