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Abstract

An equiangular tight frame (ETF) is a sequence of vectors in a Hilbert space that achieves equality
in the Welch bound and so has minimal coherence. More generally, an equichordal tight fusion frame
(ECTFF) is a sequence of equi-dimensional subspaces of a Hilbert space that achieves equality in
Conway, Hardin and Sloane’s simplex bound. Every ECTFF is a type of optimal Grassmannian
code, that is, an optimal packing of equi-dimensional subspaces of a Hilbert space. We construct
ECTFFs by exploiting new relationships between known ETFs. Harmonic ETFs equate to differ-
ence sets for finite abelian groups. We say that a difference set for such a group is “paired” with
a difference set for its Pontryagin dual when the corresponding subsequence of its harmonic ETF
happens to be an ETF for its span. We show that every such pair yields an ECTFF. We moreover
construct an infinite family of paired difference sets using quadratic forms over the field of two
elements. Together this yields two infinite families of real ECTFFs.
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1. Introduction

The chordal distance between two R-dimensional subspaces U; and Us of a D-dimensional real
or complex Hilbert space H is dist(U1,Us) := 2_%HP1 — Pallmo = [R — Tr(P1P2)]% where P; and
Py are their respective rank-R orthogonal projection operators. Conway, Hardin and Sloane [19]
showed that the minimum pairwise chordal distance between the members of any sequence {Uy, })\_,
of R-dimensional subspaces of H satisfies the simplex bound:

min dist(Uy,,Up,) < [FE-H N 13 (1)
ni1#ng

In modern parlance [51], they further showed that such a sequence {U,}_; achieves equality in (1)

if and only if it is an equichordal tight fusion frame (ECTFF) for H, namely when dist(Uy,,, Uy, ) is

constant over all n; # ng (equichordality) and 27]:7:1 P,, = AI for some A > 0 (tightness). When

such an ECTFF for H exists it is thus an optimal Grassmannian code, that is, an optimal packing

(with respect to the chordal distance) of N points on the Grassmannian (space) that consists of
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all R-dimensional subspaces of the D-dimensional space H. When R = 1 the simplex bound (1)
reduces to the Welch bound [59, 54] on the coherence of N nonzero vectors {¢, }N_; in H:

o=

(2)

#ny Pny)l _

max o ety > 5y
In this case, an ECTFF for H equates to an equiangular tight frame (ETF) for H, namely to a
sequence {,, }__; of nonzero equal-norm vectors in H that achieves equality in (2). More generally
an ECTFF for H will have minimal block coherence maxy,+n, ||Pn, Pn,|lop if its subspaces are equi-
isoclinic [52], that is, satisfy P, P,,,P,, = 0P, for some ¢ > 0 and all ny # ny [22]. Such an
ECTFF is called an equi-isoclinic tight fusion frame (EITFF) for H.

ETFs, ECTFFs and EITFFs arise in various applications, including compressed sensing [24,
4, 5, 15], quantum information theory [61, 53], wireless communication [54, 8], and algebraic cod-
ing theory [45]. Much of the related literature is devoted to the existence problem: for what D,
N and R does there exist an ECTFF(D, N, R), that is, an ECTFF for a D-dimensional Hilbert
space that consists of N subspaces of dimension R? Moreover, in such cases, when can these
subspaces be chosen to be equi-isoclinic and/or real? Most positive existence results involve
explicit construction from some type of combinatorial design. See [33] for a survey of known
ETF(D,N) (i.e., ECTFF(D, N,1)). Several constructions of ECTFF(D, N, R) with R > 1 are
known. Some of these actually yield EITFF(D, N, R): one can tensor an ETF with an orthonor-
mal basis (ONB) [52, 15, 48], or convert a complex and/or quaternionic ETF into an EITFF over a
subfield [41, 26, 58], or exploit a complex conference matrix [25, 7]. Other methods yield ECTFF's
that are not necessarily equi-isoclinic, including constructions from quadratic residues [14, 62]
and their generalizations [49], balanced incomplete block designs (BIBDs) [61, 62], 2-transitive
groups [21], semiregular divisible difference sets [47] and more generally difference families [32],
Latin squares [62], and chains of alternating Naimark and spatial complements [17, 32]. Other
examples have been found numerically, and some of these have been perfected [19, 22, 18, 37].
See [2] for connections between ECTFFs and t¢-designs for Grassmannians, and [3] for various
generalizations of ECTFFs.

Our work here is inspired by some ideas from the recent literature. It turns out that some
ETFs contain others: if {(pn},]y:l is any ETF for H then any subsequence of it is equiangular and
might, on rare occasion, be a tight frame for the subspace of H that it spans. See [34, 1, 28]
for instances of this phenomenon. Moreover, such sub-ETFs can yield ECTFFs. For example,
when an ETF partitions into regular simplices their respective spans form an ECTFF [28]. This
applies to Steiner ETFs [38, 35], certain polyphase ETFs [31] as well as to several infinite families
of harmonic ETFs [28, 36], namely ETFs that arise by restricting the characters of a finite abelian
group to a difference set [50, 54, 60, 23].

In this paper we construct ECTFFs by exploiting new relationships between known ETFs.
In the next section we review some known concepts and results that we will need later on. In
Section 3, we define when a difference set for a finite abelian group is paired with a difference set
for its Pontryagin dual (Definition 3.1). We show that a harmonic ETF that arises from such a
pair contains many overlapping, unitarily equivalent copies of a smaller ETF, and moreover that
the spans of these copies form an ECTFF (Theorem 3.3). In Section 4 we exploit quadratic forms
over Fy to construct an infinite family of paired difference sets (Theorem 4.5). For every integer
M > 2 this yields an ETF(2M~1(2M £ 1),22M) that contains many copies of an ETF(3(22M —
1),2M=1(2M £ 1)). These ETFs are not new: they equate to known families of strongly regular
graphs [11, 12] via the correspondences of [42, 57, 6, 30]. Moreover, their parameters match those
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of certain known real Steiner and Tremain [29] ETFs (or their Naimark complements). That
said, the resulting real ECTFF(2M~1(2M £ 1),22M 1(22M _ 1)) seem to be new except in the
(D,N,R) = (6,16,5) case. They are not equi-isoclinic. We conclude in Section 5 with some open
problems concerning the existence of paired difference sets.

2. Preliminaries

Let N be a finite set of cardinality N > 1, and let H be a Hilbert space over F (either R
or C) of dimension D > 1. A sequence {Uy,}nen of R-dimensional subspaces of H is a tight
fusion frame (TFF) for H if their projections {Py},en satisfy >\ Pn = AI for some A > 0.
This requires A = % > 1since NR = Y \Tr(P,) = Tr(Q_,cpr Pn) = Tr(AI) = AD and
NR =3}, cprank(P,) > rank(AI) = D. Thus, for any R-dimensional subspaces {Uy }nen of H,

2
NR R(NR—D
0=y T30 Po = BT) | = vy X0 3 THPuPu) — ST )
neN nleN na#ny
where equality holds if and only if {Uy, }nen is a TFF for H. Each term Tr(P,, P,,) is real since
[diSt(umvunQ)]2 = %HPm - Pn2”}25‘ro = %Tr[(Pm - Pnz)z] =R- Tr(PmPnz)'

As such, we can rearrange and continue (3) as

Rng]\l;z 11?) < N(N 5 Z Z Tr(P,,Pp,) < max Tr(P,,P,,) = R — min [dist(Uy,,,Un,)]*. (4)

n1#ng n1#ng
ni1€N na #n1

Equality holds throughout (4) if and only if {Uy,}nen is an ECTFF for H, namely a TFF that
is also equichordal in the sense that dist(Uy,,,Un,) is constant over all n; # ng. Rearranging (4)
gives the simplex bound (1), which is called this since {Up, }nen is an ECTFF for H if and only if
{P, — %I}ne A is a regular simplex for its span in the real Hilbert space of traceless self-adjoint
operators on H, equipped with the Frobenius inner product [19]. In particular, an ECTFF can
only exist if N < dp(D) + 1 where dp(D) is the dimension of this space, namely

Lip— —
)= { AP D042 E =R

This necessary condition on the existence of an ECTFF is often called Gerzon’s bound; see [14, 49,
62] for some examples of ECTFF's that achieve equality in it. When it is violated, {P,, — %I}ne %
cannot be mutually obtuse, meaning there exists n; # no such that

0< (Po, — BLP,, — EDpyy = Te(Py, Pry) — 2 = BEZR) _ (ist Uy, , Uny )2,

implying the orthoplex bound of [19], namely that miny,, 4y, dist(Uy,,Up,) < [@] %; see [49]
for some recent constructions of sequences of subspaces that achieve equality in it.

Since both equichordality and tightness are preserved by both unitary transformations on H
and bijections on N, the existence of an ECTFF depends only on the parameters (D, N, R) and F.
We refer to any ECTFF for a possibly-complex D-dimensional Hilbert space H that consists of N
subspaces of it, each of dimension R, as an “ECTFF (D, N, R),” and say it is real when H can be
chosen to be R”. The spatial complement [17] of an ECTFF(D, N, R) {Up,}nen for H with R < D
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is the sequence {U;-},en of its members’ orthogonal complements. It is an ECTFF(D, N, D — R)
for H since )\ (I—Py) = (N — %)I and

dist(Un; ,Uny) = J5 (T =Py) = = Puy)llmo = J51Pny — Pugllrvo = dist(Un,,Uny), V1 # na.

It can also be shown that if {4, },enr achieves equality in the orthoplex bound then {2/}, cns does
as well [48].

2.1. Grassmannian codes and finite frame theory

Equip FV := {x: N' = F} with the inner product (x1,%2) := 3, .y X1(n)x2(n). (Under this
notation, for any positive integer N, “FN” is shorthand for FIV where [N]:= {n € Z: 1 <n < N}.
Throughout, our complex inner products are conjugate-linear in their first arguments.) The syn-
thesis operator of a sequence {, }nen of vectors in H is ® : FN — H, &x := Y onen X(n)e,.
Its adjoint is the corresponding analysis operator ®* : H — FV, ®*y = Y e (Pn, ¥)0n, Where
{0, }nen is the standard basis for FV. In particular, we can regard a single vector ¢ € H as the
synthesis operator ¢ : F — H, ¢(z) := z¢ whose adjoint ¢* : H — F, ¢*y = (¢,,,y) is a linear
functional. Composing ® and ®* gives the frame operator ®®* : H — H, ®®* = > _\ @, ¢n
and the N x N Gram matriz ®® : PV — FV whose (n,n')th entry is (®*®)(n,n) = (@,,, @)
In the special case where H = FP = {y : D — F} for some finite set D of cardinality D > 0, ® is
the D x N matrix whose nth column is ¢,,, ®* is its A" X D conjugate transpose, and ®P* and P* P
are their D x D and N x N products, respectively. In general, any F-valued positive semidefinite
N x N matrix G factors as G = ®*® for some sequence {,, }nen of vectors in a Hilbert space H
over F of dimension D = rank(G). This space is only unique up to a unitary transformation.

A sequence {@, }nen of vectors in H is an (A-)tight frame for H if ®P* = AI for some
A > 0. In this case, any y € H can be written as y = %‘I"l)*y = % Y e {Pn, ¥)®, and so H
is necessarily span{p, }nen = ®(FP). More generally, {®,, }nen is an A-tight frame for its span
when ®®*y = Ay for all y € ®(FP), namely when ®®*® = A®. This occurs if and only if
(®*®)? = A®*® (since having the latter implies that the image of ®(®*® — AI) is contained in
both ®(FP) and ker(®*) = [®(FP)]*). As such, a nonzero self-adjoint N x N matrix G is the
Gram matrix ®*® of an A-tight frame {¢,, }nen for its span if and only if %G is a projection.
In this case, letting D be dim(span{e, }ner) = rank(®) = & Tr(G) we have that I — L ®*® is a
projection of rank N — D. If D < N, there thus exists an A-tight frame {1, },cn for a space of
dimension N — D that is uniquely defined (up to unitary transformations) by having
1%,

T — AT— 3D, e, <¢m,¢n2>:{ A= lp,l?, n1=ns, 5

_<(19n17 (Pn2>a ny ?é ng.

Such tight frames {¢,, }nen and {9, }nen are called Naimark complements of each other.

Now again let {U, }nenr be any sequence of R-dimensional subspaces of a D-dimensional Hilbert
space H. For each n € N let ®, : F® — H be the synthesis operator of an ONB {pnrtrer for
Uy, and so P, = ®, @} where &, ®, = 1. Here, {¢,, . },er is only unique up to R x R unitaries.
That is, it can be any member of the fiber of the Stiefel manifold that projects onto the point U,
in the Grassmannian. The frame operator of the concatenation {®,, , }(nrjenxr of these bases is
Y oneN 2reR PraPrr = 2menN Ln®n = D cn P Inparticular, {¢,, .} (n,r)enxr i a tight frame
for H if and only if {Uy,}nen is a TFF for H. Meanwhile, the Gram matrix of {¢,, . }m.renxr
has (@, 11 Prgirs) = (PnyOrps Prydiy) = (P, ®,,)(r1,72) as its ((n1,71), (n2,72))th entry, and
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so is naturally regarded as an N x N array whose (ni,n2)th block is the R x R cross-Gram
matrix ®; ®, . Since | P} Pu,llop < [Py [lopl|Pnsllop = 1, the singular values of this matrix
can be written as {cos(6n, n,,)}2, for some nondecreasing sequence {0, n,,}%, of principal
angles in [0, 3]. From this perspective, {Uy}nen is equichordal if and only if Tr(Py,Pp,) =
Tr(®, @, ®,,®,) ="T(2,, ¢, P, @) =2, P, /5 = S €082 (0py my ) is constant over

all nq # no. This perspective also glveb a way to continue (3) in a way that differs from (4):

MBS < a2 O 1Pl < xpbmy X D 190,@,,05 < max 95,8,

n1 eN na#ng nl eN no#ny

Here, equality holds throughout if and only if {¢,, .} (nryenxr is a tight frame for H and 0, 5,
is constant over all ny # ng and r. This occurs if and only if {U,}nen is an EITFF for H:
since ®; ®, = I, ®; ®, is a unitary scaled by some o > 0 if and only if P, P, P, =
¢, &) @, P, P, P cquals @, (0 QI)<I>* = 0?P,,. In particular, every EITFF is an opti-
mal packmg of members of the Grassmanman with respect to the spectral distance, defined as
sty Uny  Uny) = (1 — |85, ®,,,[2)F [22]

In the special case where {U, }nen is a sequence of subspaces of H of dimension R = 1 we
have ®,, = ||, || "t¢, where ¢, is an arbitrary nonzero vector in U,. Here, each cross-Gram
matrix @ @, is a 1 x 1 matrix with entry (||, [[ll@n,[]) " (@, @n,). In this case, both the
above inequality and (4) reduce to the Welch bound (2). Assuming without loss of generality that
{@, }nen is equal-norm, it achieves equality in this bound if and only if it is a tight frame for H
that is also equiangular in the sense that |(@,, ,,,)| is constant over all ny # ns.

If {¥,,}(nrenxr is the Naimark complement (5) of a concatenation {,, .} rjenxr Of
ONBs of the subspaces {Uy,}nen of an ECTFF(D, N, R) with D < NR then {V,}nen, V.
span{®,, . }rer is an ECTFF(NR — D, N, R) (and is an EITFF if and only if {U, }nen is as well).
Taking alternating Naimark and spatial complements [17] of an ECTFF (D, N, R) often leads to
an infinite chain of mutually distinct ECTFFs. We caution that the spatial complement of an
EITFF(D, N, R) is itself an EITFF if and only if D = 2R. In general, letting {®,},cn and
{O®n}nen be synthesis operators for ONBs for an ECTFF {U,,},en and its spatial complement
{U}en, Tespectively, we have @%@, =1, ©:0, = I and ®,®} + 0,0} =1 for all n, and so

I- (@Zl(ﬁng)(@;l @ng)* =1- (I):(zl (I - ®n2922)@n1 = ((I):zlgng)(éjzl(ang)*?
I-(0,0,)(0,6,,)=1-6,,(I1-2,%,,)0,,=($,0,,)($,0,,).
This implies that the sequences of singular values of ®; ®, and @, ©, are 1-padded versions
of each other, in general. In particular, any ECTFF(D, N, R) with % < R < D is not an EITFF
since some but not all of the principal angles between any two of its subspaces are 0.

2.2. Harmonic equiangular tight frames

A character of a finite abelian group G is a homomorphism v : G — T := {z € C: |z| = 1}.
The set G of all characters of G is called the Pontryagin dual of G, and is itself a group under
pointwise multiplication. In this finite setting, it is well known that G is isomorphic to G and that
its members form an equal-norm orthogonal basis for CY. The synthesis operator I' : CY — CY of
the sequence {7}'yeé of all characters of G (each serving as its own index) is thus a square G X G
matrix that satisfies T'* = NT! where N := #(G). It is the character table of G, having (g, )th
entry I'(g,v) = v(g). Its adjoint (conjugate-transpose) I'* is the analysis operator of the characters,
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namely the discrete Fourier transform (DFT) over G. We identify G with the Pontryagin dual of G
via the isomorphism g — (v — ~(g)). That is, we define g(7) := 7(g), meaning the G x G character
table of G is simply the (nonconjugate) transpose of I'.

A harmonic frame over G is one obtained by restricting the characters of G to some nonempty
subset D of G, namely {‘Pw}yeé C CP, ¢, (d) :=y(d). It is a tight frame for CP since its synthesis
operator ® satisfies (PP*)(dy,ds) = (TT)(dy,d2) = NI(dy,ds) for all di,dy € D. It is also equal
norm since [|@,[|* = Y 4ep [7(d)]* = D := #(D) for all v € G. Tts Gram matrix is G-circulant,
having entries arising from the DFT of the characteristic function xp of D:

(@) (71,72) = (@51, ) = > 11(9)2(9) = Y (175 N @xpl9) = T*xp) (112 ),
geD geg

for any 1,72 € G. To compute just the magnitudes of these entries, we exploit the way in which
the DFT interacts with the convolution x; x xo € CY, (x1 * x2)(g) := > gegX1(g)x2(9 — ¢') and
involution X1 € CY, %1(g) := x1(—g) of any given x1,xs € CY. (In this general setting, we typically
use additive notation on G and multiplicative notation on G .) Specifically, for any vy € G we have
[T (%1 % x2)](7) = x1(7)x2(7) and (I'"X1)(7) = (I"x1)(7). Thus, for any y1,72 € G,

(@*®)(71,%2)° = [{@,: @) 1* = [T xp) (1172 DI? = [T (xp * Xp) (1173 1) (6)

where xp * Xp is the autocorrelation function of xp. For any g € G, the mapping g1 — (91,91 — 9)
is a bijection from DN (g + D) onto {(g1,92) € D x D : g = g1 — g2}, meaning

(xp * Xp)(9) = Y _ xp(9)xg4p(d) = #[D N (9+ D) = #{(91,92) ED XD : g = g1 — g2}
g'eg

is both the number of elements of G that D has in common with g + D and the number of distinct
ways that g can be written as a difference of members of D.

Now consider the special case where D is a difference set for G, namely when G # {0} and there
exists A such that (xp *Xxp)(g) = A for all g # 0. Since (xp * Xp)(0) = D, this occurs if and only
if xp*Xp = (D—A)dp+Axg. Taking DFTs equivalently gives |(IT*xp) (7 )|2 (D—=A)+ANS ()
for all v € G. Here, evaluating at v = 1 gives D? = (D —A)+ AN, and so A is necessarily ](\,Dfll),
a fact that also follows from a simple counting argument. That is, D is a difference set of G if
and only if [(T*xp)(Y)|? = D — D](\?:ll) = D%V;D) for all ¥ # 1. When combined with (6), this
classical characterization [56] of difference sets yields the more recent observation [50, 54, 60, 23]
that a nonempty subset D of G is a difference set for G if and only if the corresponding harmonic

frame {¢,} s is an ETF for CP, since it equates to having

(P, 107, * -1 N—D
To Mol = 5@ xp) v N = oy )® Y # e

N

namely to achieving equality in the Welch bound (2). If D is any difference set for G then D¢ is
as well; provided D is not @ or G, the fact that I" has equal-norm orthogonal columns implies that
the two resulting harmonic ETFs are Naimark complements of each other.

3. Equichordal tight fusion frames from paired difference sets

As discussed in the previous section, an ECTFF (D, N, R) for a D-dimensional space H equates
to an N R-vector tight frame for H that can be partitioned into N orthonormal subsequences
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whose R X R cross-Gram matrices have a common Frobenius norm, and moreover, is an EITFF
for H precisely when these cross-Gram matrices are a common scalar multiple of some unitaries.
This Stiefel-based perspective of Grassmannian codes pervades the literature: [61, 47] construct
ECTFFs from collections of orthonormal vectors whose cross-Gram matrices are either remarkably
sparse or flat (and so have readily computed Frobenius norms), whereas [52, 15, 41, 26, 58, 25, 7]
construct EITFFs by converting each off-diagonal entry of a suitably nice N' x N matrix into an
R x R scaled unitary, all while simultaneously ensuring tightness.

That said, echoing a common theme of frame theory, it is sometimes easier to find nice tight
frames for the subspaces of an ECTFF than it is to find nice ONBs for them. For example, when an
ETF partitions into regular simplices, their spans naturally form an ECTFF [28]. To be fair, some
of these ECTFF's are more easily constructed from other methods: those arising from Steiner ETF's
(including McFarland-harmonic ETFs [45]) also arise directly from their underlying BIBDs [61],
while those arising from Singer-complement-harmonic ETFs are actually ETF-tensor-ONB-type
EITFFs [36]. Nevertheless, some of these ECTFFs have not been explained by competing meth-
ods, including some arising from polyphase ETF(q +1,¢> + 1) and twin-prime-power-complement-
harmonic ETFs [28]. One downside to such an approach is that it can become more difficult to
characterize when a resulting ECTFF is actually an EITFF [36].

In this paper we carry this idea further, constructing ECTFFs from many overlapping sub-
ETFs of a single ETF. More precisely, we use a harmonic ETF that contains a sub-ETF whose
members are themselves indexed by the elements of a difference set:

Definition 3.1. We say a difference set D for a finite abelian group G is paired with a difference
set £ for its Pontryagin dual G if {¢ }eee € CP, ¢.(d) := £(d) is a tight frame for its span.

This concept was briefly discussed in [34]. That paper also mentions two numerically obtained
examples of such pairs. The first of these consisted of certain subsets D and & of Z3 and its dual
of cardinality 6 and 10, respectively. The other consisted of two subsets of Z3 and its dual of these
same cardinalities. While the latter remains a mystery, we were able to find an explicit version of
the former that, as explained in Section 4, generalizes to an infinite family of paired difference sets:

Example 3.2. Let G = Z3 be the elementary abelian group of order 16. As detailed and generalized
later on, the function Q : Z3 — Za, Q(x) = Q(21, 22, T3, T4) = 172 + 2374 + T3 + 27 is a quadratic
form that gives rise to the symplectic (nondegenerate alternating bilinear) form B : Z3 x Z3 — Z,
B(x,y) = Q(x +y) + Qx) + Q(y) = 2192 + Toy1 + T3ys + x4y3. A point x € Z3 is singular if
Q(x) = 0, and is otherwise nonsingular. Let D and £ = D¢ be the 6- and 10-element sets of all
singular and nonsingular points of Q, respectively:

D = {0000, 0100, 1000, 1101, 1110, 1111},

7
£ = {0001, 0010,0011,0101,0110,0111, 1001, 1010, 1011, 1100}. )

These are complementary difference sets for Z%. This can be verified by noting, for example, that



6(6—1)
16—1

every nonzero element of Z3 appears in the difference table of D exactly A = = 2 times:

— 10000 0100 1000 1101 1110 1111
0000{0000 0100 1000 1101 1110 1111
01000100 0000 1100 1001 1010 1011
1000|1000 1100 0000 0101 0110 O111.
1101{1101 1001 0101 0000 0011 0010
1110|1110 1010 0110 0011 0000 0001
11111111 1011 0111 0010 0001 0000

To explicitly construct the corresponding harmonic ETFs we identify Z3 with the Pontryagin dual
via the isomorphism that maps y € Z3 to the character x — (—1)B®¥), Under this identification,
the character table T' becomes the following Z3 x Z3 matrix with entries T'(x,y) = (—1)B®¥) and
its (D x Z3)- and (& x Z3)-indexed submatrices T'g and T'; are the synthesis operators of a harmonic
ETF(6,16) and its Naimark-complementary harmonic ETF(10, 16), respectively:

I e e ot SR A

r+++++++++++++++ +7 +++++++4+ === = - — —
++--++--++-—-—++ - - r'n=|tTt++-———"—++++—-———
-ttt -+ -+ —+- 0= |+ 4+ - - — 4+ ——dt++—— |
t--tt -ttt -+ + -+ +-+ -+ -+ -+ -+ + -+
++++++++-—-——-—-—-—-—— L+ — — 4+ -4+ 4+ - —4+ 4+ -4 - — 4+
++-——F+—-———++——++
SR S S S [+ 4+ - —++——F++——++— -]
T = + + + + -+ + + + (8)
I et et s s i ettt B L N e S S N
++ -+ttt -4+ L L At A M
-t -ttt -+ -+ L A A A A
-t -+ —F -+ -+ + - rN=|tf-+t; +t-+t -t -+
+H+++-—————=—= ++++ to -ttt
++ -+ + -+ +++ - S A
Sl Sl S Sy SN S S
S A A [ ++++-————=——= + 4+ +
(Here the elements of subsets of Z% are ordered lexicographically, and “+” and “—” are shorthand

for 1 and —1, respectively.) In particular, T'yI'j = 16I (tightness), the diagonal entries of I'jT,
are 6 while its off-diagonal entries have modulus 2 (equiangularity), and IT'T'y + I''I'; = 161
(Naimark complementarity). Such real harmonic ETFs are well known [23, 45], and yield optimal
packings of 16 lines (one-dimensional subspaces) of RS and R!°. What is new here is that under
the aforementioned identification of Z3 with its Pontryagin dual, the two difference sets D and &
are paired in the sense of Definition 3.1. That is, the columns of the (D x &)-indexed submatrix

+H++++++

13 ©

++
b
Poo= |32 +++
-+ —++
- - + -+

+1 0 ++
+H 10+
++1+
| ++ 1+

+
+
_l’_

of 'y (and T') form a tight frame for their span. This is far from obvious, but can be explicitly
verified by showing that Ty, T, Ty, = 12T, or equivalently, that 5T T, is a projection. Here,
the tight frame constant A = 12 is significant: since %1‘811‘01 is a 10 x 10 projection matrix
with diagonal entries %, the columns of T'g; form a tight frame for a subspace of RP =2 R6 of
dimension rank(To;) = rank(I'§;T;) = Tr(5T5Tg;) = 5. As the 10 columns of I'g; are moreover
equiangular (being 10 of the 16 equiangular columns of I'y) they thus form an ETF (5, 10) for their
span. This itself is remarkable: there is an optimal packing of 10 lines in R® that extends to an
optimal packing of 16 lines in R%. As we now explain, it moreover implies the existence of a real
ECTFF(6,16,5) and a real ECTFF(10, 16, 5).



Theorem 3.3. Let D and £ be paired difference sets (Deﬁmtzon 3.1) for a finite abelian group
G and its Pontryagin dual g, respectively. For any v € G let Uy = span{cp,yg}geg where, for any
e €&, o, €CP is defined by Pre(d) :=(d)e(d) for all d € D. Also let

R= pipnpp where D :=#(D), E :=#(£), N = #(G) = #(3). (10)

Then {Uy}, o is an ECTFF(D, N, R) for CP where, for each v € G, {peteee is an ETF(R, E)
for U, that is unitarily equivalent to {.}ece. Moreover, the relation of being paired is symmetric:
£ and D are also paired, yielding an analogous ECTFF(E, N, R) for C¢.

Proof. Since D is a difference set for G its harmonic frame {cpAY} cé» Py(d) :==7(d) is an ETF(D, N)
for CP. Since D and & are paired, the corresponding subsequence {p.}ecce of this ETF(D, N) is,
by definition, a tight frame for U; = span{¢,}.cc. Moreover, since {‘Pv}yeé is equiangular, this

subsequence {, }cc¢ is also equiangular, and the two sequences share the same coherence (Welch
bound). In particular, {¢,}cce is an ETF(R, E) for U; where R = dim(U) satisfies

(E—l) 1 _ E-R _ N-D

R

—1 = R(E-1) — DIN-1)'

Solving for R gives (10). (In the degenerate case where E = 1, instead note that the single vector
{p.}ece is an ETF for its span, which has dimension (DEEE—(f)ﬁfl—)DE %(]]\\/[ D) = 1= R.) Next,
for any v € G, {cpva}geg and {¢,}.ce have the same Gram matrix, implying they are unitarily

equivalent: for any e1,e9 € &,

(So'yz-:lv 90v52> = Z W(d)el(d)fy(d)€2(d) = 2@52(61) = <LP€17S062>'

deD deD

In particular, for any v € G, {peteee is an ETF(R, E) for its span U,.

Next, to show that {U, } ¢ is an ECTFF(D, N, R) for CP, let ®., be the synthesis operator
of {¢p,c}ece. Since {cp7€}5€g 1s an E-vector tlght frame for U, and ||<,o%||2 = D for all ¢, the
projection P, onto U, can be expressed as P, = 57 <I>,Y<I> To see that {U } c¢ is a TFF for CcP
note that for any v € G, there are exactly F choices of v E G such that = 75 This allows us to

write the fusion frame operator of {4y}, s in terms of the synthesis operator ® of {¢,} s

ZPW = Z 12,2 = ip ZZ‘P%‘P% =5 Z PPl = ;8" = TIL (11)

= veg yeg e€€ v'eé

Next, to show that {Uf,} €6 is equichordal, note that for any v;,72 € G , V1 F Yo,

Tr(Plew) D2E2 Tr(@ ‘I’* '1’ '1’* ) D2E2||‘I’ 72||12~“ro = D2E2 Z Z ( ‘P71517‘P7252>| .
e1€€ ex€€

2 = D(N-D)
N—1
for all 7,7 € G with v # ~/. As such, the value of the above sum depends entlrely on the number

of pairs (e1,e2) € £ x £ such that y1e1 = 79e9, that 1s such that 7172 = 52 Since v1 # 72
and & is a difference set for G, this number is exactly . That is, for any 1 # 7o,

2 FE(E-1 E(E-1)1D(N—D
Tr(PyPoy) = 55 D O [(Prreys Poes) —D?Eg{ §V_I>D2+[E2——§V_R1 =Dy
61658268

Here, since {cpv} c¢ is an ETF(D, N) with ||ga,y||2 D for all v, we have [(¢,,®.)
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Since this value is constant over all v; # 7o, {UW}WEQ is an ECTFF. (Alternatively, we may
forgo (11) provided we instead use (10) to show that the above value for Tr(P.,P.,,) simplifies to

%, meaning {UW}WEG achieves equality throughout (4) and so is necessarily tight.)

For the final conclusions, recall that in general, we identify G with the Pontryagin dual of G via
the isomorphism g — (v — ~(g)), that is, we define g(v) := ~(g). Since £ is a difference set for G,
its harmonic frame {9, }geg, P (€) == g(e) = (g) is an ETF(E, N) for C¢. To show that £ and
D are paired, we show the corresponding subsequence {t;}qecp of this harmonic ETF is a tight
frame for its span. To do this, note the synthesis operators ®¢ and ¥p of {¢p,}.cs and {1, }aep,
respectively, are transposes of each other: for any d € D, € € &,

Up(e,d) = hy(e) = d(e) = &(d) = p.(d) = Pe(d, &)

At the same time, since D and £ are paired, {p,}.cc is a tight frame for its span and so there
exists A > 0 such that @ Pz P, = AP.. Taking transposes of this equation thus gives

AUp = AR} = (B P5Bp)" = 4 (P;) @7 = 04 (P7)" P = Up¥p¥p,

and so {1 }4ep is indeed a tight frame for its span. Since the expression given for R in (10) is
symmetric with respect to D and FE, this span has dimension R. As such, applying the first part
of this theorem to it yields an ECTFF(E, N, R) for C¢, as claimed. O

Example 3.4. When applied to the paired difference sets D and £ of (7) of Example 3.2, The-
orem 3.3 implies that the columns of I'g; of (9) form an ETF(5,10) for their span, that the
ETF(6,16) formed by the columns of I'yg of (8) contains sixteen unitarily equivalent copies of
this ETF(5,10) (each indexed by a shift x + £ of £), and that the spans of these copies form an
ECTFF(6, 16, 5) for CP. In fact, since the character table T of (8) of Z3 is real-valued, this ECTFF
is real. The existence of a real ECTFF(6,16,5) is not new: one arises, for example, by taking the
spatial complement of a real ECTFF(6,16, 1) that equates to a real ETF(6, 16).

Theorem 3.3 further gives that £ and D are paired, and this yields a seemingly new ECTFF.
As seen in its proof, this stems from the fact that the character tables of a finite abelian group and
its Pontryagin dual are transposes of each other, and the fact that the columns of a matrix form
a tight frame for their span if and only if their rows do as well. In general, this means that the
ECTFF(E, N, R) produced by Theorem 3.3 arises as the row spaces of the various [(g + D) x &)]-
indexed submatrices of I'. For this particular example, we further have that £ = D¢ where Z%
has been identified with its Pontryagin dual in a way that makes I' of (8) symmetric. As such,
Theorem 3.3 moreover gives here that the columns of the (£ x D)-indexed submatrix of I' (the
transpose of (9)) form an ETF(5,6) for their span, that the ETF(10, 16) formed by the columns of
I'; of (8) (the Naimark complement of that formed by the columns of I'y) contains sixteen unitarily
equivalent copies of this ETF(5,6) (each indexed by a shift D), and that the spans of these copies
form a real ECTFF(10, 16,5) for R€. We know of no other construction of an ECTFF with these
parameters (real or complex).

In general, when paired difference sets D and € for G and G exist, they are not unique. For
example, Theorem 3.3 gives that for any v € G, {¢eteee is an ETF (and so a tight frame) for
its span, implying D and & are also paired. Since Theorem 3.3 also gives that “pairing” is a
symmetric relation, we further have that g + D and y€ are paired regardless of one’s choice of
ge g, ve G. One can also apply an automorphism o of G to D provided one simultaneously
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applies the induced automorphism v — yoo ™! to G. This is because the [o(D) x (£ oo~ !)]-indexed
submatrix of I' can be obtained by pre- and post-multiplying its (D x £)-indexed submatrix by
permutation matrices, implying its columns form a tight frame for their span.

The next result gives the most fundamental characterization of paired difference sets that we
have found so far. It is not purely combinatorial, but rather involves sums over certain submatrices
of the character table. One can use it, for example, to obtain alternate proofs of the above facts.

Theorem 3.5. Let D and £ be nonempty difference sets for a finite abelian group G and its
Pontryagin dual G, respectively. Then D and £ are paired (Definition 3.1) if and only if

1ot
Z(d’,s’)E(D—d)><(5*1£) € (d ) (12)

has constant value over alld € D, € € £.

Proof. Let ® be the (D x &)-indexed submatrix of the character table of G, which is defined by
having ®(d,e) = e(d) for all d € D, ¢ € £. By definition, D and £ are paired if and only if
PP*P = AP for some A > 0. Since ® # 0, this occurs if and only if PP*P = AP for some
A € C: in the latter case, we have (®*®)? = A(®*®), meaning A is the nonzero eigenvalue of the
nonzero positive semidefinite matrix ®*®. This equates to having A € C such that

Ae(d) = AB(d,e) = Y Y ®(d,e)® (e, d)R(d,e) = Y > & (d)e'(d)e(d)

d'eDe’eE d'eDe’eE

for all d € D, € € £. Simplifying, this occurs if and only if for some A € C,

A=> > 7@ =2 D ([ ~d)

d'eDe'e& deDe'eE

foralld € D, e € £. Making a change of variables gives that this equates to the value of (12) being
constant over all d € D, € € £. O

Some paired difference sets D and £ are trivial in the sense that either D or & is either a
singleton set or is its entire group. In such cases, Theorem 3.3 still applies, but the resulting ETFs
and ECTFF's are not new. To explain any singleton set D is a difference set for G and it pairs with
any nonempty difference set € for G since {p.}ece equates to a sequence of £/ unimodular scalars
in the one-dimensional space CP ~ . Also, & = g is a difference set for g that pairs with any
nonempty difference set D for G since {p, }cc¢ is the harmonic ETF arising from D. In either of
these two cases the resulting ECTFF(D, N, D) {Z/{W}7 g consists of N copies of the entire space CP.
Meanwhile, any singleton set £ is a difference set for G and it pairs with any nonempty difference
set D for G since the single vector {¢,}.cs is a tight frame for its one-dimensional span. In this
case, the ECTFF(D, N,1) {U,} eg consists of the N one-dimensional subspaces of CP that are
individually spanned by the members of the underlying harmonic ETF(D, N) {cpv}7 g for CP.

The remaining “trivial” case is the most interesting in that it yields a nontrivial result: D =G
is a difference set for G that pairs with any nonempty difference set € for G since in this case
{p.}ece is a sequence of equal-norm orthogonal vectors (and so is a tight frame for its span). In
this case, for any v € g the corresponding subspace U, = span{cp%}geg of CP = CY is the span
of the characters of G that happen to lie in v& := {ve : € € £}. Taking the DFT of U, thus yields
the subspace of CY that is spanned by the members of the standard basis that are indexed by &,
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namely I, = span{I'"p, }cce = span{d.c}cce = span{d. },cye. Since the DFT is a scalar
multiple of a unitary operator, {{;} s is an ECTFF for CP = CY if and only if {T"*U,} eG 1
an ECTFF for CY. While Theorem 3 3 gives the former, the latter is known: Zauner [61] showed
that if (V, B) is any BIBD, then the subspaces {X;},ep of RE, X, := span{d; : v € b € B} form
an ECTFF for RB. Here, since £ is a difference set of G, £ := {e71 : ¢ € £} is as well, implying

= {v& 1} ~ed is the block set for a BIBD on V = G. In thls case, the yth subspace of Zauner’s
constructlon is X, = span{d., : v € y/E71} = span{d., }yere = T*U,.

When D and £ are nontrivial paired difference sets the ECTFF(D N,R) {U, } ¢ constructed
in Theorem 3.3 consists of N proper and distinct subspaces of CP. Indeed havmg 1 < D and
E < N implies R = % < D and so [dist(Us,,Uy,)]* = R(% k) 5 > 0 for any v1 # 7o.
Moreover, in this nontrivial case, these subspaces are not equi-isoclinic since they have nontrivial
intersection: since & is a difference set for G, #(1E Ny2E) = #[E N (77 1,)E] = E](\?__ll) > 0 for
any y1 7 72, implying Uy, NUy, = span{e, }reqe N span{p, tyeyne 2 span{p, tyeyenye has
positive dimension. As such, some but not all of the principal angles between U,, and U,, are zero.
We further note that if D and £ are nontrivial paired difference sets then so are £ and D, implying
the NV subspaces of the resulting ECTFF(E, N, R) are also proper, distinct, and not equi-isoclinic.

We conclude this section with a necessary condition on the existence of paired difference sets,
and a characterization of when the complements of paired difference sets are themselves paired:

Theorem 3.6. Let D and £ be paired difference sets (Definition 3.1) for a finite abelian group G
and its Pontryagin dual G, respectively, where D # G and € # G. Then

D+ E < N where D := #(D), E :=#(E), N :=#(G) = #(G). (13)
Moreover, D¢ and E° are paired difference sets if and only if D+ E = N.

Proof. Here, for any nonempty subsets X and ) of G and G , respectively, we denote the correspond-
ing submatrix of the G x G character table T of G as T xxy- Since D and & are paired difference sets,
I'px¢ is the synthesis operator of an ETF(R, E) for its span where R is given by (10). In particular,
the spectrum of I'p, ¢I'h, ¢ consists of a tight frame constant A > 0 and 0 with multiplicities R
and D — R, respectively, while the spectrum of I',, o', ¢ consists of A and 0 with multiplicities R
and E — R, respectively. Here, since every entry of I'py¢ has unit modulus, I'p ¢ I'pxg is an ExX E
matrix whose every diagonal entry has value D, implying DE = Tr(I's, cI'pye) = RA, and so
A= D L We now claim that A # N. Indeed, otherwise (10) gives N = A = D W,
which 1mphes the following contradiction of the assumption that D # G and 8 £G:

0=N(N-1)=[(D+E—-1)N — DE] = N2 — (D + E)N + DE = (N — D)(N — E) > 0.
Next note that since I' is a (possibly complex) Hadamard matrix,

NlIpxp =T T 5= Tpxel'pue + Toyeclpyee

and so the spectrum of I'p, ccI'pycc = NIpyxp — I'pgI'py e consists of N — A # 0 and N with
multiplicities R and D — R, respectively. In particular, I'p, ccI'py gc is invertible, implying

D =rank(TpyecITpyec) = rank(Tp gc) < #(E°) = N — E,
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namely (13). For the final conclusion, note that since D < N — E, the spectrum of I'p, ceI'p cc
is obtained by padding that of I'p, gcI'pygc With N — D — E zeros, and so consists of NV — A # 0,
N and 0 with multiplicities R, D — R and N — D — E, respectively. Since

* * *
Nlgexge =Tgueelgyse = Ipygelpyge + I'pexgel'pexge,

this in turn implies that the spectrum of I'pey eclpeyge = Nlgexge — I'pygclpygc consists of A,
0 and N with multiplicities R, D — R and N — D — E, respectively. In particular, since A # N,
we have that D + E = N if and only if I'pe, ccI'peyge is a scalar multiple of a projection, namely
if and only if D¢ and £¢ are paired difference sets. O

When D and £ are paired difference sets that achieve equality in (13), the cardinalities of D¢
and &£° equal those of £ and D, respectively. As such, even in this case, the parameters of the
ECTFF that arises via Theorem 3.3 from D¢ and £° equal those of the ECTFF that arises via
Theorem 3.3 from & and D directly. We further note that the inequality in (13) is sometimes strict,
including for example trivial paired difference sets with D =1 < N and £ < N — 1.

4. Paired difference sets from quadratic forms

In this section we construct an infinite family of nontrivial paired difference sets. Applying
Theorem 3.3 to them produces two infinite families of ECTFFs. As foreshadowed by Example 3.2,
the construction involves quadratic forms on finite vector spaces over the binary field Fo. Quadratic
forms are a classical subject, with those over fields of characteristic two being notably different than
their cousins over other fields [40]. From the perspective of finite frame theory, quadratic forms over
[y are already notable, having been used to construct the maximum number of mutually unbiased
bases in real spaces whose dimension is a power of 4 [16, 13]. We review only the small part of the
classical literature [55, 40] that we use to prove our results.

Let V be a finite-dimensional vector space over Fo, which equates to a finite elementary abelian
2-group. A bilinear form on V is any function B : V xV — Fs that is linear in either argument while
the other is held fixed. Such a form is nondegenerate if having B(v1,v2) = 0 for all v; € V implies
that v = 0. Any choice of nondegenerate bilinear form B on V induces an isomorphism from
(the additive group of) V to its Pontryagin dual, namely the mapping vy — (v — (—1)B1v2)),
(This mapping is a well-defined homomorphism since B is bilinear, and is injective since B is
nondegenerate.) Under this identification, the character table I' of V becomes the (V x V)-indexed
real Hadamard matrix with entries T'(v1,v2) = (—=1)B(1:02) " A bilinear form on V is alternating if
B(v,v) = 0 for all v € V, and is symmetric if B(v1,v2) = B(vg,v1) for all v1,vy € V. Here, every
alternating form is symmetric since 0 = B(v; + vo,v1 + v2) = 0 + B(v1,v2) + B(v2, v2) + 0.

A symplectic form on V is a nondegenerate alternating bilinear form on V. For such forms,
T'(vy,v9) = (—1)B122) defines a real symmetric Hadamard matrix whose diagonal entries have
value 1. In particular, letting V' = #(V) we have I'? = I'*T" = VI and Tr(T') = V, implying that
I' has eigenvalues vV and —v/V with multiplicities 2(V + v/V)) and (V — V/V), respectively. In
particular, a symplectic form on V can only exist if v/V is an integer, namely only if the dimension
of V over F is even. In such cases, VVI+ T is the Gram matrix of a real ETF((V + VV), V).
Such symplectic ETFs are well known, with various special cases and generalizations of them and
their Naimark complements appearing in the literature in numerous guises, including Theorem 5.4
of [9], Theorem 4.1 of [20] (when applied to the Thas-Somma construction of distance-regular
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antipodal covers of complete graphs (DRACKNS)), Theorem 5.1 of [31], Theorem 6.4 of [43], and
Theorem 4.11 of [10]; see Example 6.10 of [44] for more discussion.

Example 4.1. For any positive integer M and x = (z1,...,720), Y = (Y1, -, Y201) € F3M let

M
B(x,y) = Z (Tom—1Y2m + TamYam—1) = (T1y2 + T2y1) + - -+ + (T2m—1Y2m + Tamyanr—1).  (14)

m=1

That is, B(x,y) = x' By where B is the 2M x 2M block diagonal matrix over Fy whose M diagonal
blocks are all [ §]. This is clearly a bilinear form on F3M. It is moreover alternating (since every
summand of (14) is zero when x = y) and nondegenerate (since if B(x,y) = 0 for all members x
of the standard basis then y = 0). It is thus a symplectic form on F3™. Provided we order the
members of IF%M lexicographically, the corresponding character table I' can be formed by tensoring
together M copies of

++++
++--
+-+-
+-—4

Taking M = 2 for instance yields the symplectic form B of Example 3.2 and the resulting character
table I of (8). Though not necessary for our work below, it is known that up to isomorphism, this
is the only symplectic form on a vector space V over Fy of dimension 2M [40]. The binary matrices
that preserve the form given in (14) form the classical symplectic group Sp(2M,2).

A quadratic form on V is any function Q : V — Fy such that

B(vl,vg) = Q(U1 + 1)2) + Q(U1) + Q(UQ) (15)

defines a bilinear form B on V. Any such bilinear form B is necessarily alternating since B(v,v) =
Qv +v)+ Q(v) + Q(v) = Q(0) for any v € V where, as a special case of this, Q(0) = B(0,0) = 0.
A point v € V is singular with respect to a given quadratic form Q if Q(v) = 0 and is otherwise
nonsingular. The quadric of Q is the set D = {v € V: Q(v) = 0} of its singular vectors, which
necessarily includes v = 0. Remarkably, the quadratic form Q that gives rise to a particular
bilinear form B is not unique in general. For example, for any vy € V, the function Q : V — Fo,
Q) := Qv + vo) + Q(vo) = B(w,v0) + Q(v) also satisfies (15), since for any vy, vy € V,

Q(v1 + v2) + Q(v1) + Q(v2) = B(v1 + v2,v0) + Q(v1 + v2) + B(v1,v9) + Q(v1) 4 B(va, vo) + Q(v2)
= Q(v1 + v2) + Q(v1) + Q(v2).

The quadric D of Q is the corresponding shift of either the quadric D of Q or its complement,
depending on whether or not vy is singular:

vo+D, vy €D,

ﬁz{vev:w=0}={veVrQ<v+vo>=Q<UO>}:{mwc, v € D°.

We focus on quadratic forms Q : V — Fy that are nondefective, that is, for which the bilinear
form (15) is nondegenerate, and so symplectic. Here, V = #(V) = 22 for some positive integer
M. Such forms are classical, and we now summarize and explain the parts of their folklore that
we shall make use of:
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Lemma 4.2. Let V be a vector space over Fy of cardinality 2*M . Let Q : V — Fy be a nondefective
quadratic form with associated symplectic form (15) and sign

sgn(Q) := QLM D (1) e {1, -1}, (16)

veY

(If the opposite sign is desired, replace Q with Q(v) := Q(v + vo) + 1 where Q(vy) = 1.) Then the
(V x V)-indexed matrices I', C and A defined by

(—=1)Q0D |y = s,

D(on,0) = (1P, Clon, i) = (()H, - Aa) = { TR

are real-symmetric, and satisfy
r2=22M1-C?, A?2=1, I'=ACA, (TA)?=2"sn(Q)I (17)

Moreover, D = {v €V : Q(v) = 0} is a difference set for V of cardinality 2 ~1[2M +sgn(Q)] whose
harmonic ETF {@,}vey, @o(d) == (—=1)B?) has Gram matriz 2M~1[2MT + sgn(Q)C].

Proof. Consider the (quadratic) chirp function ¢ € RY, ¢(v) := (—=1)Q®). This is an eigenvector of
the DFT matrix I'* = I': for any v; € V, using (15) and making the substitution v = vy 4 vy gives

(Tc)(vy) = Z (_1)B(v1,vz)(_1)Q(vz) - Z (_1)Q(v1+v2)+Q(v1) — (Z(—l)Q(”)>C(U1)- (18)

vo €V v €Y veY

Hence the “Gauss sum” Zvev(—l)Q(“) is an eigenvalue of T, and so is either vV = 2M or —/V =
—2M  In particular, the sign (16) of Q is indeed either 1 or —1. We caution that the sign of a
quadratic form Q that gives rise to a particular symplectic form B is determined by Q but not
by B: for example, sgn(Q) = (—1)Q")sgn(Q) where Q(v) := Q(v + vg) + Q(vp). A nondefective
quadratic form Q is called hyperbolic when sgn(Q) = 1 and called elliptic when sgn(Q) = —1.

Under this notation, (18) becomes I'c = 2™ sgn(Q)c. Since ¢ = 2xp — 1 where D is the quadric
of Q, this can be restated as 2I'xp — 22M 8y = T'(2xp — 1) = 2™ sgn(Q)(2xp — 1), that is,

Txp = 27 [2Y60 + sgn(Q)e] = 2V~ 28 + sgn(Q) (2xp — 1))- (19)

When evaluated at v = 0, this gives #(D) = (I'xp)(0) = 2M~1[2M 4 son(Q)]. When instead
evaluated at any v # 0, (19) gives |(T'xp)(v)| = 2M~1. As such, D is a difference set for V. (From
this perspective, (19) itself is remarkable: for many difference sets D, no simple expression for the
phase of the DFT of xp is known.) In particular, (19) implies that the corresponding harmonic
ETF {p,}vey for RP, ¢, (d) := (—1)BV) ] satisfies

_ 2M 4 son(Q), v = o
_ § : _1)Bldvitv2) _ _ oM-1 ) )
<LPU17<P’U2> deD( ) ( XD)(vl + UQ) Sgn(Q)C(Ul + 'UQ), 'Ul 7é '1)2.

That is, {¢,}vey has Gram matrix ®*® = 2M~1[2M] 4 5on(Q)C], where C is the (V-circulant)
filter defined by Cx := ¢ * x, namely where C(v1,v9) = c(vy + v2) = (—1)Q1+%2) Like all filters
over V, this matrix C is diagonalized by the DFT T': for any x € RY, v € V,

(FCx)(v) = [[(c*x)](v) = (Pe)(v)(Tx)(v) = 2" sgn(Q)e(v)(Tx)(v) = 2" sgn(Q)(ATx)(v),
15



where A : RY — RY, (Ax)(v) := c(v)x(v) is the chirp modulation operator, namely the diagonal
(V x V)-indexed orthogonal matrix A whose vth diagonal entry is A(v,v) = ¢(v) = (—1)®), That
is, C = 27 Msgn(Q)T'AT. It is remarkable however that T' and C are also related by conjugation
by A: for any vi,ve € V, (15) gives

(ACA)(Ul,UQ) — (_1)Q(v1)(_1)Q(v1+v2)(_1)Q(v2) — (_1)B(U1,v2) — F(Ul,vz),

and so I' = ACA. In particular, C = AT'A (like T') is a real-symmetric Hadamard matrix
whose diagonal entries have value 1. (We caution that I' and C are distinct: C is V-circulant
whereas T is not, with the latter having an all-ones first column.) Moreover, combining the above
facts gives ATA = C = 27 Msgn(Q)T' AT, namely that the Fourier-chirp transform T'A satisfies
(TA)? = 23Mson(Q)I. Analogous transforms arise in the study of SIC-POVMs; see Section 3.4
of [61], and [27]. Interestingly, this implies that the shifts of ¢ form an equal-norm orthogonal basis
of eigenvectors of the DF'T, that is, I' and C orthogonally diagonalize each other:

' =2Msgn(Q)I'(TA)? = 27 Msgn(Q)(ATA)A(ATA) = 2~ Msgn(Q)CAC. O

Example 4.3. Continuing Example 4.1, for any positive integer M, the bilinear form B on V = F}/
given in (14) arises via (15), for example, from the quadratic form Q : F2M — [y,

M
Q(x) = Q(z1,...,m20) := Z Tom—1T2m = 102 + ... + Tap—1T2M - (20)

m=1

Since B is nondegenerate (symplectic), Q is nondefective. When M = 1, Q(z1, z2) = x122 has three
singular vectors and one nonsingular one: its quadric is D = {00, 01, 10}, and so D¢ = {11}. For
M > 1, a vector in IF%M is singular if and only if it is obtained by either appending 00, 10 or 01 to a
singular vector in F3™~2 or appending 11 to a nonsingular one. By induction, this implies that (20)
has exactly #(D) = 2M~1(2M 1 1) singular vectors, and so is hyperbolic. For an elliptic quadratic
form Q that yields the same symplectic form B, we can for example let Q(x) := Q(x 4 x¢) + 1
where Q(xg) = 1. Taking xo to be 00---0011 for instance yields

M

Q(x) := Z Tom-_1Tom + Tays_q + T3y = 2120 + ..+ Top_1Ton + T3y + T2 (21)

m=1

When M = 2 this becomes the elliptic quadratic form xixs + x314 + x% + a?i used in Example 3.2
whose 6-element quadric D is given in (7). (Adding 0011 to these vectors gives the nonsingular
vectors of the hyperbolic quadratic form xix9 + x3z4.) The corresponding chirp ¢ has values
+———+———+————++4+. Conjugating I of (8) by the diagonal matrix A gives C = AT A
(the unique F %M -circulant matrix that has c¢ as its first column). This matrix C naturally arises
in the Gram matrix I'jTj = 2(4I — C) = 2A(4I — T') A of the corresponding harmonic ETF(6, 16)
whose synthesis operator T'y is given in (8). Here, ' A is a real Hadamard matrix with the
remarkable property that (I'A)? = —64I. In the next result we use this Fourier-chirp relation to
prove that D and D¢ are paired difference sets.

Though not necessary for our work below, it is known that up to isomorphism, (20) and (21)
are the only hyperbolic and elliptic nondefective quadratic forms on a vector space V over Fo of
dimension 2M [40]. The binary matrices that preserve the form given in (20) or (21) form the
classical orthogonal groups O (2M,2) and O~ (2M, 2), respectively.
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Theorem 4.4. Let QQ be a nondefective quadratic form on a vector space V over Fo, and let B be
the associated symplectic form (15). Then the set D ={v € V : Q(v) = 0} of all singular vectors of
Q is a difference set for V that is paired with D¢ in the sense of Definition 3.1, provided we identify
(the additive group of) V with its Pontryagin dual via the isomorphism vy — (vg — (—1)B1v2)),

Proof. Recall the notation and facts of Lemma 4.2. We already know that D is a difference set
for V (and so D¢ is as well), and that the synthesis operator Iy of the resulting harmonic ETF
(the (D x V)-indexed submatrix of T') satisfies T{T, = 2M~1[2MT + sgn(Q)C]. To show that D
and D¢ are paired in the sense of Definition 3.1, we want to show that D¢indexed columns of
Iy form a tight frame for their span, or equivalently, that the (D¢ x D¢)-indexed submatrix of

;T = 2M=12M] + sgn(Q)C] is a scalar multiple of a projection. Here since (I — A) is the

diagonal {0, 1}-valued matrix whose diagonal entries indicate D¢, this equates to showing that
G:=1I-A)2YT+sgn(Q)CIA(I- A)

satisfies G2 = AG for some A > 0. To simplify this expression for G, note that since ACA =T'
where A? =T (and so [3(I—-A)?=1(I-A) and (I-A)A =—-(1-A)),

G=11-A)2MI+sgn(Q)ATAII(I - A)=2ML(T - A) +5gn(Q) LI - A)TIT-A). (22)
Squaring this equation and again making use of the fact that [$(I — A)]?2 = 2(I — A) gives
G*=2"M11-A)+ 2" sen(Q)I(I-ATLI-A)+II-ATLI-ATLT-A). (23)

To proceed, recall from (17) that (TAT)(ATA) = (TA)? = 23Msen(Q)I where T'? = 22MT and
A? =1. Thus, TAT = 2™ sgn(Q)AT A and so

Mi(I— A =22M1T - IPAT = 22M711 — 2M -1 5on(Q)ATA.
Conjugating this equation by %(I — A) gives
TI-ATLI-AriI-A)=22""111-A) - 2" 1sen(Q)3I - ATLI- A).

Substituting this into (23) and then recalling (22) gives that G2 = AG for some A > 0:

G?=2"ML1- A)+2Msen(Q)I(I- ATII - A)
+ 221 - A) - 2M sen(Q) X - ATL(I - A)
=32 H2MI(I - A) +sgn(Q)3(I - ATLI - A)] =302"1)G. O

N

Applying Theorems 3.3 and 4.4 to the canonical quadratic forms of Example 4.3 yields the
following result:

Theorem 4.5. For any positive integer M, let Q be either the hyperbolic (20) or elliptic (21)
quadratic form over F3M with associated symplectic form B of (14) (which have sgn(Q) = 1 and
sgn(Q) = —1, respectively) and let D = {x € F2M : Q(x) = 0}. Then D and D¢ are paired difference
sets for F3M (Theorem 4.4), and applying Theorem 3.3 to them gives that:

(2) {eylyery CRP, @y (x) = (1)) is an ETF(2Y 1 [2M + sgn(Q)], 2*") for RP;
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(b) for anyy € F3M, {py ,}sepe is an ETF(5(22M — 1), 2M71[2M — sgn(Q)]) for its span Uy ;
(¢) {Uy}yerzm s an ECTFF(2Y 12 +5gn(Q)], 2°M, 5 (22 — 1)) for RP;

(d) {wy}yngf C RP", hy(x) = (—1)B(X’Y) is an ETF(2M=12M — sgn(Q)], 22M) for RP";

(e) for anyy € F3M, {ap, ,}zep is an ETF($(22M — 1), 2M1[2M 4 5gn(Q))) for its span Vy;
(f) ,5(22M — 1)) for RP".

Proof. Most of these results are immediate consequences of Theorems 3.3 and 4.4. To find the
dimension R of the spans of the sub-ETFs in (b) and (e) we use (10) where N = #(V) = 22M,
D = #(D) = 2" 2" 45gn(Q)] and E = #(D°) = 2°M 21 [2M 45gn(Q)] = 2V~ 2M —sgn(Q)].
Here, since DE = 22=2(N — 1) and D + E = N,

£) {Vylyerg is an ECTFF(2M—1[2M —sgn(Q)], 22M

R o DE(N—].) - 22]%72(]\]_1)2 . 221\/172(1\/'_1) o 22]%*2(221\4_1) . 1(22M _ 1)
~— (DYE-1)N-DE — (N-1)N—-2?M-2(N—-1) ~ N-22M-2 — "2M_22M-2 — 3 :

Another peculiarity of these examples is that since I' is symmetric and D and D¢ are complementary,
it is valid to construct the ECTFFs (c) and (f) that arise from Theorem 3.3 in this setting from
sub-ETFs (b) and (e) of Naimark complementary ETFs (a) and (d), respectively. O

As discussed in Example 3.4, when M = 2 this yields both an ETF(6, 16) that contains 16 (dis-
tinct, but overlapping and unitarily equivalent) sub-ETF (5, 10) whose spans form an ECTFF(6, 16, 5),
as well as an ETF(10, 16) that contains 16 sub-ETF(5,6) whose spans form an ECTFF(10, 16, 5).
When instead M = 3, it yields an ETF(28,64) that contains 64 sub-ETF (21, 36) whose spans form
an ECTFF(28,64,21) as well as an ETF(36,64) that contains 64 sub-ETF(21,28) whose spans
form an ECTFF(36,64,21). These alone account for a remarkable proportion of real ETFs with
small parameters [33]. (When M = 1, Theorem 4.5 becomes trivial, yielding an ETF(1,4) that
contains 4 sub-ETF(1,3) whose spans form an ECTFF(1,4,1) and an ETF(3,4) that contains 4
sub-ETF(1, 1) whose spans form an ECTFF(3,4,1).)

With the exception of this ECTFF(6,16,5) (which as already noted is the spatial complement
of an ETF(6,16)), the ECTFFs produced by Theorem 4.5 when M > 2 seem to be new: we could
not find any other way to construct (real or complex) ECTFFs with these parameters from any of
the methods mentioned in the introduction. These ECTFFs cannot be EITFFs: as noted in the
previous section, this is actually true of any ECTFFs that arise from nontrivial paired difference
sets since the resulting subspaces intersect nontrivially; here, this also follows from the fact that
2R > D. A more interesting question is whether the spatial complements of these ECTFFs are
EITFFs. When M = 2, the spatial complement of the ECTFF(6, 16, 5) certainly is an EITFF, while
that of the ECTFF(10, 16,5) certainly is not (since having D = 2R implies that its principal angles
do not change under spatial complements). Our preliminary numerical experimentation indicates
that when M > 3 the spatial complements of the ECTFFs of Theorem 4.5 are not EITFFs in
general. When M > 3 an ECTFF of (c¢) or (f) has D < 2R and so any pair of its subspaces have
at least 2R— D = %(QM +1)(2M~2 3 1) principal angles of 0; only when every pair of its subspaces
has exactly 2R — D principal angles of 0 and D — R principal angles of some other constant value
will its spatial complement be an EITFF.

Remark 4.6. Every ETF constructed in Theorem 4.5 equates to a known type of strongly regular
graph (SRG) [11, 12]. A graph on a V-element vertex set V is strongly regular with parameters
(V, K, A, U) if its adjacency matrix A satisfies A2 = (A —U)A + (K —U)I+UJ. These parameters
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are dependent: since A1 = K1, applying A? to 1 gives K2 = (A — U)K + (K — U) + UV, namely
that U(V—K—1) = K(K—A—1). In general, there are two notions of equivalence between certain
real ETFs and certain SRGs. By negating some vectors if necessary, every real N-vector ETF is
projectively equivalent to one {,, }nen for which there exists ng € N such that (p,,,,®,) > 0 for
all n. Such an ETF equates to an SRG on the vertex set N'\{no} with K = 2U [42, 57]. Here, two
vertices ni,ng € N'\{ng} are adjacent when (¢, ,¢,,) > 0 [30] and

1

VaNCL K= o1 (- n[EsE ok 2
(In [57], adjacency instead equates to having (¢, ,¥,,) < 0, yielding the complementary graph.)
Sometimes a real N-vector ETF {¢,, }nenr for some Hilbert space H instead has the all-ones vector
1 as an eigenvector of its Gram matrix. This can occur in two distinct ways: either the ETF
is centered, having 1 € ker(®) = ker(®*®) and so ) ¥, = ®1 = 0, or is azial, having
1 € ®*®RY) = &*(H), meaning all of its vectors make the same angle with their nonzero
centroid. An axial real ETF(D, N) {¢, }nen equates [30] to an SRG on the vertex set N with
V =4K —2A —2U and V — 2K — 1 < 0. Here, two vertices ni,ns € N are adjacent if and only if

<‘Pn17 Qon2> >0 and

V=N, K=32i i@ -2l v= Ky (25)
(An analogous characterization of centered real ETFs is also known but is superfluous since an
ETF is axial if and only if its Naimark complement is centered [30].) While every real ETF arises
from the equivalence of (24), it is an open problem if the same holds for (25): we do not know if
every real ETF with V vectors is projectively equivalent to one whose signature matrix matches
the Seidel adjacency matrix of a (V, K, A, U)-SRG with V = 4K — 2A — 2U [30].

With respect to the ETFs of Theorem 4.5, note that since the zero vector in IF%M is singular,
the synthesis operator I'g of the harmonic ETF of (a) includes the all-ones (0-indexed) row of T'.
See (8) for when M = 2 and sgn(Q) = —1, for example. As such, this ETF is axial. Applying (25)
to it yields an SRG with V = 22M | K = 1[2M —sgn(Q)][2 +sgn(Q) +1] and U = 2M~1(2M~1 4 1)
in which, since T{T, = 2M~1[2MT + sgn(Q)C], adjacency depends on the value of C(y1,y2) =
c(y1 +y2) = (—=1)Q01+¥2) This is a known affine polar graph “VO3,(2)” [11]. Its Naimark
complement (the ETF of (d)) equates to the (graph) complement of this SRG. Since C = AT'A
the ETF of (a) is moreover projectively equivalent to one with Gram matrix 2" ~1[2MI+sgn(Q)T].
Since the entries in the Oth row and column of T' are constant, we can apply (25) to this ETF to
obtain a subordinate SRG on the V = 22M — 1 vertices of F2*\{0} in which adjacency depends
on the value of Iy, y2) = (—1)BO1¥2) | This is a known symplectic graph “Spap(2)” [11].

Every ETF of (b) is a sub-ETF of the axial ETF (a) and so is also axial: if the analysis
operator of a given sequence of vectors contains an all-ones vector, then the same is true for
any of its subsequences. The row space of (9), for example, clearly contains the all-ones vector.
Applying (25) to it yields an SRG with V = 2M=1[2M _sen(Q)], K = $(2M~14+1)[2M — 1 —sgn(Q)]
and U = 2M=3[2M 4 3 — sgn(Q)] on the nonsingular points of F2* in which adjacency depends
on the value of Q(y1 +y2) = B(y1,y2). This is a known “NOZ;,,(2)” SRG [11]. We caution that
a sub-ETF of a centered ETF is not necessarily centered. In particular, the Gram matrix of an
ETF of (e) is the (D x D)-indexed submatrix of 2M~1[2MT — sgn(Q)T] and so is neither axial nor
centered, having a (0-indexed) row and column with entries of constant value. Applying (24) to it
yields an SRG on the V = 2M~1[2M _sgn(Q)] — 1 nonzero singular points of Fy in which adjacency

19



depends on the value of Q(y1 +y2) = B(y1,y2). This is a known “O3;,(2)” SRG. In fact, a careful
analysis reveals that an ETF of (e) is projectively equivalent to one of (b) with opposite sign (since
the quadrics of (20) and (21) are shifts of each other), meaning that “O3;,(2)” is subordinate to
NO3,,(2).

Real ETFs with the same (or Naimark complementary) parameters as those of (a) and (c)
arise from McFarland difference sets [23] and Steiner ETFs [38, 35] from BIBD(2M,2,1). Real
ETFs with the same (or Naimark complementary) parameters as those of (b) and (e) arise from
Steiner and Tremain [29] ETFs from BIBD(2M — 1,3,1). Whether or not such ETFs are truly
equivalent (up to unitary transformations on their spans and signed permutations of their vectors)
is a question we leave for future research.

5. Conclusions and future work

We have seen that paired difference sets (Definition 3.1) yield ECTFFs (Theorem 3.3) and that
an infinite family of nontrivial such pairs exists (Theorem 4.5). As noted in [34], at least one other
nontrivial pair exists. Like that of Example 3.2 (the M = 2 case of Theorem 4.5) it consists of a
6- and 10-element subset of a group of order 16. But unlike that example, the group in question
is Z?p not Z%. (Interestingly, paired difference sets in Z% X Zy4 and Zo X Zg do not seem to exist,
despite the fact that they too contain difference sets of order 6 and 10 [34].)

Nontrivial paired difference sets seem rare, in general: our numerical search found only 27 in-
teger triples (D, E, N) that meet even the simplest conditions on the existence of nontrivial paired
difference sets of cardinality D and E (ordered without loss of generality according to size) in some
abelian group of order N which is at most 1024, namely that 1 < D < F < N < 1024 and that
D](\?:ll), E(?Vfl) and R of (10) are integers. These include only four triples such that D + F # N.
Remarkably, these four triples along with seven others are ruled out by cross-referencing against a
table of known difference sets [39] that makes use of more sophisticated known necessary conditions.
This itself raises an interesting open problem: do the cardinalities of any nontrivial paired difference
sets always sum to the cardinality of the corresponding group? Of the 16 triples that remain, four
correspond to those produced by Theorem 4.5 when M = 2,3,4,5, namely those with (R, D, E, N)
parameters (5,6, 10,16) (Example 3.2), (21,28, 36,64), (85,120,136, 256) and (341,496, 528, 1024),
respectively. The remaining 12 cases are open. For five of these, the existence of even a differ-
ence set of cardinality D for a group of order N is unresolved, namely when (D, N) is (190, 400),
(325,676), (378,784), (385,925) and (280,931). This leaves just seven open cases that should prob-
ably bear the most scrutiny. They have (R, D, E, N) parameters (11,12,33,45), (19,20, 76,96),
(29,30, 145,175), (105,126, 225,351), (55, 56,385, 441), (71,72,568,640) and (89,90,801,891). In-
terestingly, like those of Theorem 4.5, these parameters all match those arising from certain Mc-
Farland difference sets with one exception: (105,126,225,351) is instead consistent with a certain
Spence difference set [46]. Of these, (19,20, 76,96), (105,126, 225,351) and (71, 72,568, 640) seem
the most promising since ETFs with the same parameters as those guaranteed by Theorem 3.3 are
already known to exist [33]. It would be more surprising if 12- and 33-element paired difference
sets for either of the two abelian groups of order 45 existed since this would give an ETF(11, 33),
which would be the smallest new ETF discovered in years. Our numerical work indicates that such
paired difference sets do not exist. This itself raises another open problem: do all paired difference
sets consist of 2M71(2M —1)- and 2M~1(2M 4 1)-element subsets of an abelian group of order 22M?
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