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Abstract—Multipath TCP (MPTCP) utilizes multiple paths
for simultaneous data transmission to enhance performance.
However, existing MPTCP protocols are still far from satisfactory
in wireless networks because of their loss-based congestion
control and the difficulty of managing multiple subflows. To
overcome these problems, we redesign the coupled congestion
control algorithm and scheduler to boost MPTCP in wireless
heterogeneous networks. The main purpose is to promote trans-
mission rate under lossy networks, while also provide stability
when networks suffer physical link changes and asymmetric
links. In this paper, inspired by Bottleneck Bandwidth and
Round-trip propagation time (BBR), we first propose Coupled
BBR that utilizes detected bandwidth to adjust the sending
rate within an MPTCP connection. Coupled BBR provides
high loss tolerance as well as balanced congestion among
MPTCP subflows. Then, to further improve the performance,
we propose an Adaptively Redundant and Predictive packet
(AR&P) scheduler to improve adaptability and keep in-order
packet delivery in highly dynamic network scenarios. Based on
Linux kernel implementation and experiments in both testbed
and real network scenarios, we show that the proposed scheme
not only provides high throughput in wireless networks, but also
improves robustness and reduces out-of-order packets in some
harsh circumstances.

Index Terms—MPTCP, Congestion control, Scheduler, Wire-
less networks.

I. INTRODUCTION

Multipath TCP (MPTCP) [1] is an emerging transport
protocol, which enables the full use of the device’s multiple
interfaces and transmits data via multiple paths concurrently
[2], [3]. MPTCP establishes subflows on available paths such
that each subflow acts as a separate TCP flow. Based on
TCP, MPTCP aims at providing higher transmission efficiency,
stronger robustness, and better mobility support [4]. Till now,
MPTCP has got some deployment [5] in real networks, and
there have been some devices and applications, such as Apple
Siri [6], in support of MPTCP.

Several schemes such as coupled congestion control al-
gorithms [7]–[11] and scheduling algorithms [12]–[15] have
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been proposed to make MPTCP more practical. However,
MPTCP is still not able to achieve the desired performance
in wireless networks, which have a large number of random
packet loss and rapidly changing link conditions. On the one
hand, traditional loss-based congestion control algorithms can
hardly make the best use of the full available bandwidth in
lossy networks [16]. On the other hand, a fixed scheduler
can not meet the ever-changing network conditions, where the
unpredictable degradation in a single subflow may severely
degrade the performance of other subflows in an MPTCP
connection [17], [18]. Based on these facts, it is hard to achieve
satisfactory end-to-end transmission performance for MPTCP
[19].

Coupled congestion control algorithms (e.g., LIA, OLIA,
BALIA) in MPTCP have been designed based on traditional
TCP congestion control algorithm (for example, NewReno
[20]) and treat packet loss as an indicator of congestion and
decrease their congestion window when packet loss occurs.
In today’s network environment where wireless links are
used frequently and random packet loss caused by physical
links is common, it is hard for MPTCP to achieve the
desired performance. MPTCP needs to change its way for
transmission control for better performance. Among some
state-of-art congestion control algorithms [21], [22], BBR
shows its potential in lossy scenarios, which can make the best
use of available bandwidth even when there is random packet
loss. Inspired by BBR, we design a novel coupled congestion
control algorithm and propose a customized scheduler for it.
In this work, we mainly focus on two issues: 1) Promote
MPTCP in wireless lossy networks, as well as provide high
lossy tolerance and achieve fairness and balanced congestion,
and 2) Further improve the transmission efficiency and
stability of MPTCP in ever-changing and asymmetric
networks by designing a customized scheduler that suitable
for the novel congestion control algorithm that precisely
controls the multipath transmission.

We first design a novel coupled congestion control algorithm
for MPTCP, called Coupled BBR, which is based on TCP BBR
but is modified for MPTCP to achieve better performance.
Coupled BBR follows the same mechanism of periodic band-
width detection in convention BBR to provide high bandwidth
utilization. In order to achieve the goals of fairness and
balanced congestion for MPTCP defined in RFCs [1], [8],
Coupled BBR sets the sending rate of each subflow differently.
RFC 6356 [8] points out that running an uncoupled congestion
control algorithm on each subflow makes an MPTCP flow
unfairly take up more capacity compared with a single path
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TCP flow, which means aggregated bandwidth of MPTCP
should be no more aggressive than that of a single path TCP
flow on the best available path. To achieve this goal, which is
different from previous algorithms [7], [23], [24] that modify
the increase function of the Additive Increase Multiplicative
Decrease (AIMD) [25] scheme, Coupled BBR utilizes its
measured bandwidth of all subflows to control each subflow’s
sending rate and achieve fairness to single-path TCP BBR
flows. Besides, Coupled BBR also utilizes a data allocation
rate based on the bandwidth measurement results, therefore it
can better balance congestion among subflows.

Secondly, based on the real-time measurement and steady
sending rate of Coupled BBR, we propose an Adaptively Re-
dundant and Predictive packet (AR&P) scheduler to enhance
MPTCP performance in highly dynamic and asymmetric net-
works. Two scheduling methods are included in AR&P sched-
uler, 1) Adaptively Redundant Scheduling (AR-Scheduling),
and 2) Predictive packet Scheduling (P-Scheduling). AR-
Scheduling is designed to achieve high goodput and low
latency in different network scenarios, and provides better
adaptability in highly dynamic scenarios. It adaptively decides
whether to send redundant packets on each subflow accord-
ing to the real-time path conditions. By sending redundant
packets on subflows with low bandwidth and high RTT,
AR-Scheduling is able to provide better flexibility when the
network environment changes rapidly. Besides, P-Scheduling
is designed to reduce out-of-order packets in asymmetric net-
works. Different from previous packet schedulers which only
schedule in each congestion window, P-Scheduling calculates
the arrival time of packets and schedules each packet one-by-
one. Taking the advantages of Coupled BBR’s steady sending
rate and smooth transmission, P-Scheduling could accurately
control the arrival time of each packet, thereby reducing out-
of-order packets significantly.

To summarize, in this paper we present Coupled BBR
and AR&P Scheduler for MPTCP. With our scheme, the
performance of MPTCP is enhanced in lossy, dynamic, and
asymmetric networks. The main contributions of this paper
are as follows:
• We propose Coupled BBR as a coupled congestion con-

trol algorithm for MPTCP to obtain better performance
in wireless lossy networks. Coupled BBR provides high
bandwidth utilization and stable sending rate, while also
achieving fairness to TCP BBR flows and balancing
congestion among MPTCP subflows.

• Based on Coupled BBR, AR&P Scheduler is proposed
to further help MPTCP for managing multipath trans-
mission. It includes two scheduling methods: 1) AR-
Scheduling automatically chooses whether to send re-
dundant packets according to real-time path conditions,
in order to to provide better adaptability in highly dy-
namic networks. 2) P-Scheduling schedules each packet
according to its arrival time, which keeps packets arriving
in order and reduces out-of-order packets in asymmetric
networks.

• Coupled BBR and AR&P Scheduler are implemented
in MPTCP Linux kernel v0.94 [26] and tested in both
testbed and real networks. Extensive results show that

our scheme gives MPTCP a higher elasticity, making it
more feasible in today’s networks.

The rest of this paper is organized as follows: Section II
introduces the background and motivation of our work. We
present our design and the details of each algorithm in
Section III, Section IV, and Section V. The implementation
and evaluation are shown in Section VI. Sections VII and
VIII show the related work and the discussion of our work,
respectively. Finally, Section IX draws the conclusion.

II. BACKGROUND AND MOTIVATION

We first take a brief overview of MPTCP and BBR. Then,
we discuss the opportunities and challenges that BBR brings
to MPTCP.

A. Overview of MPTCP

MPTCP is a multipath transport protocol proposed by IETF
[1]. As an extension of TCP, it provides reliable transmission
service, while also enables multipath transmission to gain
better performance. MPTCP inherits the drawbacks of con-
ventional TCP, which are mainly caused by traditional loss-
based congestion control algorithms. They treat packet loss
as a signal of congestion and halve the congestion window
when packet loss occurs, which leads to poor performance
and causes fluctuation of sending rate in lossy scenarios such
as wireless networks [27]–[29].

Besides, there are some new issues introduced by multipath
transmission in MPTCP. MPTCP needs to be friendly to TCP
flows, which means an MPTCP flow should not be more ag-
gressive than a single-path TCP flow on the best path [8]. Also,
MPTCP needs to balance congestion, which means to migrate
data from congested subflows to less congested ones [30].
Moreover, MPTCP should achieve stronger robustness. When
some subflows fail, MPTCP is supported to keep running since
it can transfer data on other available subflows. Meanwhile,
MPTCP also needs to reduce out-of-order packets, which
is caused by different RTTs among subflows in asymmetric
networks.

B. Overview of BBR

Different from traditional loss-based congestion control,
BBR measures the bandwidth and RTT of the bottleneck which
a flow goes through [31]. Then based on the measurement,
it adjusts the sending rate to make the best use of the
bottleneck bandwidth. BBR keeps high throughput in lossy
networks and maintains a smooth rate during the transmission.
Through other popular congestion control algorithms like
Cubic make a faster recovery for high throughput in lossy
scenarios, they create fluctuating sending rate, and provide
much worse performance than BBR when suffering high loss
rate [22]. Additionally, the use of BBR stops creating queues
in the network, thereby reducing RTT and leading to low
transmission delay.

Specifically, BBR periodically measures bottleneck band-
width and adjusts the transmission rate at its PROBE BW
phase, which accounts for the vast majority (i.e., almost
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Fig. 1. Sending rate of BBR in RROBE BW phase.

98%) of its running time [31]. As shown in Fig. 1, BBR
treats 8 RTTs as a cycle during the PROBE BW phase.
In each RTT of a cycle, BBR sends data as a rate of
pacing rate = pacing gain · BW , where pacing gain =
(1.25, 0.75, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00) in each RTT
respectively. In this state, BW is the maximum measured
value of delivery rate during a period of time, which is noted
as an estimated result of bottleneck bandwidth. During the first
RTT, BBR increases the sending rate to 1.25 · BW to probe
the remaining available bandwidth, and during the second
RTT, it reduces the rate to 0.75 · BW to drain the queues
that may be created in the previous RTT. After the first two
RTTs, BBR keeps sending data smoothly using the detected
bandwidth for 6 RTTs. In this process, the congestion window
(cwnd) is no longer the deciding factor, it is pacing rate
instead. BBR sets the interval time between two packets
to packet size/pacing rate so as to control the sending
rate and keep the transmission smooth. For each 10 s, BBR
goes through a PROBE RTT phase, keeps inflight to 4 for
max(RTT, 0.2sec) to probe minimum RTT of the path.

C. MPTCP over BBR: Opportunities and Challenges

Considering the superiority of BBR, MPTCP can be pro-
moted simply by replacing its congestion control algorithm
with BBR. We measure the performance of MPTCP with
conventional BBR in a lab-built platform as shown in Fig. 2.
Our testbed includes a pair of MPTCP server and client, two
pairs of TCP servers and clients, and four routers within the
topology shown in Fig. 2. MPTCP connection includes two
subflows, where each subflow passes through two routers.
The links between two routers represent the bottleneck in
the network. The links between client and router or between
server and router do not affect the transmission. Both the
bottleneck links have 100 Mbps bandwidth and 25 ms delay.
At each bottleneck, there are two TCP background flows on
each path using the same kind of congestion control algorithm
as MPTCP uses.

Bottleneck2 100Mbps/25ms

Bottleneck1  100Mbps/25ms

TCP background

TCP background

MPTCP subflow1

MPTCP subflow2

Fig. 2. Topology of the testbed.

Table I shows the throughput performance in lossy sce-
narios, where the random packet loss rate of each subflow
is 0.01% (subflow1) and 0.1% (subflow2), respectively. We
observe that although packet loss rates of 0.01% and 0.1% are
not too high in the actual wireless networks, the throughput
of original algorithms still drops dramatically. Among them,
Cubic is better than others but is unable to sustain its
superiority when the packet loss rate goes up. Moreover,
the bandwidth utilization of LIA, OLIA, BALIA, and Cubic
is much lower than the available bandwidth that an ideal
congestion control algorithm could achieve.

TABLE I
AVERAGE THROUGHPUT

Throughput BBR Cubic LIA OLIA BALIA
MPTCP (Mbps) 55.9 35.1 20.3 19.9 20.9

Subflow 1 (Mbps) 30.7 27.6 19.1 19.6 20.5
Subflow 2 (Mbps) 25.2 7.5 1.2 0.3 0.6

TCP on path 1 (Mbps) 31.9 27.7 21.1 21.3 20.8
TCP on path 2 (Mbps) 27.5 8.5 1.1 1.0 1.2
Bandwidth utilization 88% 54% 32% 32% 33 %

Fig. 3 shows the RTT distribution, where the random loss
rates of subflow1 and subflow2 is 0 and 0.01% respectively.
BBR keeps RTT of MPTCP concentrating at around 55 ms.
But half of RTTs of other algorithms are concentrated at
the zone of 85 ms, which corresponds to the subflow with
no random packet loss. Since traditional congestion control
algorithms increase the congestion window and fill the buffer
of the intermediate routers until packet loss, packets are
queued at the routers for a long time, resulting in longer RTT.
On the contrary, BBR does not cause network overload and
keeps RTT low.
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Fig. 3. RTT distribution of MPTCP using different congestion control
algorithms.

Compare with other congestion algorithms, BBR makes
each subflow obtain high throughput in lossy networks and
keeps low RTT in congested networks. However, the original
BBR treats multiple subflows of an MPTCP connection as
separate flows that work independently rather than a unified
connection. Thus the goals of fairness and balanced congestion
can not be achieved. To achieve these goals, we provide a
new algorithm that utilizes bandwidth detection for coupled
congestion control, which is called Coupled BBR. In addition,
a functional scheduler also needs to be further designed.
Previous schedulers are usually based on the congestion
window, while Coupled BBR changes it to smooth sending rate
and makes previous schedulers no longer suitable. Thus, we
propose a novel AR&P scheduler to promote the performance
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in ever-changing and asymmetric networks on the basis of
Coupled BBR.

III. SYSTEM DESIGN

In this section, we introduce our design of congestion
control and scheduler for MPTCP. Fig. 4 illuminates the
framework. The framework basically includes two parts: a
coupled congestion control algorithm called Coupled BBR and
a novel scheduler called Adaptively Redundant and Predictive
packet (AR&P) scheduler.

Sender

Coupled BBR AR&P 
Scheduler

Subflow1

subflowN

AR-Scheduling P-Scheduling

Sending rate Redundant/non-
redundant Per packet schedule

…

Receiver

RTTi       BWi

pacing_ratei

Fig. 4. Coupled BBR and AR&P Scheduler for MPTCP

Coupled BBR and AR&P scheduler take on the functions
of rate control and data scheduling, respectively. Coupled
BBR performs the function of coupled congestion control
for MPTCP, using measured bandwidth and RTT to control
the sending rate of each subflow. It provides a steady and
proper sending rate for MPTCP, ensures high throughput,
and at the same time, achieves fairness to TCP BBR flows
and balances congestion among MPTCP subflows. Coupled
BBR shares its measured result with AR&P scheduler for
further scheduling function. AR&P scheduler helps manage
subflows by scheduling packets properly through subflows
under various network conditions with the following two
scheduling methods:

1) AR-Scheduling decides the redundant/non-redundant
state of each subflow. If a subflow is in poor network
conditions (low bandwidth or large RTT), AR-Scheduling
tends to send redundant packets via it. Otherwise, the subflow
is used to transmit non-redundant packets to aggregate
bandwidth resources. By adjustment based on real-time
measurement, AR-Scheduling improves robustness and
guarantees high throughput in highly dynamic networks.

2) P-Scheduling schedules each packet to a target subflow
according to the packet’s arrival time. Each packet is scheduled
to a subflow with the earliest arrival time to reduce out-
of-order packets and improve performance in asymmetric
scenarios.

Coupled BBR and AR&P scheduler are implemented at
MPTCP sender for better transmission control. MPTCP re-
ceiver performs the original operation and does not need any
other extra interaction with the sender. In the next sections,
we present the details of each algorithm.

IV. COUPLED BBR
Coupled BBR retains most of the operations in the conven-

tional BBR, periodically measures the bottleneck bandwidth

and uses the measured bandwidth to allocate the sending
rate of each subflow. Instead of the previous way which
adjusts the AIMD parameters, Coupled BBR modifies the
PROBE BW phase and sets the sending rate directly according
to the measurement results of each subflow to keep fairness
and balanced congestion. And the same as the conventional
BBR, Coupled BBR spends the vast majority of its time in
PROBE BW phase (about 98 percent) [31], that makes it
effective to achieve fairness and balanced congestion in the
entire transmission process. In this way, Coupled BBR could
keep a steady sending rate in PROBE BW phase and provides
smooth transmission performance.
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Fig. 5. Sending rate of Coupled BBR.

As shown in Fig. 5, Coupled BBR modifies pacing gaini
for a subflowi to a cycle of {1.25, 0.75, αi, αi, αi, αi, αi, αi}
in the PROBE BW phase. The sending rate is pacing gaini ·
BWi = {1.25, 0.75, αi, αi, αi, αi, αi, αi} ·BWi, where BWi

is the maximum detected available bandwidth of subflowi. The
pacing gaini of {1.25, 0.75} for the first two RTTs is used
to ensure the ability for each subflow to measure available
bandwidth BWi, that is the same as the conventional BBR.
After that, for the next 6 RTTs, Coupled BBR replaces the
pacing gain with a smaller parameter αi to achieve fairness
and balanced congestion, which is related to the bandwidth of
each subflow:

αi =
4βi − 1

3
, (1)

βi =
BWi ·max{BWi}∑

j∈S BW
2
j

, (2)

where S denotes the set of all subflows.
Coupled BBR is implemented at the sender side, and does

not require interaction between the receiver and the sender.
Algorithm 1 shows the algorithm of Coupled BBR. Consider
that αi may be less than 0 because of Eq.(1), Coupled BBR
sets the sending rate to 4 · packets/RTTi if αi ≤ 0, which
is similar to the PROBE RTT phase. If a subflow enters this
state, the 4 packets in an RTT round can be utilized to probe
minimum RTT and protect the activity of a subflow. Next, we
will show how to use αi to achieve the goals of MPTCP.

Assume that there are some TCP flows runs on subflowi’s
path, and throughput of a single path TCP BBR flow is
TTCPi . Let TMP

i denotes the average throughput of MPTCP
subflowi, and TMP denotes the average throughput of a
MPTCP connection, where TMP =

∑
i∈S T

MP
i . Coupled

BBR keeps the pacing rate of 1.25, 0.75 in the first two
round and changes the pacing rate of the last 6 RTTs to αi.
Therefore the average sending rate of subflowi is (1.25+0.75+
6αi)BWi/8 = βiBWi. Therefore the average throughput of
MPTCP subflowi using Coupled BBR is: TMP

i = βi · BWi.
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Algorithm 1: Coupled BBR

for each subflowi do
βi =

BWi·maxj{BWj}∑
j∈S BW

2
j

;

αi = (4βi − 1)/3;
pacing gain = [1.25, 0.75, αi, αi, αi, αi, αi, αi];
if now >= nextSendTime then

sendpacket();
/* cycle index is the index of RTT round in a

PROBE BW cycle */;
if cycle index > 2 then

if αi > 0 then
nextSendTime = now + packet.size /

(αi ·BWi);
else

nextSendTime = now + RTTi/4;

else
nextSendTime = now + packet.size /
(pacing gain[cycle index] ·BWi);

The average throughput of the overall MPTCP connection
using Coupled BBR is:

TMP =
∑
i∈S

TMP
i =

∑
i∈S

βi ·BWi

=
∑
i∈S

BW 2
i∑

j∈S BW
2
j

·max
j∈S
{BWj}

= max
j∈S
{BWj}.

This simply achieves the fairness between MPTCP and TCP
BBR flows. Coupled BBR allocates a percentage of bandwidth
to subflowi by the weight βi. The overall MPTCP throughput
is TMP = maxi∈S{BWi} = maxi∈S T

TCP
i , which equals

the throughput of TCP BBR flows on the best path.
Moreover, Coupled BBR also has the ability to migrate

data from congested paths and increase the data traffic on
subflows with good path conditions. Given the information
of bandwidth, Coupled BBR takes BWi as a representation
of the quality of a subflowi, and makes βi of each subflow
meets the following: βi

BWi
=

βj

BWj
, ∀i, j. The data allocation

is related to each subflow’s detected bandwidth, and subflows
with higher bandwidth carry more data traffic.

V. ADAPTIVELY REDUNDANT AND PREDICTIVE PACKET
SCHEDULER

Based on Coupled BBR, AR&P Scheduler is further pro-
posed to promote MPTCP in asymmetric networks, as well as
in the scenarios where path conditions are changing. AR&P
scheduler includes two methods: 1) AR-Scheduling and 2) P-
Scheduling. As shown in Fig. 6, AR-Scheduling first decides
the redundant or non-redundant state of each subflow. Then,
redundant packets are scheduled on subflows at redundant
state. P-Scheduling works on the subflow in the non-redundant
state, and schedules each packet according to the predictive
arrival time.

A. AR-Scheduling

By taking into account the real-time path condition mea-
sured by Coupled BBR, AR-Scheduling adaptively sends
redundant packets on subflows with bad path conditions
(e.g., low bandwidth and high RTT) to provide both high
transmission robustness and flexibility in dynamic networks.
When the user moves and the path conditions deteriorate, AR-
Scheduling stops to send new packets on the subflow with bad
path conditions and utilizes redundant packets to improve the
reliability. The reason that utilizing redundant packets instead
of stopping sending packets on the subflow with bad path
conditions is to keep the activity of subflows. The redundant
packets can be used to improve the robustness and detect
the path conditions. Once the path conditions change for the
better, AR-Scheduling returns to send non-redundant packets
to improve bandwidth utilization efficiency.

subflows

Sending Buffer

Redundant Packets

P-
Scheduling

AR-
Scheduling

...

...

non-
redundant

redundant

Fig. 6. AR&P Scheduler.

The path conditions of each subflow are measured in real-
time by Coupled BBR. We uses xi and ri to denote the
sending rate and RTT of subflowi, respectively. Let N denote
the set of subflows in non-redundant state, and R = S − N
denote the set of subflows in redundant state. The goal of
AR-Scheduling is choosing the non-redundant subflows N to
maximize goodput (J1 = log

∑
i∈N xi) and minimize average

RTT (J2 = log
∑
i∈N xiri/

∑
i∈N xi). The objective of AR-

Scheduling can be expressed as a multiple objectives utility
function:

max
|N |≥1

log
∑
i∈N

xi − log

∑
i∈N xiri∑
i∈N xi

, (3)

where |N | ≥ 1 means there should be at least one subflow to
send non-redundant packets.

In order to reduce computational complexity, AR-
Scheduling utilizes a greedy method:

1) Sort subflows in S as i1, · · · , in, where xi1

ri1
≥ · · · ≥ xin

rin
.

Add subflowi1 to N .
There should be at least one subflow in N . If N only

includes one subflowi, then Eq. (3) become xi/ri. AR-
Scheduling chooses the subflow with the greatest xi/ri as the
initial subflow in N , where xi/ri denotes the subflow value.

2) For each j in 2, · · · , n, add it to N if the objective after
adding ij to N is larger than that of the original N , which
means:

log(
∑
i∈N

xi + xij )− log(

∑
i∈N xiri + xijrij∑
i∈N xi + xij

)

> log
∑
i∈N

xi − log

∑
i∈N xiri∑
i∈N xi

.
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To simplify it, we have
xij∑
i∈N xi

>
∑

i∈N xi(rij−2ri)∑
i∈N xiri

. Other-
wise, add it to R.

The greedy method gives an optimal result when there
are two subflows in an MPTCP connection. Considering that
mobile devices typically have two interfaces (4G/5G and Wi-
Fi) to establish two subflows in practice, the greedy method
can give the optimal strategy in most cases. In addition, we
compare the solutions when there are three subflows in the
simulation, where the result given by the greedy method is
not very different from the optimal solution.

Algorithm 2: AR-Scheduling
Input: Subflows, S = {1, · · · , n}.
Output: Non-redundant set N and redundant set R.
Sort subflows as i1, · · · , in, where xi1

ri1
≥ · · · ≥ xin

rin
;

N = {i1}, R = ∅ ;
for each j ∈ {2, · · · , n} do

if
xij∑
i∈N xi

≤
∑

i∈N xi(rij−2ri)∑
i∈N xiri

or inflighti < 4

then
R = R∪ {ij} ;

else
N = N ∪ {ij} ;

In addition, AR-Scheduling utilizes inflight packets for
the auxiliary judgment. If a packet loss occurs, the sender
requires 3 duplicated ACKs to start fast retransmission. If the
inflight packets are less than 4, the subflow will not start
fast transmission but just wait for time-out retransmission.
This packet loss on the single subflow may even decrease the
throughput of other subflows. So when the inflight packets of
subflowi are less than 4, AR-scheduling marks that subflowi
as in the redundant state. The algorithm of AR-Scheduling
is shown in Algorithm 2. To reduce computing overhead,
AR-Scheduling makes decisions every mini∈S ri during the
transmission.

B. P-Scheduling

Based on the smooth sending rate of each subflow provided
by Coupled BBR, P-Scheduling method predicts the arrival
time of each packet and precisely controls each packet for
better performance. P-Scheduling is a pre-scheduling method
that schedules packets before they are sent. It schedules
packets sequentially onto the appropriate subflow which gives
the earliest arrival time of a packet to keep in-order packets
arrival as well as reduce latency. As shown in Fig. 7,
P-Scheduling pre-schedules the packets in the scheduling
window to subflows for sending in the future. P-Scheduling
method works as follows: When scheduling packet j, it
calculates the arrival time of scheduling the new packet on
each subflow, then chooses a subflow with the smallest arrival
time and schedules packet j on the subflow. In this way, P-
Scheduling ensures that the packets scheduled after packet j
will not arrive earlier than packet j, therefore it keeps in-order
packets arrival and the number of out-of-order packets can be
significantly reduced in asymmetric networks.

                           ……1 2 3 4 Packet j

1 3 ……

2 j ……

Sending 
buffer

subflow1

subflow2

Scheduling window

4 ……subflow3

2 ( ) max ( )i iA j A j=

Fig. 7. Predictive packet scheduling

P-Scheduling pre-schedules packets on subflows. Therefore
how may packets should be pre-scheduled is a key parameter.
Scheduling all the packets in the sending buffer is not a
good idea, since network conditions are changing and old
prediction may not suitable for the new environments. P-
Scheduling maintains a scheduling window at the size of
maxi∈N RTTi ·

∑
i∈N BWi. The scheduling window is set

to ensure in-time scheduling as well as enough packets to
schedule for each available subflow. Each packet in this
window is scheduled to a certain subflow according to the
predicted arrival time, and the packets outside the scheduling
window will not be scheduled until they are included in the
scheduling window.

Once packets in the scheduling window are sent out or
the scheduling window size gets larger, new packets can be
accommodated in the scheduling window and need to be
scheduled by P-Scheduling. The set of new packets are noted
as {j1, j2, ...,jm}. Then, P-Scheduling calculates the arrival
time of each packet on available subflows, and schedules each
packet to the subflow with the minimum arrival time in order.

Let Ai(j) denote the predicted arrival time of sending
packet j on subflowi, and t0 denote the current moment. When
MPTCP schedules the packet j, the set of packets that are
already scheduled on subflowi but not sent out yet is Li. And
the size of a packet j is sj . P-Scheduling predicts the arrival
time as:

Ai(j) = t0 +

∑
j′∈Li

sj′

xi
+
ri
2
, (4)

where the second item
∑
j∈Li

sj/xi on the right hand side
of the equation is the waiting time for packet jk to start
transmitting if it is scheduled on subflowi. The third item
ri/2 is the transmission time of each packet. The arrival time is
the current moment t0 plus the waiting time and transmission
time. When a packet is going to be scheduled, P-Scheduling
choose a subflow with the minimum Ai(j) to schedule packet
on it.

Algorithm 3 shows the algorithm of P-Scheduling. P-
Scheduling only works in the PROBE BW state, which
has a stable sending rate and takes up most of the time
during the transmission. Otherwise, the sending rates of
subflows are not stable, and P-Scheduling behaves the same as
Round-Robin. When working with AR-Scheduling method, P-
Scheduling only considers subflows in the non-redundant state
and schedules new packets for them. If a subflow is in the
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Algorithm 3: P-Scheduling
Input: New packets in the scheduling window:

J ={j1, ..., jm}.
for each packet jk ∈ J do

for each i ∈ N do
Ai(jk) = t0 +

∑
j′∈Li

sj′

xi
+ ri

2 ;

ik = argmini∈N Ai(jk);
schedule packet jk on the subflow ik;

redundant state, P-Scheduling will not schedule new packets
on it.

Error analysis: Assume that the jitter of sending rate and
RTT of subflow i is ∆xi (|∆xi/xi| < ε1) and ∆ri (|∆ri/ri| <
ε2), respectively. The prediction error of Ai(j) is:

∆Ai(j) =
∆xi

∑
j′∈Li

sj′

xi(xi + ∆xi)
+

∆ri
2
.

Limited by the scheduling window,
∑
j′∈Li

sj′ ∈ [0, xi ·
maxi∈N ri], and the average out-of-order packet O is:

O = max
i∈N

∑
i′∈N/i

xi′E{∆Ai(j)}

≤ 1

2

∑
i∈N

xi max
i∈N

ri(

∣∣∣∣maxi∈N ∆ri
maxi∈N ri

∣∣∣∣+

∣∣∣∣∆xixi

∣∣∣∣)
≤ 1

2

∑
i∈N

xi max
i∈N

ri(ε1 + ε2).

Therefore P-Scheduling can keep the out-of-ordered packets in
a low level even there are jitters in the network environment.

VI. PERFORMANCE EVALUATION

We use both the simulation and real network measurement
to evaluate the performance of Coupled BBR and AR&P
scheduler. Traditional MPTCP congestion control algorithms
(LIA, OLIA, BALIA) and schedulers (Round-Robin and min-
RTT) are using as contrasts. To verify the performance of
proposed schemes in different network scenarios, we integrate
Coupled BBR and AR&P scheduler into MPTCP v0.94 im-
plemented in Linux kernel and measure the performance in a
lab-built testbed with 8 nodes and real network scenarios. In
most of the tested scenarios, the performance of MPTCP can
be improved by more than two-and-a-half times. In order to
further evaluate the performance in larger network topologies,
we also simulate the proposed algorithms under different
network scenarios utilizing a packet-level simulator to show
the simulation results.

A. Experiments in the Testbed

We integrate Coupled BBR and AR&P scheduler into
MPTCP v0.94 implemented in Linux kernel [26] and test their
performance in different scenarios. The testbed topology is the
same as Fig. 2. Considering that the device usually has two
interfaces (4G and Wi-Fi) in the real network, we also used
two subflows in an MPTCP connection in the experiments.

Fig. 8 shows the performance of Coupled BBR in lossy
networks. The bandwidth and delay of both bottlenecks are
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Fig. 8. Coupled BBR in lossy networks.

100 Mbps and 25 ms, respectively. bottleneck2 suffers vary-
ing random packet loss rates of 0%, 0.01%, and 1% in
different scenarios, while bottleneck1 does not have random
packet loss. There are two TCP background flows at each
bottleneck. Fig. 8(a) indicates that at different settings of
path loss rate, Coupled BBR effectively achieves the goal of
fairness, which gets the same throughput as that of a single-
path TCP BBR flow on the best path. When the loss rate
increases, the throughput of Coupled BBR decreases slightly
but still achieves high throughput. Fig. 8(b) shows the real-
time throughput when the loss rate of two subflows is 0%
and 1%, respectively. Subflow2 can still get a satisfactory
throughput when the loss rate reaches 1%, and the sending
rate keeps little fluctuation. In a word, MPTCP over Coupled
BBR not only provides high throughput and less fluctuation in
lossy networks but also achieves fairness to TCP BBR flows.

Fig. 9 shows the performance of Coupled BBR in asymmet-
ric networks, where Fig. 9(a) and Fig. 9(b) show asymmetric
bandwidth scenarios and asymmetric path delay scenarios,
respectively. In Fig. 9(a), the loss rate and delay of both
bottlenecks are 0% and 25 ms, the bandwidth of two path
changes for different scenarios. Coupled BBR can achieve the
same throughput as that of a single-path TCP BBR flow on the
best path, and allocate more data on the best path to balance
congestion. In Fig. 9(b), the bandwidth and loss rate of the
two bottlenecks is set to 20 Mbps and 0%, the path delay
changes for different scenarios. When the delay difference
becoming larger, the throughput of MPTCP decreases slightly.
Meanwhile, Coupled BBR allocates the same proportion of
data to each subflow and still maintains fairness to TCP
BBR flows. In summary, Coupled BBR achieves better loss
tolerance and steady sending rate, while also achieves fairness
to TCP BBR flows and balances congestion in different
scenarios.

Fig. 10 shows how the dynamic network conditions affect
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Fig. 9. Coupled BBR in asymmetric networks.

the performance of different schedulers during the transmis-
sion. As shown in Fig. 10(a), in the first 15 seconds, both
the paths have high bandwidth and low RTT and no packet
loss occurs. AR-Scheduling finds that both paths are in good
condition and their bandwidth should be aggregated for higher
goodput. As a result, AR-Scheduling decides that the two
subflows should both send non-redundant packets. Meanwhile,
Redundant scheduler keeps sending redundant packets which
results in lower goodput. At the moment of 15 seconds, one
path breaks down. The throughput of Round-Robin and AR&P
drops from 40 Mbps to about 15 Mbps while redundant
scheduler protects its throughput from a high packet loss
rate by sending redundant packets. Although the goodput of
AR&P also drops, it recovers quickly because AR-Scheduling
adaptively starts sending redundant packets on the subflow
with bad path conditions and packet loss does not degrade
the overall goodput. By this proactive action, AR&P recovers
much faster than Round-Robin when the path failure suddenly
occurs, while also retains higher goodput than Redundant
when subflows have good path conditions.
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Fig. 10. Performance of proposed scheduler when changing the path loss rate
and delay.

Fig. 10(b) shows another scenario in which the path condi-
tions of one path gets worse and worse for a relatively long

period until it becomes unavailable. Round-Robin and AR&P
aggregate bandwidth and outperform Redundant because both
paths are in good condition at the beginning. When one of
the paths gets worse and worse, the goodput of connections
using Round-Robin and AR&P starts to drop. AR-Scheduling
realizes that one of the paths is no longer satisfactory and starts
to send redundant packets on it for better performance at 12
s, while Round-Robin keeps sending new packets resulting in
a significant throughput decrease. Besides, Redundant is not
affected by the path failure. During the whole transmission,
AR&P scheduler is more adaptive to dynamic networks by
adjusting its policy according to path conditions.
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Fig. 11. Out-of-order packets.

Fig. 11 shows the out-of-order packets in asymmetric
network scenarios. We compare minRTT, and Round-Robin
with AR&P scheduler. In this experiment, both the bottlenecks
have the same bandwidth. RTT of subflow1 remains 50 ms,
while RTT of the other one increases from 50 ms to 250 ms in
different scenarios. When the two paths have the same RTT of
50 ms, the proposed scheduler creates a similar out-of-order
queue to minRTT and Round-Robin. However, when the RTT
of one path reaches 100 ms, we observe that both minRTT
and Round-Robin increase out-of-order queues by over 300%,
which is much longer than that of AR&P scheduler. When the
RTT of one path reaches 250 ms, which means that the two
paths are highly asymmetric in terms of RTT, AR&P scheduler
reduces the average out-of-order queue by 65% compared to
minRTT and Round-Robin.

To look further, Fig. 11(b) shows how the out-of-order
queues change during data transmission when the RTT of the
two paths is 150 ms and 50 ms, respectively. In the first 2
seconds, all of the schedulers create long out-of-order queues
because of startup and asynchronous subflow establishment.
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After 2 seconds, AR&P scheduler keeps the out-of-order queue
much shorter than minRTT and Round-Robin. We observe that
our scheduler empties the out-of-order queue before it gets too
long, which indicates that our scheduler effectively schedules
packets according to the arrival time of each packet. However,
minRTT and Round-Robin are not aware of the arrival time
of packets and thus create long out-of-order queues.

B. Experiments in Real Networks

We also deploy Linux kernels that support our scheme
in cloud servers to conduct some tests in real networks,
transmitting data from the implemented server in the cloud
to the lab-built client. We use different kinds of Wi-Fi links
(2.4GHz and 5GHz) and deploy our scheme in the rented cloud
servers in different regions to conduct some experiments. We
repeat 10-20 times of data download under different network
environments (10 for using MPTCP flows and 20 for using
TCP flows on different links). When we use the proposed
MPTCP, the compared TCP flow uses BBR. Otherwise, the
compared TCP flow uses NewReno.
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Fig. 12. Download data using 4G and Wi-Fi (2.4GHz).
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Fig. 13. Download data using 4G and Wi-Fi (5GHz).

We first show the performance measurements of using
different access technologies. Fig. 12 shows the throughput
performance using 4G and Wi-Fi (2.4GHz). In our test
environment, the bandwidth of the Wi-Fi (2.4GHz) link is
twice as fast as the 4G link. Moreover, the 4G link has a
higher link packet loss rate, which makes the transmission
not as stable as the Wi-Fi link. The boxes show the 25%-
75% of the download speed of each protocol and the lines
show the median download speed. MPTCP flows always have
a higher average speed than TCP flows, while also provides
less fluctuation of performance. Among them, the proposed
MPTCP scheme outperforms original MPTCP algorithms in
higher throughput. The overall throughput of the proposed
scheme is twice higher than that of the original MPTCP. At
the same time, the proposed scheme also achieves the goal of

fairness, i.e., the proposed MPTCP flow is no more aggressive
than the best single TCP BBR flow.

Fig. 13 shows the download speed using 4G and Wi-Fi
(5GHz). 5GHz Wi-Fi link has higher bandwidth but is not
as stable as the 2.4GHz link which has a higher random loss
rate. Compared with the original MPTCP, the proposed scheme
brings more advantages in this scenario. The throughput of our
scheme is almost 3 times higher than that of original MPTCP
algorithms.
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Fig. 14. Download data from different regions.
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Fig. 15. Average out-of-order packets in the real networks.

Moreover, we deploy our scheme on cloud servers in several
regions, where the paths suffer large RTT and random loss
rate. In this case, our scheme is more outstanding than others.
Fig. 14 shows the performance result. In this scenario, the
throughput of the original MPTCP is less than 0.2MB/s,
which is far less than the available bandwidth of devices’
interfaces. This is because large packet loss hinders the growth
of the congestion window, and the packets in the small
congestion window suffer from large RTT transmitted to the
receiver. However, wherever the server is, MPTCP with our
scheme achieves throughput over 10 times higher than that of
original MPTCP, showing the superiority of our scheme in the
networks with bad conditions.

Fig. 15 shows the average out-of-order packets in the
real networks. MPTCP server is deployed in two cloud
MPTCP servers of different regions. Our client establishes two
subflows through which the two servers access 4G and Wi-
Fi, respectively, and the RTT of the subflows using the two
accesses are shown in Fig. 15. In this experiment, our AR&P
scheduler keeps the out-of-order queue short, while minRTT
and Round-Robin schedulers create up to 5 times longer out-
of-order queue than AR&P does. When the difference between
the two subflows is getting larger, AR&P does not create a
longer out-of-order queue while the other two schedulers do
create more out-of-order packets.
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In summary, Coupled BBR and AR&P Scheduler make
MPTCP more feasible in real networks. With our proposed
schemes, MPTCP throughput can be improved by up to 2.5
times in normal wireless scenarios and more than 10 times
in other scenarios with large RTT and loss. Moreover, the
number of out-of-order packets can be reduced by 80% at
most in asymmetric scenarios.

C. Performance Simulation

We utilize a network topology shown in Fig. 16 to test
the performance of Coupled BBR and AR&P Scheduler. The
MPTCP connection includes three subflows, each of which
passes through a path with bandwidth of Bi on the bottleneck.
There is one TCP flow that passes through the same path of
each subflow. The link delay and random packet loss rate are
set to di and pi of each path i.

TCP
TCP

subflow1
subflow2

subflow3

TCP

TCP

TCP

TCP

Fig. 16. Topology of simulation.

By utilizing the bottleneck bandwidth detection method,
Coupled BBR provides high bandwidth utilization, especially
in lossy and long-delay networks. As shown in Fig. 17,
we compare Coupled BBR with LIA, BALIA, and OLIA
in different network scenarios. TCP BBR, TCP newReno
(B), (O), (L) are the background TCP flow on the MPTCP
Coupled BBR, BALIA, OLIA, LIA, respectively. We set
B1 = B2 = B3 = 100 Mbps, d1 = d2 = d3 = 20
ms and p1 = p2 = p3 = 0 − 0.5%, respectively. The
overall bandwidth resource of the network is 300 Mbps.
When the random loss rate is 0, both Coupled BBR and
other MPTCP congestion control algorithms can achieve high
bandwidth utilization. With the increase of random loss rate,
the throughput of Coupled BBR almost does not decline. The
throughput of other MPTCP congestion control algorithms
declines significantly. In Fig. 17(b), we set B1 = B2 =
B3 = 100 Mbps, d1 = d2 = d3 = 2 − 100 ms and
p1 = p2 = p3 = 0.05%, respectively. When the path
delay is low, the link random packet loss does not make a
great effect on the original congestion algorithms. With the
increase of path delay, the throughput of LIA, OLIA, BALIA
declines significantly, while Coupled BBR still achieves high
throughput and bandwidth utilization.

Fig. 18 shows the performance of Coupled BBR in ever-
changing networks. We set B1 = B2 = B3 = 100 Mbps, d1 =
d2 = d3 = 20 ms and p1 = p2 = p3 = 0.01% at beginning
of the transmission. During the transmission, p1, p2 and p3
linearly change to 1% from 10 s to 30 s. With the increase of
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Fig. 17. Performance in lossy network scenarios, (a) Random loss rate
changes, (b) Path delay changes.

path loss rate, the throughput of BALIA, OLIA, LIA decreases
significantly. Compare with them, Coupled BBR has always
maintained high throughput.
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Fig. 18. Real-time throughput of different algorithms in an ever-changing
lossy network scenario.

Fig. 19 shows the performance of AR&P Scheduler in
various networks. We change B1, B2, B3 from 10 to 100
Mbps, d1, d2, d3 from 1 to 100 ms and p1, p2, p3 from 0
to 5%. We randomly pick up 100 points in the parameter
space for simulation and analyze the simulation results. As
shown in Fig. 19(a), the throughput of Coupled BBR with
both minRTT and AR&P is much higher than that of BALIA,
OLIA, and LIA in random loss scenarios. Among them,
AR&P further improves the throughput based on Coupled
BBR. Compare with BALIA, OLIA and LIA using the same
scheduler minRTT, Coupled BBR with minRTT has much
higher out-of-order packets. Because the number of out-of-
order packets is related to throughput and Coupled BBR
significantly improves the throughput. AR&P scheduler further
improves the goodput and reduce the number of out-of-order
packets on the basis of Coupled BBR. Compare with BALIA,
OLIA and LIA with minRTT, Coupled BBR with AR&P gains
much higher goodput with the same low-level out-of-order
packets, which can be seen in Fig. 19(b).
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Fig. 19. Performance in various network scenarios, (a) Average goodput, (b)
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Fig. 20 shows the performance of AR&P Scheduler in an
ever-changing network, where OFO packets denote out-of-
ordered packets. We set B1 = B2 = B3 = 100 Mbps,
d1 = d2 = d3 = 20 ms and p1 = p2 = p3 = 0.01%
at beginning of the transmission. During the transmission,
B2, d2 and p2 change to 10 Mbps, 100 ms and 1% from
10 s to 15 s. B3, d3 and p3 change to 10 Mbps, 100 ms
and 1% from 20 s to 25 s. BALIA, OLIA, and LIA with
minRTT all experience low goodput when one of the paths is
changing. When the delay of one of the paths increases (after
10 s), their out-of-ordered packets also increase significantly.
Compare with them, Coupled BBR with minRTT improves
the goodput, while the number of out-of-ordered packets also
increases due to the high throughput. Coupled BBR with
AR&P further promotes the goodput and significantly reduce
out-of-ordered packets when path conditions change. When the
path conditions begin to change, P-Scheduling method helps
to schedule packets and reduces out-of-ordered packets. When
the path condition continues to deteriorate, AR-Scheduling
decides to send redundant packets on the subflow with bad
path conditions. Therefore the out-of-ordered packets are
further reduced.
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Fig. 20. Real-time goodput and out-of-ordered packets of different algorithms
in an ever-changing network scenario.

VII. RELATED WORK

Coupled congestion control algorithms: The basic goal of
coupled congestion control algorithms in MPTCP is to achieve
fairness with TCP flows, but it also needs to further achieve

additional goals such as congestion balance. Current coupled
congestion control algorithms, such as LIA [7], OLIA [32],
and BALIA [33] couple the congestion control algorithms on
different subflows by linking their increase function in AIMD
based on TCP NewReno. For every RTT on subflowi, coupled
congestion control algorithms increase the congestion window
wi by a parameter αi instead of 1 in NewReno. Thus in the
network with a certain loss rate, different speeds of window
increasing will lead to different overall throughput. However,
as BBR does not include the AIMD method, any AIMD-
based scheme is not suitable for developing MPTCP over BBR
congestion control.

Scheduling algorithms: Scheduling algorithms are mainly
designed for improving robustness, reducing the out-of-order
packets, or reducing latency. Based on the operating pat-
terns, they can be divided into several categories: 1) Simple
schedulers in Linux Kernel [26], which are Round-Robin,
minRTT, and Redundant. Round-Robin polls subflows and
sends packets in order. minRTT always sends packets on
the available subflow with the lowest RTT. Redundant sends
redundant packets to ensure high robustness and low latency.
2) Schedulers acting on paths. This kind of scheduler improves
MPTCP performance by controlling each path’s action [14],
[15], [34]. For example, Musher [14] controls the allocation
rate of data on each path to get better throughput. RAVEN
[15] mitigates tail latency by using redundant transmission
when confidence about network latency predictions is low. 3)
Schedulers acting on packets [4], [35]–[37]. These proposed
schedulers, like ECF [36], STMS [4], STTF [37], aim at
keeping low latency and reducing out-of-order packets in
asymmetric networks. They schedule packets with the larger
sequence number to the subflow with larger RTT so as to keep
packets delivery in order. However, existing scheduling algo-
rithms are based on traditional congestion control algorithms,
which in turn depends on the congestion window, and thus do
not work for Coupled BBR.

VIII. DISCUSSION

In this work, we study the fairness between MPTCP
Coupled BBR flows and TCP BBR flows. We consider a
network that uses BBR to control all the flows so that the
network is more stable and all the flows can get better
performance. A full BBR network provides more advantages
for developing higher performance transmission protocols in
the future. Moreover, in lossy networks, traditional loss-
based congestion control algorithms could not make good
use of the available bandwidth of the bottleneck, which
makes it meaningless to achieve fairness between BBR and
other algorithms in this case. Moreover, we address network
fairness. To be noted that, for bottleneck fairness, MPTCP
subflows sharing one bottleneck should be coupled to achieve
fairness with TCP flows in the same bottleneck, and it just
needs a bottleneck detection method for Coupled BBR. Then
our scheme can be easily adapted for it.

IX. CONCLUSION

In this work, we propose Coupled BBR and AR&P sched-
uler to improve the performance of MPTCP in lossy or
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ever-changing networks. With Coupled BBR, MPTCP not
only performs well in lossy circumstances but also balances
congestion among subflows and achieves fairness to TCP BBR
flows. AR&P scheduler further enhances MPTCP performance
in dynamic and asymmetric networks with two scheduling
methods to provide better self-adaptability and reduce the out-
of-order packets.
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