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Abstract

We apply the method of moments to prove a recent conjecture of Haikin, Zamir and
Gavish [22] concerning the distribution of the singular values of random subensembles of
Paley equiangular tight frames. Our analysis applies more generally to real equiangular
tight frames of redundancy 2, and we suspect similar ideas will eventually produce more
general results for arbitrary choices of redundancy.
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1 Introduction

Frame theory concerns redundant representations in a Hilbert space. A frame [16] is a
sequence {¢; }ics in a Hilbert space H for which there exist «, 5 € (0,00) such that

allz]* <Y Kz, en)* < Bllell,

iel

for every x € H. If every ¢; has unit norm, then we say the frame is unit norm, and if
a = f3, we say the frame is tight [12]. In the special case where H = R%, a frame is simply a
spanning set, but unit norm tight frames are still interesting and useful [5, 27]. For example,
equiangular tight frames are unit norm tight frames with the additional property that
|{¢i, p;)| is constant over the choice of pair {7, j}. Equiangular tight frames are important
because they necessarily span optimally packed lines, which in turn find applications in mul-
tiple description coding [33], digital fingerprinting [28], compressed sensing [2], and quantum
state tomography [30]; see [18] for a survey.

Various applications demand control over the singular values of subensembles of frames.
In quantum physics, Weaver’s conjecture [38] (equivalent to the Kadison—Singer problem [24,
10], and recently resolved in [25]) concerns the existence of subensembles of unit norm tight
frames with appropriately small spectral norm. Compressed sensing [9, 14| has spurred the
pursuit of explicit frames with the property that every subensemble is well conditioned [13, 6,
2], or at least that most subensembles are well conditioned [35, 8]. In this vein, Gurevich and
Hadani [19] established that random subensembles of incoherent ensembles satisfy Wigner’s
semicircle law when the subensemble size is a vanishing fraction of the full ensemble size.
Motivated by applications in erasure-robust analog coding, Haikin, Zamir and Gavish [22, 21]



recently considered the case in which this fraction is fixed. Of particular interest are random
subensembles of equiangular tight frames, and in this paper, we consider equiangular tight
frames comprised of 2d vectors in R?, which correspond to symmetric conference matrices.
(Note that such frames have already received some attention in the context of compressed
sensing [2, 3].)

An n x n matrix S is said to be a conference matrix if

(i) Si =0 for every i € [n],
(i) S;; € {£1} for every i, j € [n] with ¢ # j, and
(iii) STS = (n —1)I.

A symmetric conference matrix of order n exists whenever n — 1 = 1 mod 4 is a prime
power (by a Paley—based construction), and only if n = 2 mod 4 and n — 1 is a sum of two
squares [23]. Explicitly, the Paley conference matrices are obtained by building a circulant
matrix from the Legendre symbol and then padding with ones, for example:
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where “+” denotes 1. One may verify that the above example satisfies S? = 5I. For every

n X n symmetric conference matrix S, it holds that I + \/%S is the Gram matrix of an

equiangular tight frame consisting of n vectors in R™? [33]. In particular, the equiangular
tight frames that arise from the Paley conference matrices are known as Paley equiangular
tight frames. In what follows, we consider random principal submatrices of symmetric con-
ference matrices with the understanding that they may be identified with the Gram matrix
of a random subensemble of the corresponding equiangular tight frame.

Given an n x n symmetric matrix Z with eigenvalues \; < --- < A\, we let uz denote
the uniform probability measure over the spectrum of Z (counted with multiplicity):

1 n
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This is known as the empirical spectral distribution of Z. If Z is a random matrix, then
its empirical spectral distribution py is a random measure. We say a sequence {(;}°, of
random measures converges weakly almost surely to a non-random measure p if for every
bounded continuous function f: R — R, it holds that the random variable [, f(z)d(;(x)
converges to [ f(z)du(x) almost surely.

We are interested in random matrices of a particular form. Let Z denote a random subset
of [n] such that the events {1 € Z},...,{n € Z} have probability p and are independent.
Then for any fixed n x n matrix A, we write X ~ Sub(A, p) to denote the (random) principal
submatrix of A with rows and columns indexed by Z. For instance, take S from (1), put
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p = 1/3, and draw X ~ Sub(S,p). Then the random index subset Z C {1,...,6} equals
{2,4} with probability p?(1 — p)* = 16/729, in which case X = [° ;]. Note that the size of
the random matrix X is a random variable with binomial distribution.

Following [15], we define the Kesten-McKay distribution with parameter v > 2 by

vy/4(v-1)—z2 .. o .
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Recall that a lacunary sequence is a set {n; : ¢ € N} of natural numbers for which there
exists A > 1 such that n;.1 > An; for every i. We are now ready to state our main result;
see Figure 1 for an illustration.

Theorem 1. Fiz p € (0, %), take any lacunary sequence L for which there exists a sequence
{Sn}ner of symmetric conference matrices of increasing size n, and consider the correspond-
ing random matrices X,, ~ Sub(S,,p). Then the empirical spectral distribution of ﬁﬁXn

converges weakly almost surely to the Kesten—-McKay distribution with parameter v = 1/p.

We note that Theorem 1 is the first proven instance of an assortment of conjectures posed
by Haikin, Zamir and Gavish in [22]. In general, we expect random submatrices of the Gram
matrix of an equiangular tight frame of n vectors in C? to have empirical spectral distribution
corresponding to the Wachter distribution [37] (also known as the MANOVA distribution)
with parameters determined by both the sample probability p and the redundancy %. As
partial progress toward proving these conjectures, Haikin, Zamir and Gavish [21] demon-
strated that for any sequence of equiangular tight frames of any fixed redundancy, the first
four moments converge in expectation to the corresponding Wachter moments. In her mas-
ters thesis [20], Haikin made additional combinatorial observations to facilitate an eventual
proof by the method of moments. The Kesten—-McKay distribution is a special case of the
Wachter distribution, and as illustrated in [15], its moments are far less complicated. This is
our reason for focusing on the redundancy-2 case, and we credit our success to the relative
simplicity of these moments.

While the hypothesis p < % in Theorem 1 may seem artificial at first glance, this con-
straint appears in the original Haikin—Zamir-Gavish conjectures [22], and for good reason.
In terms of the equiangular tight frame ® € R™?*" such that ®T® = I + 2=, this re-

vn—1
striction biases Z to be typically smaller than the dimension 2 so that the submatrix &7

of columns indexed by Z has a tall, skinny aspect ratio. Wher? |Z| > %, then we expect a
different spectral behavior since the submatrix ®7 now has a nontrivial nullspace. In this
case of large Z, if we let Sz denote the submatrix of S with rows and columns indexed by Z,
then it is straightforward to show that the eigenvalues of Sz are precisely the eigenvalues of
Ste, though with an additional |Z| — % eigenvalues equal to each of £1/n — 1. Indeed, this
follows from the facts that (i) the eigenvalues of AT A are identical to the eigenvalues of AAT
modulo additional eigenvalues equal to 0, and (ii) ®7®] + Pz Pf. = PPT = 21, 5.

As an alternative method of drawing the random index subset Z, one might be inclined
to fix & and draw Z uniformly from the subsets of [n] of order k. We suspect that the
same convergence holds for this model by taking k& = |p/n], say; in fact, this might be

provable from Theorem 1 by a perturbation argument. We instead focus on the model used



p=0.1 p=0.25

Figure 1: Consider the Paley conference matrix S of order n = 10,010. For each choice
of p € {0.1,0.25,0.4}, we draw X ~ Sub(S,p) and plot a histogram of the spectrum of
ﬁﬁX along with a suitably scaled version of the Kesten—-McKay density for v = 1/p. The
similarity between these distributions was first observed by Haikin, Zamir and Gavish [22].
Our main result (Theorem 1) explains this phenomenon.

in the original Haikin—Zamir—Gavish conjectures, and our proof makes use of the fact that
{i € I} is independent of {j € Z} for ¢ # j in this model. One might also make progress
on this problem by using a transform method instead of the method of moments. In fact,
such techniques have proven effective in demonstrating that random submatrices of complex
Hadamard matrices satisfy a Wachter law [36, 17, 1]. As an adjacent pursuit, there has been
some work on constructing explicit matrices that satisfy Wigner’s semicircle law [31, 32],
and it would be interesting to transfer these ideas to our setting.

In the next section, we prove Theorem 1 using the method of moments, saving the more
technical portions for Section 3.

1.1 Notation

Given x € R", let diag(x) denote the n x n diagonal matrix whose diagonal entries are the
entries of x. Given Z € R™*" let || Z||2—2 denote the induced 2-norm of Z (i.e., the largest
singular value of Z), and let || Z]|s» denote the Schatten p-norm of Z (i.e., the p-norm of the
singular values of Z). Throughout this paper, we will investigate how quantities relate as
n — oo. For example, suppose we are interested in a quantity f(n,6) > 0 that depends on
both n € N and some additional parameters § € R™. Then we write f(n,0) = o(g(n,0)) if
for every 8 € R™, it holds that f(n,0)/g(n,0) — 0 as n — co. We write f(n,0) < g(n,0)
if there exists ¢ > 0 such that f(n,0) < c¢-g(n,0) for all n € N and § € R™, and we write
f(n,0) <o g(n,0)if for every 6 € R™, there exists ¢(f) > 0 such that f(n,8) < ¢(f)-g(n,8) for
all n € N. Finally, we write f(n,0) =< g(n,0) if both f(n,0) < g(n,0) and g(n,0) < f(n,0).



2 Proof of the main result

Our proof makes use of a standard sufficient condition for the almost sure weak convergence
of random measures, namely, Proposition 2 below. We say that a probability measure y is
(a,b)-subgaussian if p([—t,1]¢) < ae " for every t > 0. A probability measure is called
subgaussian if it is (a, b)-subgaussian for some a,b > 0. A sequence of probability measures
is said to be uniformly subgaussian if there exists a,b > 0 for which every probability
measure in the sequence is (a, b)-subgaussian.

Proposition 2. Let {(;}32, be a sequence of random probability measures that are almost
surely uniformly subgaussian, and let j be a mon-random subgaussian probability measure.
Suppose that for every k € N, it holds that

(i) E /R o*d¢(z) — /R a*du(z), and

(i) g\/ar (Aw’“d@(w)) < 00.

Then (; converges weakly almost surely to pu.

The proof of Proposition 2 is standard (cf. Exercise 2.4.6 in [34]): use Chebyshev’s
inequality and the Borel-Cantelli lemma to show [, 2¥d(;(z) — [ 2*du(x) almost surely
for each k € N, and then apply the moment continuity theorem to points in the convergence
event. As we will see, verifying hypothesis (i) in our case reduces to a combinatorics problem,
whereas hypothesis (ii) can be treated separately with the help of Talagrand concentration:

Proposition 3 (Talagrand concentration, Theorem 2.1.13 in [34]). There ezists a universal
constant ¢ > 0 for which the following holds: Suppose f: R™ — R is both conver and o-
Lipschitz in ||-||2, and let X be a random vector in R™ with independent coordinates satisfying
| X;| < b almost surely. Then for every t > 0, it holds that

P{If(X) —Ef(X)| > bt} S e/,

Throughout, S,, denotes an n X n symmetric conference matrix, we draw X,, ~ Sub(S,,,p)
and put 2, := ﬁﬁXn. We typically suppress the subscript n. While the size of Z is random,

its average size is pn, and so we use .- tr(Z*) as a proxy for [, a*duz(z). As one might
expect, this is a good approximation:

Lemma 4. Put 'V := pintr(Zk) and W := [, a¥duz(x). Then

EV — EW| | Var(V) — Var(W)| <,

El

<L
~ \/ﬁ
Proof. Since X is a submatrix of S, it holds that

1 1 1
VIS EZ M) < 11211552 =p =5 l1X 1502 < 51151l < 1,
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almost surely. Similarly, |W| < [|Z||5_,, <, 1 almost surely. Next, let N denote the (random)
size of Z. Then V = % - W, and so our bound on |W| gives

1 1/2 1
ElV —-W|=E(L —1]- W) S, EIS - 1] < %(E(N ) S, o

where the last step applies the fact that N has binomial distribution. This immediately
implies the desired bound on [EV —EW/|. Finally, since |V, |W] <, 1 almost surely, we have
| Var(V) — Var(W)| < |[EV? — EW?| + |(EV)? — (EW)?|

<E(|V+ W[V -W|) + [EV + EW|EV — EW|

1
,Sp IE‘:'|V - W| 519 %a

which completes the result. O]

As such, to demonstrate hypothesis (i) from Proposition 2 in our case, it suffices to prove
EL tr(2* "d 2
tr(Z2") = [ =% dpxqyp) (7). (2)
pn R
The Kesten-McKay moments are implicitly computed in [26], and are naturally expressed
in terms of entries of Catalan’s triangle:

n+Ek)l(n—Fk+1)

Cln k) = 0 D

Proposition 5 (Lemma 2.1 in [26]). For every v > 2 and k € N, it holds that

k/2
ZC(k/Q —1,k/2 — )i (v — D)¥?7 ) if k is even

j=1

/ o s () =
R
0, if k is odd.

Recalling that Z = ﬁﬁX , then Proposition 5 gives that (2) is equivalent to

k
1 N (D) B(k/2 -1t —k/2—1)-p!, if ks even
WEH(X )= t=k/2+1 ®)

0, if k is odd,

where B(n, k) denotes an entry of Borel’s triangle:

B(n, k) = i (é) Cn, j).

J=k



To compute these limits, we first find a convenient expression for #E tr(X*). To this
end, recall that X is the submatrix of S with index set Z, and let P denote the random n xn
diagonal matrix such that P; = 1y,ezy. Then

tr(X*) = te((PSP)Y) = te((PS)*) = Y (PS)aras(PS)azas - (PS)arar

k
= Z Sala25a2a3 ce Sakal : H ]‘{aiez}'
=1

Considering E Hle Ligery = pllarardl it follows that

k
1 k 1 t
nk/2+1]EtI‘(X ) = Z <nk/2+1 Z Sa1a25a2a3 e Saka1) “p- (4)
t=1 at,...,ap€[n]
Hai,....,ar}|=t

It remains to show that these coefficients converge to the corresponding coefficients in (3).
First, we introduce some additional notation. Taking inspiration from Bargmann invari-
ants [4], it is convenient to write

Alay, az, a3, ..., a;) = Sayasasas * * * Sapas -

Next, we say 7 is a partition of [k] into ¢ blocks if 7 = {By, ..., B;} such that BU---UB; =
[k], and we let I1(k,t) denote the set of all such partitions. For each partition = of [k], we
consider the set of functions a: [k] — [n] whose level sets are the blocks of 7, namely

Ly(m) == {a: [k] = [n] : {a " (a(i)) : i € [k]} = 7}.
With this, we define .
V() == — 7 > Aa(l), ..., a(k)).

a€Ly ()

Considering (4), it therefore holds that
1
e =3 (X vim) o g
t=1 >rmell(k,t)

As such, to demonstrate (3), it suffices to determine the limit of V,,(7) for every partition 7
of [k]. We start with a quick calculation:

Lemma 6. For every m € II(k,t) with t < k/2+ 1, it holds that V,,(w) — 0.

Proof. Estimate |V,,(7)| using the triangle inequality to obtain a sum of |L,(7)| < n' =
o(n*/>*1) terms, each of size at most 1. O



For each t < k/2 + 1, this establishes that the coefficient of p' in (5) approaches zero,
i.e., the corresponding coefficient in (3). Now we wish to tackle the limiting value of V()
in general. In light of the related literature [29], it comes as no surprise that V() depends
on whether 7 is a so-called crossing partition. We say a partition 7 of [k] is crossing if
there exist A, B € m with A # B for which there exist a;,as € A and by,by € B such that
a; < by < ay < by. Otherwise, 7 is said to be non-crossing. Next, for each = € [k], we let
7(x) denote the unique member of 7 such that = € w(x). Consider the graph G, with vertex
set  and edges given by 7(z) <> m(z+1) for every x € [k]; here, we interpret x4+ 1 modulo k
so that k+1 = 1. Let EC(k, ) denote the set of non-crossing 7w € II(k, t) for which the edges
of G; partition into simple even cycles. See Figure 2 for an example of such a partition 7
and its graph G. Finally, let C,, := -1 (27?) denote the nth Catalan number. With these

n+1
notions, we can describe the limit of each V,,(7):

Lemma 7 (Key combinatorial lemma).
(i) Suppose w € 11(k,t) \ EC(k,t). Then V,(7) — 0.

(i) Suppose m € EC(k,t) and the edges of G partition into m simple cycles of sizes
251, ...,28y,. Thenm =k —t+ 1 and

Vo(m) = (=) ™. Cy - Cy, 1.

The proof of Lemma 7 is rather technical (involving multiple rounds of induction), and so
we save it for Section 3. (Curiously, a reviewer of this paper noted that these signed products
of Catalan numbers are the values of the Mdbius function of the non-crossing partition
lattice [29], and this observation may eventually lead to a more bijective combinatorial proof
of Lemma 7.) In the meantime, we demonstrate how Lemma 7 can be applied to prove that
the coefficients in (5) converge to the coefficients in (3). Recall that a Dyck path of semi-
length n is a path in the plane from (0,0) to (2n,0) consisting of n steps along the vector
(1,1), called up-steps, and n steps along the vector (1, —1), called down-steps, that never
goes below the z-axis. We say a Dyck path is strict if none of the path’s interior vertices
reside on the z-axis. Each (strict) Dyck path determines a sequence of 2n letters from {U, D}
that represent up- and down-steps in the path; this sequence is known as a (strict) Dyck
word. With these notions, we may prove the following result by leveraging the fact that
Borel’s triangle counts so-called marked Dyck paths [7]; see Figure 2 for an illustration.

Lemma 8. It holds that

Z V,(r) — { (~1)F21 . B(k/2 —1,t —k/2—1), ifk is even and t > k/2+ 1
)

0, otherwise.
mell(k,t

Proof. When t < k/2+1, the result follows from Lemma 6, and when & is odd, the k edges in
each G fail to partition into even simple cycles, and so the result follows from Lemma 7(i).
Now suppose k is even and ¢t > k/2 + 1. For 7 € EC(k,t), recall that the edges of G,

are indexed by [k] and partitioned into simple even cycles. Define MD(7) to be the words
w: [k] = {U,U’, D} such that for every simple cycle in G, with edges indexed by T C [k],
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Figure 2: (top left) Select k = 14 and ¢ = 11, and consider the partition = € II(k, t) with all
singleton blocks except for {2, 14} and {4, 8,10}. Observe that 7 is a non-crossing partition.
(bottom left) We depict the corresponding graph G, whose vertices are the blocks of 7.
By definition, blocks are adjacent in G, when they contain cyclicly adjacent members of [k].
In this case, the edges of G, partition into four simple cycles, which we label «, 3, v and
. (right) Each simple cycle of G is assigned a strict Dyck word of the cycle’s length, and
we mark all but the first up-steps. The only choice for o and ¢ is UD, and the only choice
for v is UU'DD; here, U’ denotes a marked up-step. Meanwhile, 5 has Cy = 2 choices:
UU'DU'DD and UU'U'DDD. For each selection, we traverse G, from m(1) to m(2), to
m(3), etc., to m(14) and back to 7(1), labelling the edges of G, with the next letter from the
current cycle’s Dyck word. The result is a Dyck word with t — k/2 — 1 = 3 marked up-steps,
none of which at ground level. We illustrate the corresponding marked Dyck paths above.
Notice that G, can be recovered from either marked Dyck path since a cycle is born with
each un-marked up-step and dies once the Dyck path returns to its height from the birth
of that cycle. By Theorem 2 in [7], marked Dyck paths are counted by entries in Borel’s
triangle, which explains their appearance in (3).



the restriction w|r is a strict Dyck word with all but its first up-steps marked (here, U’
denotes a marked up-step). Note that strict Dyck words of semi-length s are in one-to-one
correspondence with Dyck words of semi-length s — 1, and so there are C,_; of them. As
such, Lemma 7 implies that for every m € II(k,t), it holds that

| MD(7)|, if 7 € EC(k,t)

Cyt—k/2-1
(=1) Va(m) = { 0, otherwise. (6)

Let MD(k,t) denote the set of marked Dyck words w: [k] — {U,U’, D} with t — k/2 — 1
marked up-steps, none of which are at ground level. We observe that

MD(k,t)= | | MD(m). (7)
)

r€EC(k,t

Then equations (6) and (7) together give

(=D N T Vi(m) = Y |MD(r)| = [MD(k,t)| = B(k/2 - 1,t — k/2 — 1),

reTI(k,t) rERC(k,t)
where the last step applies Theorem 2 in [7]. ]

At this point, we are in a position to verify hypothesis (i) from Proposition 2 in our case.
For hypothesis (ii), we follow the approach suggested by Remark 2.4.5 in [34] of leveraging
Talagrand concentration to bound the variance. First, we pass to a setting that is more
amenable to analysis with Talagrand concentration. Here and throughout, for each n € L,
we fix an n x n matrix F such that FTF = I + \/LﬁSn.

Lemma 9. It holds that Var ( tr ((ﬁﬁX)k)) ok m%j](var (1FP|%,) +nt/2.
Je
Proof. Define Y := ﬁﬁPSP, and observe that

1
(V) = tr(2=X%), (Y +1P)") =t (LPFTFP)Y) = EHFPII%&-

Since Y commutes with P and Y P =Y, the binomial theorem gives

(Y ) =Y P Z (5) i v+ )

=0 \J

and so rearranging gives

p

tr(GL=X") = tr(YF) =t ((V + LP)) — ] (k) () - tr(P)

\i/p P
k—1
1 B\ 1 , 1
= —||FP||* — () tr(—=X7) — — tr(P). 8
pk” ||sk = j ) phi (p\/ﬁ ) pk (P) (8)



The following estimate holds for any choice of random variables {X}icpm:

ar(é)(i) ZZCOV X, X;) gzmjzm:\cov(xi,xm

=1 j5=1

Ms i
MS Il

\/ Var(X;) Var(X;) < m? - max Var(X,).

i€[m]

7 1

1
The lemma follows from applying this estimate to (8) by induction on k. O]
Next, we establish the convexity and Lipschitz continuity required by Talagrand:

Lemma 10. For each k € N, consider the mapping f: {v € R" : ||z||o < 2} — R defined
by f(z) = ||F diag(z)||%,. Then f is convez and (8*kn'~'/?*)-Lipschitz.

Proof. We adopt the shorthand notation D, := diag(z). First, f is convex since || - ||g2»
satisfies the triangle inequality and ¢ — t?* is convex:

FOa+ (1= 0) < (Dl + (L= DIED s ) < Af(@) + (1= N f ().

To compute a Lipschitz bound, we apply the factorization

N

-1

u — v = (u — v)(u+v) w1002

<.
Il
o

with u := ||[F'D,||s2x and v := ||FD,]||s2 to get
k—1
|f(x) = fly)| = [u** — 0] = < u+v Zqu 1=y ) lu— | < 8Fknt=V/2 .y — |,
7=0

where the last step follows from the fact that |[|[FD,|sms < 2||F|2m2 < 2v/2, meaning
u < 2v/2n'/?* (and similarly for v). Next, we apply the reverse triangle inequality to get

u —v| = [[|[FDgllszr — [[FDy|s]
< ||FDy = FDyllgex < [|F(Dy = Dy)llp < [[Fllasa - 2 = ylla < V2 |z — yll2,
which implies the result. O
Finally, we apply Talagrand concentration to obtain a variance bound:

Lemma 11. It holds that Var (- tr ((ﬁﬁX)k)) Spxn VR

Proof. Given the mapping f from Lemma 10, define f: R” — R in terms of subgradients by

Fa)i=sup sup (flwo) + (2,0 — x0) ).

zo€ER z€0f(x0)

11



This is known as the smallest convex extension of f to R", and it is straightforward to verify
that f is convex and (8% kn'~'/2¥)-Lipschitz with f|z = f. Let B € R" have independent
entries, each equal to 1 with probability p and 0 otherwise. Since B € R almost surely, it
holds that f(B) has the same distribution as || FP||% oo, and we let E' denote its expectation.
By Talagrand concentration (Proposition 3), there exists ¢ > 0 such that

Var (IFPIE) = E[(1F P — B = [P {(IIFPllszk— B)’ 2 u}d

:/0 {| E\>\/_}du

f(B
(c e nk>d““0-8%k%fva

2/\

Combining with Lemma 9 then gives

Var (}% tr ((ﬁﬁX)k)) , n2

Var ( tr ((ﬁﬁx)k))
1

St 3 (s Var (IFPI,) + 017
S

as desired. O
We may now verify hypotheses (i) and (ii) from Proposition 2 in our case.

Proof of Theorem 1. Put Z, := ﬁﬁXn and p = pgwm(i/p)- First, we modify the random
measure jiz, so that we may apply Proposition 2 to prove the result. Indeed, iz, fails to be
a probability measure with probability (1 — p)™, since uz, = 0 when Z = Z,, is the empty
set. To rectify this, we define

dg, otherwise.

Then it suffices to prove (,, — p weakly almost surely, since the Borel-Cantelli lemma implies
liz,—py — 0 almost surely, and so for every bounded continuous f: R — R, it holds that

/f Jdjiz, (1 /F )G () — Lzgy - (0 —%/f Jdpu(a

Conveniently, for every n € L and k € N, it holds that

[ 6@ = [ Pz (o)

almost surely, and so the left-hand side inherits moments from the right-hand side.
To apply Proposition 2, we first observe that

1 1
| Znll2—2 = | X2 < m‘|5’n’|2%2 < 5,

Sy
pvn
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almost surely, and so {(,}ner are almost surely uniformly bounded, and therefore almost
surely uniformly subgaussian. Similarly, 4 is bounded and therefore subgaussian. Fix & € N.
As a consequence of Lemma 8, it holds that

—tr (Zh) —>/ 2*dp(z)

and so by Lemma 4, we have

]E/kad(n(x) :]E/kad/vczn(x) — /kadu(x)

As such, {(,}ner satisfies hypothesis (i) from Proposition 2. Next, Lemma 11 establishes
that Var (-- tr(Z))) Spi n~'/* and so Lemma 4 implies

Var (/ xkd<n<l')> = Var (/ xkduzn($)> <o n Yk 4 -1/ < n V(D)
R R

Writing L = {n; : i € N}, select A\ > 1 such that n;;; > An; for every i € N. Then

Z\/ar(/ 2*d¢, () > ok Zn 1/(k+1)

nelL neL
< Z(/\ln —1/(k+1) _ —1/ k+1) Z ATV DY < o
i=0

As such, {(,}ner also satisfies hypothesis (ii) from Proposition 2, and so ¢, — u weakly
almost surely, as desired. O

3 Proof of Lemma 7

It remains to compute, for each = € H(k, t), the limit of

Va(m) = nk/2+1 Z Afa a(k)),
a€Ly ()
where L, (7) is the set of a: [k] — [n] whose level sets are the blocks of 7 and
Afa(1),...,a(k)) = Saya2)Sa@)a® * ** Sawa()-

We begin with some basic properties of A.
Lemma 12. For every ay,...,a; € [n], each of the following holds:

(i) If a1 # ag, then A(ay,az) = 1.

(1t) If aj = aj4q for any j € [k — 1] or ay = ay, then A(ay, ..., a;) = 0.

(iii) If o is any cyclic permutation of [k], then Alag(y, - -, o)) = Alas, ..., ax).

13



(iv) If ar # ap—1, then 3y Alar, ..., ak-1,b) = 0.
(v) If a1 = ax—1 and ay # ay, then Aaq, ..., ar) = A(aq, ..., ax_2).

Proof. First, (i) follows from the fact that S is symmetric with off-diagonal entries in {£1}.
Next, (ii) follows from the fact that the diagonal entries of S are 0. Recalling the definition
of A, then (iii) follows from commutativity. Next suppose aj_1 # a;. Then

> Alar, . ak-1,b) = Surar - Sapsar 1 D Sax_16Sbar

ben] be[n]

and (iv) follows since 37,1 Sa, 165, is the (aj—1,a1) entry of S? = (n — 1)I. Finally, in
the case where a; = a,_1, we have

A(ala cee 7ak’) = Salaz to S(Ik_g(ll Smaksakala
and (v) follows since Sy, 4, Sa,0; = 1 provided a; # ay. a

Let 7 be a partition of [k]. Recall that for j € [k], we let m(j) denote the block of 7
containing j. We extend this notation to any integer j by considering 7(j) to be the block
of m containing a representative of 7 modulo k. For convenience, we record the following
immediate consequence of Lemma 12(iii).

Lemma 13. Let 7 be a partition of [k] and fix j € Z. Define 7' to be the partition of [k
with 7' (i) = (i — j) for all i € [k]. Then V,(7') = V(7).

To establish Lemma 7(i), we will show separately that V,(m) — 0 for every crossing
partition 7 € II(k,t) and that V,,(7) — 0 for every non-crossing partition = € II(k,t) such
that G, contains an odd cycle.

Lemma 14. Let m € lI(k,t) be a crossing partition. Then V,(7w) — 0.

Proof. For m € II(k,t) to be a crossing partition, it must hold that ¢ > 2 and k£ > 4. Observe
that the case t = 2 follows immediately from Lemma 6 since £ > 4. Now consider ¢ > 2
and suppose the lemma has been established for every crossing partition on ¢ — 1 blocks. By
Lemma 6, we may further suppose that k satisfies ¢ > k/2 + 1. Then for m € II(k,t), the
pigeonhole principle guarantees that 7w contains a singleton block {j} € m. By Lemma 13,
we may assume {k} € m. We proceed in cases:

Case I: 7(1) = n(k — 1). We may apply Lemma 12(v) to obtain

vn(w):# S AGa(D), . a(k - 2), a(1), a(k))

a€Ly(m)

:# ST Aa(t),...,alk—2)) +o(1).

a€Ln(m\{k})

The restriction of = \ {k} to [k — 2] results in a crossing partition 7’ of [k — 2] into ¢ — 1
blocks. Moreover, the above expression for V,,(7) implies

V(7)) = Va(7') + o(1),

14



and so our induction hypothesis provides V,,(7) — 0.
Case II: (1) # w(k—1). Writing out 7 = { By, ..., Bi—1, {k}}, we choose representatives
J1y- -y Ji—1 € [k — 1] with 7(j;) = B;. Then by Lemma 12(iv), we have

vn(m:# S Y AW alk—1),a)

aeLn(ﬂ'\{k}) ake[n}
agga([k—1])

1 t—1 |
= > Aa(), ... alk - 1),a(j)).
a€Ln (r\{k}) i=1
For i,j € [t — 1], we define new blocks
g [BiUdR) =
7T B, if j 1,

and the corresponding crossing partition 7* = {B! ... B! ;} € II(k,t — 1). Then

t—1 t—1
1 . i
V() :_ZW > A1), alk —1)a(G) == Valr).
i=1 a€Ly (m\{k}) =1
Since each V,(7*) — 0 by our induction hypothesis, we see V,,(7) — 0 as well. O

For non-crossing partitions, we will study the structure of the graph G, for = € II(k, ),
which we recall has vertex set m and edges 7(j) <> 7w(j + 1) for all j € [k]. Observe that if
G has a loop, then 7(j) = 7(j + 1) for some j € [k], and so V,(7) = 0 by Lemma 12(ii).
For this reason, we direct our attention to loop-free partitions 7, that is, partitions 7 for
which G is loop-free.

Given a loop-free graph G on vertices V' with edges E, we say v € V is a cut vertex
if the induced subgraph of G on V' \ {v} is disconnected. A graph with no cut vertices
is called biconnected, and the biconnected components of a graph are its maximal
biconnected subgraphs. When the biconnected components of G are all simple cycles, we
call G a cactus. A reviewer of this paper noted that cactus graphs also emerge in the context
of traffic freeness [11], but at the time of this writing, we have not fully investigated how
deep this connection is.

Lemma 15. If 7 € II(k,t) is a loop-free non-crossing partition, then t > k/2+ 1 and G is
a cactus whose edges partition into k —t + 1 simple cycles.

Proof. First, suppose G is a cactus whose edges partition into k — ¢+ 1 simple cycles. Since
G» has no loops, the number of cycles is at least at least half the number of edges, that is,
k—t+1> k/2. Rearranging then gives ¢t > k/2+ 1. It remains to verify that G is, indeed,
a cactus whose edges partition into k£ — t 4+ 1 simple cycles.

Fixing k, we proceed by induction on k —t. If 7 € II(k, k), then G, is itself a simple
cycle and hence a cactus. For £k —¢ > 0, we now consider a loop-free non-crossing partition
7 € [I(k,t). By the pigeonhole principle, we may select B € 7 such that B contains at least
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two elements of [k]. Let j denote the least element of B. Writing B = {j} LI B’, we consider
n" € II(k,t+1) defined by 7’ = (7\ B)U{B’, {j}}. Since 7’ is also loop-free and non-crossing,
our induction hypothesis guarantees that G, is a cactus with £ — ¢ simple cycles. Our task
is to use this information to show that G, is a cactus with £ — ¢ + 1 simple cycles.

Suppose first that {j} and B’ reside in the same simple cycle of G,,. Then the simple
cycles of G not containing {j} and B’ remain simple cycles and biconnected components
of G,. Moreover, by identifying {7} and B’, we see that the simple cycle of G,/ containing
{j} and B’ corresponds to two simple cycles of G, sharing the cut vertex B = {j} LU B’. As
such, G, contains k — ¢t + 1 biconnected components, each of which is a simple cycle.

We now claim that {j} and B’ must reside in the same simple cycle of G, in which
case we are done by the previous paragraph. Suppose instead that there exists a cut vertex
X e "'\ {{j}, B’} that separates {j} and B’ within G, and select j' € [k] with 7(j') = B'.
Since 7 is the least element of B, we necessarily have j < j’. Furthermore, since X separates
{j} and B’, we can traverse along a trail in G, from {j} to X, to B’, and back to X to obtain
indices i € (j,5') and i’ € (j',k + j) with 7/(i) = 7'(¢') = X. These indices j < i < j' <’
satisfy 7(j) = n(j’) and (i) = 7(i), contradicting our assumption that 7 is non-crossing.
Hence, {j} and B’ must reside in the same simple cycle of G, as claimed. O]

Lemma 16. For every loop-free non-crossing m € (k,t), each of the following holds:
(i) If G contains any odd cycles, then V,(w) — 0.
(i1) If the edges of G, partition into m simple cycles of sizes 2s1,...,28,, then

Vo(m) = (=12 ™. Oy - C, .

Proof. Any loop-free non-crossing partition must have at least two blocks. When t = 2, we
may assume k = 2 by Lemma 6 so that the only partition under consideration is {{1},{2}},
in which case m = 1 and s; = 1. Lemma 12(i) allows us to verify the result in this case:

VL) = 5 Y Alm.a@) =" 1o o
ad%];&’%

Now consider ¢t > 2, and suppose the lemma has been established for every loop-free non-
crossing partition on ¢ — 1 blocks. By Lemma 15, we may assume that k satisfies t > k/24 1.
Then for 7 € II(k,t), the pigeonhole principle guarantees that 7 contains a singleton block
{j} € 7. By Lemma 13, we may assume {k} € m. We proceed in cases:

Case I: 7(1) = w(k — 1). We may apply Lemma 12(v) to obtain

Vn(ﬂ-) = nk/g_H Z A (k - 2),@(1),&(1{7))

a€Lp(m)

:# Y A1), a(k - 2)) + o(1).

a€Ln(m\{k})

16



The restriction of 7\ {k} to [k — 2] results in a loop-free non-crossing partition 7’ of [k — 2]
into t — 1 blocks. Moreover, the above expression for V,,(7) implies

V() = V(7)) + o(1). (9)

For (i), observe that if G, contains any odd cycles, then G, must also contain odd cycles.
In this case, we may apply our induction hypothesis to V,,(7’) to conclude V,,(7) — 0. For
(ii), the edges of G partition into m simple cycles of sizes 2s1, .. .,2s,, with s,, = 1, and so
the edges of G, partition into m — 1 simple cycles of sizes 2sq, . ..,2,,_1. Then (9) and our
induction hypothesis together imply

Va(m) = (1) Coy oy -+ Gy

Since Cy = 1, this establishes (ii).

Case II: 7r(1) # m(k—1). In this case, m(k) necessarily resides in a cycle of length ¢ > 3.
Select representatives k, jo, ..., J: € [k] with w(k) = B; and 7(j;) = B; so that the vertices
in the cycle are given by By, ..., By. Then we may apply Lemma 12(iv) to obtain

Vm = Y Y Aa(). ek~ 1))

a€Lp(m\{k}) ar€n]
ak %a([k 1])

- Y ZA Ja(k = 1),a(50)).

a€Ln(m\{k})

For i,j € [2,t], define new blocks

g [BiUR), =i
I\ B if j 1,

and the corresponding partitions 7* = {B}, ..., B/}, we have

t
== Vil
=2

By Lemma 14, V,,(7%) — 0 whenever 7’ is a crossing partition. Since 7 is obtained from 7
by merging blocks B; and {k}, we can argue as in the proof of Lemma 15 to conclude that
7 is crossing if and only if B; and {k} do not reside in the same simple cycle of G,.. Hence,

4

Va(m) = = Val(m) + o(1),

=2

where each 7’ is non-crossing for 2 < i < £. Both 7% and 7‘ contain loops, so V,(7?) =
V. (7%) = 0 by Lemma 12(ii). When ¢ = 3, this gives V,,(7) — 0, as desired by (i). Supposing
for the remainder that ¢ > 4, we must still compute the limit of

1

Va(m) = =) V(@) + o(1). (10)

=3



Observe that our cycle {Bjy, ..., B;} in G, of length ¢ corresponds to the two simple cycles
in G of {B%,..., B!} and {B!, B, ,,...,B}} with lengths i — 1 and ¢ — i + 1 and share the
cut vertex B!. Moreover, all other simple cycles are identical between the two graphs.

If ¢ is odd, then for each i € [3,¢—1], either i —1 or /—i+1 is odd, and so G: must have
an odd cycle. Since each 7 has t — 1 blocks and an odd cycle, we can apply our induction
hypothesis to conclude that each V,(7") — 0 so that V,(7) — 0, as desired by (i). Suppose
instead that ¢ is even, but G, has an odd cycle. This odd cycle is also contained in each
Gri for i € [3,¢ — 1], and again we can apply our induction hypothesis to conclude that
Va(m) — 0, thereby establishing (i).

Finally, for (ii), suppose that ¢ is even and that the edges of G, partition into m cycles
of lengths 2s4,...,2s,, with 2s,, = £. Notice that if + — 1 is odd, then G,: contains an odd
cycle, and V,,(7%) — 0. Since the contribution of these terms is negligible, we must compute

the limit of
¢/2—1

V,(m) = — Z Vo (7 + o(1).

The cycles of lengths 2sq,...,2s,,_1 are common to both G, and G 2i+1, while the cycle of
length ¢ = 2s,, in G, corresponds to two cycles of length 2i and ¢ — 2i in G 2i+1. Applying
our induction hypothesis, we have

¢/2-1
Va(m) = (=12 Cy oy C, Z Ci-1Cya—i-1.

=1

Reindexing and applying the convolution identity for Catalan numbers, we have

0/2—1 0/2—2
> CiaCrpin = CiCyaia=Cippr.
i=1 i=0
Hence, V(1) — (=1)k/?=m.C, _---C,, _1, thereby establishing (ii). O

Proof of Lemma 7. To prove (i), consider m € II(k, t)\EC(k,t). Then either 7 is crossing, G
contains a loop, or GG, contains an odd cycle. If 7 is crossing, then V,(7) — 0 by Lemma 14.
If G, contains a loop, then V,(m) = 0 by Lemma 12(ii). If 7 is loop-free and non-crossing
but G contains an odd cycle, then V,,(7) — 0 by Lemma 16(i). This establishes (i). Finally,
(ii) follows from applying both Lemmas 15 and 16(ii). O
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