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Abstract—With the emergence of more and more powerful chipsets and hardware and the rise of Artificial Intelligence of Things
(AIoT), there is a growing trend for bringing Deep Neural Network (DNN) models to empower mobile and edge devices with intelligence
such that they can support attractive AI applications on the edge in a real-time or near real-time manner. To leverage heterogeneous
computational resources (such as CPU, GPU, DSP, etc) to effectively and efficiently support concurrent inference of multiple DNN
models on a mobile or edge device, we propose a novel online Co-Scheduling framework based on deep REinforcement Learning
(DRL), which we call COSREL. COSREL has the following desirable features: 1) it achieves significant speedup over commonly-used
methods by efficiently utilizing all the computational resources on heterogeneous hardware; 2) it leverages emerging Deep
Reinforcement Learning (DRL) to make dynamic and wise online scheduling decisions based on system runtime state; 3) it is capable
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1 INTRODUCTION

Over the past few years, Deep Learning (DL) [29], [12] (e.g.,
Deep Neural Networks (DNNs)) has become the de facto
approach for a variety of tasks (such as image classifica-
tion, face recognition, object detection, action recognition,
machine translation, etc) in multiple domains including
computer vision and Natural Language Processing (NLP).
With the emergence of more and more powerful chipsets
and hardware and the rise of Artificial Intelligence of Things
(AIoT), there is a growing need for bringing DNN models
to empower mobile and edge devices with intelligence such
that they can support attractive AI applications, such as
flower recognition on a smartphone, voice-activated digital
assistant, Driver Monitoring System (DMS) and Advanced
Driver Assistance System (ADAS), in a real-time or near
real-time manner.

However, deploying large DNN models onto resource-
limited devices is quite challenging since most commonly-
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used DNNs have very complex architectures with a huge
number of layers and parameters (e.g. ResNet152 [16] and
Faster-RCNN [50]) and thus are known to be computation-
ally intensive [53] and slow (inference with most DNNs
cannot be real-time or near real-time even with a powerful
GPU server); while most mobile and edge devices have very
limited computing power and resources. Recently, research
and development efforts have been made to overcome
this challenge in both industry and academia. First, a few
DL frameworks have been developed particularly for sup-
porting DNN inference over mobile devices. For example,
Google launched Tensorflow Lite [57], which extends the
widely-used Tensorflow [1] to mobile devices. Facebook
released PyTorch Mobile [47], which is a mobile-optimized
framework for on-device DNN and quantized DNN infer-
ence. These frameworks aim to provide special (i.e., mobile-
version) implementation of operators needed by DNNs to
support and accelerate their inference on mobile devices.
Another line of research targeted at this challenge from the
application/model perspective by compressing DNN mod-
els via weight pruning, quantization and knowledge distil-
lation. For example, in a pioneering work, Han et al. [14]
presented a simple algorithm to compress DNN models by
pruning unimportant weights. Later, Wen et al. [59] pro-
posed a structured pruning method, which has been shown
to be more effective. Commonly-used 8-bit quantization
can reduce the size of a DNN model (using 32-bit float
numbers to represent its weights) by 4x without any loss on
accuracy [4]. Very extreme methods, such as binary neural
networks [23], [32], use only 1-bit to represent each weight,



which turn out to be very effective in terms of compression
and acceleration, but usually suffer from substantial accu-
racy loss. Hinton et al. [19] introduced an interesting method
called knowledge distillation, which trains a small student
network using both ground truth (a.k.a hard) labels and the
results given by a large teacher network (a.k.a soft labels).
All these three model compression approaches have been
widely used in commercial AI applications. We, however,
overcome this challenge from a whole new angle by jointly
scheduling multiple DNNs over heterogeneous hardware,
which is completely complementary to those deep learning
frameworks and model compression techniques introduced
above, i.e., it can be used together with them to further
optimize and accelerate DNN inference.

Currently, it is very common for a mobile/edge device
to be equipped with heterogeneous hardware, such as CPU,
GPU, DSP and emerging AI chipsets [39] (e.g. TPU, NPU,
VPU, etc). However, scant attention has been paid to study-
ing how to fully harness their power by making them work
collaboratively to speed up DNN inference in the context
of mobile and edge computing. Furthermore, we consider
a practical scenario, in which multiple (independent or
correlated) DNN models work together on a mobile/edge
device. For example, we may use three different but corre-
lated DNNs in a mobile application: one for face detection,
one for facial expression recognition and another for facial
landmarks estimation. However, some related works [69],
[63] only addressed the inference of a single DNN model,
which represents a rather simplistic case.

When a user runs a DNN model on a mobile device, its
CPU undertakes all inference workload by default [57], [47]
without the help of GPU or other available hardware, which
is obviously not efficient (See Sections 2 and 4). In a cloud
with powerful GPU servers (e.g., NVIDIA T4 [44]), it is a
common practice to simply offload all DNN models to GPUs
for high-throughput and low-latency processing. However,
computational hardware on a mobile/edge device usually
has much less computing power than those GPUs designed
particularly for DNNs in a cloud. For example, the GPU
on a Google’s Pixel 2 XL smartphone has a limited com-
puting power of only 567 GFLOPs [2]; while an NVIDIA
T4 GPU offers a much higher computing power of 8, 100
GFLOPs [44]. Moreover, mobile/edge GPU may have to
undertake other major tasks (such as graphics); while its
cloud counterpart is usually used only for DNNs. Hence,
it may not always be wise to distribute all DNN inference
workload to GPUs on a mobile/edge device. In addition
to latency and throughput, energy efficiency has always
been another major concern for mobile and edge com-
puting since most mobile devices and some edge devices
are battery-powered with limited energy resources. More-
over, as mentioned above, AI applications with DNNs are
computationally intensive thus energy hungry. So energy
efficiency should be another design goal, which, however,
may further complicate the scheduling problem. In short,
the DNN scheduling problem studied here is not trivial at
all.

In this paper, we aim to develop a co-scheduling frame-
work, which jointly schedules multiple DNN models over
heterogeneous hardware with the objective of achieving
low-latency, high-throughput and energy-efficient inference.

First of all, we perform a preliminary empirical study
to gain some insights about the right direction for DNN
scheduling over heterogeneous hardware by running some
simple experiments on a Google’s Android-based Pixel
smartphone. We make several interesting findings from our
preliminary study: 1) The current practice utilizing single
hardware (a CPU or GPU) for DNN inference is inefficient;
and a better way is to make the CPU and GPU work
concurrently by co-scheduling tasks on both of them. 2) A
straightforward scheduling method with a pre-defined fixed
policy, e.g., round-robin, is neither high-throughput friendly
nor energy-efficient; hence, designing a low-latency, high-
throughput and energy-efficient co-scheduling algorithm
for DNN inference is quite challenging.

Motivated by these findings, we design and implement
a novel online Co-Scheduling framework based on deep
REinforcement Learning (DRL), which we call COSREL.
The main advantage of COSREL is its ability to leverage
heterogeneous computational resources (e.g., CPU, GPU,
DSP, etc) to effectively and efficiently support concurrent
inference of multiple DNN models on a mobile or edge
device. As demonstrated by our experimental results, COS-
REL can improve the throughput up to 1.8x, reduce the
inference latency up to 88%, and consume up to 51% less
energy in the scenario with multiple DNN models deployed
on the device. Particularly, COSREL has several desirable
features. First of all, COSREL achieves significant speedup
over the commonly-used methods by efficiently utilizing all
heterogeneous computational hardware. Second, COSREL
leverages emerging DRL to make dynamic and wise online
scheduling decisions for DNN models based on system
runtime state. Third, COSREL is capable of making a good
tradeoff among latency, throughput and energy efficiency.
Last but not the least, COSREL makes no change to given
DNN models, and thus preserves their accuracies. In ad-
dition, training a DRL agent for on-device inference is
challenging (see Section 3.3). We propose a novel device-
server co-training algorithm, which makes a device and a
server work collaboratively and efficiently to train the DRL
agent of COSREL. We summarize our contributions in the
following:

1) We conduct a preliminary empirical study for infer-
ence with a simple DNN model on an off-the-shelf
smartphone, and make several interesting findings,
which can serve as a guidance for the design of an
efficient co-scheduling algorithm.

2) We present the design and implementation of a
novel co-scheduling framework, COSREL, which
has several desirable features. Moreover, we pro-
pose a novel device-server co-training algorithm to
train its DRL agent.

3) We well justify the effectiveness and superiority of
COSREL by extensive experiments on off-the-shelf
mobile devices with widely-used DNN models.

The rest of the paper is organized as follows. We present
our preliminary study in Section 2. The proposed frame-
work, COSREL, is presented in Section 3. We present exper-
imental results and the corresponding analysis in Section 4.
We present a literature review about related work in Sec-
tion 5 and conclude the paper in Section 6.
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2 PRELIMINARY STUDY

In this section, through a preliminary study, we discuss
the problems of the current practice, which undertakes
all inference tasks on single hardware, and the challenges
associated with online co-scheduling on mobile and edge
devices with heterogeneous hardware.

In a typical AI application scenario (e.g., image classi-
fication), a developer first designs a DNN model for this
application, trains the model in servers with training data,
and then converts the model to fit into mobile/edge devices
using an on-device inference framework (such as Tensor-
flow Lite [57]). When deploying the DNN model to devices,
the current practice is to specify a particular hardware,
CPU (by default) or GPU (if available), to execute the DNN
inference. However, this kind of single-hardware solution
does not take advantage of heterogeneous computational
resources. To utilize all available computational resources to
support DNN inference, we can design a straightforward
scheduling solution, e.g., evenly distributing inference tasks
to different hardware in a round-robin manner, which,
however, is shown to be inefficient. We conducted some ex-
periments on an off-the-shelf smartphone, Google’s Pixel 2
XL [45], which runs Android 10 on Qualcomm Snapdragon
835 CPU and Adreno 540 GPU. We used a simple DNN
model for continuous image classification on this device,
which mainly consists of a few convolutional layers and
fully-connected layers. The basic information of this DNN
model is summarized in Table 1, where #Cov is the number
of convolutional layers with four 3×3×32 and two 3×3×64
filters, respectively, #MaxP is the number of max pooling
layers, and the #FC is the number of fully connected layers
with 1,000 neurons each.

#Input #Cov #MaxP #FC #Output
244× 244× 3 6 3 2 1000

TABLE 1: The basic information of a simple DNN

In our experiments, images kept arriving at a rate of 25
Frames Per Second (FPS), which is a typical sampling rate of
a smartphone camera. For a given observation period, our
goal is to complete as many inference tasks as possible and
in the meanwhile, maintain a low inference latency. Here,
each inference task refers to the process of computing the
output from an input image using a given DNN. At the be-
ginning of each decision epoch, the scheduler computes an
assignment for all the following inference tasks that will ar-
rive within this epoch. To show the performance of different
scheduling methods, we used the following three metrics for
comparisons: 1) throughput: the number of completed tasks
during an observation period; 2) inference latency (or simply
latency): the elapsed time from the arrival of a task to the end
of the inference; and 3) energy efficiency index: the average
amount of energy consumption per task. We calculated the
throughput and the average inference latency of completed
tasks. Since there is no available Android API to directly
measure the battery consumption for only one task, we
measured the energy drop of the smartphone battery within
a certain period using the Android API BatteryManage and
computed the corresponding energy efficiency index. The
same measurement method has been used in [34]. Similar
energy efficiency metrics have also been used in the context

of cloud computing [26] and in the context of wireless
communications [43], [37].

In our experiments, we evaluated three scheduling meth-
ods: running all inference tasks only on the CPU (labeled as
CPU), only on the GPU (labeled as GPU), and a straightfor-
ward round-robin-based co-scheduling method (labeled as
Round-Robin). We set the duration of each decision epoch
to 200ms and the duration of an observation period to
10s in our experiments. We ran the experiments for 100
observation periods and present the average values in terms
of the three metrics in Figures 1, 2, and 3. We make several
interesting findings from these results:
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Fig. 1: Average inference latency

Finding 1: Co-scheduling DNN tasks over all computational
hardware can significantly reduce the inference latency. The
current practice usually leverages single hardware, CPU or
GPU, for inference, which turns out to be inefficient due
to under-utilization of available computational resources.
As we can see from Figure 1, by fully leveraging all com-
putational resources on the device by co-scheduling tasks,
even a simple straightforward round-robin co-scheduling
algorithm significantly reduces the average inference la-
tency. Specifically, compared to the CPU-only and GPU-only
methods, the round-robin method significantly reduces the
average inference latency by 87.7% and 46.9%, respectively.
This is because it distributes the workload to both the CPU
and GPU, which improves resource utilization and thus re-
duces latency. Note that the GPU-only solution yields unsat-
isfactory latency because as mentioned above, mobile GPU
has much less computing power than those GPUs designed
particularly for DNN inference in a cloud; and moreover,
GPU is a batch-processing hardware, which usually leads
to high throughput but long latency. This finding leads us
to believe that co-scheduling tasks over all computational
hardware can significantly reduce the inference latency.
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Fig. 2: Throughput
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Finding 2: A straightforward co-scheduling method does not
yield satisfying throughput. Even though it has been demon-
strated that task co-scheduling can utilize both the CPU and
GPU to reduce DNN inference latency, a straightforward
method, such as Round-Robin, does not yield satisfying
throughput, which is shown in Figure 2. Specifically, com-
pared to the GPU-only method, the round-robin algorithm
produces 17.5% less throughput on average. This is because
heterogeneous hardware usually results in different infer-
ence times, distributing too much workload to low-speed
hardware (e.g., CPU) may hurt the overall performance.
Straightforward scheduling methods, such as Round-Robin,
usually follow a pre-defined fixed policy and ignore system
state at runtime, which likely leads to unsatisfactory per-
formance too. Hence, we can learn that it is necessary to
carefully design an intelligent scheduling algorithm, which
can fully utilize all computational resources, and make
wise online scheduling decisions based on runtime system
state with the objective of achieving low-latency and high-
throughput inference.
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Fig. 3: Energy efficiency index

Finding 3: Achieving energy efficiency is non-trivial. As we
can see from Figure 3, the straightforward co-scheduling
method, Round-Robin, cannot well balance the performance
and energy consumption, and thus leads to 21.6% more
energy consumption per task, compared to the GPU-only
method. The CPU-only solution is not energy-efficient ei-
ther. This is because even though it may lead to a low energy
dropping rate, it tends to spend a long time to process DNN
inference tasks, which is not efficient in terms of energy
efficiency index. Therefore, when designing a co-scheduling
algorithm for DNN inference, we should carefully and ex-
plicitly address energy efficiency in our design.

3 DESIGN AND IMPLEMENTATION

In this section, we first present an overview of COSREL and
then describe the details of its design and implementation.

3.1 Overview

Motivated by the findings described above, we propose a
novel online co-scheduling framework called COSREL. Fig-
ure 4 illustrates the architecture of COSREL, which consists
of two components:

1) State Monitor: It periodically collects runtime state
of the system, and reports it to the DRL agent for
decision making.

2) DRL Agent: It is the core of COSREL, which takes
the runtime state as input and applies a DRL-based
algorithm to compute a co-scheduling solution.

COSREL works as follows: given a well-trained DRL agent,
at each decision epoch, based on the runtime state received
from the state monitor, it derives a co-scheduling solution
and deploys it to the system. We will discuss how to train
the DRL agent in Section 3.3. The desirable features of
COSREL is summarized in the following:

1) Full Utilization of Heterogeneous Hardware: COSREL
fully utilizes all computational resources on hetero-
geneous hardware to support on-device inference of
DNN models.

2) DRL-based Online Co-Scheduling: Based on DRL,
COSREL makes dynamic and wise online co-
scheduling decisions with consideration for system
state at runtime.

3) Good Tradeoff among Latency, Throughput and Energy
Efficiency: COSREL can achieve low-latency, high-
throughput and energy-efficient DNN inference by
setting the reward of its DRL agent properly.

4) User/Model Transparency: COSREL is transparent to
users and DNN models, i.e., it makes no change
to given DNN models and thus preserves their
accuracies.

5) Complementariness to existing DL frameworks and
Model Compression Techniques: As mentioned above,
COSREL can work together with any existing DL
framework and/or any model compression tech-
nique to further accelerate DNN inference.

We summarize major notations in Table 2 for quick refer-
ence.

TABLE 2: Major Notations

Notation Description
M A set of DNN models
M The number of DNN models
N A set of computational hardware
N The number of computational hardware

st, at, rt The state, action and reward at
decision epoch t

xij The throughput of DNN model i
on hardware j

yij The average inference latency of
DNN model i on hardware j

Q(·) The deep Q-Network (DQN)
Q′(·), Q′′(·) The DQN clone and its target network
θ, θ′, θ′′ The sets of weights of Q(·),

Q′(·) and Q′′(·)

3.2 DRL-based Co-Scheduling
In this section, we present the design and implementation
of the proposed DRL agent. We consider the following
co-scheduling problem: given a set of DNN models M
and a set of computational hardware N , the co-scheduling
problem seeks a co-scheduling solution, which assigns each
DNN model to one of the computational hardware. For-
mally, the co-scheduling solution is given by an M × N
matrix a, where M = |M|, N = |N |, and each element
aij = 1 denotes that DNN model i is assigned to com-
putational hardware j; otherwise, aij = 0. Note that in
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Fig. 4: The architecture of COSREL

a real system, each DNN model is loaded to all hardware
in advance. At each decision epoch, assigning a DNN model
i to hardware j means that the inference tasks associated with
DNN model i are inserted into the queue corresponding to model-
hardware pair (i, j) for processing. At runtime, we run a thread
for each model-hardware pair (i, j), which keeps picking
inference tasks (arrive one by one) from the corresponding
queue and running them on hardware i. All these threads
run concurrently in parallel. In the example illustrated by
Figure 4,N = 2 and hardware 1 and 2 are the CPU and GPU
respectively; each circle represents a thread corresponding
to a model-hardware pair (i, j), which maintains a queue
with tasks (of DNN model i) assigned to hardware j.

In COSREL, we propose to employ a DRL agent to solve
the above scheduling problem. At each decision epoch t,
the DRL agent observes system state st; then based on its
current control policy π(·) and state st, the DRL agent com-
putes a scheduling solution at. In COSREL, we apply a Deep
Q-Network (DQN) [40] Q(·) to deriving the control policy.
Basically, DQN (i.e., Q(·)) is a DNN that takes the current
system state and an action (i.e., a scheduling solution) as
input and outputs a continuous value, which is called Q-
value. The Q-value can be considered as a score which tells
how well to take an action a at state st. The control policy
π is defined as selecting action at with the highest Q-value
at state st, i.e., π(st) : at := argmaxaQ(st,a). We present
the definitions of state and action for the DRL agent in the
following.

State: the state of the DRL agent is basically the runtime
statistics, which are collected periodically from the device.
In our design, the state consists of the following three
features: 1) the length of the task queue of each model-
hardware pair; 2) the inference time of each model on
every computational hardware; 3) the resource usage (in
percentage) of each computational hardware.

Note that as mentioned above, each inference task refers
to the process of computing the output from input (e.g., an
image) using a given DNN. So the length of a task queue
is the number of tasks waiting in that queue for being
processed by the corresponding hardware. We only keep
necessary features from the runtime statistics in our design
such that we will not introduce significant overhead to the

DRL agent. We have tried different combinations of the
available features and found that the above three features
are sufficient for capturing the essence of the system state at
runtime.

Action: An action of the DRL agent is rather straightfor-
ward, which is defined as a co-scheduling solution a, which
is a M ×N matrix. Each of its element aij = {0, 1} specifies
if model i is assigned to hardware j as described above.

Reward: COSREL is so flexible that it can accommodate
different application-specific and/or device-specific needs
by setting its reward function properly. There are usually
two cases: the first case emphasizes performance (in terms
of latency and throughput); and the second case cares about
both performance and energy efficiency.

Specifically, for those real-time AI applications (such
as object detection, object tracking, etc) or for those edge
devices with continuous power supply, the major concern
of the design is certainly performance (in terms of latency
and throughput). In this case, we need to maximize the
system performance by jointly addressing both latency and
throughput in the reward function. In our design, instead
of directly maximizing throughout (which likely leads to
significant unfairness) or minimizing latency, we choose to
follow the widely-used α-fairness model [6], [54], [60], [61]
to address both latency and throughput, and the reward is
defined accordingly as:

r =

M∑
i=1

N∑
j=1

(U(xij)− ρ · U(yij)), (1)

where U(·) is a utility function, xij and yij are the through-
put and the average inference latency of DNN model i on
the hardware j during the last decision epoch, respectively;
and ρ is a scaling factor used to balance their relative im-
portance and ρ := 0.1 in our implementation. According to
the α-fairness model, the utility function is Uα(x) = (x

1−α

1−α ).
For α > 0, Uα(x) increases monotonically with x. α can be
used to tradeoff fairness and performance. In our design, we
choose to set α := 1, then U(x) = log x, which is considered
to make a good tradeoff between performance and fairness
thus has been widely used for resource allocation.

In addition, for those mobile devices (such as smart-
phones, pads and wearable devices) that are usually battery-
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powered, energy consumption is one of major concerns and
should play a key role in the reward function. In this case,
we can define another reward function, which includes both
performance-related factors (i.e., throughput and latency)
and energy consumption. Formally, the reward is defined
as:

r =
M∑
i=1

N∑
j=1

(U(xij)− ρ · U(yij)− σ · e) (2)

where e is the energy consumption since the last sampling;
and σ is a scaling factor and σ := 0.01 in our imple-
mentation. Note that our framework provides an ability to
express different optimization objectives via choice of the
reward function (e.g., throughput, latency, and energy con-
sumption). In practice, users could select different reward
functions, like the ratio of these two utility functions. It is
believed that using such reward functions would achieve
similar performance as long as they have the same opti-
mization objectives, i.e., maximizing the throughput and
minimizing the latency.

Implementation Details: We implemented COSREL on
Android 10 [3], which is one of the most popular OSs for
mobile and edge devices. To collect the runtime statistics of
the system, including necessary information for state and re-
ward, we developed a state monitor, which runs as daemon
process in the Android system, periodically broadcasting
those information. The DRL agent registers the broadcasting
and receives the information from the state monitor. The
information will be used as the input to the DQN in the DRL
agent for decision making and to form transition samples
for training (which will be discussed next). We used Ten-
sorflow Lite [57] for our implementation, which allows us
to perform DNN inference using different types of compu-
tational hardware on the Android-based device, including
CPU and GPU. Tensorflow Lite uses the Interpreter class to
warp all the functions needed by DNN inference, including
configuring the hardware, loading DNN models, executing
operations with input data, and accessing results. It uses
a CPU to support inference of DNN models by default.
To perform inference on a GPU, we need to select the
GpuDelegate option when initializing the Interpreter. To
fully leverage all the computational resources, we warped
each DNN model as a separate thread, which maintains a
task queue and multiple Interpreter (each of them is con-
figured for certain hardware). At runtime, DNN inference
tasks are submitted to the task queue with input data, and
our DRL agent tells which hardware are used to perform the
corresponding DNN inference. COSREL keeps running all
threads to process the corresponding tasks from their task
queues.

3.3 Device-Server Co-Training

A common practice for using a DNN model (e.g., a Convolu-
tion Neural Network (CNN)) on a mobile/edge device is to
train the model on a (or multiple) server with given training
data, and then deploy it on the device only for inference.
However, this approach does not work for a DRL agent,
i.e., it cannot be well trained only on a server in an offline
manner, since data (i.e., transition samples) for training the
agent need to be collected continuously via interactions

with the mobile/edge device. On the other hand, it is also
difficult to train a DRL agent only on a mobile/edge device.
As we all know, complex mathematical operations (e.g.,
calculating gradients and backpropagation) are needed to
be performed during the training process, which, however,
are not supported by most mobile DL frameworks such as
TensorFlow Lite and Pytorch Mobile. Moreover, training
a DRL agent only on a mobile/edge device may take a
long time to converge due to its very limited computational
resources.

Hence, we propose to let the server and mobile/edge
device to work collaboratively and efficiently to train the
DRL agent, which we call device-server co-training. During
the co-training process, the on-device DRL agent period-
ically sends transition samples to the server, where the
training algorithm performs backpropagations and updates
the DQN of the DRL agent.

For the completeness of the presentation, we formally
present the device-server co-training algorithm as Algo-
rithm 1. According to this algorithm, we have an on-device
DRL agent with its DQN Q(·) on the device; and a clone
Q′(·) of the on-device DQN and its corresponding target
network Q′′(·) on the server. First the algorithm randomly
initializes the weights of Q(·), and copies its weights to
its clone Q′(·) and the target network Q′′(·) (Lines 1 and
2). We choose a random action as the starting point. After
executing the scheduling action, the state transits to st+1,
and the agent observes the reward rt from the system. Then
the DRL agent sends transition sample (st,at, rt, st+1) to
the server for updating the DQN clone Q′(·)(on the server).

On the server, whenever receiving a transition sample
from the device, the server stores it into its replay buffer.
Then the algorithm samples a mini-batch of transition sam-
ples from the replay buffer and then calculates the target
value with a discount factor γ (Line 13). In our implemen-
tation, γ := 0.99. The loss function used for training is
defined as the mean square error of the current output of
DQN and the target value (Line 14). The DQN clone Q′(·)
can then be updated using any training algorithm (such as
Stochastic Gradient Descent (SGD)) on the server. Note that
the learning objective here is to find the best policy π that
maximizes the cumulated discounted reward over a long
decision period. We apply a soft-update to slowly updating
the target network Q′′(·) with a scaling factor τ (Line 15)
and τ := 0.01 in the implementation. The target network
and experience replay buffer here are both used to improve
learning stability [40], [31]. Similar as in [40], we apply the
ε-greedy policy for exploration (Line 16). Specifically, we
take an random action with ε probability, otherwise, we take
an action derived by the control policy π. ε decays as the
training progresses. Note that we choose an action using the
ε-greedy policy on the server and send it to the device for
execution because the server has the most updated DQN
Q′(·). To minimize the communication overhead, instead
of synchronizing Q(·) with Q′(·) in every step, we do it
only once in the end (Line 20). In every step, we only
need to send the action generated using the ε-greedy policy
to the DRL agent on the device for execution. Since the
DRL agent does not need the target network to derive an
action, it is deployed only on the server. The interactions
between the device and the server are only needed during
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Fig. 5: Device-server co-training

Algorithm 1: Device-Server Co-Training
Input: The number of training epochs T , the size of

a mini-batch K , the exploration ratio ε, replay
buffer B, DQN Q(·) with weights θ, its clone
Q′(·) with weights θ′, and its target network
Q′′(·) with weights θ′′.

1 Randomly initialize the weights θ of DQN Q(·);
2 θ′ := θ; θ′′ := θ;
3 foreach observation period do
4 Send a random action a1 to the DRL agent;
5 t := 1;
6 while decision epoch t < T do

/**Execution on the device**/
7 Receive action at from the server;
8 Execute the action and observe the reward rt;
9 Receive system state st+1 from the state

monitor;
10 Send transition sample (st,at, rt, st+1) to the

server;
/**Training on the server**/

11 Receive the transition sample and store it into
replay buffer B;

12 Sample K transition samples (si,ai, ri, si+1)
from B;

13 Compute the target value for each transition
sample yi := ri + γmaxaQ′′(si+1,a);

14 Update the weights θ′ of the DQN clone with
the loss function
L = 1

K

∑K
i=1(yi −Q′(si,ai))2;

15 Update the weights of target network
θ′′ := τθ′ + (1− τ)θ′′;

16 Select an action with the ε-greedy policy

at+1 :=

{
a random action with ε probability;
argmaxaQ

′(st+1,a) otherwise;17

18 Send action at+1 to the DRL agent;
19 end
20 end
21 Synchronize DQN Q(·) with its clone Q′(·): θ := θ′;

the training process. Once the DRL agent is well trained,
it makes scheduling decisions based only on its own DQN

Q(·).

Implementation Details: We implemented the server-
side training algorithm presented above as a training server
using Flask [9] and PyTorch [48] and deployed it on a
desktop computer. As mentioned above, the DRL agent
and the device-side training algorithm were implemented
using TensorFlow Lite. The training server also works as a
web server, waiting for HTTP requests from the DRL agent
on the device. At the beginning of each decision epoch,
DRL agent constructs a POST request, fills in a transition
sample in the JSON format, and sends it to the server. Upon
receiving the request, the server parses the JSON string and
stores the transition sample into its replay buffer. During the
training, the device continuously interacts with the cloud
server through uploading transition samples and down-
loading actions. The weights synchronizing only happens
at the end of training. Therefore, the co-training commu-
nication overhead only depends on the decision frequency
and the size of a transition sample (i.e., a pair of state,
action, reward, and new state value). As we may notice,
the size of both state and action is linearly increasing with
the number of deployed DNN models on the device, which
is usually in the range of one to several. Due to the resource
limitation of devices, it is infeasible to deploy too many
DNN models on the device. In practice, the users could
adjust the decision frequency according to their application
scenarios. For example, for the energy-sensitive case, they
can set a longer decision epoch to reduce communication
overhead; for the performance-first case, a shorter decision
epoch can lead to more precise scheduling.

In our implementation, we chose a commonly-used two-
layer fully-connected neural network (with ReLu as the
activation function) to serve as the DQN, which includes
256 and 128 neurons in the first and second layer respec-
tively. We applied the Adam [27] algorithm to updating the
weights of DQN, and set the learning rate to 0.005. While
we believe a finer-grain setting for different application
scenarios, like more complex neural network or more lay-
ers/neurons, might potentially enhance the learning ability
of DQN, leading to a better performance, it also leads to
extra inference and training overload.
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4 PERFORMANCE EVALUATION

In this section, we first present the common experimental
setup and then introduce the three testing scenarios. After
that, we present the experimental results and the corre-
sponding analysis.

4.1 Experimental Setup
We performed extensive experiments on an off-the-shelf
device, Google Pixel 2 XL running Android 10, which has
Qualcomm Snapdragon 835 CPU and Adreno 540 GPU [45].
For device-server co-training, the server side program ran
on a desktop with Ubuntu 18.04, Intel quad 2.6GHz CPU
and 32 GB RAM. To evaluate the performance of different
scheduling algorithms, we used average inference latency,
throughput and energy efficiency index as the metrics,
which have all been introduced in Section 2.

For a comprehensive evaluation, we compared COSREL
with three widely-used baselines:

1) CPU-only (labeled as “CPU”): This method only
uses CPU for the inference of DNN models.

2) GPU-only (labeled as “GPU”): This method only
uses GPU for the inference of DNN models.

3) Round-Robin (labeled as “Round-Robin”): This
method evenly distributes DNN inference tasks to
CPU and GPU in a round-robin manner.

4) Basic COSREL (labeled as “COSREL-P”): This is
COSREL, whose DRL agent was trained using the
basic reward function (Equation (1)).

5) Energy-efficient COSREL (labeled as “COSREL-
E”): This is COSREL, whose DRL agent was trained
using the energy-efficient reward function (Equa-
tion (2)).

4.2 Experimental Results and Analysis
To evaluate the performance of COSREL, we designed three
different testing scenarios. In the first scenario, we deployed
a single DNN model on the device to evaluate whether
COSREL can fully utilize all computational hardware to
speed up the DNN inference. In the second scenario, we
deployed two different DNN models on the device, aiming
to evaluate whether COSREL can effectively and efficiently
utilize heterogeneous computational resources to support
multiple DNN models. In the third scenario, we had two
real applications, facial expression recognition and facial
landmarks detection, which consist of three correlated DNN
models. We want to evaluate if COSREL can still work well
in such a complex environment with multiple correlated
DNN models and heterogeneous computational hardware.
In all these three scenarios, we set a decision epoch to 200ms
and an observation period to 10s, which are similar as in
our preliminary study, and we trained the DRL agent for
20, 000 decision epochs. When completing the training, we
tested COSREL for 100 observation periods. Then we calcu-
lated the averages of throughput, average inference latency,
energy efficiency index, and their corresponding standard
deviations (shown by error bars in Figures 6, 8, and 9).
We found these settings are sufficient for the DRL agent
to observe the system state, make the action decision, and
learn a good control policy in all these scenarios. While a

shorter epoch length or larger number of training epochs
may lead to a finer-grain scheduling or better performance,
the system will suffer from extra overhead of co-training
communication.

Scenario 1: In this scenario, we deployed a widely-used
DNN model, i.e., MobileNet [22] to the smartphone. We set
the arrival rate of images to 53FPS. From the results shown
in Figure 6, we can make the following observations:

1) It is not surprising to see that the CPU-only method
always has the worst performance. This is because CPU is
designed for general-purpose computing, but the inference
of DNN models needs a lot of floating-point vector/matrix
calculations. During the experiment, when the CPU-only
method was used, we observed that a long queueing delay
dominated the inference latency. Hence, compared to a
GPU, it usually takes more time for a CPU to execute the
inference of DNN models. Specifically, compared to CPU-
only method, the GPU-only method reduces the average
inference latency by 72.72% and boosts the throughput by
over 3.5x on average.

2) Although GPU can accelerate the inference of DNN
models, the GPU-only method, however, is not efficient
either. When too many inference tasks are assigned to the
GPU, the length of its queue increases and then the inference
latency rises sharply. By co-scheduling tasks on both the
CPU and GPU, we can fully utilize all the computational
resources, and avoid abusing the GPU. As we can see from
Figure 6(b), even a simple straightforward co-scheduling
method, Round-Robin, can help reduce the average infer-
ence latency. Specifically, the round-robin method reduces
the average inference latency by 82.18% and 34.65% respec-
tively on average, compared to the CPU-only method and
the GPU-only method.

3) Although heterogeneous hardware can potentially
speed up DNN inference, without a carefully-designed co-
scheduling algorithm, we may fail to harness the real power
of co-scheduling and parallel computing. As we can see
from Figure 6(a), the round-robin method delivers lower
throughput than the GPU-only method. This observation
confirms that it is necessary to design an intelligent co-
scheduling algorithm, which can fully utilize all computa-
tional resources based on the system state at runtime.

4) Although the goal of COSREL-P is not directly set to
minimize the average inference latency or to maximize the
throughput, COSREL-P still delivers satisfying performance
in terms of both metrics. Specifically, compared to the CPU-
only and GPU-only, and round-robin methods, COSREL-
P significantly improves the throughput by 4.2x, 15.92%,
and 46.06% respectively on average; and significantly re-
duces the average inference latency by 89.61%, 61.89%, and
41.68% respectively. These results well justify the effective-
ness and superiority of COSREL.

5) As we can see from Figure 6(c), both COSREL-P
and COSREL-E perform well in terms of energy efficiency.
Even though energy efficiency is not directly addressed
in its reward function, COSREL-P can still offer satisfy-
ing performance. Specifically, compared to the CPU-only
and round-robin methods, COSREL-P leads to 67.52% and
6.63% less energy consumption per task respectively on
average. As energy is explicitly addressed in its reward
function, COSREL-E achieves better energy efficiency than
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Fig. 6: Scenario 1: the performance of different methods with a single DNN model
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Fig. 7: Scenario 1: the reward of COSREL during the device-server co-training

COSREL-P with almost the same throughput and a slight
increase on average inference latency. These results illustrate
that our proposed framework is flexible and can be tuned
to accommodate different needs. If energy consumption is
the major concern (e.g., battery-powered mobile devices),
we can use COSREL-E. Otherwise, if the performance has
the highest priority, we can choose COSREL-P. Note that in
this simple scenario, the GPU-only method offers slightly
better energy efficiency than COSREL. However, in the next
two scenarios (that are more realistic and complicated),
COSREL leads to noticeable improvements over the GPU-
only method in terms of energy efficiency index, which can
be observed from Figures 8 and 9.

6) We show how the reward of the DRL agent improves
during the training in Figure 7. Note that we normalized the
reward values for better presentation. At the very beginning,
the DRL agent has a high probability to randomly explore
possible actions instead of taking actions derived by the
DQN. Therefore, we observed large fluctuations on the
reward. As the training progresses, the DRL agent gradually
finds good solutions that lead to larger rewards. Finally, the
reward converges to relatively high values, which indicates
that the DRL agent is well-trained and ready for online
deployment. Note that although the DRL agent stabilizes
after a certain period, there are still small fluctuations on
the reward. This is because the system is highly dynamic.
Specifically, the inference time of each DNN model and
the workload on each hardware are highly time-variant,
which may affect the decision making of COSREL. How-
ever, the fluctuations are quite insignificant, which indicates
that COSREL can consistently produce good co-scheduling
solutions once it stabilizes.

Scenario 2: It is quite common to have multiple DNN
models on a device for supporting different DL applications.
In this scenario, we deployed two different widely-used
DNN models (i.e., MobileNet [22] and SqueezeNet [24]) on
the smartphone. Since they ran on the same device, they
competed for the computational resources in the hardware.
We set the arrival rate of images to 25FPS in this scenario.
The corresponding results are presented in Figure 8. As we
can see, in this scenario, both COSREL-P and COSREL-
E deliver much better performance than all the baselines
in terms of both throughput and latency. Specifically, on
average, compared to the CPU-only, GPU-only and round-
robin methods, COSREL-P improves the throughput by
1.8x, 17.24% and 8.27% respectively; and it reduces the av-
erage inference latency by 88.10%, 74.63% and 56.22%. As
for energy consumption, COSREL-E turns out to be the best
solution. Specifically, compared to the three baselines and
COSREL-P, COSREL-E consumes 51.91%, 2.71%, 14.10%,
10.05% less energy per task respectively on average. These
results illustrate that COSREL is capable of handling the co-
scheduling problem in the case of multiple DNN models.

Scenario 3: In this scenario, we tested the performance
of COSREL in a more complicated case with three correlated
models. Specifically, we conducted the experiments with
two practical applications: facial expression recognition [56]
and facial landmarks detection [55]. In the facial expression
recognition application, a face detection DNN model first
takes an image as input and detects the human face shown
in the image. Then a facial expression recognition model
is applied to classifying the detected face into 7 categories
of expressions, including angry, disgust, fear, happy, sad,
surprise and neutral. In the facial landmarks detection appli-
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Fig. 8: Scenario 2: the performance of different methods with multiple DNN models
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Fig. 9: Scenario 3: the performance of different methods with multiple correlated DNN models
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Fig. 10: The structure of the two correlated AI applications

cation, a face detection model is first applied to detecting the
human face from an input image. Then a facial landmarks
detection model is used to detect 5 key points from the
detected face, including the positions of left and right eyes,
nose, left corner and right corner of the mouth. Obviously,
two applications share a common face detection model.
We chose MobileNet-SSD [33]) as the backbone network
for face detection to support these two applications. The
structure of the models used in this scenario is illustrated
in Figure 10. Through the model decomposition and layer-
wise model sharing, we constructed a processing pipeline,
avoiding duplicate inference with the backbone network
and thus improving the overall efficiency for inference. We
set the arrival rate of images to 25FPS in this scenario. From
the results shown in Figure 9, we can make the following
observations:

1) As expected, COSREL-P offers the best performance
in terms of both throughput and latency in this scenario.
Specifically, on average, COSREL-P significantly improves

the throughput by 97.74%, 23.26%, 12.95% respectively
and significantly reduces the average inference latency by
88.14%, 73.38%, 64.87% respectively over the three base-
lines. These results well justify the superiority of COSREL-P
in terms of throughput and latency.

2) Even though COSREL-P does not explicitly consider
energy efficiency, it still outperforms all the baseline meth-
ods. For example, COSREL-P uses 42.24% less energy per
task than the CPU-only method on average. By sacrific-
ing throughput and latency a little bit, COSREL-E further
improves the energy efficiency by 4.09% over COSREL-P.
Note that COSREL-E still outperforms all the baselines in
terms of throughput and latency. Specifically, COSREL-E
improves the average throughput by 90.50%, 18.75%, 8.82%
respectively and reduces the average inference latency by
80.40%, 55.99%, 41.92% respectively.

These results demonstrate that both COSREL-P and
COSREL-E work very well in the complicated case with
multiple correlated DNN models.

5 RELATED WORK

In this section, we present a comprehensive review for
related work and point out the differences.

Inference Frameworks for DNNs: Extensive efforts have
been made to develop efficient DL frameworks to support
on-device DNN inference in both industry and academia.
Two widely-used frameworks are Tensorflow Lite [57] pre-
sented by Google and PyTorch Mobile [47] presented by
Facebook. Both of them support a number of mathematical
operations needed by the inference of common DNN mod-
els, and they can be deployed on a wide range of mobile and
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edge devices with heterogeneous hardware (e.g., CPU, GPU
and DSP). Other examples include NCNN [58] presented
by Tencent, MNN [42] presented by Alibaba, and TVM
presented by Chen et al. [7], which focus on a smaller subset
of frequently-used mathematical operations. However, they
have a more optimized and lightweight design, which can
further improve the inference efficiency.

Model Compression for DNNs: To reduce the compu-
tational complexity of DNN models while still preserving
their high accuracies, DNN model compression techniques,
such as weight pruning, quantization and knowledge distil-
lation, have also attracted a lot of research attention recently.
In a pioneer work [14], Han et al. proposed to reduce the
storage and computation required by a DNN model by
pruning its unimportant connections (i.e., weights). In a
follow-up work [15], they proposed to further compress
DNN models with weight pruning, trained quantization
and huffman coding. Other important pruning methods
include structured pruning [59], [38], [67], channel prun-
ing [17] and AutoML-based pruning [18], [36]. Quantization
has been widely used as an effective and direct approach to
reduce the size of a DNN model by reducing the number of
bits required to represent its weights. Representative quan-
tization methods include the most extreme binary neural
networks [23], [32], [49], ternary weight networks [30] and
conservative low-bit quantization (e.g., 4-bit and 8-bit) [4],
[21], [46] Besides, knowledge distillation represents another
effective but different method for DNN model compression.
Representative works along this line include [5], [19], [51],
[65].

These related works tackled the challenge of deploying
DNN models on mobile and edge devices from the applica-
tion/model perspective. However, the proposed approach
overcomes this challenge from the system perspective,
which is transparent to DNN models and is complementary
to these model compression methods.

Runtime Optimization for DNNs on Mobile and Edge
Devices: Recently, there has been a growing interest on run-
time optimization for DNNs on mobile and edge devices.
Lane et al. [28] proposed DeepX, a software accelerator for
DL model executions on mobile devices. DeepX first per-
forms a runtime layer compression on a given DNN model
to control the memory computation and energy consump-
tion, then it decomposes the DNN model into unit-blocks of
various types and schedules them on heterogeneous hard-
ware (e.g., CPU and GPU) for efficient on-device inference.
Yao et al. [64] presented a unified approach called DeepIoT
to compress DNN models for sensing applications. DeepIoT
compresses neural network structures into smaller dense
matrices by finding the minimum number of non-redundant
hidden elements, such as filters and dimensions required
by each layer, while keeping the performance of sensing
applications the same. Fang et al. [8] proposed NestDNN,
which prunes a DNN model into a set of descendent models,
each of which offers a unique resource-accuracy trade-off.
At runtime, it dynamically selects a DNN model with the
best resource-accuracy tradeoff to fit available resources in
the system. Liu et al. [35] proposed a usage-driven selection
framework, called AdaDeep, to automatically select a com-
bination of compression techniques for a given DNN model,
which leads to an optimal balance between user-specified

performance goals (e.g., latency and energy) and resource
constraints.

Another line of research has addressed the problem of
scheduling DNN models among mobile/wearable devices,
edge computing nodes and cloud servers. Han et al. [13]
evaluated a variety of model optimization techniques to
balance the resource usages in terms of memory, computa-
tion and accuracy. Then they proposed a framework called
MCDNN to automatically optimize DNN models while
conforming to the resource specification and assign DNN
models to run either on a cloud or on a mobile device.
Kang et al. [25] presented Neurosurgeon, a system that
automatically partitions DNN models at the granularity of
layers and assigns them to run on a mobile device or cloud
for the best latency and energy consumption tradeoff. Zhao
et al. [68] proposed ECRT, an edge computing system for
real-time object tracking on resource-constrained devices.
By intelligently partitioning DNN models into two parts,
which are executed locally on an IoT device or on an
edge server, ECRT minimizes the power consumption of
IoT devices while meeting the user requirement on end-to-
end delay. Xu et al. [62] proposed DeepWear, which focuses
on applying DNN models on wearable devices. DeepWear
offloads DNN inference tasks from a wearable device to its
paired hand-held device through local network connectiv-
ity (e.g., Bluetooth). Zeng et al. [66] proposed Boomerang,
an on-demand cooperative DNN inference framework for
edge systems in an Industrial Internet of Things (IIoT)
environment. Boomerang first reshapes the amount of DNN
computation via an early-exit mechanism to reduce the total
runtime of DNN inference, and then it segments the DNN
model between IIoT devices and an edge server to achieve
the DNN inference immediacy.

In addition, Georgieve et al. [11] presented LEO, a sched-
uler designed to maximize the performance of multiple
continuous mobile sensing applications by making use of
the domain-specific signal processing knowledge to dis-
tribute sensor processing tasks to heterogeneous compu-
tational resources (e.g., CPU, GPU, DSP and cloud). Zhou
et al. [69] proposed S3DNN, a system that supports DNN-
based real-time object detection workloads on GPUs in a
multi-tasking environment, while simultaneously improv-
ing real-time performance, throughput, and GPU resource
utilization. Yang et al. [63] proposed a framework to im-
prove the number of simultaneous camera streams for object
detection on embedded devices without significantly in-
creasing per-frame latency or reducing per-stream accuracy
by applying a combination of techniques, including paral-
lelism, pipelining, and the merging of per-camera images.

Unlike those methods proposed in [8], [28], [35], [64],
which applied model compression techniques to reduce the
model size and speedup model inference, COSREL rep-
resents a complementary and transparent solution, which
does not change DNN models thus preserves their accura-
cies. Unlike [13], [25], [62], [66], [68], which addressed the
problem of offloading DNN models (or part of models) to
the cloud, we, however, focus on the on-device inference
without the help of cloud servers, and consider a mathe-
matically different problem of scheduling tasks on hetero-
geneous hardware. In addition, we study DNN inference on
mobile and edge devices in general here, while some related
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works [11], [63], [68], [69] targeted at specific applications or
models with application-specific goals and requirements.

6 CONCLUSIONS

In this paper, we presented COSREL to fully leverage
computational resources on heterogeneous hardware us-
ing DRL to effectively and efficiently support concurrent
inference of multiple DNN models on a mobile or edge
device. COSREL has several desirable features, including
full utilization of heterogeneous hardware, DRL-based on-
line co-scheduling, good tradeoff among latency, through-
put and energy efficiency, user/model transparency, and
complementariness to existing DL frameworks and model
compression techniques. We also proposed a novel and ef-
ficient device-server co-training algorithm for COSREL. We
implemented COSREL on an off-the-shelf Android smart-
phone, and conducted extensive experiments with various
testing scenarios and widely-used DNN models to compare
it with three commonly-used baselines. It has been shown
by the experimental results that 1) COSREL consistently
and significantly outperforms all the baselines in terms of
both throughput and latency; and 2) COSREL is generally
superior to all the baselines in terms of energy efficiency.
Although DRL seems a promising technique for enabling
co-scheduling for DNN models on mobile and edge devices
with heterogeneous hardware, there are still many barriers
to its real-world application. For example, training with less
data is always a desired feature in practical edge and mobile
scenarios, which is also an active research topic in the DRL
community. Some new techniques, like transfer learning [70]
and meta learning [10], can help to further improve the
training efficiency and adaptability of DRL through learning
from previous knowledge instead of learning from scratch.
Moreover, our device-server co-training framework can be
further extended to support distributed training with multi-
ple devices. More efficient learning frameworks, like Asyn-
chronous Advantage Actor Critic (A3C) [41] and distributed
prioritized experience replay [20], can be applied to improve
the wall-clock training time and final performance. Besides,
our COSREL follows the typical DRL setting that aims to
learn a best policy to maximize the cumulated discounted
reward (i.e., a weighted sum of throughput, latency, and
energy consumption) over a long decision period. How-
ever, it is still an open issue to simultaneously optimize
multiple correlated or even conflicting objectives in DRL,
which is known as Multi-Objective Reinforcement Learning
(MORL) [52]. These topics are beyond the scope of this
paper, we leave them for future research.
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[26] G. Katsaros, J. Subirats, J. Fitó, J. Guitart, P. Gilet, and D. Espling, A
service framework for energy-aware monitoring and VM manage-
ment in clouds, Future Generation Computer Systems, Vol. 29, No. 8,
2013, pp. 2077–2091.

[27] D. Kingma and J. Ba, Adam: a method for stochastic optimization,
ICLR’15.

[28] N. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L.
Qendro, and F. Kawsar, DeepX: a software accelerator for low-
power deep learning inference on mobile devices, ACM/IEEE
IPSN’16, pp. 1–12.

[29] Y. LeCun, Y. Bengio, snd G. Hinton, Nature, Vol. 521, No. 7553,
2015, pp. 436–444.

[30] F. Li, B. Zhang and B. Liu, Ternary weight networks, NIPS’16.
[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.

Silver and D. Wierstra, Continuous control with deep reinforce-
ment learning, ICLR’16.

[32] X. Lin, C. Zhao, and W. Pan, Towards accurate binary convolu-
tional neural network, NeurIPS’17, pp. 345–353.

[33] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, and A.
Berg, SSD: single shot multibox detector, ECCV’2016, pp. 21–37.

[34] L. Liu, S. Isaacman, A. Bhattacharjee, and U. Kremer, POSTER:
exploiting approximations for energy/quality tradeoffs in service-

12



based applications, IEEE International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2017, pp. 156–157.

[35] Liu, Sicong and Lin, Yingyan and Zhou, Zimu and Nan, Kaim-
ing and Liu, Hui and Du, Junzhao, On-demand deep model
compression for mobile devices: a usage-driven model selection
framework, ACM MobiSys’18, pp. 389–400.

[36] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, AutoCompress:
an automatic DNN structured pruning framework for ultra-high
compression rates, AAAI’20.

[37] X. Lu, P. Wang, D. Niyato, D. Kim, and Z. Han, Wireless networks
with RF energy harvesting: a contemporary survey, IEEE Commu-
nications Surveys & Tutorials, Vol. 17, No. 2, 2014, pp. 757–789.

[38] J. Luo, J. Wu, and W. Lin, ThiNet: a filter level pruning method for
deep neural network compression, IEEE ICCV’17, pp. 5058–5066.

[39] Neural Processor: en.wikichip.org/wiki/neural processor
[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, and et al.,

Human-level control through deep reinforcement learning, Nature,
Vol. 518, No. 7540, 2015, pp. 529–533.

[41] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, Asynchronous methods for deep
reinforcement learning, ICML’16, pp. 1928–1937.

[42] X. Jiang, H. Wang, Y. Chen, and et al., MNN: a universal and
efficient inference engine, arXiv preprint, 2020, arXiv:2002.12418.

[43] D. Ng, E. Lo, and R. Schober, Wireless information and power
transfer: energy efficiency optimization in OFDMA systems, IEEE
Transactions on Wireless Communications, Vol. 12, No. 12, 2013,
pp. 6352–6370.

[44] NVIDIA-T4: nvidia.com/en-us/data-center/tesla-t4/
[45] Google Pixel 2 XL: en.wikipedia.org/wiki/Pixel 2
[46] A. Polino, R. Pascanu, and D. Alistarh, Model compression via

distillation and quantization, ICLR’18.
[47] PyTorch Mobile: pytorch.org/mobile/
[48] PyTorch: pytorch.org/
[49] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, XNOR-

Net: imagenet classification using binary convolutional neural
networks, ECCV’16, pp. 525–542.

[50] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: towards real-
time object detection with region proposal networks, NeurIPS’15,
pp. 91–99.

[51] A. Romero, N. Ballas, S. Kahou, A. Chassang, C. Gatta, and Y.
Bengio, Fitnets: hints for thin deep nets, ICLR’14.

[52] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, A survey
of multi-objective sequential decision-making, Journal of Artificial
Intelligence Research, Vol. 48, 2013, pp. 67–113.

[53] S. Shi, Q. Wang, P. Xu, and X. Chu, Benchmarking state-of-the-art
deep learning software tools, IEEE International Conference on Cloud
Computing and Big Data, 2016, pp.99-104.

[54] R. Srikant, The mathematics of Internet congestion control,
Springer Science & Business Media, 2012.

[55] Y. Sun, X. Wang, and X. Tang, Deep convolutional network cascade
for facial point detection, IEEE CVPR’13, pp. 3476–3483.

[56] Y. Tang, Deep learning using linear support vector machines, arXiv
preprint, 2013, arXiv:1306.0239.

[57] Tensorflow Lite: tensorflow.org/lite
[58] Tencent, NCNN: github.com/Tencent/ncnn
[59] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, Learning structured

sparsity in deep neural networks, NeurIPS’16, pp. 2074–2082.
[60] K. Winstein and H. Balakrishnan, TCP ex Machina: computer-

generated congestion control, ACM SIGCOMM’13, pp. 123–134.
[61] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu and

D. Yang, Experience-driven networking: a deep reinforcement
learning based approach, IEEE INFOCOM’18, pp. 1871–1879.

[62] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu, DeepWear:
adaptive local offloading for on-wearable deep learning, IEEE
Transactions on Mobile Computing, Vol. 19, No. 2, 2019, pp. 314–330.

[63] M. Yang, S. Wang, J. Bakita, T. Vu, F. Smith, J. Anderson,
and J. Frahm, Re-thinking CNN frameworks for time-sensitive
autonomous-driving applications: addressing an industrial chal-
lenge, IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2019, pp. 305–317.

[64] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, DeepIoT:
compressing deep neural network structures for sensing systems
with a compressor-critic framework, ACM SenSys’17, pp. 1–14.

[65] S. Zagoruyko and N. Komodakis, Paying more attention to atten-
tion: improving the performance of convolutional neural networks
via attention transfer, ICLR’17.

[66] L. Zeng, E. Li, Z. Zhou, and X. Chen, Boomerang: on-demand
cooperative deep neural network inference for edge intelligence
on the industrial internet of things, IEEE Network, Vol. 33, No. 5,
2019, pp. 96–103.

[67] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and
Y. Wang, A systematic DNN weight pruning framework using
alternating direction method of multipliers, ECCV’18, pp. 184–199.

[68] Z. Zhao, Z. Jiang, N. Ling, X. Shuai, and G. Xing, ECRT: an edge
computing system for real-time image-based object tracking, ACM
SenSys’18, pp. 394–395.

[69] H. Zhou, S. Bateni, and C. Liu, S3DNN: supervised streaming and
scheduling for GPU-accelerated real-time DNN workloads, IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2018, pp. 190–201.

[70] Z. Zhu, K. Lin, and J. Zhou, Transfer learning in deep reinforce-
ment learning: A survey, arXiv preprint, 2020, arXiv:2009.07888.

Zhiyuan Xu is currently pursuing the Ph.D. de-
gree at the Department of Electrical Engineer-
ing and Computer Science, Syracuse University,
Syracuse, NY, USA. He received the B.E. de-
gree in School of Computer Science and En-
gineering from University of Electronic Science
and Technology of China, Chengdu, China, in
2015. He was an exchange student in 2013 at
Department of Computer Science and Informa-
tion Engineering, National Taiwan University of
Science and Technology, Taipei, Taiwan. He was

a visiting student in 2015 at Dalhousie University, Halifax, NS, Canada.
His current research interests include deep reinforcement learning, com-
munication networks, and edge computing.

Dejun Yang (M’13–SM’19) received the B.S. de-
gree in computer science from Peking University,
Beijing, China, in 2007, and the Ph.D. degree in
computer science from Arizona State University,
Tempe, AZ, USA, in 2013. He is currently an
Associate Professor of computer science with
ColoradoSchool of Mines, Golden, CO, USA.
His research interests include Internet of things,
networking, and mobile sensing and computing,
with a focus on the application of game the-
ory, optimization, algorithm design, and machine

learning to resource allocation, security, and privacy problems. He has
received the IEEE Communications Society William R. Bennett Prize
in 2019 (Best Paper Award for IEEE/ACM TON and IEEE TNSM in
the previous three years), and the Best Paper Awards at the IEEE
GLOBECOM (2015), the IEEE MASS (2011), and the IEEE ICC (2011
and 2012), as well as the Best Paper Award Runner-up at the IEEE
ICNP (2010). He is the TPC Vice Chair of information systems for the
IEEE INFOCOM 2020, a Student Travel Grant Co-Chair for INFOCOM
2018–2019, and was the Symposium Co-Chair for the International Con-
ference on Computing, Networking and Communications (ICNC) 2016.
He currently serves as an Associate Editor for the IEEE INTERNET OF
THINGS JOURNAL.

Chengxiang Yin is currently pursuing the Ph.D.
degree at the Department of Electrical Engineer-
ing and Computer Science, Syracuse University,
Syracuse, NY, USA. He received his bachelor
degree from School of Information and Elec-
tronics at Beijing Institute of Technology, Beijing,
China, in 2016. His research interests include
Machine Learning and Computer Vision.

13



Jian Tang (F19) is a Professor in the Depart-
ment of Electrical Engineering and Computer
Science at Syracuse University, an IEEE Fellow
and an ACM Distinguished Member. He received
his Ph.D degree in Computer Science from Ari-
zona State University in 2006. His research inter-
ests lie in the areas of AI, IoT, Wireless Network-
ing, Mobile Computing and Big Data Systems.
Dr. Tang has published over 160 papers in pre-
mier journals and conferences. He received an
NSF CAREER award in 2009. He also received

several best paper awards, including the 2019 William R. Bennett Prize
and the 2019 TCBD (Technical Committee on Big Data) Best Journal
Paper Award from IEEE Communications Society (ComSoc), the 2016
Best Vehicular Electronics Paper Award from IEEE Vehicular Technology
Society (VTS), and Best Paper Awards from the 2014 IEEE Interna-
tional Conference on Communications (ICC) and the 2015 IEEE Global
Communications Conference (Globecom) respectively. He has served
as an editor for several IEEE journals, including IEEE Transactions on
Big Data, IEEE Transactions on Mobile Computing, etc. In addition, he
served as a TPC co-chair for a few international conferences, includ-
ing the IEEE/ACM IWQoS’2019, MobiQuitous’2018, IEEE iThings’2015.
etc.; as the TPC vice chair for the INFOCOM’2019; and as an area TPC
chair for INFOCOM 2017-2018. He is also an IEEE VTS Distinguished
Lecturer, and the Chair of the Communications Switching and Routing
(CSR) Technical Committee of IEEE ComSoc.

Yanzhi Wang is currently an assistant profes-
sor in the Department of Electrical and Com-
puter Engineering at Northeastern University.
He has received his Ph.D. Degree in Com-
puter Engineering from University of Southern
California (USC) in 2014, and his B.S. Degree
with Distinction in Electronic Engineering from
Tsinghua University in 2009. Dr. Wang’s cur-
rent research interests are the energy-efficient
and high-performance implementations of deep
learning and artificial intelligence systems. Be-

sides, he works on the application of deep learning and machine in-
telligence in various mobile and IoT systems, medical systems, and
UAVs, as well as the integration of security protection in deep learning
systems. His works have been published in top venues in conferences
and journals (e.g. ASPLOS, MICRO, HPCA, ISSCC, AAAI, ICML, ICLR,
ECCV, ACM MM, CCS, VLDB, FPGA, DAC, ICCAD, DATE, LCTES,
INFOCOM, ICDCS, Nature SP, etc.), and have been cited for around
4,000 times according to Google Scholar. He has received four Best
Paper Awards, has another seven Best Paper Nominations and two
Popular Papers in IEEE TCAD. His group is sponsored by the NSF,
DARPA, IARPA, AFRL/AFOSR, and industry sources.

Guoliang Xue (F11) is a Professor of Computer
Science and Engineering at Arizona State Uni-
versity. He received the Ph.D degree in Com-
puter Science from the University of Minnesota
in 1991. His research interests span the areas
of QoS provisioning, machine learning, wire-
less networking, network security and privacy,
crowdsourcing and network economics, Internet
of Things, smart city and smart grids. He has
published over 300 papers in these areas, many
of which in top conferences such as INFOCOM,

MOBICOM, NDSS and top journals such as IEEE/ACM ToN, IEEE
JSAC, IEEE TDSC, and IEEE TMC. He has received the IEEE Com-
munications Society William R. Bennett Prize in 2019 (best paper award
for IEEE/ACM TON and IEEE TNSM in the previous three years). He
was a keynote speaker at IEEE LCN’2011 and ICNC’2014. He was a
TPC Co-Chair of IEEE INFOCOM’2010 and a General Co-Chair of IEEE
CNS’2014. He has served on the TPC of many conferences, including
ACM CCS, ACM MOBIHOC, IEEE ICNP, and IEEE INFOCOM. He
served on the editorial board of IEEE/ACM Transactions on Networking
and the Area Editor of IEEE Transactions on Wireless Communications,
overseeing 13 editors in the Wireless Networking area. He is an IEEE
Fellow, and the Steering Committee Chair of IEEE INFOCOM.

14


