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Abstract—The recent spate of cyber attacks towards Internet of
Things (IoT) devices in smart homes calls for effective techniques
to understand, characterize, and unveil IoT device activities.
In this paper, we present a new system, named IoTAthena, to
unveil IoT device activities from raw network traffic consisting
of timestamped IP packets. IoTAthena characterizes each IoT
device activity using an activity signature consisting of an
ordered sequence of IP packets with inter-packet time intervals.
IoTAthena has two novel polynomial time algorithms, sigMatch
and actExtract. For any given signature, sigMatch can
capture all matches of the signature in the raw network traffic.
Using sigMatch as a subfunction, actExtract can accurately
unveil the sequence of various IoT device activities from the
raw network traffic. Using the network traffic of heterogeneous
IoT devices collected at the router of a real-world smart home
testbed and a public IoT dataset, we demonstrate that IoTAthena
is able to characterize and generate activity signatures of IoT
device activities and accurately unveil the sequence of IoT device
activities from raw network traffic.

Index Terms—Wireless networking, IP packets, network traffic
collection and analysis, time-sensitive subsequence matching,
polynomial time algorithms, unveiling IoT device activities.

1. INTRODUCTION

In today’s smart homes, various IoT devices can connect to
the Internet via home routers with wired cable connections
or wireless communications such as WiFi, Bluetooth, and
ZigBee. The proliferating IoT devices in smart homes bring
many innovative applications and services such as improved
home automation and safety, efficient energy, and connected
healthcare. However, the recent spate of cyber attacks and
threats [3, 7, 14, 19, 25, 30–32, 36, 46] towards a wide range
of IoT devices with flawed system designs and weak security
management calls for effective techniques to understand, char-
acterize, and unveil the detailed activities of heterogeneous IoT
devices, e.g., when and how a smart lock is opened.

In the research literature, there have been some prior studies
on characterizing behavioral patterns of IoT devices and
identifying IoT device types and activities using supervised
machine learning models or the simple request/reply pattern
matching [1, 5, 18, 23, 27, 35, 37, 39–41, 44]. However, little
effort has been devoted to the understanding and characteri-
zation of full and detailed signatures of IoT device activities
which shed light on when and how IoT devices communicate
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with cloud servers and smartphones for carrying out what
device activities.

This paper presents IoTAthena, a system to generate detailed
signatures of IoT device activities from IoT network traffic and
to unveil IoT device activities via time-sensitive subsequence
matching. IoTAthena first collects the background traffic of
IoT devices and the normal network traffic triggered by IoT
device activities with packet capturing tools on programmable
home routers. It then characterizes each IoT device activity
using an activity signature consisting of an ordered sequence
of IP packets with inter-packet time intervals1.

Our IoT device activity signature generation is inspired by
PingPong [37], which generates packet-level signatures of IoT
device activities in the form of abstracted packet-pairs with
ping/pong, i.e., request/reply, patterns. It has been demon-
strated [37] that many IoT device activities can be efficiently
captured with the use of ping/pong like signatures. However,
such short signatures have their limitations. For example, our
experiments of running the PingPong open source package
were unable to generate signatures of the WiFi and Bluetooth
locking or unlocking activities of August Lock, as well as the
autolocking activity. In contrast, IoTAthena’s detailed activity
signature carries crucial information for characterizing more
IoT device activities than [37] and differentiating IoT device
activities with overlapping packet pairs or packet sequences.

To unveil IoT device activities from network traffic logs,
IoTAthena relies on two novel algorithms, sigMatch and
actExtract. The sigMatch algorithm can effectively
capture all matches of a given activity signature from the
network traffic log in polynomial time. Using sigMatch
as a subfunction, the actExtract algorithm can accurately
unveil the sequence of IoT device activities from raw net-
work traffic logs, also in polynomial time. Our experimental
evaluations of IoTAthena were based on 16 IoT devices in a
real-world smart home environment, and a public IoT dataset
of 25 IoT devices [29]. Our experimental results showed that
IoTAthena can effectively generate the detailed signatures of
IoT device activities and accurately unveil future activities of
these IoT devices.

The main contributions of this paper are the following:
• We develop a systematic approach to programmatically

generate detailed signatures of IoT device activities con-
sisting of an ordered sequence of IP packets with inter-
packet time intervals.

1An inter-packet time interval is calculated from the timestamp difference
of two consecutive IP packets in the packet sequence.
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• We design two novel polynomial time algorithms,
sigMatch and actExtract, for capturing all matches
of a given IoT device activity signature and unveiling
activity sequences of all IoT devices from the network
traffic logs.

• We conduct extensive experiments using a smart home
testbed and a public IoT dataset [29] to demonstrate that
IoTAthena can accurately capture the activities of a wide
range of heterogeneous IoT devices.

The remainder of this paper is organized as follows. We
first discuss the related work in Section 2. In Section 3, we
present an overview of the IoTAthena system. In Section 4,
we describe how IoTAthena collects IoT network traffic,
and analyzes and characterizes the background traffic of IoT
devices. In Section 5, we formally define the IoT device
activity signatures, and describe the process of generating the
signature for each device activity. In Section 6, we present
the sigMatch and actExtract algorithms with theoretical
analysis. In Section 7, we present our experimental evaluation
results. Section 8 concludes the paper and outlines our future
work.

2. RELATED WORK

The recent growth and deployment of IoT devices in smart
homes have attracted the networking research community to
study the traffic characterization and behavioral fingerprinting
of IoT devices, and explore network traffic to discover IoT
devices’ types and activities. Most of the existing studies [11–
13, 16, 17, 21, 23, 29, 34, 39, 41, 43, 47] in IoT traffic
characterization and fingerprinting are interested in a wide
range of traffic features from TCP/IP protocols as well as
from IoT wireless communication channels. For example, [16]
utilizes the wireless radio propagation patterns of IoT devices
for secure authentication. [43, 47] explore the captured WiFi
signals in home network for applications of localization and
positioning. [39, 41], on the other hand, examine the home
network traffic at flow level to model and profile IoT devices.
These prior research provide critical insights for understanding
traffic patterns of heterogeneous IoT devices and identifying
IoT device models or types for IoT device discovery and
management, IoT application performance monitoring, and
vulnerability and security analysis.

In light of the recent IoT Botnets exploiting and control
thousands of vulnerable IoT devices [2, 3, 9, 10, 14, 20,
24, 26, 42], some research efforts have proposed innovative
methods of classifying IoT devices based on machine learning,
statistical inference, or passive traffic measurement [5, 23, 35].
For example, the IoTSentinel system [23] first extracts 23
traffic features of IoT network traffic, and subsequently builds
Random Forest classifiers to identify IoT device types. Sim-
ilarly, IoTSense [5] fingerprints the behaviors of IoT device
types with feature vectors from packet headers and payload,
and builds several machine learning classifiers for effectively
detecting IoT device types based on the trained behavioral
fingerprinting. The research in [35] first monitors a smart
IoT environment with various IoT devices for six months
for extensive IoT network traffic analysis, and then builds a
machine learning framework for classifying IoT device types.

As homeowners continue to deploy smart home IoT devices
such as smart locks and security cameras for mission-critical
applications, accurately identifying IoT device activities via
supervised machine learning models [1, 27] and deterministic
inference [37, 44] becomes an urgent research problem. For
example, HomeSnitch [27] constructs bidirectional application
data unit exchanges for representing IoT application behaviors
and applies supervised machine learning classifiers to classify
IoT application behaviors and identifying unknown behav-
iors. Similarly, Peek-a-Boo [1] demonstrates the feasibility of
identifying the types, states, and IoT devices’ activities via
machine learning techniques from an attacker’s perspective.
The closest work to ours is PingPong [37], which explores
the sequential and directional “ping/pong” behavioral patterns
between cloud servers and IoT devices or between cloud
servers and smartphones. The experiments in [37] have shown
that the simple ping/pong packet-pairs with payload size and
traffic directions can effectively detect many IoT devices’
activities. HoMonit [44], another work of deterministically
detecting IoT device activity, monitors encrypted wireless
traffic of some home apps and infers smart app activities based
on the deterministic finite automaton (DFA) model of smart
app behavior and wireless side-channel analysis. IoTGaze [12]
also builds up a system to identify IoT device activities using
the sniffed wireless traffic.

Inspired and motivated by these studies on identifying IoT
device types and/or activities, our proposed IoTAthena system
is focused on understanding traffic signatures of IoT device
activities and accurately extracting device activities from IoT
network traffic. The insights from the unveiled IoT device
activities have a broad range of applications such as anomaly
detection, e.g., an unauthorized user is watching the video
stream of the surveillance camera, IoT device malfunction
detection, e.g., a smart plug shows two consecutive on activi-
ties, and smart home safety, e.g., the smart lock was unlocked
remotely by an unauthorized user.

Note that our work is significantly different from [5, 23, 35]
in the way that our objective is generating signatures for
concrete IoT device activities such as on or off activities of a
smart plug and unveiling these activities from network traffic,
instead of identifying IoT device models or types. Different
from machine learning based solutions [1, 27], IoTAthena
adopts a white-box approach to programmatically generate
activity signatures of IoT device activities consisting of or-
dered sequences of IP data packets with relative timestamps.
IoTAthena’s signature generation module is inspired by Ping-
Pong [37], but it generates a full signature for each IoT device
activity and introduces a novel time-sensitive subsequence
matching approach for unveiling IoT device activities from
new IoT network traffic logs.

3. IOTATHENA SYSTEM OVERVIEW

Developing effective techniques to understand and report IoT
device activities, e.g., the smart lock of the home’s main
entrance is unlocked remotely with a smartphone app, is
crucial for ensuring the physical and property safety of these
devices’ homeowners. Our real-world experiments with Au-
gust Lock and other IoT devices demonstrated the feasibility
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Fig. 1. Overall architecture of the IoTAthena system for unveiling IoT device activities from IoT network traffic.

of developing an automated system to learn and generate
signatures of IoT device activities and use them for unveiling
IoT device activities from network traffic logs. Such a system
is urgently needed for understanding what is happening to
IoT devices in millions of smart homes and for detecting
suspicious and unauthorized behaviors towards critical home
devices.

In this paper, we propose a new system, named IoTAthena,
to automatically and accurately unveil IoT device activities
from smart home network traffic logs. Fig. 1 illustrates the
overall architecture of IoTAthena, which includes four key
system modules: i) IoT network traffic analysis, ii) IoT device
activity signature generation, iii) time-sensitive subsequence
matching, and iv) IoT device activity extraction.

The IoT network traffic analysis module takes IoT network
traffic during the intentionally “silent” period, and charac-
terizes background network traffic for each IoT device. The
IoT device activity signature generation module collects the
corresponding network traffic of each IoT device activity by
intentionally triggering the activity and collecting the traffic.
The collected IoT network traffic along with the labelled
activity logs serve as the ground truth for generating the
signature of each IoT device activity consisting of an ordered
sequence of IP packets with inter-packet time intervals. The
time-sensitive subsequence matching module relies on the
sigMatch algorithm to capture all matches of each IoT
device activity signature in the network traffic log, while the
IoT device activity extraction module relies on actExtract
to unveil the sequence of IoT device activities from the
network traffic log.

In summary, IoTAthena adopts a white-box approach to
first generate signatures of IoT device activities consisting of
ordered sequences of IP packets with inter-packet time interval
information. Subsequently, IoTAthena applies efficient match-
ing algorithms for deterministically unveiling the sequence of
IoT device activities from the network traffic log, unlike black-
box machine learning classification models [1, 5, 23, 35].

4. NETWORK TRAFFIC COLLECTION AND ANALYSIS

Network traffic of IoT devices embeds rich information on
device types and their behavioral patterns [29, 35]. In this
section, we describe how to collect and analyze IoT network
traffic in order to characterize and generate signatures of IoT
device activities.

A. IoT Network Traffic Collection

Fig. 2 illustrates the data flows initiated from an IoT device
or destined to an IoT device in a smart home environment.

For clarity, we use two IoT devices as examples: a smart lock
and a security camera. A user usually interacts with an IoT
device using the device’s companion app on the smartphone
in the home or outside the home, e.g., in the office or on
the road. The app first communicates with the cloud server
which in turn generates traffic between the cloud server and
the device, as illustrated by the solid red line between the
smart lock and the cloud server. Sometimes, the smartphone
directly communicates with the device without involving the
cloud server, such as streaming request on the security camera,
illustrated by the solid green line between the smart phone and
the security camera.

Home Network

Cloud Server

Home Router

Smart Lock

Security Camera

Smartphone

Smartphone

WAN

Phone-device communication
Cloud initiated communication
Device initiated communication
background communication

Fig. 2. Illustration of data flows initiated from or destined to IoT devices,
using smart lock and security camera as examples.

The user can also manually operate the device in the
traditional way, such as locking the smart lock manually. This
action causes the device to update its status to the cloud
server immediately following the action. In addition, the user
can communicate directly with the device locally through
a non-WiFi communication channel, such as Bluetooth or
ultrawideband (UWB) when the user is in the vicinity of the
device. This action also causes device initiated status updates.
Furthermore, automatic device operations such as the smart
lock’s autolocking function also introduce status update traffic.
These types of device initiated communications are illustrated
by the dashed red line. There also exists traffic introduced by
device background operations such as device firmware update
checks. We use the dotted red line between the smart lock and
the cloud server to illustrate these data flows.

IoTAthena collects the network traffic at the programmable
home router, which enables the capture of incoming and outgo-
ing packets of all above mentioned device-related operations.
The smart home router is a desirable centralized location for
data collection, considering its switching and routing function,
sufficient computational and processing capacities, and the de-
sign transparency to IoT devices and apps. In our experiments,
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we used Linksys WRT1900AC WiFi home routers which run
the open-source Linux-based OpenWrt operating system for
network traffic collection. The data processing and analysis
were performed offline in this study. One of our future work is
designing and implementing a prototype system on commodity
home routers to evaluate the real-time feasibility of IoTAthena
for unveiling IoT device activities on the fly.

B. IoT Network Traffic Analysis

The network traffic collected at the home router can be clas-
sified into two parts: the first part consists of traffic between
the IoT devices and the cloud servers, while the second part
consists of internal LAN traffic such as address resolution
protocol (ARP) requests and simple service discovery protocol
(SSDP) broadcast packets. In order to separate the logs of an
individual IoT device from the mixed home network traffic,
IoTAthena first identifies each device’s unique IP address
via the mapping of its media access control (MAC) address
and host name in the dynamic host configuration protocol
(DHCP) packets. It subsequently uses the device IP address
as the unique cluster key to separate IoT network traffic into
individual traffic clusters to simplify further analysis.

We carefully studied the network traffic within each indi-
vidual traffic cluster of an IoT device. We can clearly observe
the network traffic one would anticipate for normal IoT device
activities, e.g., users issuing locking or unlocking commands
for August Lock via the smartphone app. Surprisingly, we also
discovered a significant amount of network traffic when there
is no human-triggered or environment-triggered activity. We
use the term background traffic to denote such network traffic,
i.e., network traffic not triggered by human or environment.
In order to gain a thorough understanding of IoT background
traffic, we left the devices in our controlled smart home
environment without any human interactions for one week and
consider the network traffic cluster of each IoT device during
this “silent” period as background traffic. By separating IP
data packets based on the destination (and source) ports of the
outgoing (and incoming) traffic, we observed that these IoT
devices typically exchange messages with the remote cloud
servers on the well-known application ports such as 22/TCP
(SSH), 53/UDP (DNS), 80/TCP (HTTP), 123/UDP (NTP),
5353/UDP (mDNS). This observation leads us to classify
IoT background traffic into three categories: management and
service, signal and update, and random noise.

The management and service traffic is mainly used to
manage and maintain the devices, e.g., periodical time syn-
chronizations with NTP servers. The signal and update traffic
corresponds to keep-alive signals and regular firewall update
checks between IoT devices and cloud servers. The random
noise traffic is mostly generated by other IoT or non-IoT
devices in the local home network for a variety of reasons, e.g.,
ARP requests, SSDP broadcasts, and multicast DNS (mDNS)
traffic from Apple Bonjour protocol for automatic device and
service discovery.

The background traffic analysis not only removes unnec-
essary noise for characterizing and generating signatures of
IoT device activities, but also sheds light on the potential

vulnerabilities of the protocol stacks of mission-critical IoT
devices in millions of smart homes. For example, our analysis
discovered the usage of non-encrypted and insecure Telnet
and HTTP sessions between some camera devices and cloud
servers, for logins and firmware update checks. Discovering
and mitigating security weaknesses of IoT devices is beyond
the scope of this paper.

5. IOT DEVICE ACTIVITY SIGNATURES

Consistent with the findings of PingPong [37], we observed
repetitive network packet sequences that correspond to re-
peated device activities in the network traffic collected at
the router of the smart home network. We also observed
certain August Lock activities resulting packet sequences that
are challenging for PingPong to recognize. Fig. 3 illustrates
such an example. The Bluetooth (un)locking2 activity’s packet
sequence (3 pairs as illustrated in Fig. 3(b)) is a subset
of the WiFi (un)locking activity’s packet sequence (4 pairs
as illustrated in Fig. 3(a)). The clustering of re-occurring
packet pairs approach in PingPong cannot distinguish WiFi
(un)locking from Bluetooth (un)locking. In fact, it is difficult
to distinguish these two activities in the network traffic solely
based on request/reply patterns, which leads us to consider
more information (the full detailed packet sequence) and inter-
packet time intervals to characterize IoT device activities. The
time intervals between consecutive packets provide critical
information to effectively and accurately differentiate IoT
device activities such as those in Fig. 3 that share overlapping
packet sequences and happen very closely in time.

A. Inter-Packet Time Interval Measurement

Because IoTAthena collects network traffic at the home router,
the inter-packet time interval is essentially the round-trip time
(RTT) between the home router and IoT devices in the smart
home plus the processing time at the device (LAN). The time
interval could also be the RTT between the home router and
cloud servers across the Internet plus the processing time at
the cloud server (WAN).

Fig. 4 illustrates the time interval between the first and
second packets (left plot), and the time interval between the
second and third packets (right plot), of 1, 200 repeated on
activities of TP-Link Plug over a 24-hour span. We observe
that the inter-packet time intervals exhibit stable and consistent
patterns, with small variances. However, the time interval
between one pair of consecutive packets may significantly
differ from that between another pair of consecutive packets.
Specifically, the interval between the first and second packets
has a mean (𝜇) of 76.73𝑚𝑠 and a standard deviation (𝜎) of
0.003995𝑚𝑠, while the interval between the second and third
packets has a mean (𝜇) of 0.02𝑚𝑠 and a standard deviation (𝜎)

2The locking activity and the unlocking activity exhibit the same packet
sequences and inter-packet time intervals because of the simple lock/unlock
state transitions. The encrypted application data prevents us for further
differentiating these two activities with network traffic only. We generate a
unique signature for each indistinguishable activity group. For example, we
use (un)locking for short to denote either the locking activity or the
unlocking activity. Similarly, we use on or off to denote either the on
activity or the off activity.
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Fig. 4. Inter-packet time intervals: large values in WAN (upper plot) vs small
values in LAN (lower plot).

of 0.000003𝑚𝑠 for TP-Link Plug’s on activity. The unstable
wireless channel between the IoT devices and the home router
could result in packet loss and retransmission which contribute
to the fluctuation in the LAN inter-packet time intervals. The
uncertain number of retransmissions in the MAC layer affects
the inter-packet time intervals in our collected traffic log.
However, compared with the short wireless transmission delay,
the local processing time at the IoT device still dominates
the LAN inter-packet time intervals, as we observe from the
right plot in Fig. 4. These key observations inspire us to
include inter-packet time intervals as an important component
in characterizing the signatures of IoT device activities.

B. IoT Device Activity Signature Definition

A network data packet 𝑝 collected at the home router is an
8-tuple, where the first through eighth fields are timestamp,
IoT device internal IP address, canonical remote cloud server
name, remote application port, protocol, traffic direction,
packet length, and application-layer data, respectively. It is
important to note that each TCP/IP data packet carries a variety
of traffic features including those in the 8-tuple. However,
this study only selects the features that provide additional
information on identifying and differentiating IoT device ac-
tivities, while skipping the features, e.g., Time to Live (TTL),

sequence and acknowledgement numbers with redundant or
little contributions towards device activity identification.

We use 𝑝.𝑡 to denote the timestamp of packet 𝑝, and use
𝑝 to denote the 7-tuple obtained by deleting the first field
(timestamp) in 𝑝. We call 𝑝 the base packet of packet 𝑝.

Definition 1: The signature of an IoT device activ-
ity is given by an ordered sequence of 𝑛 base packets
(𝑞1, 𝑞2, . . . , 𝑞𝑛), together with an ordered sequence of 𝑛 − 1
inter-packet time intervals (𝜏1, 𝜏2, . . . , 𝜏𝑛−1), where 𝜏𝑗 > 0
is the time interval between the 𝑗 th packet and the 𝑗 + 1th
packet, 𝑗 = 1, 2, . . . , 𝑛 − 1. The number of base packets,
𝑛, in each device activity signature is determined by the
observed TCP/IP data packets triggered by the activity minus
the protocol-specific packets, e.g., TCP three-way handshake,
and the regular heart-beat signals between the device and the
remote cloud server. □

Instead of using (𝑞1, 𝑞2, . . . , 𝑞𝑛) and (𝜏1, 𝜏2, . . . , 𝜏𝑛−1) to
represent a signature, we can equivalently represent the same
signature using a sequence of 𝑛 packets (𝜌1, 𝜌2, . . . , 𝜌𝑛),
where 𝜌̂ 𝑗 = 𝑞 𝑗 for 𝑗 = 1, 2, . . . , 𝑛 and 𝜌 𝑗+1.𝑡 − 𝜌 𝑗 .𝑡 = 𝜏𝑗
for 𝑗 = 1, 2, . . . , 𝑛− 1. In this representation, the time interval
between the 𝑗 th packet and the 𝑗 +1th packet can be uniquely
computed by 𝜏𝑗 = 𝜌 𝑗+1.𝑡 − 𝜌 𝑗 .𝑡.

The signature of an IoT device activity is a constant, as de-
fined in Definition 1. The above alternative representation of
the signature, however, does not look like a constant in format.
For example, for any given real number 𝑐, (𝑝1, 𝑝2, . . . , 𝑝𝑛) and
(𝜌1, 𝜌2, . . . , 𝜌𝑛) denote exactly the same signature, provided
that 𝑝̂ 𝑗 = 𝜌̂ 𝑗 , 𝑝 𝑗 .𝑡 = 𝜌 𝑗 .𝑡 + 𝑐, for 𝑗 = 1, 2, . . . , 𝑛. Since
(𝑝1, 𝑝2, . . . , 𝑝𝑛) and (𝜌1, 𝜌2, . . . , 𝜌𝑛) define exactly the same
sequence of 𝑛 base packets ( 𝑝̂1, 𝑝̂2, . . . , 𝑝̂𝑛) = (𝜌1, 𝜌2, . . . , 𝜌̂𝑛)
and exactly the same sequence of 𝑛 − 1 inter-packet time
intervals (𝑝2.𝑡 − 𝑝1.𝑡, 𝑝3.𝑡 − 𝑝2.𝑡, . . . , 𝑝𝑛.𝑡 − 𝑝𝑛−1.𝑡) = (𝜌2.𝑡 −
𝜌1.𝑡, 𝜌3.𝑡− 𝜌2.𝑡, . . . , 𝜌𝑛.𝑡− 𝜌𝑛−1.𝑡), we can use this alternative
representation without losing any accuracy.

Given the above discussions, we will denote a signature of
an IoT device activity using an ordered sequence of packets
(𝑞1, 𝑞2, . . . , 𝑞𝑛), where the timestamp fields are only used to
compute the inter-packet time intervals 𝜏𝑗 = 𝑞 𝑗+1.𝑡 − 𝑞 𝑗 .𝑡. For
this reason, we also call the timestamp fields in a signature
relative timestamps. We set 𝑞1.𝑡 to 0 for simplicity.



6

C. Automated Signature Generation

Towards automatically generating activity signatures of IoT
device activities, we first follow the same practice as [45] to
compile a complete list of any given IoT device’s activities
from the AndroidManifest.xml file of the device’s companion
app. We then write scripts using command-line tool and
scripting feature in Android Debug Bridge (ADB) to automate
the user interactions with IoT devices such as turning on/off
Philips Hue and (un)locking of August Lock. For all IoT
devices in our lab, we trigger each of their activities 100
times3 in order to remove randomness and gain statistically
meaningful understanding of the activity packet sequence. The
time interval between two consecutive triggers of the same
activity was a random number in the range [3𝑠, 60𝑠]. Here
we set the minimum 3-seconds time interval between two
triggers to prevent the smartphone apps from freezing, i.e.,
becoming unresponsive, due to rapid back-to-back activity
triggerings. The network traffic captured by IoTAthena during
these “active” period provides the ground truth of activity
signatures of IoT device activity.

Filtering the background traffic described in Section 4-B,
which happens in parallel with the device activity, leads to
an ordered sequence of timestamped IP packets exchanged
between IoT devices and the cloud servers. Each packet in
the sequence carries a variety of traffic features such as the
timestamp of each packet, local IP address and port number
of the IoT device, remote IP address and port number of the
cloud server, protocol, packet length, and the actual application
payload of IoT applications which are mostly encrypted for
security and privacy reasons. For each packet, we continue
to remove features with random and dynamic values due
to the protocol designs, e.g., the random local port number
at IoT devices in TCP connections with cloud servers and
TCP sequence and acknowledge numbers. In addition, we
transform certain traffic features to retain the stable values,
e.g., converting dynamic IP addresses of load-balanced cloud
servers to the canonical remote cloud server names.

The inter-packet time interval 𝜏𝑗 between the 𝑗 th packet
and the 𝑗 +1th packet in the signature is set to the mean (over
the 100 tries) of the inter-packet time intervals. To simplify
notations, we set 𝑞1.𝑡 to 0, and set 𝑞 𝑗+1.𝑡 = 𝑞 𝑗 .𝑡 + 𝜏𝑗 , 𝑗 =

1, 2, . . . , 𝑛.
TABLE 1 illustrates the signatures for various activities of

the August Lock4. Note that we have used the alternative
representation of signatures. The signature shown in Fig. 3(a)
corresponds to the lower-right box in TABLE 1. The sig-
nature shown in Fig. 3(b) corresponds to the lower-left box
in TABLE 1. While the sequence of base packets in the
signature for Bluetooth (un)locking (illustrated in Fig. 3(b))
is a subset of the sequence of base packets in the signature
for WiFi (un)locking (illustrated in Fig. 3(a)), the additional
information embedded in the inter-packet time intervals makes
it possible to distinguish these two activities. With the aid
of additional information on inter-packet time intervals, we

3This could be replaced by any reasonably large number.
4In our experiments we noticed firmware updates of IoT devices might

cause slight changes on the activity signatures.

can distinguish these two activities from network traffic logs,
which are difficult to distinguish using the base packets only.

6. ALGORITHMS FOR UNVEILING IOT DEVICE ACTIVITIES
FROM NETWORK TRAFFIC

Having discussed network traffic in Section 4 and device
activity signatures in Section 5, we are now ready to present
our algorithms for unveiling IoT device activities from network
traffic logs. In Section 6-A, we formally define the IoT activity
signature matching problem and the IoT activity extraction
problem. In Section 6-B, we present the sigMatch algorithm
for identifying all matches of a given signature in the network
traffic log. In Section 6-C, we present the actExtract
algorithm for unveiling the sequence of activities of an IoT
device from the network traffic log. In Section 6-D, we discuss
the limitations and extensions of our algorithms.

A. Problem Formulation

As discussed in Section 4, an IoT network traffic log (denoted
by L) is an ordered sequence of packets (𝑝1, 𝑝2, . . . , 𝑝𝑚) with
increasing timestamps (i.e., 𝑝𝑖′ .𝑡 < 𝑝𝑖′′ .𝑡 for 𝑖′ < 𝑖′′). As dis-
cussed in Section 5, a signature of an IoT device activity (de-
noted by S) is an ordered sequence of packets (𝑞1, 𝑞2, . . . , 𝑞𝑛)
with increasing relative timestamps (i.e., 𝑞 𝑗′ .𝑡 < 𝑞 𝑗′′ .𝑡 for
𝑗 ′ < 𝑗 ′′). Recall that 𝑝 and 𝑞 denote the 7-tuple obtained by
deleting the timestamp in 𝑝 and the relative timestamp in 𝑞,
respectively. A signature set of an IoT device (denoted by SS)
is a set of distinct signatures {S1, S2, . . . , S𝐾 }, one signature
per activity of the device. For ease of presentation, we will
use activity and signature interchangeably in the rest of the
paper.

In light of the end-to-end network latency variations on the
Internet [8, 15, 28], we allow an inter-packet time interval
tolerance 𝜖 𝑗 > 0 as the “safety margin” for the measurement
of 𝑞 𝑗+1.𝑡 − 𝑞 𝑗 .𝑡 when trying to find a match of a signature in
the network log.

Let 𝑗 satisfy 1 < 𝑗 ≤ 𝑛 and 𝛿 > 0 be a given tolerance. Let
𝑖′ and 𝑖′′ satisfy 1 ≤ 𝑖′ < 𝑖′′ ≤ 𝑚. We say that (𝑝𝑖′ , 𝑝𝑖′′) is a
𝛿-valid match of (𝑞 𝑗−1, 𝑞 𝑗 ), if

1) 𝑝̂𝑖′ = 𝑞 𝑗−1, 𝑝𝑖′′ = 𝑞 𝑗 ;
2) | (𝑝𝑖′′ .𝑡 − 𝑝𝑖′ .𝑡) − (𝑞 𝑗 .𝑡 − 𝑞 𝑗−1.𝑡) | ≤ 𝛿.
Let S = (𝑞1, 𝑞2, . . . , 𝑞𝑛) be a signature. Let 𝜖 = (𝜖1, 𝜖2, . . . ,

𝜖𝑛−1) be the matching tolerance vector, where 𝜖 𝑗 is the toler-
ance for the matching of (𝑞 𝑗 , 𝑞 𝑗+1). Let (𝑙 [1], 𝑙 [2], . . . , 𝑙 [𝑛])
be an increasing sequence of integers indicating the index
of the location of a packet in the network log. We say that
(𝑝𝑙 [1] , 𝑝𝑙 [2] , . . . , 𝑝𝑙 [𝑛]) is an 𝜖-valid match of signature S in
log L, if (𝑝𝑙 [ 𝑗 ] , 𝑝𝑙 [ 𝑗+1]) is an 𝜖 𝑗 -valid match of (𝑞 𝑗 , 𝑞 𝑗+1), for
𝑗 = 1, 2, . . . , 𝑛 − 1.

We study the following two related problems:
IoT activity signature matching: Given network traffic log
L, signature S, and tolerance vector 𝜖 for S, identify all 𝜖-valid
matches of signature S in log L.

IoT device activity extraction: Given network traffic log
L and signature set SS, find a sequence of IoT activities
A1,A2, . . ., whose execution leads to the network traffic log
L.
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TABLE 1
ACTIVITY SIGNATURES OF AUGUST LOCK ACTIVITIES.

Activity Signature Activity Signature

O
pe

ni
ng

M
ob

ile
A

pp
(1

2
pa

ck
et

s)

0.000s lock:49157 → rbs.august.com:443 637B
0.132s lock:49157 → rbs.august.com:443 221B
0.204s rbs.august.com:443 → lock:49157 237B
0.209s lock:49157 → rbs.august.com:443 637B
0.327s lock:49157 → rbs.august.com:443 237B
0.526s rbs.august.com:443 → lock:49157 237B
0.602s lock:49157 → rbs.august.com:443 637B
0.723s lock:49157 → rbs.august.com:443 237B
0.823s rbs.august.com:443 → lock:49157 237B
1.116s lock:49157 → rbs.august.com:443 637B
1.205s lock:49157 → rbs.august.com:443 221B
1.251s rbs.august.com:443 → lock:49157 237B

M
an

ua
l

(U
n)

L
oc

ki
ng

(2
1

pa
ck

et
s)

0.000s lock:49157 → rbs.august.com:443 637B
0.088s lock:49157 → rbs.august.com:443 205B
0.134s rbs.august.com:443 → lock:49157 237B
0.441s lock:49157 → rbs.august.com:443 637B
0.526s lock:49157 → rbs.august.com:443 221B
0.571s rbs.august.com:443 → lock:49157 237B
0.581s lock:49157 → rbs.august.com:443 637B
0.666s lock:49157 → rbs.august.com:443 237B
0.712s rbs.august.com:443 → lock:49157 237B
0.870s lock:49157 → rbs.august.com:443 637B
0.954s lock:49157 → rbs.august.com:443 237B
1.001s rbs.august.com:443 → lock:49157 237B
1.078s lock:49157 → rbs.august.com:443 637B
1.169s lock:49157 → rbs.august.com:443 221B
1.214s rbs.august.com:443 → lock:49157 237B
1.321s lock:49157 → rbs.august.com:443 637B
1.410s lock:49157 → rbs.august.com:443 221B
1.473s rbs.august.com:443 → lock:49157 237B
1.559s lock:49157 → rbs.august.com:443 637B
1.659s lock:49157 → rbs.august.com:443 221B
1.707s rbs.august.com:443 → lock:49157 237B

A
ut

ol
oc

ki
ng

(1
5

pa
ck

et
s)

0.000s lock:49157 → rbs.august.com:443 637B
0.086s lock:49157 → rbs.august.com:443 221B
0.129s rbs.august.com:443 → lock:49157 237B
0.240s lock:49157 → rbs.august.com:443 637B
0.329s lock:49157 → rbs.august.com:443 221B
0.373s rbs.august.com:443 → lock:49157 237B
0.990s lock:49157 → rbs.august.com:443 637B
1.084s lock:49157 → rbs.august.com:443 221B
1.127s rbs.august.com:443 → lock:49157 237B
1.277s lock:49157 → rbs.august.com:443 637B
1.366s lock:49157 → rbs.august.com:443 221B
1.410s rbs.august.com:443 → lock:49157 237B
1.549s lock:49157 → rbs.august.com:443 637B
1.640s lock:49157 → rbs.august.com:443 221B
1.679s rbs.august.com:443 → lock:49157 237B

W
iF

i
(U

n)
L

oc
ki

ng
(8

pa
ck

et
s)

0.000s rbs.august.com:443 → lock:49156 413B
0.008s lock:49156 → rbs.august.com:443 605B
0.254s rbs.august.com:443 → lock:49156 413B
0.262s lock:49156 → rbs.august.com:443 605B
1.426s rbs.august.com:443 → lock:49156 413B
1.433s lock:49156 → rbs.august.com:443 605B
1.670s rbs.august.com:443 → lock:49156 413B
1.678s lock:49156 → rbs.august.com:443 605B

B
lu

et
oo

th
(U

n)
L

oc
ki

ng

0.000s rbs.august.com:443 → lock:49156 413B
0.016s lock:49156 → rbs.august.com:443 605B
1.083s rbs.august.com:443 → lock:49156 413B
1.098s lock:49156 → rbs.august.com:443 605B
1.379s rbs.august.com:443 → lock:49156 413B
1.395s lock:49156 → rbs.august.com:443 605B

B. Signature Matching via Time Sensitive Subsequence Match-
ing

The IoT activity signature matching problem is different from
the traditional subsequence matching problem [22] and the
longest common subsequence problem [4, 6] due to the inter-
packet time interval constraint. The matching problem with
such constraints cannot be solved via the simple adjustment of
existing algorithms. We solve the signature matching problem
using a time-sensitive subsequence matching approach, called
sigMatch, as presented in Algorithm 1.

For a given network traffic log L = (𝑝1, 𝑝2, . . . , 𝑝𝑚) and
signature S = (𝑞1, 𝑞2, . . . , 𝑞𝑛), together with a inter-packet
time interval tolerance vector 𝜖 , we compute a DAG 𝐺LS =

(𝑉LS, 𝐸LS) that captures all 𝜖-valid matches of signature S in
log L. The vertex set 𝑉LS contains vertices in the form of 𝑣𝑖, 𝑗 ,
where 𝑝𝑖 is a potential match of 𝑞 𝑗 . The edge set 𝐸LS contains
directed edges in the form of (𝑣𝑖, 𝑗 , 𝑣𝑘, 𝑗−1), where (𝑝𝑘 , 𝑝𝑖) is
an 𝜖 𝑗−1-valid match of (𝑞 𝑗−1, 𝑞 𝑗 ) for 1 ≤ 𝑘 ≤ 𝑖 − 1, and there
is a directed path from vertex 𝑣𝑖, 𝑗 to a vertex 𝑣𝑖′,1 ∈ 𝑉LS (for
some 𝑖′ ≤ 𝑖 − 𝑗 + 1).

If 𝑝𝑖 ≠ 𝑞 𝑗 , vertex 𝑣𝑖, 𝑗 does not exist. If 𝑝𝑖 = 𝑞 𝑗 , vertex
𝑣𝑖, 𝑗 may exist. Each edge has the form (𝑣𝑖, 𝑗 , 𝑣𝑘, 𝑗−1) for some
𝑘 < 𝑖. Hence we have |𝑉LS | ≤ 𝑚𝑛 and |𝐸LS | ≤ 𝑚(𝑚−1) (𝑛−1)

2 .
In Line 1 of Algorithm 1, both 𝑉LS and 𝐸LS are initialized

to ∅. The algorithm then populates the vertex set and the edge
set while looping over the packets 𝑝1, 𝑝2, . . . , 𝑝𝑚. For each
𝑖, the algorithm loops over the packets 𝑞1, 𝑞2, . . . , 𝑞𝑛. When

Algorithm 1: sigMatch(L, S, 𝜖)
Input: Network traffic log L = (𝑝1, 𝑝2, . . . , 𝑝𝑚),

Signature S = (𝑞1, 𝑞2, . . . , 𝑞𝑛), tolerance vector
𝜖 = (𝜖1, 𝜖2, . . . , 𝜖𝑛−1).

Output: A DAG 𝐺LS = (𝑉LS, 𝐸LS) that captures all
𝜖-valid matches of signature S in L.

1 𝑉LS ← ∅; 𝐸LS ← ∅;
2 for 𝑖 := 1 to 𝑚 do
3 if 𝑝𝑖 == 𝑞1 then
4 𝑉LS ← 𝑉LS ∪ {𝑣𝑖,1};
5 for 𝑗 := 2 to 𝑛 do
6 for 𝑘 := 1 to 𝑖 − 1 do
7 if 𝑣𝑘, 𝑗−1 ∈ 𝑉LS and (𝑝𝑘 , 𝑝𝑖) is an

𝜖 𝑗−1-valid match of (𝑞 𝑗−1, 𝑞 𝑗 ) then
8 𝑉LS ← 𝑉LS ∪ {𝑣𝑖, 𝑗 };
9 𝐸LS ← 𝐸LS ∪ {(𝑣𝑖, 𝑗 , 𝑣𝑘, 𝑗−1)};

10 output DAG 𝐺LS.

𝑝𝑖 = 𝑞1, 𝑣𝑖,1 is a vertex in the DAG. For 𝑗 = 2, 3, . . . , 𝑛, 𝑣𝑖, 𝑗
is a vertex if and only if 𝑝𝑖 = 𝑞 𝑗 and (𝑝𝑘 , 𝑝𝑖) is an 𝜖 𝑗−1-valid
match of (𝑞 𝑗−1, 𝑞 𝑗 ) for some 𝑘 < 𝑖. In this case, (𝑣𝑖, 𝑗 , 𝑣𝑘, 𝑗−1)
is an edge in the DAG.

We use Fig. 5 to illustrate a running example of sigMatch.
The goal is to identify all 𝜖-valid matches of signature
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Fig. 5. Running example of sigMatch: row index corresponds to the traffic
log, column index corresponds to the signature.

S = (𝑞1, 𝑞2, 𝑞3) in log L = (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8)
with tolerance vector 𝜖 = (1, 1). In this example, we have
𝑝̂1 = 𝑝̂3 = 𝑝̂4 = 𝑞1, denoted by the hexagon shape; we also
have 𝑝̂2 = 𝑝̂5 = 𝑝̂6 = 𝑝̂7 = 𝑝̂8 = 𝑞2 = 𝑝̂3, denoted by the
square shape. The timestamps (for traffic log) and relative
timestamps (for signature) are inside the corresponding shape.

We start from 𝑝1. Since 𝑝̂1 = 𝑞1, vertex 𝑣1,1 is added to
𝑉LS; Then we move to 𝑝2. Since 𝑝̂2 = 𝑞2, 𝑣1,1 ∈ 𝑉𝐿𝑆 , and
| (𝑝2.𝑡 − 𝑝1.𝑡) − (𝑞2.𝑡 − 𝑞1.𝑡) | = | (38−35) − (4−0) | ≤ 1, vertex
𝑣2,2 is added to 𝑉LS and directed edge (𝑣2,2, 𝑣1,1) is added to
𝐸LS. Similarly, vertices 𝑣3,1 and 𝑣4,1 are added to 𝑉LS. Next,
we pay attention to the row corresponding to 𝑝5. We found
𝑝̂5 = 𝑞2. For 𝑘 = 1, we found 𝑣1,1 ∈ 𝑉LS, but the time interval
does not match. For 𝑘 = 3, we found 𝑣3,1 ∈ 𝑉LS, and the time
interval matches. Hence vertex 𝑣5,2 is added to 𝑉LS, and edge
(𝑣5,2, 𝑣3,1) is added to 𝐸LS. For 𝑘 = 4, we found 𝑣4,1 ∈ 𝑉LS,
and the time interval matches. At this moment, vertex 𝑣5,2
is already in 𝑉LS, and edge (𝑣5,2, 𝑣4,1) is added to 𝐸LS. We
obtain the DAG as shown in Fig. 5 by continuing the above
process.

Theorem 1: Algorithm sigMatch has a worst-case time
complexity of 𝑂 (𝑚2𝑛), where 𝑛 is the number of packets in
the signature S, and 𝑚 is the number of packets in the network
traffic log L. Furthermore,

(a) If (𝑝𝑙 [1] , 𝑝𝑙 [2] , . . . , 𝑝𝑙 [𝑛]) is an 𝜖-valid match of S in L,
then (𝑣𝑙 [𝑛],𝑛, 𝑣𝑙 [𝑛−1],𝑛−1, . . . , 𝑣𝑙 [1],1) is a directed path
in 𝐺LS, and 𝑙 [1] < 𝑙 [2] < · · · < 𝑙 [𝑛].

(b) If (𝑣𝑙 [𝑛],𝑛, 𝑣𝑙 [𝑛−1],𝑛−1, . . . , 𝑣𝑙 [1],1) is a directed path in
𝐺LS, then (𝑝𝑙 [1] , 𝑝𝑙 [2] , . . . , 𝑝𝑙 [𝑛]) is an 𝜖-valid match of
S in L, and 𝑙 [1] < 𝑙 [2] < · · · < 𝑙 [𝑛].

Proof. The loop over 𝑖 runs 𝑚 times. The loop over 𝑗 runs 𝑛
times. The loop over 𝑘 runs 𝑖 − 1 times, for each 𝑖. This leads
to the worst-case time complexity of 𝑂 (𝑚2𝑛).

From the condition in Line 7 of the algorithm, we notice
that there is an edge in the form (𝑣𝑖, 𝑗 , 𝑣𝑘, 𝑗−1) if and only
if there is an 𝜖 [ 𝑗 ]-valid match of (𝑞1, 𝑞2, . . . , 𝑞 𝑗 ) in L that

matches (𝑞 𝑗−1, 𝑞 𝑗 ) to (𝑝𝑘 , 𝑝𝑖), where 𝜖 [ 𝑗 ] = (𝜖1, 𝜖2, . . . , 𝜖 𝑗−1).
This leads to claims (a) and (b). □

We point out that the total number of 𝜖-valid matches of
signature S in L may be exponential. However, all of them
are captured by a polynomial sized DAG 𝐺LS, which can be
computed in polynomial time.

C. Unveiling IoT Activities from Network Traffic Log

We investigate how to unveil the activities of an IoT device
using sigMatch in Algorithm 1 as a building block. Note
that we can separate the traffic of a specific IoT device
from all network traffic using the IoT device’s distinct IP
address. For a given IoT device, we first extract its signature
set SS = {S1, S2, . . . , S𝐾 }. For each signature S𝑘 , using its
corresponding tolerance vector 𝜖 𝑘 , we can apply sigMatch
to construct the corresponding DAG 𝐺LS𝑘 in 𝑂 (𝑚2𝑛𝑘) worst-
case time, where 𝑛𝑘 is the number of packets in S𝑘 . We can
compute all 𝐾 DAGs in 𝑂 (𝐾𝑚2𝑛max) worst-case time, where
𝑛max = max{𝑛1, 𝑛2, . . . , 𝑛𝐾 }.

For each 𝑘 = 1, 2, . . . , 𝐾 , there may be zero or more
𝜖 𝑘-valid matches of signature S𝑘 . Making use of 𝐺LS𝑘 , we
can either confirm that there is no 𝜖 𝑘-valid match (when
there is no vertex 𝑣𝑖,𝑛𝑘 in 𝑉LS𝑘 ) or compute the ear-
liest 𝜖 𝑘-valid match (𝑝𝑙 [1] , 𝑝𝑙 [2] , . . . , 𝑝𝑙 [𝑛𝑘 ]), in the sense
that (𝑝𝑙 [1] , 𝑝𝑙 [2] , . . . , 𝑝𝑙 [𝑛𝑘 ]) is lexicographically smallest, in
𝑂 (𝑚 + 𝑛𝑘) worst-case time.

Given the network traffic L, and the valid matches of sig-
natures in SS, how do we decide which IoT activity happened
first? Through extensive experiments, we found that in normal
situations, each network packet corresponding to an earlier
IoT activity proceeds every network packet corresponding to
a later IoT activity. Therefore the signature that has the earliest
match happens first. Once this decision is made, we can
delete each packet with a timestamp no later than that of
the last packet in the match of the found signature from the
network traffic. Repeating the above process, we can unveil
the sequence of IoT activities from the given network traffic.
We formally describe this process called actExtract in
Algorithm 2.

Algorithm 2: actExtract(L, SS, 𝜀)
Input: Network traffic L = (𝑝1, 𝑝2, . . . , 𝑝𝑚), signature

set SS = {S1, S2, . . . , S𝐾 }, 𝜀 = (𝜖1, 𝜖2, . . . , 𝜖𝐾 )
where 𝜖 𝑘 is the match tolerance vector for S𝑘 .

Output: A sequence of IoT activities A1,A2, . . ..
1 for 𝑘 := 1 to 𝐾 do
2 𝐺S𝑘 ← 𝑠𝑖𝑔𝑀𝑎𝑡𝑐ℎ(L, S𝑘 , 𝜖 𝑘);
3 while some signature S𝑘 has a match in 𝐺S𝑘 do
4 Let S𝑘

′
have the earliest match;

5 output Activity corresponding to S𝑘
′
;

6 Remove all packets in L with timestamp no later
than that of the last matched packet for S𝑘

′
.

7 for 𝑘 := 1 to 𝐾 do
8 𝐺S𝑘 ← 𝑠𝑖𝑔𝑀𝑎𝑡𝑐ℎ(L, S𝑘 , 𝜖 𝑘);



9

Theorem 2: The worst-case time complexity of Algorithm 2
is 𝑂 (𝐾𝑚3𝑛max), where 𝐾 is the number of signatures, 𝑛max is
the maximum number of packets in any of the signatures, and
𝑚 is the number of packets in network traffic log L. In normal
situations (i.e., each packet for an earlier activity precedes
every network packet of a later activity), actExtract cor-
rectly outputs a sequence of IoT activities A1,A2, . . . whose
sequential execution will generate a network traffic log that
may be different from L only in the timestamp fields.
Proof. Initially, the 𝐾 DAGs can be computed in 𝑂 (𝐾𝑚2𝑛max)
time. The earliest match of S𝑘 can be computed in 𝑂 (𝑚 +
𝑛𝑘) time, ∀𝑘 . Selecting the signature with the earliest match
requires 𝑂 (𝐾𝑛max) time. This process is repeated for no more
than 𝑚 times, hence the time complexity.

Next, we prove the correctness of the algorithm. Assuming
that the sequence of IoT device activities that generated the
network traffic L is A1,A2, . . . ,A𝑥 . By our normal assump-
tion, each network packet of A1 must happen earlier than every
network packet of A𝜆, for any 𝜆 > 1. Since actExtract
uses the earliest match, it will output A1 as the first activity,
and all of the packets in the computed match for A1 have
timestamps earlier than the timestamp of any packet in other
IoT activity A𝜆, with 𝜆 > 1. Hence, when we delete the
packets matched for A1, we delete all of the packets generated
for A1, but none of the packets generated by A𝜆 with 𝜆 > 1.
Therefore actExtract will next output A2, then A3, and so
on. This proves the correctness of the algorithm. □

When we execute the computed sequence of IoT device
activities, the network traffic observed may be different from
L, but only in the timestamp field. The sequence of packets
will have increasing timestamps. Ignoring the timestamp field,
two sequences of packets will be identical with L. Note that
we can divide the network traffic log into multiple sublogs
where each sublog corresponds to a unique IoT device. We
can apply actExtract to each sublog in parallel to unveil
the IoT activities for all IoT devices.

D. Discussions

Our proposed actExtract algorithm can unveil the activity
sequence of an IoT device with no ambiguity and guarantee
correctness, assuming there is no ongoing attack and the device
can only carry out one activity at a time, which is true for
most devices. For devices that allow two or more concurrent
activities, such as IP cameras, we can modify sigMatch
algorithm to record only non-overlapping matches in network
traffic for a signature in a DAG. We can then build the DAG
for the same device’s signatures independently and output all
the identified activities. In case when there is attacking traffic,
it is possible that one packet is matched to two different
signatures. We can add a variable in sigMatch to record all
the signatures that a packet is matched to. If such a conflict
happens, our algorithm can report it as an anomaly and raise
an alarm.

7. EXPERIMENTAL EVALUATIONS

We evaluate the performance of IoTAthena using two different
settings: 1) our own smart home testbed, and 2) a large public

IoT network traffic dataset [29]. We first describe these settings
in Section 7-A. In Section 7-B, we present experimental results
on the sensitivity of IoTAthena’s accuracy on the matching
tolerance. In Section 7-C, we present experimental results for
homogeneous device activities. In Section 7-D, we present
experimental results for mixed device activities, together with
a case study.

A. Experiment Setting

Our smart home testbed has 16 widely-used IoT devices,
including multiple models of IP cameras, smart bulbs, smart
doorbells, smart locks, and smart plugs. These IoT devices
are all ranked as popular by Smart Home DB [33]. Our
experiments have identified a total of 44 different device
activities by using these 16 devices. The numbers of devices
and activities in this study are comparable to existing studies
on understanding IoT device activities in smart home network
environments [1, 37]. This controlled smart home environment
was used to create the “silent” week for collecting, analyzing,
and characterizing background network traffic, as discussed
in Section 4. For each IoT device activity, we repeatedly
generate the activity while collecting the associated network
traffic as well as recording the activity logs which are used
for establishing the ground truth at the same time. Using
the signature extraction technique introduced in Section 5,
we were able to extract signatures for most of the device
activities of all 16 representative IoT devices except the stream
off activity of Amcrest ProHD camera, which does not have
the deterministic traffic pattern to form a signature.

In addition to network traffic and activity logs collected
from our own smart home testbed, we also evaluated Io-
TAthena’s performance using a large public IoT network
traffic dataset [29], known as the MON(IOT)R dataset. The
MON(IOT)R dataset includes raw IP data traffic and the
labeled activity logs of 25 IoT devices5. Among these devices,
6 of them are also included in our smart home testbed, while
the other 19 devices are unique to the dataset. The IoT network
traffic and labeled activities in the dataset allow us to evaluate
the performance of IoTAthena.

B. Sensitivity Analysis on the Tolerance Parameter

Our time-sensitive subsequence matching algorithm
sigMatch uses the tolerance vector 𝜖 = (𝜖1, 𝜖2, . . . , 𝜖𝑛−1)
for accommodating inter-packet time intervals’ variations. In
our experiment, 𝜖 𝑗 is set to 𝑟 × 𝜎𝑗 for 𝑗 ∈ [1, 𝑛 − 1], where
𝜎𝑗 is the standard deviation of the inter-packet time interval
between two consecutive packets 𝑞 𝑗 and 𝑞 𝑗+1 and 𝑟 ≥ 1 is a
tunable parameter.

The accuracy of IoTAthena depends on the matching tol-
erance parameter. Intuitively, when the matching tolerance is
very small, IoTAthena tends to unveil fewer activities due to
the strict checking of inter-packet time intervals, leading to low
accuracy. On the other hand, when the matching tolerance is
very large, IoTAthena tends to have more false negatives due to

5We evaluated IoTAthena on the IoT device activities with at least 30
samples in the MON(IOT)R dataset in order to have statistically meaningful
results.
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the loose checking of inter-packet time intervals, also leading
to low accuracy. In order to have a deeper understanding
of this dependency, we carried out sensitivity analysis. For
each device activity, we repeatedly triggered it 120 times with
random delays between two consecutive experiments. We then
ran 6-fold cross validation using the data collected. In each of
the 6 rounds, we observe the accuracy of IoTAthena on 20 of
the experiments, while using the remaining 100 to generate
the signature. Fig. 6 illustrates some representative results.

Figs. 6(a)-(d) show the accuracy changes for unveiling the
on and off activities of TP-Link Bulb and TP-Link Plug as 𝑟
increases from 1 to 30, while Figs. 6(e)-(h) show the accu-
racy dynamics of unveiling August Lock’s app opening, Wifi
(un)locking, autolocking, and Bluetooth (un)locking activities.
In Figs. 6(a)-(d), we observe that the accuracy of IoTAthena
exhibits a non-decreasing trend for the on and off activities
of both TP-Link Bulb and TP-Link Plug, when 𝑟 increases
from 1 to 30. These observations are not surprising since the
increasing value of 𝑟 leads to a higher tolerance value to allow
larger inter-packet time intervals.

However, Figs. 6(e)-(g) contradict such conjectures as in-
creasing 𝑟 to a particular value leads to decreasing accuracy in
matching August Lock’s app opening, WiFi (un)locking, and
autolocking activities. Our in-depth investigation discovered
that the accuracy decrease for the larger 𝑟 values is due to
the interference of August Lock’s background traffic noise.
The background traffic happens to shares overlapping packets
with the signatures of app opening, WiFi (un)locking, and
autolocking activities when we allow bigger tolerance of inter-
packet intervals. Unlike Figs. 6(e)-(g), the accuracy of unveil-
ing August Lock’s Bluetooth (un)locking activities changes in
a non-decreasing fashion in Fig. 6(h) as 𝑟 increases from 1 to
30. The underlying reason of this distinct observation is the
unique traffic patterns of the network traffic collected when
triggering August Lock’s Bluetooth (un)locking activities,
where no background noise that cannot be filtered out has
been observed.

In summary, our sensitivity analysis on the tolerance param-
eter confirmed the importance and impact of choosing appro-
priate tolerance values during the IoT device activity extraction
process. More importantly, the observations in Fig. 6 highlight
the rationale and necessity of our full packet sequences with
inter-packet time intervals as the IoT device activity signature
and our time-sensitive subsequence matching algorithm for
unveiling IoT device activities.

C. Performance of IoTAthena on Homogeneous Device Activ-
ities
Having done the sensitivity analysis, we focused on evaluating
IoTAthena’s performance of unveiling homogeneous device
activities. We first present experimental results on our smart
home testbed. We then present results on the MON(IOT)R
dataset [29].

For each IoT device activity, we repeated it 120 times and
collected the network traffic on the router in our smart home
testbed. We again ran the 6-fold cross validation. TABLE 2
shows the accuracy (A), precision (P), and recall (R) mea-
sures of IoTAthena for various activities of the 16 devices

in our smart home testbed, with 𝑟 set to 3, 11, and 23,
respectively.

From TABLE 2, we observe that the performance of Io-
TAthena depends on 𝑟 . For 𝑟 = 3, IoTAthena achieves a
minimum accuracy of 0.78, a minimum precision of 0.98,
and a minimum recall of 0.78. When 𝑟 is increased to 11,
the performance of IoTAthena improves, with precision of
1.00, accuracy of 0.99 or better, and recall of 0.99 or better,
across all activities in our experiments. When 𝑟 is further
increased to 23, the performance of IoTAthena drops, with a
minimum accuracy of 0.75, a minimum precision of 0.81, and
a minimum recall of 0.88. Based on this empirical evidence,
we choose 𝑟 = 11 as the “optimal” value for the tolerance
parameter.

We also evaluated the performance of IoTAthena using the
MON(IOT)R dataset [29]. Due to the relatively small sample
size (between 30 and 40), we ran 4-fold cross validation
instead of 6-fold cross validation. TABLE 3 illustrates the
accuracy, precision, and recall measures of running IoTAthena
against 25 IoT devices in the MON(IOT)R dataset with 𝑟 set to
11. We observe that IoTAthena achieve a minimum accuracy
of 0.95, a minimum precision of 0.98, and a minimum recall
of 0.95.

The prior study [37] also evaluates the algorithm with the
same the MON(IOT)R dataset [29]. TABLE VI in [37] reports
an average accuracy of 99.12% on 3 IoT device activities for
WAN Sniffer, and an average accuracy of 99.06% on 4 IoT
device activities for WiFi sniffer. As shown in TABLE 3, our
approach achieves an average accuracy of 99.57% on 33 IoT
device activities on the same dataset. Therefore, our proposed
IoTAthena system is able to generate signatures for more
IoT device activities than [37] while achieving slightly better
accuracy in identifying the signatures with the same public
dataset.

In summary, experimental evaluations with our smart home
testbed and the MON(IOT)R dataset demonstrate that Io-
TAthena can successfully unveil homogeneous IoT device
activities from network traffic logs.

D. Performance of IoTAthena on Mixed Device Activities

A significant benefit of our IoTAthena system lies in the
realtime security monitoring of IoT devices in smart homes,
which has become an increasingly important research topic.
Given the IoT network traffic logs, IoTAthena can accurately
unveil the sequence of IoT device activities over time and
potentially detect anomalous traffic patterns and behaviors
towards IoT devices.

As a case study, we applied IoTAthena to unveil the activ-
ities of 5 IoT devices in our smart home during a 24-hour
span. The 5 devices in this case study consist of Arlo Ultra
Camera, August Lock, Ring Doorbell, TP-Link Bulb, and TP-
Link Plug. Fig. 7 visualizes the time-series activities of these
5 IoT devices discovered by IoTAthena during a 24-hour time
span in our smart home environment.

The two activities highlighted by the light blue box near
the left end of Fig. 7 capture two consecutive user-triggered
events at around 12:45pm: i) (the homeowner) unlocked the
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Fig. 1.Fig. 6. The impact of 𝑟 in the inter-packet time interval tolerance parameter on the accuracy of IoT activity signature matching.

TABLE 2
ACCURACY, PRECISION, AND RECALL OF IOTATHENA FOR 16 DEVICES WITH 𝑟 SET AS 3, 11, 23 RESPECTIVELY.

Type Device Name Activity 𝑟 = 3 𝑟 = 11 𝑟 = 23
A P R A P R A P R

bulb

Philips Hue on or off 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
brightness 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00

Sengled SmartLED
on 0.88 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00
off 0.89 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00
brightness 0.92 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00

TP-Link Bulb

on 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
off 0.97 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00
color 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
brightness 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00

camera

Amcrest ProHD stream on 0.86 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00

Arlo - Q Indoor
stream on 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
stream off 0.94 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Arlo Ultra
stream on 0.88 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00
stream off 0.92 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00

Blink XT2
stream on 0.92 1.00 0.92 0.99 1.00 0.99 0.99 1.00 0.99
stream off 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00

Reolink Camera
stream on 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
stream off 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

doorbell

August Doorbell Cam Pro

stream on 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
stream off 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ringing 0.94 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00

Ring VideoDoorbell

stream on 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
stream off 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
ringing 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
motion detection 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

lock

August Lock Pro

app opening 0.78 1.00 0.78 1.00 1.00 1.00 0.77 0.86 0.88
WiFi (un)locking 0.80 0.98 0.82 1.00 1.00 1.00 0.75 0.81 0.91
Bluetooth (un)locking 0.90 1.00 0.90 1.00 1.00 1.00 0.99 0.99 1.00
autolocking 0.85 1.00 0.85 1.00 1.00 1.00 0.97 1.00 0.97
manual (un)locking 0.93 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00

Schlage WiFi Deadbolt
WiFi (un)locking 0.89 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00
autolocking 0.92 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00
manual (un)locking 0.90 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00

plug

Amazon Smart Plug on 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
off 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00

Gosund WiFi Smart Socket on or off 0.98 1.00 0.98 1.00 1.00 1.00 0.99 0.99 1.00
TP-Link Plug on 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

off 0.97 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00
WeMo Plug on or off 0.98 1.00 0.98 1.00 1.00 1.00 0.99 0.99 1.00
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TABLE 3
ACCURACY, PRECISION, AND RECALL OF IOTATHENA IN THE EXTERNAL

MON(IOT)R DATASET WITH 𝑟 SET AS 11.

Device Name Activity A P R
Amcrest Camera Wired watch 1.00 1.00 1.00
Blink Camera watch 1.00 1.00 1.00
Blink Security Hub watch or photo 1.00 1.00 1.00
Bulb1 on or off 1.00 1.00 1.00
Fire TV menu 0.95 1.00 0.95
Google Home Mini volume or voice 1.00 1.00 1.00
Insteon Hub on or off 1.00 1.00 1.00
Invoke volume or voice 1.00 1.00 1.00
Lefun Camera Wired watch or photo 1.00 1.00 1.00
LG TV Wired menu 1.00 1.00 1.00

Lightify Hub on or off 1.00 1.00 1.00
color 1.00 1.00 1.00

Luohe Spycam watch 1.00 1.00 1.00

Magichome Strip on 0.98 0.98 1.00
off 1.00 1.00 1.00

Microseven Camera watch 1.00 1.00 1.00
Philips Bulb on or off 0.97 1.00 0.97
Samsungtv Wired menu 1.00 1.00 1.00
Sengled Hub on or off 0.98 1.00 0.98
Smartthings Hub on or off 1.00 1.00 1.00
T-philips Hub on or off 1.00 1.00 1.00

TP Link Bulb

on 1.00 1.00 1.00
off 1.00 1.00 1.00
color 1.00 1.00 1.00
dim 1.00 1.00 1.00

TP Link Plug on 1.00 1.00 1.00
off 1.00 1.00 1.00

Wink Hub2 on 1.00 1.00 1.00
off 1.00 1.00 1.00

Xiaomi Hub on or off 0.98 0.98 1.00
Xiaomi Strip on or off 1.00 1.00 1.00
Zmodo Doorbell watch 1.00 1.00 1.00

12pm 4pm 6pm 8pm 10pm 4am2pm 12am 2am 6am 8am 10am

August Lock 
WiFi (Un)Locking

August Lock 
Manual (Un)Locking

Ring Doorbell 
Ringing

Ring Doorbell 
Stream On

Arlo Ultra 
Stream On

12pm

TP-Link Bulb

TP-Link Plug

Fig. 7. IoT device activities discovered by IoTAthena in the small home
environment during a 24-hour span.

August Lock with app (from outside), indicated by the dark
blue disk inside the light blue box, and ii) manually locked
the August Lock (after entering home), indicated by the green
square inside the light blue box. Similarly, the four activities in
highlighted by the red box at around 7:20pm in Fig. 7 reflect
four consecutive events: i) (a visitor) pressed the button on
the ring doorbell, which generated a push notification to the
homeowner’s smartphone; ii) (the homeowner) watched the
video streaming feed on the ring doorbell to check the visitor’s
identity; iii) (the homeowner) manually unlocked the August
Lock to let the visitor in; iv) the August Lock was manually
locked (from inside).

To evaluate IoTAthena’s ability in unveiling sequences of
mixed IoT device activities, we used IoTAthena to unveil the
mixed IoT device activities of all 16 devices in our smart home
from the network traffic, in a 24-hour span, from 12:00pm to
11:59am. Fig. 8 illustrates IoTAthena’s performance by com-
paring the ground truth activity sequences with the unveiled

activity sequences of 16 IoT devices in the smart home testbed,
where a blue dot represents a successful match, while a red
cross represents a failed match. The actual dates for running
different IoT device activity experiments might vary, so the
x-axis only denotes the time of the day from 12:00pm to
11:59am. As can be seen from the figure, IoTAthena correctly
unveiled all but one of the activities. The only missed activity
occurs with the Blink XT2 Camera. Our root cause analysis
revealed that IoTAthena missed one streaming activity due to
the unseen variation in packet length.

xxxx

12pm 2pm 4pm 6pm 8pm 10pm 12am 2am 4am 6am 8am 10am 12pm

Ring VideoDoor
August Doorbell Cam Pro

WeMo Plug
TP-Link Plug

Gosund WiFi Smart Socket
Amazon Smart Plug

Schlage WiFi Deadbolt
August Lock Pro

TP-Link Bulb
Sengled SmartLED

Philips Hue

Reolink Camera
Blink XT2

Amcrest ProHD

Arlo Ultra
Arlo - Q Indoor

Fig. 8. Activity sequence extraction results of 16 IoT devices in the smart
home environment. The actual dates for running different IoT device activity
experiments might vary, so the x-axis only denotes the time of the day from
12:00pm to 11:59am.

In summary, our experimental evaluations based on a variety
of heterogeneous IoT devices demonstrated that IoTAthena
can effectively and accurately unveil individual IoT device
activities as well as unveil IoT device activity sequences over
time. We note that our single smart home environment in the
experiments has its own limitation in performing large scale
experimental evaluations. One of our future work is to deploy
the IoTAthena system in a large number of smart homes to
evaluate its performance and overhead.

8. CONCLUSIONS AND FUTURE WORK

This paper introduces IoTAthena to effectively and accurately
unveil IoT device activities from network traffic in smart
homes. We first recognize and generate activity signatures
of IoT device activities consisting of ordered sequences of
IP data packets by repeated and controlled experiments.
Subsequently, we design two polynomial time algorithms,
sigMatch and actExtract. The sigMatch algorithm
captures all matches of any given IoT device activity signature
from real network traffic logs. The actExtract algorithm
unveils the full activity sequences of all IoT devices from the
network traffic log. Through experimental evaluations based on
a wide range of heterogeneous IoT devices from a real smart
home environment and a public IoT dataset, we demonstrated
that IoTAthena is able to accurately unveil IoT device activities
from raw network traffic logs. We are in the process of
designing and implementing a prototype system on commodity
home routers to evaluate the real-time feasibility of IoTAthena
for unveiling IoT device activities on the fly. Another possible
future work is to explore the benefits of IoTAthena in detecting
and mitigating security threats towards vulnerable IoT devices.
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