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1. Introduction

Over the last several years, significant attention has been given 
to the calculation of cusp and collinear anomalous dimensions in 
massless perturbation theory. The light-like cusp anomalous dimen-
sions [1] enter the leading infrared poles of massless scattering am-
plitudes and have recently been calculated to four-loop order both 
in Quantum Chromodynamics (QCD) and N = 4 supersymmetric 
Yang-Mills theory (N = 4 SYM) [2–17]. The collinear anomalous di-
mensions enter the subleading infrared poles and can be extracted 
from the 1/ε poles of vertex form factors [18–28]. Partial results are 
available at four-loop order both in QCD [3,6,7,11,8,29,30,17] and 
N = 4 supersymmetric Yang-Mills theory (N = 4 SYM) [31–33]. In 
this article, we consider the analytically unknown four-loop con-
tributions to the collinear anomalous dimensions.

In QCD, the basic quark and gluon form factors are the normal-
ized amplitudes for, respectively, a virtual photon decaying into a 
pair of massless quarks, γ ∗(q) → q(p1)q̄(p2), and a Higgs boson 
decaying into two gluons in the limit of infinite top quark mass, 
h(q) → g(p1)g(p2), whereas in N = 4 SYM, the Sudakov form fac-
tor is the normalized amplitude

F̄N=4 = 1

N

∫
d4x e−i q·x

〈φa
12(p1)φ

b
12(p2)|

[
φc

34φ
c
34

]
(x) |0〉, (1)
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where field superscripts denote adjoint SU (Nc) color indices, field 
subscripts denote SU (4)R indices, and the constant N is chosen 
such that F̄N=4 is one at leading order.

In QCD, the perturbative expansion of the bare form factors is

F̄ r
bare = 1 +

∞∑
L=1

(
αbare

s

4π

)L (
4πμ2

ε

−q2eγE

)Lε

F̄ r
L(ε) , (2)

where r = q or g for quarks or gluons, αbare
s is the bare cou-

pling, q2 = (p1 + p2)
2 is the virtuality, με is the ’t Hooft scale, 

ε = (4 − d)/2 is the parameter of dimensional regularization, and 
γE is Euler’s constant. In N = 4 SYM, the expansion is

F̄N=4 = 1 +
∞∑

L=1

λL
(

μ2
ε

−q2

)Lε

F̄N=4
L (ε), (3)

in terms of the modified bare ’t Hooft coupling

λ = Nc g2
N=4

16π2

(
4πe−γE

)ε
, (4)

and gN=4 is the bare coupling of the N = 4 SYM model.
The collinear anomalous dimensions of QCD receive the four-

loop contributions

γ r
4 = Gr

4[0] − β0Gr
3[1] − β1Gr

2[1] − β2Gr
1[1]

+ β2
0 Gr

2[2] + 2β0β1Gr
1[2] − β3

0 Gr
1[3] + 8β3δgr, (5)

where we follow [25], see also [34]. In Eq. (5), Gr
L[k] denotes the 

εk coefficient of the resummation function Gr
L(ε) as defined in Eqs. 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2021.136503
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2021.136503&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:agarwalb@msu.edu
mailto:vmante@msu.edu
mailto:erik.panzer@maths.ox.ac.uk
mailto:schabing@msu.edu
https://doi.org/10.1016/j.physletb.2021.136503
http://creativecommons.org/licenses/by/4.0/


B. Agarwal, A. von Manteuffel, E. Panzer et al. Physics Letters B 820 (2021) 136503
(2.14)-(2.17) of [25], and βL−1 denotes the massless QCD beta func-
tion coefficient of order L, see e.g. [35,36] for explicit results. In 
N = 4 SYM, the absence of a running coupling implies

γN=4
4 = GN=4

4 [0] . (6)

The 1/ε poles of the form factors allow for a determination of the 
resummation functions and thus the collinear anomalous dimen-
sions.

The remainder of this article is organized as follows. In Sec-
tion 2, we describe our computational methods based on integra-
tion by parts reductions and direct integration of Feynman para-
metric representations; we also give results for some master inte-
grals. In Section 3, we present analytic results for the 1/ε poles of 
the four-loop form factors F̄q

4 (ε), F̄ g
4 (ε), and F̄N=4

4 (ε), and the 
corresponding collinear anomalous dimensions γ q

4 , γ g
4 , and γN=4

4 . 
Our analytic results are expressed in terms of zeta values and 
a single leading-order-in-ε coefficient of a finite master integral, 
which could not be straightforwardly handled by the HyperInt
program [37]. In Section 4, we employ a very precise numeri-
cal approximation of this integral coefficient to provide complete 
numerical results for all form factors and collinear anomalous di-
mensions. In Section 5, we perform a PSLQ analysis [38] to lift our 
precise numerical data to conjectured analytic results and describe 
a number of plausibility arguments which support our conjecture. 
Finally, in Section 6, we conclude.

2. Computational methods

Our analytic calculation of the form factors follows that of [17], 
employing a primary integration by parts reduction [39–46,5,47–
49] and a subsequent rotation [50–52] to a judiciously-chosen ba-
sis of finite master integrals [53–56], computed with a private 
implementation, Finred. We make heavy use of HyperInt for 
the analytic evaluation of the master integrals. However, for the 
two topologies shown in Fig. 1 the generic Feynman parametric 
representation that we use is not linearly reducible [57,58], that 
is, it cannot be directly integrated with the algorithm [37]. We 
have been able to find linearly reducible integrands only for the 
leading-order ε-expansion coefficients of specific integrals in these 
topologies as will be explained in the following. However, we do 
not know whether generic integrals in these topologies can be ren-
dered linearly reducible to all orders by changing variables.

For the topology on the left-hand side of Fig. 1, we found a 
basis of two finite integrals in d = 6 − 2ε dimensions, which ap-
pear for the first time at the level of the 1/ε poles and which 
each have 15 as the sum of their propagator exponents. Due to 
this choice, the exponent of the Symanzik polynomial U vanishes 
at zeroth order in the ε expansion of these integrals – the only or-
der which we need to obtain results for γ q

4 , γ g
4 , and γN=4

4 . The 
remaining polynomial F , it turns out, is by itself linearly reducible 
for this topology, therefore allowing for a straightforward applica-
tion of HyperInt.

For the topology on the right-hand side of Fig. 1, the situation is 
more complicated, despite the fact that we find a change of vari-
ables which renders the F polynomial linearly reducible in this 
case as well. First, we count four master integrals for the topol-
ogy in d dimensions, but we were able to choose a basis such that 
only three of them contribute to the 1/ε poles of the form factors. 
Unfortunately, we did not find a suitable basis of integrals for the 
1/ε pole such that all of them are independent of the U polyno-
mial, e.g. by choosing 15 for the sum of the propagator exponents 
for all integrals in d = 6 − 2ε dimensions.

Instead, the best-case scenario seems to allow for a straight-
forward treatment of two out of three finite integrals only; the 
remaining finite integral which contributes to the 1/ε poles can be 
2

Fig. 1. Top-level topologies whose Feynman parametric representation is not linearly 
reducible and therefore not directly accessible to HyperInt for generic integrals.

chosen to have 13, the minimal number, as the sum of its propaga-
tor exponents. Unfortunately, an additional complication arises due 
to the fact that making such a choice of finite integrals requires the 
computation of some finite integrals in subtopologies to higher or-
ders in the ε expansion than would have been necessary in the 
finite integral basis of [17], i.e. one constructed to be compatible 
with a basis of uniform weight as suggested in [55].

Our auxiliary results include, for example, the O
(
ε2

)
term of

6−2ε

= −53

6
ζ 2

3 − 1579

630
ζ 3

2 + 535

36
ζ5 + 5

6
ζ3ζ2

− 17

12
ζ 2

2 + 121

18
ζ3 + 8

9
ζ2 + ε

(
−1033

6
ζ7 − 53

3
ζ5ζ2 + 21

5
ζ3ζ

2
2

+ 139

18
ζ 2

3 + 1609

126
ζ 3

2 + 6235

108
ζ5 − 145

18
ζ3ζ2 − 49

12
ζ 2

2 + 1478

27
ζ3

+ 565

54
ζ2

)
+ ε2

(10403

30
ζ5,3 + 2887

6
ζ5ζ3 + 307

2
ζ 2

3 ζ2

− 247041

1000
ζ 4

2 + 78607

144
ζ7 + 110

9
ζ5ζ2 + 2461

180
ζ3ζ

2
2 − 18467

216
ζ 2

3

+ 30287

2268
ζ 3

2 + 79117

324
ζ5 − 30455

108
ζ3ζ2 − 1495

216
ζ 2

2 + 112325

324
ζ3

+ 6854

81
ζ2

)
+O

(
ε3

)
, (7)

where a dot indicates a squared propagator, the integral normal-
ization follows the conventions of [54], and

ζ5,3 =
∞∑

m=1

1

m5

m−1∑
n=1

1

n3
≈ 0.0377076729848... . (8)

To obtain this and other results, we ran HyperInt in a highly 
parallelized setup, accumulating several CPU years in total. For the 
most complicated topology, we determined two integrals with a 
propagator exponent sum of 15 analytically,

6−2ε

= −4221

16
ζ7 + 159

2
ζ5ζ2 + 25

2
ζ3ζ

2
2

− 14ζ 2
3 − 631

70
ζ 3

2 + 535

2
ζ5 − 69ζ3ζ2 +O (ε), (9)

6−2ε

= 252

5
ζ5,3 + 195ζ5ζ3 − 18ζ 2

3 ζ2

− 202807

10500
ζ 4

2 − 959

8
ζ7 + 50ζ5ζ2 − 51

5
ζ3ζ

2
2 +O (ε), (10)

leaving only a single, finite integral, that we choose as
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6−2ε

≡ H+O (ε). (11)

We were able to evaluate H to high precision numerically by 
running the pySecDec program [59] for several months in a dis-
tributed manner on high-performance GPUs,

H ≈ −0.7015802723647 ± 6.98 · 10−11 , (12)

where, with some foresight, we have appropriately rounded our 
numerical result and the provided estimate of its statistical un-
certainty. While we expect our numerical results to suffice for 
phenomenological applications, we will see later that the precision 
of our results even allows us to put forth a plausible conjecture for 
the analytical form of H and, therefore, of the four-loop collinear 
anomalous dimensions.

In contrast to the case of QCD, the reduced integrand for the 
Sudakov form factor of the N = 4 SYM model is known as a simple 
linear combination of (conjecturally) uniform weight Feynman in-
tegrals defined in [32] and evaluated through to weight six in [16]:

F̄N=4
4 (ε) = 16I(1)

p,1 + 4I(2)
p,2 − 4I(3)

p,3 + 4I(4)
p,4 + I(5)

p,5 + 4I(6)
p,6

+ 8I(7)
p,7 + 4I(9)

p,8 − 4I(10)
p,9 + 2I(12)

p,10 + 2I(12)
p,11 + 4I(13)

p,12

+ 4I(14)
p,13 − 4I(17)

p,14 + 4I(17)
p,15 − 4I(19)

p,16 + 2I(19)
p,17 + 2I(21)

p,18

+ I(25)
p,19 + 4I(30)

p,20 + 4I(13)
p,21 + 8I(14)

p,22 − 4I(14)
p,23 − 2I(14)

p,24

+ 8I(17)
p,25 − 2I(17)

p,26 − 4I(17)
p,27 − 4I(17)

p,28 − 2I(19)
p,29 − 2I(19)

p,30

+ 2I(19)
p,31 − I(30)

p,32

+ 12

N2
c

[
2I(21)

1 + 2I(22)
2 + 2I(23)

3 − 4I(24)
4 + I(25)

5 − I(26)
6

− I(26)
7 + 8I(27)

8 + 4I(28)
9 + 16I(29)

10 + 4I(30)
11 + 4I(27)

12

− 2I(28)
13 + 4I(29)

14 + 4I(29)
15 + 4I(30)

16 + 4I(30)
17 + 4I(30)

18

+ 4I(22)
19 + 4I(22)

20 − 4I(24)
21 + I(24)

22 + 2I(28)
23

]
. (13)

The integral H enters both I(26)
6 and I(26)

7 in the non-planar-
color part of Eq. (13), allowing for an over-determination of the 
lower-weight power products of zeta values which enter H. Let us 
emphasize that a rotation to a basis of finite integrals is still of 
paramount importance for our N = 4 SYM calculation, but, due to 
the uniform weight property, it is convenient to organize the cal-
culation of the N = 4 Sudakov form factor in terms of the master 
integrals entering Eq. (13).

Note that, while the most complicated, non-linearly reducible 
integral topologies appeared in all four-loop form factors we cal-
culated through to weight seven, the calculation of the QCD mas-
ter integrals to sufficiently high orders in ε was harder overall, 
because it involved a significant number of computationally chal-
lenging, non-planar integral topologies that do not appear in the 
four-loop N = 4 SYM Sudakov form factor.

3. Analytical results

In this section, we present results for the 1/ε poles of the four-
loop form factors we consider, F̄q

4 (ε), F̄ g
4 (ε), and F̄N=4

4 (ε), and 
the corresponding four-loop collinear anomalous dimensions, γ q

4 , 
γ

g
4 , and γN=4

4 , as a function of H. In fact, we write δ ≡H−Hconj

for the difference between H and our conjectured expression dis-
cussed in section 5, such that δ = 0 if our conjecture is true. Fur-
ther, we employ the SU (Nc) color factors
3

C F = N2
c − 1

2Nc
, C A = Nc ,

N A = N2
c − 1 , N F = Nc ,

dabcd
A dabcd

F

N F
= (N2

c − 1)(N2
c + 6)

48
,

dabcd
A dabcd

A

N A
= N2

c (N2
c + 36)

24
(14)

and set T F = 1/2. The number of light quark flavors is denoted by 
N f and their charge-weighted sum, normalized to the charge of 
the external quark q, by Nqγ ≡ ∑

q′ eq′/eq .
For the 1/ε poles of the four-loop form factors, we find

F̄q
4 (ε)

∣∣∣
1/ε

= dabcd
A dabcd

F

N F

[
− 871

2
ζ7 − 128ζ5ζ2 + 92

5
ζ3ζ

2
2

+ 418

3
ζ 2

3 − 3476

315
ζ 3

2 + 230

9
ζ5 + 224ζ3ζ2 − 28

15
ζ 2

2 + 976

9
ζ3

+ 272

3
ζ2 − 24 + 80δ

]
+ C3

A C F

[45511

48
ζ7 + 1033

30
ζ3ζ

2
2

− 206

3
ζ5ζ2 − 52547

36
ζ 2

3 − 44204

135
ζ 3

2 + 77285

108
ζ5 + 1034

9
ζ3ζ2

+ 504629

270
ζ 2

2 + 1195223

54
ζ3 − 6051515

648
ζ2 − 651546401

23328

− 70

3
δ
]
+ C2

A C2
F

[
− 38323

18
ζ7 + 7921

9
ζ5ζ2 + 35767

135
ζ3ζ

2
2

+ 703139

81
ζ 2

3 − 10901

63
ζ 3

2 − 4775068

405
ζ5 − 99463

27
ζ3ζ2

− 24831149

4860
ζ 2

2 − 376873993

5832
ζ3 + 347179283

11664
ζ2

+ 29277646423

419904
+ 60δ

]
+ C A C3

F

[
6172ζ7 − 11548

5
ζ5ζ2

− 10508

15
ζ3ζ

2
2 − 302497

27
ζ 2

3 + 672709

945
ζ 3

2 + 1151047

54
ζ5

+ 203729

27
ζ3ζ2 + 5489227

1620
ζ 2

2 + 100425413

1944
ζ3 − 38043757

1296
ζ2

− 6800926313

139968
− 40δ

]
+ C4

F

[
− 14162

21
ζ7 + 5792

5
ζ5ζ2

+ 6208

9
ζ3ζ

2
2 + 14060

9
ζ 2

3 − 16786

15
ζ 3

2 − 235816

15
ζ5

− 32966

9
ζ3ζ2 + 479

15
ζ 2

2 − 87481

18
ζ3 + 26425

3
ζ2 + 94257

8

]
+ fermionic terms, (15)

F̄ g
4 (ε)

∣∣∣
1/ε

= dabcd
A dabcd

A

N A

[
− 871

2
ζ7 − 128ζ5ζ2 + 92

5
ζ3ζ

2
2

+ 418

3
ζ 2

3 − 4972

315
ζ 3

2 − 340

9
ζ5 + 292ζ3ζ2 + 226

15
ζ 2

2 + 3676

9
ζ3

− 8ζ2 − 32

3
+ 80δ

]
+ C4

A

[4351243

1008
ζ7 − 15289

45
ζ5ζ2

+ 77927

270
ζ3ζ

2
2 − 1109647

324
ζ 2

3 − 1090111

945
ζ 3

2 − 617401

405
ζ5

+ 95669

162
ζ3ζ2 + 1870843

4860
ζ 2

2 + 7649891

1458
ζ3 + 196729

72
ζ2

− 749534537

104976
− 10

3
δ
]
+ fermionic terms, (16)

F̄N=4
4 (ε)

∣∣∣
1/ε

= 541619

126
ζ7 − 15529

45
ζ5ζ2 + 39067

135
ζ3ζ

2
2

+ 1

N2
c

[
− 2613

4
ζ7 − 192ζ5ζ2 + 138

5
ζ3ζ

2
2 + 120δ

]
. (17)

For the quark and gluon form factors, we omitted non-singlet 
and singlet pole terms involving one, two or three closed fermion 
loops, they can be obtained from Ref. [17]. To the best of our 



B. Agarwal, A. von Manteuffel, E. Panzer et al. Physics Letters B 820 (2021) 136503
knowledge, we provide exact and unconditional results for the 1/ε
pole of the C4

F color structure, and therefore massless Quantum 
Electrodynamics, for the first time.

For the collinear anomalous dimensions of QCD and N = 4 SYM 
we obtain

γ
q
4 = dabcd

A dabcd
F

N F

[
3484ζ7 + 1024ζ5ζ2 − 736

5
ζ3ζ

2
2 − 3344

3
ζ 2

3

+ 27808

315
ζ 3

2 − 1840

9
ζ5 − 1792ζ3ζ2 + 224

15
ζ 2

2 − 7808

9
ζ3

− 2176

3
ζ2 + 192 − 640δ

]
+ C3

A C F

[1648

3
ζ5ζ2 − 45511

6
ζ7

− 4132

15
ζ3ζ

2
2 + 5126

9
ζ 2

3 − 77152

315
ζ 3

2 + 175166

27
ζ5

+ 15400

9
ζ3ζ2 + 186742

135
ζ 2

2 − 1751224

243
ζ3 + 1062149

729
ζ2

+ 7179083

26244
+ 560

3
δ
]
+ C2

A C2
F

[
17220ζ7 − 4208ζ5ζ2

− 128

5
ζ3ζ

2
2 − 14204

3
ζ 2

3 − 43976

35
ζ 3

2 + 10708

9
ζ5 + 4192

9
ζ3ζ2

− 48680

27
ζ 2

2 + 259324

27
ζ3 − 93542

27
ζ2 + 29639

18
− 480δ

]
+ C A C3

F

[
− 21840ζ7 + 4128ζ5ζ2 + 512

5
ζ3ζ

2
2 + 6440ζ 2

3

+ 634376

315
ζ 3

2 − 1952ζ5 − 3976

3
ζ3ζ2 + 8668

5
ζ 2

2 − 6520ζ3

+ 2334ζ2 − 2085

2
+ 320δ

]
+ C4

F

[
11760ζ7 − 768ζ5ζ2

+ 256

5
ζ3ζ

2
2 − 2304ζ 2

3 − 33776

35
ζ 3

2 − 5040ζ5 − 240ζ3ζ2

− 1368

5
ζ 2

2 + 4008ζ3 − 900ζ2 + 4873

12

]
+ N f -terms, (18)

γ
g

4 = dabcd
A dabcd

A

N A

[
3484ζ7 + 1024ζ5ζ2 − 736

5
ζ3ζ

2
2 − 3344

3
ζ 2

3

+ 39776

315
ζ 3

2 + 2720

9
ζ5 − 2336ζ3ζ2 − 1808

15
ζ 2

2 − 12512

9
ζ3

+ 64ζ2 + 128

9
− 640δ

]
+ C4

A

[
− 2671

6
ζ7 − 2212

15
ζ3ζ

2
2

− 896

3
ζ5ζ2 − 286

9
ζ 2

3 − 674696

945
ζ 3

2 + 19232

27
ζ5 + 1588

3
ζ3ζ2

+ 249448

135
ζ 2

2 + 36380

243
ζ3 − 1051411

729
ζ2 + 10672040

6561
+ 80

3
δ
]

+ N f -terms, (19)

γN=4
4 = −300ζ7 − 256ζ5ζ2 − 384ζ4ζ3

+ 1

N2
c

[
5226ζ7 + 1536ζ5ζ2 − 552ζ4ζ3 − 960δ

]
. (20)

We used the Supplementary Material of [17] to extract the resum-
mation functions in Eq. (5) from our results for the poles of the 
form factors. The omitted fermionic terms in γ q

4 and γ g
4 are due 

to non-singlet contributions involving one, two, or three closed 
fermion loops; they are available from Ref. [17]. To the best of our 
knowledge, our planar-color N = 4 SYM calculation is the first to 
independently confirm the analytic analysis of [33].

Let us now compare the maximal transcendental weight (seven) 
part of the collinear anomalous dimensions in QCD to the N = 4
SYM result. Here, the QCD contributions involving a closed fermion 
loop do not contribute since they are of weight six at most. Select-
ing the weight seven terms in the expression (19) for γ g

4 , replacing 
C A and dabcd

A dabcd
A /N A by their SU (Nc) values (14), and dividing by 

N4
c due to the different normalization used for the N = 4 SYM 

reproduces the expression (20) for γN=4. In a similar way, the 
4

4

maximal weight terms in (18) for γ q
4 coincide with the result (20)

for γN=4
4 , if one first changes from the fundamental to the adjoint 

color representation by substituting C F → C A and dabcd
F dabcd

A /N F →
dabcd

A dabcd
A /N A . We note that these relations are fulfilled without 

putting any constraint on the maximal weight part of δ, assuming 
its weight is not greater than seven. In summary, we observe that 
the principle of maximal transcendentality [60,61] is fulfilled for 
the four-loop collinear anomalous dimensions, at leading and also 
at subleading color.

4. Numerical results

In this section, we compile the explicit numerical results for 
the 1/ε poles of the form factors and collinear anomalous dimen-
sions, which we obtain using the numerical approximation for H
(12). We provide twelve digits for the color structures where exact 
analytic results are available (i.e. from [17] for the N f -dependent 
terms). For the form factors we have

F̄q
4 (ε)

∣∣∣
1/ε

≈ dabcd
A dabcd

F

N F

[
274.4588169341 ± 5.6 · 10−9]

+ C3
A C F

[ − 13274.5995371593 ± 1.6 · 10−9]
+ C2

A C2
F

[
19661.7351772000 ± 4.2 · 10−9]

+ C A C3
F

[ − 1602.0556057677 ± 2.8 · 10−9]
+ C4

F

[ − 2212.79784915...
]

+ N f
dabcd

F dabcd
F

N F

[
53.1274437988...

]
+ N f C2

A C F
[

10203.6391859...
]

+ N f C A C2
F

[ − 12551.5075480...
]

+ N f C3
F

[
2095.46596925...

]
+ Nqγ C A

dabc
F dabc

F

N F

[ − 235.381562912...
]

+ Nqγ C F
dabc

F dabc
F

N F

[ − 243.738662819...
]

+ N2
f C A C F

[ − 2304.68219272...
]

+ N2
f C2

F

[
1604.85115658...

]
+ Nqγ N f

dabc
F dabc

F

N F

[
42.7966478022...

]
+ N3

f C F
[

158.065537245...
]
, (21)

F̄ g
4 (ε)

∣∣∣
1/ε

≈ dabcd
A dabcd

A

N A

[
579.5738867755 ± 5.6 · 10−9]

+ C4
A

[ − 1081.02280574667 ± 2.3 · 10−10]
+ N f

dabcd
A dabcd

F

N A

[ − 604.701004352...
]

+ N f C3
A

[ − 532.481107793...
]

+ N f C2
A C F

[ − 650.895247054...
]

+ N f C A C2
F

[
14.9978706950...

]
+ N f C3

F

[
17.25

]
+ N2

f

dabcd
F dabcd

F

N A

[
95.1966169377...

]
+ N2 C2 [

1574.06171919...
]

f A
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+ N2
f C A C F

[
282.052204632...

]
+ N2

f C2
F

[
23.4647858335...

]
+ N3

f C A
[ − 261.955705460...

]
+ N3

f C F
[ − 12.7425646335...

]
, (22)

F̄N=4
4 (ε)

∣∣∣
1/ε

≈ 4687.07846404...

+ 1

N2
c

[ − 896.4243270825 ± 8.4 · 10−9]. (23)

Comparing Eq. (21) and Eq. (22) to, respectively, Eq. (3.27) of [29]
and Eq. (11) of [30], we find that our results agree completely 
to within their given error estimates. We note that our Eqs. (21)
and (22) significantly improve upon the QCD results of [29,30], as 
the numerical approximations provided therein are, depending on 
the color structure, accurate to, at best, six significant digits (e.g.
C2

A C2
F ) and, at worst, one significant digit (e.g. dabcd

A dabcd
A /N A ). For 

the collinear anomalous dimensions we have

γ
q
4 ≈ dabcd

A dabcd
F

N F

[ − 2195.670535473 ± 4.5 · 10−8]
+ C3

A C F
[ − 13.809312037 ± 1.3 · 10−8]

+ C2
A C2

F

[
2438.569338812 ± 3.3 · 10−8]

+ C A C3
F

[ − 1373.764650948 ± 2.2 · 10−8]
+ C4

F

[
392.899478384...

]
+ N f

dabcd
F dabcd

F

N F

[ − 425.019550390...
]

+ N f C2
A C F

[ − 274.147360589...
]

+ N f C A C2
F

[ − 912.844845636...
]

+ N f C3
F

[
151.933788877...

]
+ N2

f C A C F
[

109.081415293...
]

+ N2
f C2

F

[ − 12.5342425083...
]

+ N3
f C F

[
4.88682798281...

]
, (24)

γ
g

4 ≈ dabcd
A dabcd

A

N A

[ − 2451.040712450 ± 4.5 · 10−8]
+ C4

A

[
1557.4287417889 ± 1.9 · 10−9]

+ N f
dabcd

A dabcd
F

N A

[ − 41.2080190194...
]

+ N f C3
A

[ − 1033.98729659...
]

+ N f C2
A C F

[ − 57.9377499658...
]

+ N f C A C2
F

[ − 100.315097910...
]

+ N f C3
F

[
46

]
+ N2

f

dabcd
F dabcd

F

N A

[
253.857645167...

]
+ N2

f C2
A

[
70.7744401902...

]
+ N2

f C A C F
[

73.9372035966...
]

+ N2
f C2

F

[ − 21.9767440643...
]

+ N3
f C A

[
0.405507202650...

]
+ N3 C F

[
1.26748971193...

]
, (25)
f

5

γN=4
4 ≈ −1238.74771725...

+ 1

N2
c

[
7171.394616660 ± 6.7 · 10−8] . (26)

The errors provided in the above equations are all statistical errors 
from the pySecDec evaluation of H given in Eq. (12). For the 
non-planar-color part of the N = 4 SYM collinear anomalous di-
mension, Eq. (26) is consistent with the result of [32] within their 
provided error estimate, but it is a vast improvement over Eq. (5.8) 
of [32] as the latter gives essentially only an order of magnitude 
estimate for this quantity. Besides our comparisons to the existing 
literature, we also carried out direct numerical cross-checks on all 
of the contributing four-loop form factor master integral expansion 
coefficients using either pySecDec or FIESTA 4 [62].

5. Lifting numerical data to analytic expressions

In this section, we analyze the unknown analytic form of H. 
First, assuming that the ε-expansion coefficients of I(26)

6 and I(26)
7

are multiple zeta values of uniform weight implies that H has the 
form

Hconj = aζ7 + bζ5ζ2 + cζ3ζ
2
2 + 10ζ 2

3 + 223

210
ζ 3

2

− 25ζ5 − 6ζ3ζ2 + 3

10
ζ 2

2 + 9ζ3 (27)

for some rational numbers a, b and c. This constraint will be cen-
tral to the following discussion.

Let us consider the unknown part of Eq. (27),

aζ7 + bζ5ζ2 + cζ3ζ
2
2 ≈ 6.279370861144 ± 7.0 · 10−11 , (28)

and fit the constants a, b, and c using the PSLQ algorithm. Our first 
task will be to assess the uncertainty of our high-precision run of
pySecDec by comparing approximation (12) to a preliminary run 
of the program at a somewhat lower precision,

H ≈ −0.7015802399 ± 2.75 · 10−8 . (29)

Subtracting the central value of (12) from the central value of (29)
and dividing by the uncertainty of (29), we find a ratio of 1.2. This 
indicates that the initial estimate produced by pySecDec was a 
bit too large but that the uncertainty estimate produced by the 
program seems trustworthy. We will proceed under the assump-
tion that the given statistical error faithfully represents the actual 
uncertainty of the approximation, excluding in particular the logi-
cal possibility of a substantial but hidden systematic shift. In par-
ticular, we consider 11 digits in (28) to be significant and 10 digits 
to be safe.

In order to obtain a rough estimate for the required number of 
digits for a successful fit, we considered the complexity of rational 
numbers appearing in a sample set of analytically known integrals 
from other topologies. Here, we selected all 318 integrals whose 
leading term in the ε expansion involves weight 7 zeta values, and 
which might therefore be similar to the unknown integral. We find 
that, on average, 10 digits were required to successfully reconstruct 
the rational coefficients of weight 7 zeta values. It therefore seems 
possible that the right-hand side of (28) could suffice to fit the 
rational constants on the left-hand side.

While retaining ten digits of approximation (28) is not quite 
good enough, retaining eleven digits results in the very promising 
fit:

a = 161

16
, b = 5

2
, c = −5

2
. (30)

We now attempt to quantify whether these putative values for a, 
b, and c are reasonable or not using statistical arguments and nu-
merical extrapolation. This analysis is of considerable importance, 
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as our fit stretches approximation (28) to its limit. As a start, note 
that subtracting the presumptive exact value Hconj obtained from 
fit (30) from the central value of (12) leaves the difference

δ = H−Hconj ≈ 7.75 · 10−11 ± 6.98 · 10−11. (31)

The ratio of δ divided by its uncertainty is 1.1, which seems rea-
sonable and compatible with δ = 0 in light of the discussion after 
Eq. (29).

Our PSLQ fit (30) seems plausible in the sense, that the ra-
tional numbers involve relatively small integers and are rather 
similar in structure to what we observe for the rational prefac-
tors of {ζ7, ζ5ζ2, ζ3ζ

2
2 } in our sample of 318 superficially-similar 

leading-order integral expansion coefficients.1 Indeed, we observe 
that for all 318 elements of our sample, the denominators of the 
rational prefactors in front of {ζ7, ζ5ζ2, ζ3ζ

2
2 } are never larger than 

{75, 12, 240} and the prime factors which appear in the prime 
factorizations of the denominators are never larger than {5, 3, 5}. 
Moreover, the number 161/16 we found for a is actually a quite 
typical one with respect to our 318 samples of ζ7 coefficients; its 
numerator appears in front of ζ7 10 times in our sample and its 
denominator is actually the most common one in our sample, ap-
pearing 111 times as the denominator of the rational prefactor of 
ζ7.

In order to explore the robustness of the fit (30), we systemat-
ically extrapolated the ten significant digits of approximation (28). 
To be precise, we continue its decimal expansion in all possible 
ways out to a maximum of fifteen significant digits.2 After each 
digit is added by our trial code, a PSLQ fit is attempted and then 
judged according to the simplicity and similarity criteria of the 
previous paragraph. We find it remarkable that, all the way out 
to fifteen decimal digits, no other possible PSLQ fit looks nearly 
as natural as (30) above. For this extrapolation analysis, we only 
considered decimal expansions lying within plus or minus two 
times the reported statistical uncertainty on H. In an abundance of 
caution, we repeated our analysis with only nine digits of approx-
imation (28) and found nothing different for extrapolations out to 
fourteen decimal digits lying within plus or minus five times the 
reported statistical uncertainty on H.

In terms of H = δ + Hconj, our result (20) for the collinear 
anomalous dimension in N = 4 SYM reads

γN=4
4 = −300ζ7 − 256ζ5ζ2 − 768

5
ζ3ζ

2
2 + 1

N2
c

[
14886ζ7

+ 3936ζ5ζ2 − 13104

5
ζ3ζ

2
2 + 9600ζ 2

3 + 7136

7
ζ 3

2

− 24000ζ5 − 5760ζ3ζ2 + 288ζ 2
2 + 8640ζ3 − 960H

]
.

We see that our conjecture, corresponding to δ = 0 in Eq. (20), 
achieves two simplifications: The expression becomes homoge-
neous in the transcendental weight of the zeta values, and their 
coefficients are integers if one chooses the basis element ζ4ζ3 in-
stead of ζ3ζ

2
2 .

6. Conclusion

In this work, we obtained precise numerical approximations for 
the four-loop collinear anomalous dimensions of QCD and N = 4
SYM as well as conjectures for the full analytic results in terms 

1 By experimenting with our sample expressions, we found that fewer significant 
digits are generally required for a fit in terms of {ζ7, ζ5ζ2, ζ4ζ3}, which is therefore 
the default ansatz for our actual PSLQ runs.

2 It turns out that all weight seven terms of our 318 sample expansion coeffi-
cients can be reconstructed by running the PSLQ algorithm with fifteen significant 
digit input precision.
6

of zeta values. We observe that the principle of maximal tran-
scendality holds for both the leading and the subleading color 
contributions. Our experiments with pySecDec suggest that it 
should be possible to numerically evaluate the finite parts of the 
QCD form factors to sufficiently high precision for phenomenolog-
ical purposes.
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