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Abstract. For d ∈ {5, 6}, we classify arrangements of d+2 points in RPd−1 for which the minimum
distance is as large as possible. To do so, we leverage ideas from matrix and convex analysis to
determine the best possible codes that contain equiangular lines, and we introduce a notion of
approximate Positivstellensatz certificates that promotes numerical approximations of Stengle’s
Positivstellensatz certificates to honest certificates.

1. Introduction

Given a compact metric space (X, d) and a positive integer n, it is natural to consider a subset
C ⊆ X that maximizes the minimum distance δ(C) := minx,y∈C,x6=y d(x, y). Such a subset, known
as an optimal n-code for (X, d), is guaranteed to exist by compactness. Optimal codes are
maximally robust to noise, since one can identify x ∈ C from any noisy version x̂ ∈ X that satisfies
d(x̂, x) < δ(C)/2. Optimal codes have been an object of study ever since a legendary dispute in
1694 between Isaac Newton and David Gregory [7]. Consider the unit sphere S2 ⊆ R3 with distance
inherited from the ambient Euclidean distance. In our language, Gregory asserted that an optimal
13-code C for S2 has δ(C) ≥ 1. Interest in spherical codes was rejuvenated in 1930 by the Dutch
botanist Tammes, who studied the distribution of pores on pollen grains [41]. Thanks to this
resurgence, Gregory was finally proved wrong in 1953 by Schütte and van der Waerden [34].

In 1948, Claude Shannon founded the field of information theory [36], which in turn motivated the
pursuit of optimal codes over Zn2 with Hamming distance. Noteworthy optimal codes in this metric
space include the Golay code [19] and the Hamming code [21]. This metric space can be viewed in
terms of the Cayley graph on Zn2 with generators given by the identity basis. More generally, every
graph produces a metric space consisting of the vertex set and the graph’s geodesic distance. In
this language, the independence number of a graph is the largest n for which an optimal n-code
C satisfies δ(C) > 1. For example, the independence number of the Paley graph is of particular
interest in number theory [8, 22]. The connection between optimal codes and independence numbers
has been rather fruitful, as the Lovász–Schrijver bound can be generalized to obtain useful bounds
for a variety of metric spaces [13].

In 1996, Conway, Hardin and Sloane [10] posed the problem of finding optimal codes for Grass-
mannian spaces with chordal distance, defined as follows: Given two subspaces U, V ⊆ Fd of
dimension r with principal angles {θi}i∈[r], then d(U, V ) = (

∑
i sin2 θi)

1/2. In the time since this
seminal paper, there has been a flurry of progress in the special case of projective spaces due in part
to emerging applications in multiple description coding [39], digital fingerprinting [28], compressed
sensing [2], and quantum state tomography [32]. Most of this work takes a particular form: Identify
a collection S of mathematical objects such that for every s ∈ S, there exists an explicit optimal
n-code in FPd−1, where n = n(s) and d = d(s). For example, one may take S to be the set of
regular two-graphs [35], n(s) the number of vertices in s, and d(s) the multiplicity of the positive
eigenvalue of s; indeed, for every s ∈ S, one may construct an optimal n-code for RPd−1 known as
an equiangular tight frame [39]. See [17] for a survey of these developments.

Due to this style of progress, the current literature on optimal codes for real projective spaces is
rather spotty; while we have provably optimal n-codes for RPd−1 for infinitely many (d, n), large
gaps remain. In what follows, we identify where these gaps first emerge. It is straightforward to
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verify that for n ≤ d, the optimal n-codes for RPd−1 correspond to orthogonal lines. For n = d+ 1,
the optimal n-codes are obtained from regular simplices centered at the origin; indeed, the lines
spanned by the vertices correspond to an equiangular tight frame [39, 17]. However, for n = d+ 2,
the optimal n-codes for RPd−1 are unknown for most values of d. In this paper, we focus on this
minimal case.

Since RP1 is a circle, the d = 2 case is uniquely solved by four uniformly spaced points. The
d = 3 case is far less trivial, and was originally solved by Fejes Tóth [15] in 1965. The optimal
code is unique up to isometry, and can be obtained by removing any one of the six lines that are
determined by antipodal vertices of the icosahedron. A second treatment of this proof was provided
by Benedetto and Kolesar [3] in 2006. Finally, Fickus, Jasper and Mixon [16] gave a third, more
general treatment in 2018, and the ideas of their proof also solved the d = 4 case. This optimal
code is unique up to isometry, and corresponds to the putatively optimal code provided by Sloane
on his website [37]. Following [16], the putatively optimal codes for d ∈ {5, 6} can be expressed in
terms of Gram matrices of unit-vector representatives of each line:

G5 :=


1 −a a −a a −a a

−a 1 a a a −a a
a a 1 −a a a −a
−a a −a 1 a −a −a
a a a a 1 a a

−a −a a −a a 1 −a
a a −a −a a −a 1

, G6 :=



1 b b −b b c b −b
b 1 −b −b −b −b −c −b
b −b 1 −b −b −b −b −b
−b −b −b 1 b −b b −b
b −b −b b 1 −b −b b

c −b −b −b −b 1 b −b
b −c −b b −b b 1 b
−b −b −b −b b −b b 1

 (1)

where a > 0 is the second smallest root of x3 − 9x2 − x+ 1, b > 0 is the second smallest root of

106x6 − 264x5 − 53x4 + 84x3 + 20x2 − 4x− 1, (2)

and c ∈ (0, b) is the fourth smallest root of

53x6 + 484x5 + 814x4 − 860x3 − 347x2 + 352x− 32.

(Here, “kth smallest root” is in terms of the linear order ≤ on the real zero set of the given

polynomial.) Note that
√

1− a2 and
√

1− b2 are lower bounds on the minimum chordal distance of
optimal (d+ 2)-codes for RPd−1 for d ∈ {5, 6}, respectively. Recently, Bukh and Cox [5] proved the
best-known upper bound on this minimum distance:

δ(C) ≤
√

1−
(

3
2d+1

)2
, (3)

and furthermore, they characterized the codes that achieve equality in this bound, which occurs for
every d ≡ 1 mod 3. In particular, this gives an alternate proof of the d = 4 case. As a result, the
next open cases are d ∈ {5, 6, 8}.

In this paper, we resolve the cases of d ∈ {5, 6}. As conjectured, G5 and G6 above describe
optimal codes for RP4 and RP5, which are unique up to isometry. The next section reviews the
preliminaries that set up our approach. In particular, Proposition 1 (that is, Lemma 6 in [16])
implies that every optimizer is necessarily an optimizer of one of a handful of subprograms. These
subprograms come in two different species, and in Section 3, we apply ideas from matrix and convex
analysis to solve the first species; specifically, we determine the best possible (d + 2)-codes that
contain d+1 equiangular lines. In Section 4, we apply this theory to the d = 5 case, and we solve the
second species with a clever application of cylindrical algebraic decomposition. This approach does
not scale to the d = 6 case. As an alternative, Section 5 introduces a method to convert numerical
approximations of Stengle’s Positivstellensatz certificates into honest certificates. This allows us to
tackle the d = 6 case in Section 6, where we solve the second species of subprograms by computing
numerical approximations of Positivstellensatz certificates using a Julia-based implementation of
sum-of-squares programming. We conclude in Section 7 by discussing opportunities for future work.
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The proofs of our main results are computer assisted. Our computations were performed on a 3.4
GHz Intel Core i5, and we report runtimes throughout to help identify computational bottlenecks.
While our code is far from optimized, we make it available with the arXiv version of this paper.

2. Preliminaries

We identify an n-code for RPd−1 with a set of n lines through the origin of Rd. We seek to
classify the optimal n-codes, that is, sets of n lines for which the minimum angle between any two
lines is maximized. The cosine of the minimum angle is known as the coherence, and so classifying
optimal n-codes is equivalent to classifying sets of lines with the minimum coherence.

Let Ud×n denote the set of d×n real matrices with unit-norm columns. We can specify an n-code
for RPd−1 using a matrix Φ ∈ Ud×n whose column vectors span the n lines in Rd. Let Bn denote
the group of n×n signed permutation matrices. Observe that Φ,Ψ ∈ Ud×n specify the same n-code
of (unordered) points in RPd−1 if and only if there exists P ∈ Bn such that ΦP T = Ψ. Moreover,
Φ,Ψ ∈ Ud×n specify the same n-code for RPd−1 up to isometry if and only if there exists P ∈ Bn
such that PΦTΦP T = ΨTΨ. Let En,d denote the rank-constrained elliptope

En,d := {G ∈ Rn×n : G = GT , diag(G) = 1, G � 0, rank(G) ≤ d}.

We say that G,G′ ∈ En,d are equivalent if there exists P ∈ Bn such that PGP T = G′. Observe

that the resulting equivalence classes correspond to isometry classes of n-codes for RPd−1, and
we can recover a representation Φ ∈ Ud×n of one such n-code by decomposing G = ΦTΦ. The
coherence of the lines represented by G is given by

µ(G) := max
1≤i<j≤n

|Gij |.

Hence, our problem is equivalent to computing

µn,d := inf{µ(G) : G ∈ En,d}

and classifying the corresponding optimizer(s), which necessarily exist by compactness. We say
G ∈ En,d is optimal if µ(G) = µn,d.

In principle, one may directly apply Tarski–Seidenberg [25] to find optimal G, but in practice,
quantifier elimination over the reals is slow. For example, cylindrical algebraic decomposition
(CAD) [9] is known to have runtimes that are doubly exponential in the number of variables [11],
which is already too slow for the values of n that we are interested in. For this reason, we need to
somehow reduce the problem size before passing to tools like CAD. To this end, in the special case
where n = d+ 2, optimal G ∈ En,d are known to satisfy certain (strong) combinatorial constraints:

Proposition 1 (Lemma 6 in [16]). Suppose G ∈ Ed+2,d is optimal and put µ = µ(G). Then

G = I + µS +X,

where I is the identity matrix, the matrices I, S and X are symmetric with disjoint support, the
entries of X all reside in [−µ, µ], and the entrywise absolute value |S| is the adjacency matrix of
either (i) the disjoint union of Kd+1 and an isolated vertex or (ii) the complement of a maximum
matching.

In what follows, we assume n = d + 2 without mention. Proposition 1 considerably reduces
the search space for optimal G ∈ En,d. Let S1 ⊆ Rn×n denote the set of symmetric S for which
|S| is the adjacency matrix of the disjoint union of Kd+1 and an isolated vertex, and similarly, let
S2 ⊆ Rn×n denote the set of symmetric S for which |S| is the adjacency matrix of the complement
of a maximum matching. Letting ◦ denote entrywise matrix product, then for each S ∈ S1 ∪ S2, we
consider the subprogram

m(S) := inf{µ : I + µS +X ∈ En,d, (I + S) ◦X = 0,−µ ≤ Xij ≤ µ}.
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d n µ min polynomial |R1| |R2| optimality
3 5 0.4473 5x2 − 1 3 6 Ref. [15, 3, 16]
4 6 0.3334 3x− 1 7 14 Ref. [16, 5]
5 7 0.2863 x3 − 9x2 − x+ 1 16 144 Thm. 4
6 8 0.2410 Eq. (2) 54 560 Thm. 7
7 9 0.2000 5x− 1 243 49, 127 Ref. [5]
8 10 0.1828 19x2 + 2x− 1 2, 038 599, 108 —

Table 1. Parameters of optimal n-codes for RPd−1 with n = d+ 2. Coherence µ is
rounded to the next multiple of 10−4, and we provide the minimal polynomial of µ
to specify its precise value. As a consequence of Proposition 1, every optimizer is
necessarily an optimizer of a subprogram specified by some S ∈ R1 ∪R2, suggesting
that one solves each of these subprograms; the sheer number of subprograms makes
this approach infeasible for the d = 8 case. For the other cases, we provide the
location(s) of the proof(s) of optimality.

Proposition 1 implies that µn,d = min{m(S) : S ∈ S1 ∪ S2}, and we can recover each optimal
G ∈ En,d from the minimizers of m(S). We call S ∈ S1 ∪ S2 optimal if m(S) = µn,d.

Given P ∈ Bn, then (µ,X) is feasible in the program defining m(S) if and only if (µ, PXP T ) is
feasible in the program defining m(PSP T ). We may leverage this symmetry to further simplify
our search for optimal S. In particular, for each i ∈ {1, 2}, the conjugation action of Bn partitions
Si into orbits, and we say that two members of the same orbit are equivalent. We may select a
representative from each orbit to produce Ri ⊆ Si. Then

µn,d = min{m(S) : S ∈ R1 ∪R2},

and furthermore, every optimal G ∈ En,d corresponding to an optimal S 6∈ R1 ∪R2 is equivalent to
some optimal G′ ∈ En,d corresponding to an optimal S′ ∈ R1 ∪R2. We select the members of R1

to be zero in the last row and column and the members of R2 to be zero in the last bn/2c diagonal
2× 2 blocks. This determines the support of both types of matrices.

As we will see, optimizing over R1 is easier than optimizing over R2, and we will apply different
techniques to perform these optimizations. Before discussing these techniques, we first determine
the sizes of R1 and R2 to help establish which values of d are amenable to this approach. For every
member of R1, the off-diagonal entries are only nonzero on the leading (d+ 1)× (d+ 1) principal
submatrix. Restricting to this submatrix, then the members of R1 are precisely the Seidel adjacency
matrices of switching class representatives on d+ 1 vertices, which were counted by Mallows and
Sloane [24]. In Table 1, we report the size of R1 for d ∈ {3, . . . , 8}.

The size of R2 does not appear in the literature, and so we apply Burnside’s lemma to formulate
a fast algorithm that computes it. Let T2 ⊇ R2 denote the subset of S2 that is zero in the last bn/2c
diagonal 2× 2 blocks. Next, consider the conjugation action of Bn on S2, and let F2 denote the
largest subgroup of Bn that acts invariantly on T2. Then our choice for R2 equates to representatives
of orbits of the action of F2 on T2. By Burnside, the size of R2 then equals the average number of
points in T2 that are fixed by a random member of F2. By construction, every member of T2 has the
same support above the diagonal E ⊆ {(i, j) : 1 ≤ i < j ≤ n}, and for each P ∈ F2, the mapping
X 7→ PXP T over symmetric X induces a signed permutation PE over RE , which enjoys a unique
decomposition into disjoint signed cycles. If any of these cycles features an odd number of sign
changes, then there is no x ∈ {±1}E for which PEx = x, and so P has no fixed points in T2. Write

O ⊆ F2 for this subset of P ’s. If P 6∈ O, then the number of points fixed by P equals 2k(P ), where
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k(P ) denotes the number of disjoint signed cycles in the decomposition of PE . Overall, we have

|R2| =
1

|F2|
∑
P∈F2

{
0 if P ∈ O

2k(P ) else

}
,

which can be computed quickly by iterating over members of Bn. See Table 1 for the result of this
computation for d ∈ {3, . . . , 8}.

In what follows, we describe our methodology for minimizing m(S) subject to S ∈ R1 ∪R2 in the
cases where d ∈ {5, 6}. In vague terms, our approach performs a computation for each S and then
compares the results. Considering Table 1, we expect this approach to require about a thousand
times as much runtime to resolve the next open case of d = 8, even if the per-S runtime matches
the d = 6 case (in reality, it is slower). As such, new ideas will be necessary to tackle this case.

3. Codes from equiangular lines

In this section, we prove results that will help us to estimate m(S) for every S ∈ R1.

Lemma 2. Let S ∈ R1 and let λ be the minimum eigenvalue of its leading (d+1)× (d+1) principal
submatrix. Then m(S) ∈ {−λ−1,∞}.

Proof. Suppose m(S) 6=∞. Then there exist µ and X such that

I + µS +X ∈ Ed+2,d, (I + S) ◦X = 0, −µ ≤ Xij ≤ µ.

In particular, I +µS+X � 0, and so I +µS′ � 0, where S′ is the leading (d+ 1)× (d+ 1) principal
submatrix of S. Furthermore, I + µS′ has rank at most d, and so 1 + µλ = 0. �

The next result requires a definition: We say {vi}i∈[l] in Rd are conically dependent if there exists
j ∈ [l] and nonnegative {αi}i∈[l]\{j} such that

vj =
∑

i∈[l]\{j}

αivi.

Otherwise, we say {vi}i∈[l] are conically independent.

Lemma 3. Let S ∈ R1, suppose the minimum eigenvalue λ < 0 of its leading (d + 1) × (d + 1)

principal submatrix S′ has multiplicity 1, take L ∈ R(d+1)×d such that LLT = I − λ−1S′, and
consider the pseudoinverse given by L† = (LTL)−1LT .

(a) Suppose ‖L†y‖2 < −λ for every y ∈ {±1}d+1. Then m(S) =∞.
(b) Suppose there exists a nonempty subset Y ⊆ {±1}d+1 such that {L†y}y∈Y is conically

independent, ‖L†y‖2 < −λ for every y ∈ {±1}d+1 \ Y, and for every y ∈ Y, the matrix

Z(y) :=

[
0 y
yT 0

]
has the property that S + Z(y) has minimum eigenvalue λ with multiplicity 2. Then
m(S) = −λ−1 and the corresponding minimizers are given by X = −λ−1Z(y) for y ∈ Y.

Proof. First, λ < 0 since S is a nonzero matrix with zero trace. Hence, I − λ−1S′ � 0, and since
I − λ−1S′ has rank at most d, there exists L ∈ R(d+1)×d such that LLT = I − λ−1S′. In fact, L has
rank exactly d since λ is an eigenvalue of S′ with multiplicity 1.

(a) We will prove this claim by contraposition, and so we suppose m(S) 6=∞. By Lemma 2, it
follows that m(S) = −λ−1. Set µ = m(S) and consider the set

X := {X : I + µS +X ∈ Ed+2,d, (I + S) ◦X = 0,−µ ≤ Xij ≤ µ}.
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Since m(S) 6= ∞, a compactness argument gives that X is nonempty, and we may select X ∈ X
and obtain a decomposition of the form I + µS + X = ATA, where A = [LT x] and x ∈ Rd is a
unit vector satisfying ‖Lx‖∞ ≤ µ = −λ−1. Since L has rank d, it holds that ‖Lx‖∞ > 0. Thus,

−λ ≤ ‖Lx‖−1∞ ≤ sup
‖z‖2=1

‖Lz‖−1∞ = sup
z 6=0

‖z‖2
‖Lz‖∞

= sup
y∈im(L)\{0}

‖L†y‖2
‖y‖∞

≤ sup
y 6=0

‖L†y‖2
‖y‖∞

= sup
y∈Bd+1

∞

‖L†y‖2 = max
y∈{±1}d+1

‖L†y‖2,

where the last step uses the fact that the maximum of a convex function over a compact polytope is
achieved at a vertex of that polytope.

(b) Since Y is nonempty, there exists y such that I − λ−1(S + Z(y)) is positive semidefinite with
rank d, and so m(S) 6=∞. Then by Lemma 2, it holds that m(S) = −λ−1. It remains to show that
the minimizers X ∈ X of the program defining m(S) are X = −λ−1Z(y) for y ∈ Y.

First, we show that ‖L†y‖2 = −λ for every y ∈ Y. To see this, fix y ∈ Y and consider the
decomposition I−λ−1(S+Z(y)) = ATA, where A = [LT x]. Then x has unit norm and Lx = −λ−1y.
We apply −λL† to both sides and take norms to get ‖L†y‖2 = ‖ − λx‖2 = −λ. As such,

max
y∈{±1}d+1

‖L†y‖2 = −λ. (4)

Next, we follow the proof of (a) to see that every X ∈ X yields a decomposition I + µS +X = ATA
with A = [LT x], where x has unit norm and

−λ
(∗)
≤ ‖Lx‖−1∞

(†)
≤ sup
‖z‖2=1

‖Lz‖−1∞ = sup
y∈im(L)\{0}

‖L†y‖2
‖y‖∞

(‡)
≤ sup

y 6=0

‖L†y‖2
‖y‖∞

= max
y∈{±1}d+1

‖L†y‖2 = −λ,

where the last step comes from (4). By equality, we may conclude a few things. First, equality in
(†) implies x ∈ arg max{‖Lz‖−1∞ : ‖z‖2 = 1}, and so a change of variables gives

Lx ∈ arg max{‖y‖−1∞ : ‖L†y‖2 = 1, y ∈ im(L)} ⊆ arg max
{
‖L†y‖2
‖y‖∞ : y ∈ im(L) \ {0}

}
.

Next, equality in (∗) implies ‖Lx‖∞ = −λ−1, and so we further have

−λLx ∈ arg max{‖L†y‖2 : ‖y‖∞ ≤ 1, y ∈ im(L)} ⊆ arg max{‖L†y‖2 : ‖y‖∞ ≤ 1},

where the last step follows from equality in (‡). We claim that arg max{‖L†y‖2 : ‖y‖∞ ≤ 1} = Y.
Our result follows from this intermediate claim since −λLx = y ∈ Y implies

I + µS +X = ATA =

[
LLT Lx
xTLT xTx

]
=

[
I − λ−1S′ −λ−1y
−λ−1yT 1

]
= I + µS − λ−1Z(y),

and so rearranging gives that every minimizer X ∈ X is of the form X = −λ−1Z(y), as desired.
We use convexity to proveM := arg max{‖L†y‖2 : ‖y‖∞ ≤ 1} = Y . First, we know Y ⊆M since

the maximum of a convex function over a compact polytope is achieved at a vertex of that polytope.
For the sake of contradiction, suppose this containment is proper, that is, there exists y0 ∈M \ Y.
By convexity, we may write y0 =

∑
v∈{±1}d+1 cvv with cv ≥ 0 and

∑
v cv = 1.

In what follows, we show that cv > 0 for some v ∈ {±1}d+1 \ Y. Suppose otherwise that cv is
only nonzero for v ∈ Y. Since y0 6∈ Y, then there exists a subset Y ′ ⊆ Y of size at least 2 such that
cv is nonzero precisely when v ∈ Y ′. By assumption, {L†y}y∈Y ′ is conically independent. As such,
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picking y1 ∈ Y ′, it holds that cy1L
†y1 is not a positive scalar multiple of

∑
y∈Y ′\{y1} cyL

†y, and so

−λ = ‖L†y0‖2 =

∥∥∥∥L†∑
y∈Y ′

cyy

∥∥∥∥
2

=

∥∥∥∥cy1L†y1 +
∑

y∈Y ′\{y1}

cyL
†y

∥∥∥∥
2

< ‖cy1L†y1‖2 +

∥∥∥∥ ∑
y∈Y ′\{y1}

cyL
†y

∥∥∥∥
2

≤
∑
y∈Y ′

cy‖L†y‖2 = −λ,

a contradiction. Overall, it must be the case that cv > 0 for some v ∈ {±1}d+1 \ Y.
Finally, ‖L†y0‖2 = ‖L†y‖2 = −λ for every y ∈ Y and ‖L†y0‖2 ≤

∑
v∈{±1}d+1 cv‖L†v‖2, and so

−λ =
1

1−
∑

y∈Y cy

(
‖L†y0‖2 −

∑
y∈Y

cy‖L†y‖2
)

≤ 1

1−
∑

y∈Y cy

∑
v∈{±1}d+1\Y

cv‖L†v‖2 ≤ max
v∈{±1}d+1\Y

‖L†v‖2 ≤ −λ.

By equality, we then conclude that maxv∈{±1}d+1\Y ‖L†v‖2 = −λ = ‖L†y‖2 for every y ∈ Y, which

contradicts the fact that arg max{‖L†y‖2 : y ∈ {±1}d+1} = Y. �

4. The optimal 7-code for RP4

In this section we fix n = 7 and d = 5 and prove the following classification.

Theorem 4. G ∈ E7,5 is optimal if and only if G is equivalent to G5, given in (1).

Proof. First, we recall the bounds on µ7,5 implied by the Bukh–Cox bound in (3) and the code
represented by G5 in (1):

3

11
≤ µ7,5 ≤ 0.2863. (5)

These bounds will play a role in our analysis of both R1 and R2.
Let T1 denote the subset of S1 that is zero in its last row and column, and let F1 be the subgroup

of Bn that acts invariantly on T1. Every member of T1 is equivalent to a matrix of the form
0 1 1 1 1 1 0

1 0 ±1 ±1 ±1 ±1 0

1 ±1 0 ±1 ±1 ±1 0
1 ±1 ±1 0 ±1 ±1 0

1 ±1 ±1 ±1 0 ±1 0

1 ±1 ±1 ±1 ±1 0 0
0 0 0 0 0 0 0

 (6)

and so we can generate orbits of T1 under the action of F1 by generating the orbits of these 210

matrices. We then build R1 by selecting one representative from each orbit of the form (6), and
this takes under one second.

For each S ∈ R1, we compute the minimum eigenvalue λ of its leading 6× 6 principal submatrix.
By Lemma 2 and (5), we know that if S is optimal, then 3

11 ≤ −λ
−1 ≤ 0.2863, and this rules out all

but two members of R1 from being optimal. For each of these two remaining members, we verify
that λ has multiplicity 1, compute L† according to the setup of Lemma 3, and compute ‖L†y‖2 for
every y ∈ {±1}6. In one case, we verify that ‖L†y‖2 < −λ for every y ∈ {±1}6, and so this case is
eliminated by Lemma 3(a). For the only remaining S ∈ R1, we obtain Y ⊆ {±1}6 satisfying the
hypotheses of Lemma 3(b) and set µ = −λ−1 ≈ 0.2863 with minimal polynomial x3 − 9x2 − x+ 1.
Applying Lemma 3(b) reveals that any minimizer X for m(S) leads to a Gram matrix I + µS +X
whose off-diagonal entries are all ±µ. This corresponds to a set of 7 equiangular lines in R5, unique
up to isometry, reported by Bussemaker and Seidel as the complement of the 25th two-graph of
order 7 in Table 1 of [6]. To show that this configuration is optimal, we must still analyze R2.
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Let T2 denote the subset of S2 with zero entries in its last 3 diagonal 2× 2 blocks, and let F2 be
the subgroup of Bn that acts invariantly on T2. Every member of T2 is equivalent to a matrix of the
form 

0 1 1 1 1 1 1

1 0 0 ±1 ±1 ±1 ±1
1 0 0 ±1 ±1 ±1 ±1
1 ±1 ±1 0 0 ±1 ±1
1 ±1 ±1 0 0 ±1 ±1
1 ±1 ±1 ±1 ±1 0 0

1 ±1 ±1 ±1 ±1 0 0

, (7)

and so we can generate orbits of T2 under the action of F2 by generating the orbits of these 212

matrices. We then build R2 by selecting one representative from each orbit of the form (7), and
this takes under one minute.

For each member S ∈ R2, we build the corresponding Gram matrix G = I + µS + X with
variable entries {µ,X23, X45, X67}. We restrict µ according to (5) and X23, X45, X67 ∈ [−µ, µ]. If S
is optimal, then there must be a choice of µ and X for which G is positive semidefinite and of rank 5.
We can determine if such a choice of variables exists by solving the system of polynomial equalities
and inequalities resulting from ensuring that each 6× 6 minor of G vanishes, some 5× 5 minor of G
does not vanish, and each principal minor is nonnegative. In principle, a solution is provided by
CAD, but even after our reduction to this 4-variable system, its exceedingly slow runtime makes it
necessary to relax our problem. We relax our rank and positive semidefinite constraints to simply
ask for three 6× 6 minors of G to vanish, two of which are polynomials only in µ,X45, X67, and
the third of which is linear in X23. Then after roughly two minutes, CAD reports that out of
the 144 representatives S ∈ R2, only 11 allow the prescribed minors to vanish with µ satisfying
(5) and X23, X45, X67 ∈ [−µ, µ]. Moreover, for each of these 11 representatives, µ is the root of
x3 − 9x2 − x+ 1 reported in Table 1 and X23, X45, X67 ∈ {±µ}, and so each resulting Gram matrix
corresponds to a set of equiangular lines with coherence µ. Each of these Gram matrices has rank 5,
and therefore correspond to the previously described set of 7 equiangular lines in R5. �

Our use of CAD here does not scale to the d = 6 case, and so the next section describes an
alternative approach involving Stengle’s Positivstellensatz.

5. Approximate Positivstellensatz

Let R[x] = R[x1, . . . , xn] denote the set of polynomials with real coefficients and variables
x1, . . . , xn. Let Σ2[x] denote the set of polynomials that can be expressed as a sum of squares of
polynomials from R[x]. Given f1(x), . . . , fk(x), g1(x), . . . , gl(x) ∈ R[x], put f := {fi(x)}i∈[k] and
g := {gj(x)}j∈[l], and consider the sets

P (f) :=
{
x ∈ Rn : fi(x) ≥ 0 ∀i ∈ [k]

}
, Z(g) :=

{
x ∈ Rn : gj(x) = 0 ∀j ∈ [l]

}
.

Then every polynomial in the cone

C(f) :=

{ ∑
I⊆[k]

sI(x)
∏
i∈I

fi(x) : sI(x) ∈ Σ2[x] ∀I ⊆ [k]

}
is nonnegative over P (f), while every polynomial in the ideal

I(g) :=

{∑
j∈[l]

tj(x)gj(x) : tj(x) ∈ R[x] ∀j ∈ [l]

}
is zero over Z(g). As such, writing p(x) + q(x) = −1 with p(x) ∈ C(f) and q(x) ∈ I(g) would certify
that P (f)∩Z(g) is empty. Amazingly, such a certificate is available whenever P (f)∩Z(g) is empty:

Proposition 5 (Stengle’s Positivstellensatz [38]). The following are equivalent:
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(a) P (f) ∩ Z(g) = ∅.
(b) −1 ∈ C(f) + I(g).

In principle, one may hunt for Positivstellensatz certificates by fixing D ∈ N and restricting to a
search for p(x) and q(x) of degree at most D, as this reduces to a semidefinite program. As a proof
of concept, Parrilo and Sturmfels [31] applied this method to prove that

S =
{

(x, y) ∈ R2 : x− y2 + 3 ≥ 0, y + x2 + 2 = 0
}

(8)

is empty. In reproducing this proof, we found the Julia implementation of sum-of-squares program-
ming to be particularly user-friendly [4, 14]. However, as an artifact of numerical optimization,
the resulting degree-4 polynomials p(x) and q(x) have the property that p(x) + q(x) + 1 is also
a degree-4 polynomial, but all of its coefficients have absolute value smaller than 10−12. Indeed,
numerical optimization will generally fail to deliver an exact Positivstellensatz certificate, meaning
we cannot directly apply Stengle’s Positivstellensatz. As an alternative, we introduce the notion of
an approximate Positivstellensatz certificate, taking inspiration from the approximate dual
certificates that arise in compressed sensing and matrix completion [20, 18].

Lemma 6 (Approximate Positivstellensatz). Suppose r > 0 and ‖x‖∞ < r for every x ∈ P (f)∩Z(g).
Then the following are equivalent:

(a) P (f) ∩ Z(g) = ∅.
(b) There exists h(x) =

∑
α cαx

α ∈ 1 + C(f) + I(g) such that

max
α
|cα| ≤

[
deg h(x)∑
k=0

(
n+ k − 1

k

)
rk

]−1
. (9)

Proof. To see that (a) implies (b), set h = 0 and apply Stengle’s Positivstellensatz. Now suppose
h ∈ 1 + C(f) + I(g) satisfies (9). If h = 0, then (a) follows from Stengle’s Positivstellensatz.
Otherwise h 6= 0. If (a) fails, then there exists x ∈ P (f) ∩ Z(g), where h satisfies

1
(∗)
≤ h(x) ≤ |h(x)|

(†)
≤ max

α
|cα| ·

∑
α

|xα|
(‡)
< max

α
|cα| ·

deg h(x)∑
k=0

(
n+ k − 1

k

)
rk

(§)
≤ 1,

a contradiction. In particular, (∗) follows from the fact that h(x) ∈ 1 + C(f) + I(g), (†) uses
the triangle inequality, (‡) applies our assumptions that h 6= 0 and ‖x‖∞ < r and the count of
monomials of each degree k, and finally (§) applies the bound (9). �

Returning to the example (8), one can easily prove a bound on max{|x|, |y|} for every (x, y) ∈ S.
For example, if |x| ≥ 3, then

2|x| ≥ |x+ 3| ≥ |y|2 = |x2 + 2|2 ≥ |x|4,

which implies |x| ≤ 21/3, a contradiction. As such, if (x, y) ∈ S, then it must hold that |x| < 3, and
therefore |y| = |x|2 + 2 < 11. Now that we know that max{|x|, |y|} < r := 11 for every (x, y) ∈ S,
we recall that our numerical optimizer produced a degree-4 polynomial h(x, y) ∈ 1 + C(f) + I(g)
whose coefficients cα all have absolute value smaller than 10−12. A short computation shows

max
α
|cα| ≤ 10−12 ≤

[
4∑

k=0

(
n+ k − 1

k

)
rk

]−1
,

meaning h(x, y) serves as an approximate Positivstellensatz certificate that S = ∅.
When r < 1, we note that (9) can be replaced by the simpler bound

max
α
|cα| ≤ (1− r)n, (10)
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since in this case it holds that
deg h(x)∑
k=0

(
n+ k − 1

k

)
rk ≤

∞∑
k=0

(
n+ k − 1

k

)
rk = (1− r)−n.

We will apply this simpler bound in our classification of optimal 8-codes for RP5.

6. The optimal 8-code for RP5

In this section we fix n = 8 and d = 6 and prove the following classification.

Theorem 7. G ∈ E8,6 is optimal if and only if G is equivalent to G6, given in (1).

Proof. First, we recall the bounds on µ8,6 implied by the Bukh–Cox bound in (3) and the code
represented by G6 in (1):

3

13
≤ µ8,6 ≤ 0.2410. (11)

These bounds will play a role in our analysis of both R1 and R2.
Let T1 denote the subset of S1 that is zero in its last row and column, and let F1 be the subgroup

of Bn that acts invariantly on T1. Every member of T1 is equivalent to a matrix of the form

0 1 1 1 1 1 1 0

1 0 ±1 ±1 ±1 ±1 ±1 0
1 ±1 0 ±1 ±1 ±1 ±1 0

1 ±1 ±1 0 ±1 ±1 ±1 0

1 ±1 ±1 ±1 0 ±1 ±1 0
1 ±1 ±1 ±1 ±1 0 ±1 0

1 ±1 ±1 ±1 ±1 ±1 0 0

0 0 0 0 0 0 0 0

 (12)

and so we can generate orbits of T1 under the action of F1 by generating the orbits of these 215

matrices. We then build R1 by selecting one representative from each orbit of the form (12), and
this takes under one minute.

For each S ∈ R1, we compute the minimum eigenvalue λ of its leading 7× 7 principal submatrix.
By Lemma 2 and (11), we know that if S is optimal, then 3

13 ≤ −λ
−1 ≤ 0.2410, and this rules out

all but two members of R1 from being optimal. Both of these are then ruled out by Lemma 3(a).
Thus, no member of R1 is optimal, and so we proceed to investigate S2.

Let T2 denote the subset of S2 with zero entries in its diagonal 2× 2 blocks, and let F2 denote
the subgroup of Bn that acts invariantly on T2. Every member of T2 is equivalent to a matrix of the
form 

0 0 1 1 1 1 1 1
0 0 1 ±1 ±1 ±1 ±1 ±1
1 1 0 0 ±1 ±1 ±1 ±1
1 ±1 0 0 ±1 ±1 ±1 ±1
1 ±1 ±1 ±1 0 0 ±1 ±1
1 ±1 ±1 ±1 0 0 ±1 ±1
1 ±1 ±1 ±1 ±1 ±1 0 0
1 ±1 ±1 ±1 ±1 ±1 0 0

 (13)

and so we can generate orbits of T2 under the action of F2 by generating the orbits of these 217

matrices. We then build R2 by selecting one representative from each orbit of the form (13); it
takes roughly 15 minutes to produce the 560 elements of R2.

For 558 members of R2, we will show that they are not optimal by proving m(S) > 0.2410. To
do so, we introduce the decision variables {µ,X12, X34, X56, X78} and, for each member of S ∈ R2,
build the symmetric matrix G := I + µS +X with (I + S) ◦X = 0. Then by definition, m(S) is the
infimum of µ such that G is positive semidefinite with rank 6 and −µ ≤ Xij ≤ µ. As in Section 4,
we will obtain a lower bound for m(S) by completely relaxing the positive semidefinite constraint
and partially relaxing the rank-6 constraint. However, unlike that case, we were not able to find
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a suitable relaxation for which CAD both provided the necessary lower bound on m(S) and also
terminated in a reasonable amount of time.

We introduce the polynomials

f := {fi}i∈[10] = {µ− 3
13} ∪ {0.2410− µ} ∪ {µ±Xj,j+1}j∈{1,3,5,7},

and we let g = {gi}i∈[12] denote a carefully selected set of 7× 7 minors of G for which at least one
of the variables Xj,j+1 has degree 0 or 1. Observe P (f) ∩ Z(g) = ∅ implies m(S) > 0.2410, which
then implies that S is not optimal. For most S ∈ R2, we will show that P (f) ∩ Z(g) is empty by
producing an approximate Positivstellensatz certificate. With x = (µ,X12, X34, X56, X78), we define

Cm(f) :=

{ ∑
I⊆[10]

sI(x)
∏
i∈I

fi(x) : sI(x) ∈ Σ2[x], deg(sI) ≤ m ∀I ⊆ [10]

}
,

Im(g) :=

{ ∑
j∈[12]

tj(x)gj(x) : tj(x) ∈ R[x], deg(tj) ≤ m ∀j ∈ [12]

}
.

By Stengle’s Positivstellensatz, it suffices to produce h1 ∈ Cm1(f) and h2 ∈ Im2(g) for which
h = 1 + h1 + h2 satisfies (9). We use a Julia-based implementation [4, 14] of sum of squares

programming to obtain numerical solutions ĥ1 ∈ Cm1 and ĥ2 ∈ Im2 for which ĥ1 + ĥ2 ≈ −1, that is,

(ĥ1, ĥ2) provides a numerical approximation to a putative certificate that P (f) ∩ Z(g) is empty. We

will promote (ĥ1, ĥ2) to an honest certificate by carefully rounding. We write each scalar sI for ĥ1
as a sum of squares and, for each term being squared, round its coefficients to five decimal places.
We similarly round the coefficients for each scalar tj for ĥ2 to five decimal places. Let h1 ∈ Cm1(f)
and h2 ∈ Im2(f) denote the resulting rounded polynomials with rational coefficients. As each of
our five variables is less than 1/4 in absolute value, we may use (10) in place of (9) so as to apply
Lemma 6 and conclude that P (f) ∩ Z(g) = ∅ whenever the largest coefficient of 1 + h1 + h2 is at
most 1/5 in absolute value.

We apply this strategy to each S ∈ R2 with m1 = 2. On a first run, we take m2 = 0 and
successfully eliminate 545 members of R2 in roughly 5 hours. On a second run, we take m2 = 1 and
eliminate another 13 members of R2 in roughly 8 minutes. This leaves us with only two members of
R2 that could be optimal, and we proceed to use CAD to show that both are indeed optimal.

For these CAD queries, we again impose the constraint fi ≥ 0 for all i ∈ [10], but we found that
requiring gi = 0 for all i ∈ [12] resulted in CAD computations that did not terminate in a reasonable
amount of time. We instead relaxed to only require gi = 0 for a select few i ∈ [12] that only depend
on four of the five decision variables. For both of the remaining S ∈ R2, the corresponding CAD
query reports that the optimal Gram matrix G is equivalent to G6. One of these computations
takes roughly 18 minutes, while the other takes over three hours. �

7. Discussion

In this paper, we classified the optimal (d+ 2)-codes for RPd−1 for both d ∈ {5, 6}. The next
open case in this direction is d = 8. Sloane’s putatively optimal code [37] is equiangular:

G8 :=



1 −µ µ µ µ −µ µ µ −µ µ

−µ 1 −µ µ µ −µ µ µ µ µ
µ −µ 1 −µ µ −µ µ −µ µ −µ
µ µ −µ 1 µ −µ −µ −µ µ −µ
µ µ µ µ 1 µ −µ −µ −µ µ
−µ −µ −µ −µ µ 1 µ µ µ −µ
µ µ µ −µ −µ µ 1 −µ −µ −µ
µ µ −µ −µ −µ µ −µ 1 µ −µ
−µ µ µ µ −µ µ −µ µ 1 µ

µ µ −µ −µ µ −µ −µ −µ µ 1


,

where µ is given in Table 1.
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We expect that our current approach can already be used to partially tackle this case. For
example, our methods in Section 3 should be able to treat R1, but recall that it took 5 hours for
us to rule out most of R2 in the d = 6 case. Considering R2 is over a thousand times larger in
the d = 8 case (see Table 1), our methods should require the better part of a year to tackle this
larger case. For the record, our naive enumeration of the members of R1 is too slow for this case,
but faster approaches are available, e.g., [40]. Still, R2 requires new ideas. Is there a way to treat
R2 in an analogous manner to our treatment of R1 in Section 3? Previous work classified optimal
codes for S2 and for RP2 by leveraging spherical geometry and linear programming instead of
Positivstellensatz [29, 30, 27]; perhaps an analogous approach is available here? At the end of our
approach, we use CAD to exactly optimize G for any surviving S ∈ R2. In the d = 8 case, these
CAD queries may not terminate in a reasonable amount of time. We note that in the d = 6 case,
the Positivstellensatz step quickly produced an improved lower bound of µ8,6 ≥ 0.24 before this
CAD step, and including this information in our CAD query cut the three-hour runtime in half. It
might be possible to obtain improved lower bounds on µ10,8 even if CAD takes too long.

There might be some improvements available in our application of Positivstellensatz. For example,
we rounded our numerical approximations of Positivstellensatz certificates to five decimal places
before using exact arithmetic to verify that the result satisfies the bound (10). The exact arithmetic
step might be faster if we had rounded to four decimal places (say), but we expect the bound (10) to
be violated if we round too much. Next, in order for Positivstellensatz and CAD to have reasonable
runtimes, we relaxed various determinant constraints. While we have some heuristics for when a
relaxation is good (e.g., some of the remaining polynomials have low degree in certain variables),
this process remains an artform that deserves a careful treatment.

In prior work, numerical applications of Stengle’s Positivstellensatz come in two different types.
The first type solves a sum-of-squares program numerically, and then performs what appears to
be a handcrafted rounding step to ensure that −1 exactly resides in the set C(f) + I(g); see [31],
for example. This approach was not suitable for our purposes since we were solving hundreds
of sum-of-squares programs. The second type takes the numerical result that h ≈ −1 resides in
C(f) + I(g) as sufficient evidence that P (f) ∩ Z(g) is empty; see [12], for example. Since this
does not constitute a proof, it was also not suitable for our purposes. Presumably, Lemma 6 could
replace the ad-hoc strategy of the first type and give theoretical justification for the second type.
Furthermore, it would be interesting if Lemma 6 could provide sum-of-squares certificates of lower
degree than Stengle’s original Positivstellensatz.

Finally, we point out some problems that are adjacent to ours. While we have focused on real
projective spaces, the analogous question can be posed in complex projective spaces CPd−1. Here,
the optimal n-codes are known for n ≤ d+ 1, but they are similarly mysterious for n = d+ 2. Since
CP1 is the 2-sphere, the optimal 4-code for CP1 is given by the vertices of the tetrahedron. More
generally, Bukh and Cox [5] characterize the optimal (d+ 2)-codes for CPd−1 for every d ≡ 2 mod 4.
These are the only solved cases. For the d = 3 case, Jasper, King and Mixon [23] conjecture that
the optimal 5-code is given by the lines spanned by the columns of a b b c c

b a b cw cw2

b b a cw2 cw

 , a =

√
13 +

√
2 +
√

13− 1

3
√

3
, b =

√
1− a2

2
, c =

1√
3
, w = e2πi/3.

Furthermore, King will buy a coffee for the first person to prove this conjecture [26]. Our methods
do not easily transfer to this setting since sign patterns in the Gram matrix are no longer discrete.

The analogous question has also been posed in the sphere Sd−1, where the optimal n-codes
are known for n ≤ 2d. For n = 2d + 1, little is known. For d = 2, the optimal code is given by
five uniformly spaced points on the circle, and the d = 3 case was solved by Schütte and van der
Waerden [33] in 1951. Ballinger et al. [1] offer a conjecture that treats all dimensions simultaneously:

Let S ∈ R(d−1)×d be a matrix whose unit-norm columns form the vertices of a regular simplex. The
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putatively optimal (2d+ 1)-code for Sd−1 is unique up to isometry and given by the columns of[
1 α β

0
√

1− α2 · S −
√

1− β2 · S

]
,

where α is the unique root between 0 and 1/d of

(d3 − 4d2 + 4d)x3 − d2x2 − dx+ 1,

and β is the unique root between −1 and 1 of

αx+
1

d− 1

√
(1− α2)(1− x2)− α.

Our methods do not easily transfer to this setting since the contact graphs are far less dense,
meaning the resulting programs have more decision variables.
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