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We consider the evolution of a cosmic string loop that is captured by a much more massive and much

more compact black hole. We show that after several reconnections that produce ejections of smaller

loops, the loop that remains bound to the black hole moves on a nearly-periodic non-self-intersecting

trajectory, “the orbit.” The orbit evolves due to an energy and angular momentum exchange between

the loop and the spinning black hole. We show that such evolution is mathematically equivalent to a

certain continuous deformation of an auxiliary closed curve in a 3-dimensional space; for zero black-

hole spin this deformation is curve-shortening that has been extensively studied by mathematicians as a

prominent example of one-dimensional geometric flows. The evolution features competing effects of

loop growth by the superradiant extraction of the black-hole spin energy, and loop decay by the friction

of the moving string against the horizon. Self-intersection of an auxiliary curve may be a common

occurrence, which corresponds to a capture by the black hole of a new string segment and thus an

addition of a new captured loop. Possible asymptotic states of such evolution are explored and are

shown to be strong emitters of gravitational waves. Whether reconnections prevent reaching the

asymptotic states remains to be explored. Additionally, the orbit’s shape also evolves due to 1. an

emission of gravitational waves, and 2. a finite mass of the black hole, which leads to the recoil that

secularly changes the orbit and likely leads to self-intersections. We argue that for a significant range of

the dimensionless tension μ, string loops are captured by supermassive black holes at the centers of

galaxies. This strongly motivates further study of interaction between string loops and black holes,

especially the influence of this process on the black hole spindown and on the production of

gravitational waves by strings captured in galactic nuclei. We also discuss potential loop captures by

primordial black holes.
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I. INTRODUCTION

Black holes are fundamental objects in theoretical

physics, and at the same time they are the subject of

intense study by much of modern astronomy and astro-

physics. Cosmic strings do not share the same status with

black holes. They arise naturally in theoretical physics as

possible remnants of a phase transition in the early

Universe [1,2]. Fundamental strings of superstring theory

can be formed at the end of brane inflation and can also

play the role of cosmic strings [3]. Moreover, the structure

of spacetime generated by an undisturbed, straight cosmic

string is very simple: the geometry of a plane perpendicular

to the string is that of a cone, with the deficit angle

proportional to the string tension. The motion of a string is

specified by minimizing its Nambu-Goto action, which

equals the area of the surface swept in space-time by the

string’s trajectory. Therefore, a string is also a fundamental

relativistic object in theoretical physics. However, there is

currently no observational evidence for the existence of

cosmic strings in our Universe. Still, if they do exist they

may produce a number of potentially detectable phenom-

ena, notably a stochastic background of gravitational waves

from oscillating cosmic string loops [4,5].

In this paper we investigate the hypothetical interaction

of a cosmic string loop with a black hole. In particular, we

are interested in what happens to the loop once a small part

of it gets captured by the black hole. Our motivation for

studying this is two-fold. First, as we show later, for

reasonable values of μ, string loops are expected to be

captured by supermassive black holes in galactic nuclei.

The captures will also take place if both a cosmic string

network and a multitude of primordial black holes formed

PHYSICAL REVIEW D 103, 083019 (2021)

Editors' Suggestion

2470-0010=2021=103(8)=083019(22) 083019-1 © 2021 American Physical Society



in the early Universe [6].
1
Second, nontrivial interaction

between two fundamental relativistic objects is a good

problem in its own right, and it might become relevant in a

context that we cannot foresee.

The interaction between cosmic strings and black holes

has been investigated in a number of previous studies.

Gravitational capture and the scattering of an initially

straight string by a black hole have been studied in

[8–12]. Stationary horizon-crossing cosmic string solutions

in Kerr metric were found in [13,14], and it was demon-

strated that the stationary string can extract angular

momentum from the black hole. We will be guided by

the results from these papers in our exploration of the

dynamics of a string loop captured by a black hole. The

plan of our paper is as follows. In Sec. II, we discuss

the dynamics of a loop bound to a black hole, in the limit

where the loop mass is zero, and show that such motion is

specified by a stationary 3-dimensional closed auxiliary

curve. We demonstrate through numerical experiments that

after several self-intersections and reconnections, a fraction

of the loop’s original length remains bound to the black

hole and is moving on a stable non-self-intersecting

trajectory. In Sec. III we relax the assumption of zero-

loop-mass, and show that the loop trajectory evolves

secularly on a timescale ∼ðM=mÞP, where M and m are

the masses of the black hole and the string, and P is the

period of motion of the bound loop. In the absence of other

effects this evolution would lead to a continuous chain of

physical self-intersections, that, if accompanied by efficient

reconnections, deplete the loop length approximately

exponentially with time. In Sec. IV we consider the

exchange of energy and angular momentum between the

string and the spinning and nonspinning black hole, and

show that this leads to horizon friction, superradiance of

tension waves and the spindown of the black hole. In Sec. V

we develop a formalism that allows one to model the

change in the loop shape, by showing that it corresponds to

easily modeled deformation of an auxiliary curve. We find

and explore the late-time asymptotic states of the captured

loops, which are shown to be particularly strong emitters of

gravitational waves. In Sec. VI we outline the evolutionary

scenarios for loops captured by both spinning and non-

spinning black holes, and we argue that the spinning black

holes might be string factories that are converting their spin

energy into string length. In Sec. VII we estimate the rate of

loop captures by supermassive black holes in galactic

nuclei as well as by primordial black holes, both of which

are shown to be potentially significant. We argue qualita-

tively that black-hole string factories in galactic nuclei may

be prolific sources of gravitational waves which strongly

motivates further study. In Sec. VIII we conclude.

II. MOTION OF AN INFINITELY

LIGHT STRING LOOP

A. General solutions

In this work we focus on the case where the invariant

length of a string loop is much greater than the black-hole

gravitational radius, L ≫ R ¼ GM=c2, but at the same

time its mass is much smaller than that of the black

hole, GμL=c4 ≪ R; here μ is the string tension force,

L ¼ mc2=μ is the invariant length of the string, andm is the

mass of the string.
2
From here on we will be using

geometric units with G ¼ c ¼ 1; in these units μ is

dimensionless.

The best observational bound on the string tension μ is

based on the lack of detection of gravitational waves from

freely oscillating string loops by Pulsar Timing Arrays. A

somewhat model-dependent constraint μ < 1.5 × 10−11 has

been obtained in [16]. This small value of the dimension-

less tension allows a large range of possible string length

that satisfies our constraints, 1 ≪ L=R ≪ ðμÞ−1.
In this section we focus on the kinematics of string

motion and we will neglect its influence on the black hole

position. In this approximation of an infinitely light string,

we model the influence of the black hole by rigidly fixing a

point on the loop in space. The rest of the loop is assumed

to move in Minkowski space; we neglect the general-

relativistic character of the string motion through the

curved spacetime at distances ∼R from the black hole,

since R ≪ L.
The motion of the free part of the string (i.e., all of it

except for the pinned point) is given by

rðσ; tÞ ¼ 1

2
½aðσ − tÞ þ bðσ þ tÞ�: ð2:1Þ

Here σ is the invariant length coordinate marking points

along the string, r ¼ ðx; y; zÞ is the position of a string point
σ at time t, and a and b are vector functions of a single

variable, such that ja0j ¼ jb0j ¼ 1; see [2] for derivation.

We shall take σ ¼ 0 and σ ¼ L at the black hole location

r ¼ 0. The boundary conditions rð0; tÞ ¼ rðL; tÞ ¼ 0 lead

to the following constraints:

aðηÞ ¼ −bð−ηÞ;
aðηÞ ¼ aðηþ 2LÞ: ð2:2Þ

Here η is a point on a real axis, −∞ < η < ∞. The general

solution for the pinned loop is therefore given by

1
There is also a scenario, due to Hawking [7], in which a nearly

circular string loop collapses to form a small black hole.
However, these occurrences are expected to be exceptionally rare.

2
It is important to note that the literature contains a number

of investigations of chaotic dynamics and capture of circular,
axisymmetrically positioned string loops in Kerr spacetime (see,
e.g., [15]; we thank the referee for bringing our attention to this
work). However, here we are considering large noncircular loops,
without axisymmetry, and the results we obtain are unrelated to
the results obtained previously.
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rðσ; tÞ ¼ 1

2
½aðσ − tÞ − að−σ − tÞ�; ð2:3Þ

with the requirement that a is periodic with the period of

2L. Formally rðσ; tÞ is defined for all real values of σ

and t, but the physical loop corresponds to the values of

0 ≤ σ ≤ L. Extending σ to the interval between L and 2L
would produce a “ghost” loop obtained from the original

loop by reflection with respect to the origin, since the

solution observes the symmetry

rðσ; tÞ ¼ −rð2L − σ; tÞ: ð2:4Þ

In other words, a loop pinned at a point can be considered

as half of a free loop that self-intersects at the origin and has

a reflection symmetry with respect to the origin.

B. Self-intersections

Self-intersections are important because they can lead to

reconnections and ejections of daughter loops, which

deplete the loop bound to the black hole. The reconnection

probability p for a cosmic string that is a solution of a

classical gauge field theory is close to unity [2], unless the

segments collide at ultrarelativistic velocities [17]. On the

other hand, the reconnection probability for cosmic super-

strings may be smaller than unity by orders of magnitude,

plausibly as small as 10−3 in some superstring models [18].

In this work we keep an open mind about the value of p, but
it is clear that reconnections are very important for the loop

evolution.

1. Geometric interpretation

Equation (2.3) provides us with a geometrical interpre-

tation of the loop’s dynamics. The loop trajectory is

completely specified by an auxiliary closed curve of length

2L in 3-dimensional space, aðσÞ, where σ is the cyclic

coordinate that marks the length along the curve. The

position vector of rðσ; tÞ equals half of the directed chord

connecting 2 points on the curve a. The energy E and

angular momentumΛ of the loop have a simple geometrical

interpretation in terms of the length La ¼
H

2L
0

dσ and the

directed area Sa ¼ 0.5
H

2L
0

a × a0dσ of the auxiliary curve:

E ¼ 1

2
μLa:

Λ ¼ −
1

2
μSa: ð2:5Þ

From Eq. (2.3) one can see that a self-intersection of the

loop corresponds to a pair of chords AB and DC that are

parallel to each other, equal in size, and such that the length

along the curve between the points A and D equals that

between B and C; see Fig. 1. After the self-intersection

takes place, if the string reconnects, the new bound loop

corresponds to the new closed curve that is obtained by

throwing away the segments AD and BC of the old curve

and gluing A to D and B to C.
It is quite straightforward to find examples of the closed

curves aðσÞ that do not allow for self-intersections. For a

concrete example, consider

a ¼ σex for 0 < σ < 1,

a ¼ ex þ ðσ − 1Þey for 1 < σ < 2,

a ¼ ex þ ey þ ðσ − 2Þez for 2 < σ < 3,

a ¼ ½1 − ðσ − 3Þ=
ffiffiffi

3
p

�ðex þ ey þ ezÞ
for 3 < σ < 3þ

ffiffiffi

3
p

.

In other words, aðσÞ follows a closed curve via 3 equal

steps along x, then y, then z, and then back to the origin.

One can easily inspect that this quadrilateral does not have

a pair of chords that satisfy the conditions described above,

and therefore the string loop corresponding to this closed

curve does not have self-intersections. A little more work is

required to show that if aðσÞ is a general, nonflat quadri-

lateral, then the corresponding loop is self-intersecting only

if the quadrilateral’s side lengths are fine-tuned.

2. Quadrilaterals

Consider a general nonflat quadrilateral PQRS, and

assume that there exists a parallelogram ABCD with

vertices lying on the quadrilateral’s sides; see Fig. 2.

First assume that two vertices, say A and B, lie on the

same side of the quadrilateral, say PQ. A plane that passes

through PQ, either contains QR, or contains PS, or

intersects RS at a single point, or does not intersect the

rest of the quadrilateral.C andDmust lie in one such plane,

but in that case it is clear that CD cannot be parallel to AB.

FIG. 1. Auxiliary closed curve aðσÞ; a position vector rðσ; tÞ
corresponds to a directed chord connecting points on the curve

with coordinates −t − σ and −tþ σ. The energy and angular

momentum of the loop equal μ multiplied by the half-length and

half of the directed area of the auxiliary curve, respectively. A pair

of parallel chords AB and DC mark a self-intersection of the loop

iff their lengths are equal and if the path lengths along the curve

from A to D and from B to C are equal. After reconnection and

ejection of the newly formed loop, the remaining loop is

described by a new closed curve obtained from the old one by

gluing the 2 chords.
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Therefore ABCD cannot have two of its vertices on the

quadrilateral sides, and instead it must have one vertex

located on each of the quadrilateral’s sides.

From this it also follows that neither AB nor CD can

have their vertices located on the opposite sides of the

quadrilateral. To show this, suppose (say) AB was so

located. C and D must be located on the same side of

the curve aðσÞ relative to AB, in a sense that one could

move along the curve from C to D without encountering A
or B. But this implies that at least 2 of A,B, C, andD would

have to be on the same quadrilateral side.

Therefore the only possible way for parallel chords AB
and DC to be accommodated is for their ends to lie on the

neighboring sides of the quadrilateral, e.g., for A on PQ, B
on QR, C on RS, and D on SP. Since AB and DC are

parallel to each other, they should both be parallel to PR.
The fact that jABj ¼ jDCj implies that jPAj=jPQj ¼
jPDj=jPSj. With these choices, the remaining constraint

jPAj þ jPDj ¼ jRBj þ jRCj is satisfied if and only if

jPSj þ jPQj ¼ jRSj þ jRQj. Clearly the set of quadrilat-

erals that satisfy this constraint has measure zero relative to

the set of general nonflat quadrilaterals.

C. Numerical experiments

The fact that a generic quadrilateral auxiliary curve aðσÞ
corresponds to a non-self-intersecting loop makes it

plausible that such loops are pretty common, and that a

general-shape loop will settle into a non-self-intersecting

configuration after several reconnections. We did not

manage to find a rigorous mathematical proof to this

statement. Instead we carried out numerical experiments

with assumed reconnection probability p ¼ 1, that showed

that this is indeed what happens to loops with initially

arbitrary shapes.

The reader uninterested in details is urged to accept this

statement on faith and skip the rest of this subsection.

Methodologically, we are interested in how the number of

reconnections and the length of the final loop depends

on the complexity of the initial loop. Our task is then to

first, introduce some way of initializing loops of variable

complexity, and second, to develop a reliable and efficient

algorithm that searches for self-intersections of a moving

loop.

We construct the initial loop as follows. We discretize the

a vector function into 2N connected line segments. Each

segment is defined by its length Li and direction unit

vectors a0i for i ¼ 1;…; 2N. For a point on a that falls into

the jth segment, we have:

aðηÞ ¼ að0Þ þ
X

i<j

Lia
0
i þ

�

η −
X

i<j

Li

�

a0i: ð2:6Þ

Since a should be periodic in 2L, we require that
P

2N
i¼1

Li ¼ 2L and
P

2N
i¼1

Lia
0
i ¼ 0. We also note that r

does not change if we add a constant vector to a. Therefore,

we assign að0Þ ¼ 0 in the simulation.

To make the curve random, the direction vectors a0i
perform a random walk on a unit sphere; the larger is the

step of the randomwalk, the greater is the complexity of the

loop. For the self-intersection search, it is convenient for all

segment lengths to be equal Li ¼ L=N. Our algorithm

generates the set of random a0i which satisfies:

(1) ja0ij ¼ 1 (on unit sphere)

(2)
P

a0i ¼ 0 (periodicity)

(3) ja0iþ1
− a0ij ≤ B0 ¼ 2 sinðθm=2Þ (smoothness)

Here θm is the maximum angle between the neighboring

segments; it is assumed that 1=N ≪ θm < 1. Our iterative

procedure is described in Appendix A.

We also design an algorithm for detecting self-intersec-

tions and for implementing reconnections that follow. An

intersection occurs when, for some 0 ≤ σi ≠ σj < L,

rðσi; tÞ ¼ rðσj; tÞ. We can use Eq. (2.3) and Eq. (2.6) to

formulate a linear equation and solve for σi, σj and t. After

intersection, the relevant portion of awill break off from the

original function. In practice, since a is periodic in 2L, we
search for self-intersection in the time range 0 ≤ t <
2L. The simulation method is described in Appendix B.

The algorithmwas tested (a) by running it on loops specified

by aðσÞ that were general quadrilaterals, to check that it does
not find spurious intersections, and (b) by performing

resolution tests in segment lengths and timesteps.

We simulate strings with L ¼ 1, N ¼ 500 and a range of

different smoothness constraints. Fifty random initializa-

tions are used for each B0. We find that there exists loops

that are stable (i.e., non-self-intersecting). A randomly

initialized loop will always, after a series of self-intersec-

tion and reconnection, reduce to a stable configuration.

Figure 3(a) shows a histogram of the number of recon-

nections a string undergoes before it stabilizes. A larger B0

FIG. 2. In this example, aðσÞ is a nonflat quadrilateral PQRS.
The self-intersection, if it exists, is marked by equal chords AB
andDC that must be parallel to one of the diagonals, here PR. As
explained in the text, self-intersections exists if and only if

jPQj þ jPSj ¼ jRQj þ jRSj.
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FIG. 3. Numerical experiment results for randomly initialized string loops attached to an infinitely massive BH. (a) Number of self-

intersections before string stabilizes. (b) Final length after string stabilizes. Orange curve shows tted exponential distribution. (c) Linear

relationship between average number of self-intersections and relative curvature bound, R2 ¼ 97%. (d) Linear relationship between

exponential decay constant for Lf and relative curvature bound, R2 ¼ 96%.
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causes more complexity in the initial loop and leads to

more self-intersections. As illustrated in Fig. 3(c), the

average number of intersections scales approximately

linearly with B0. Figure 3(b) shows the distribution of

Lf, the final invariant length of the string after all self-

intersections. The result approximately follows an expo-

nential distribution

PðLfÞ ∼
κ

L
e−κLf=L ð2:7Þ

where κ is the decay constant. A similar statistical result for

free cosmic strings has been shown [19]. We further

demonstrate in Fig. 3(d) that there is an approximate linear

relationship κ ∼ 0.01B0; note that this relation is only valid

for N ¼ 500 and κ > 1.

III. STRING ORBIT EVOLUTION DUE

TO THE BLACK HOLE’S FINITE MASS

The discussion of the previous section was based on the

premise that the string loop is rigidly pinned by the black

hole at a point in space. This ensures that the motion of the

rest of the loop is strictly periodic and therefore non-self-

intersecting solutions are stationary. However, once the

black hole is allowed to move under the influence of the

string tension, the motion of the string is no longer strictly

periodic and one can expect the string orbit to change

secularly on a timescale

tsec ∼
M

m
P ¼ 2R=μ: ð3:1Þ

We show this rigorously in this section, using perturbation

theory with respect to the small parameter m=M to derive

the evolution of the string orbit with time.

We begin by noting that even though the string and black

hole are relativistic objects, the motion of the black hole is

nonrelativistic, with characteristic velocity ∼m=M. The

equation of motion of the black hole is given simply by the

Newton’s second law,

M ̈rBH ¼ μðn1 þ n2Þ; ð3:2Þ

where rBH is the displacement of the black hole and n1ðtÞ
and n2ðtÞ are the unit vectors at the 2 ends of the string that
are pointing away from the black hole. The string satisfies

the wave equation

∂2r

∂t2
¼ ∂2r

∂σ2
ð3:3Þ

with the boundary conditions

rðσ1; tÞ ¼ rðL − σ2; tÞ ¼ rBHðtÞ: ð3:4Þ

The quantities σ1 and σ2 are not zero, because the string

does work on the moving black hole and its invariant length

changes. Each end of the string loses or gains invariant

length, depending on the sign of work that the end segment

is performing. We have

_σ1 ¼ _rBH · n1;

_σ2 ¼ _rBH · n2: ð3:5Þ

Similar equations have been derived in [20] for the motion

of massive monopoles attached to pairs of strings.

Equations (3.2)–(3.5) form a complete system that can

be modeled numerically using standard methods. However,

in direct brute-force methods, the smallness of rBH is not

manifest. We therefore choose a different approach. We

find the variable domain ½σ1; L − σ2� inconvenient. Note
however that if σ1 < 0 and σ2 < 0, we can easily evaluate

the string positions at the ends of the old σ-interval ½0; L�:

r1ðtÞ≡ rð0; tÞ ¼ rBHðtÞ −
�

∂r

∂σ

�

σ¼0

σ1; ð3:6Þ

and

r2ðtÞ≡ rðL; tÞ ¼ rBHðtÞ þ
�

∂r

∂σ

�

σ¼L

σ2; ð3:7Þ

both correct to first order in σ1; σ2 ∼ Lðm=MÞ. Given

rBHðtÞ, σ1ðtÞ, and σ2ðtÞ, one could then use Eqs. (3.6)

and (3.7) as the boundary conditions for the wave equation

on the fixed σ-interval ½0; L�. In fact, in this we are not

limited to the negative values of σ1, σ2. In case they are

positive, Eqs. (3.6) and (3.7) represent simple incremental

extensions of the string by lengths σ1, σ2 at each end.

Therefore, to the first order in m=M, the motion of the

string is represented by a wave equation (3.3) on the σ-

interval ½0; L� with boundary conditions

rð0; tÞ ¼ r1ðtÞ ð3:8Þ

rðL; tÞ ¼ r2ðtÞ; ð3:9Þ

where the latter are given by Eqs. (3.6) and (3.7).

The linear wave equation (3.3) can be solved for any

given pair of boundary values r1;2. Perturbatively, r1;2 are

2L-periodic, and therefore they are in resonance with the

unperturbed (homogeneous) solutions of (3.3). This leads

to a secular evolution of the loop. The details follow.

Recall that the general string trajectory is given by

Eq. (2.1)

rðt; σÞ ¼ 1

2
½aðσ − tÞ þ bðtþ σÞ� ð3:10Þ

with aðσÞ and bðσÞ satisfying

ja0j ¼ jb0j ¼ 1: ð3:11Þ
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We want to solve Eq. (3.10) in the range 0 < σ < L, 0 <
t < ∞ with the boundary conditions in Eqs. (3.8) and (3.9).

The unperturbed solution (assuming the black-hole mass

is infinite) was obtained in Sec. II and is given by

r0ðσ; tÞ ¼
1

2
½a0ðσ − tÞ − a0ð−σ − tÞ�: ð3:12Þ

with

a0ðσ þ 2LÞ ¼ a0ðσÞ: ð3:13Þ

This solution is periodic with period P ¼ 2L. If we

substitute it in Eq. (3.2), we find that in a properly chosen

inertial frame, up to the linear order in (m=M) the BH

motion has the same period and has the property

rBHðtþ LÞ ¼ −rBHðtÞ: ð3:14Þ

This also implies that r1;2ðtþ LÞ ¼ −r1;2ðtÞ.
Substituting the general solution (3.10) in the boundary

conditions (3.8) and (3.9), we obtain the relations

að−tÞ þ bðtÞ ¼ 2r1ðtÞ; ð3:15Þ

aðL − tÞ þ bðtþ LÞ ¼ 2r2ðtÞ: ð3:16Þ

Let us now use these relations to compare the string

configuration at time tþ 2L to that at time t. We find

bðtþ 2LÞ − bðtÞ ¼ 2½r2ðtþ LÞ − r1ðtÞ�
¼ −2½r2ðtÞ þ r1ðtÞ�: ð3:17Þ

Applying this relation iteratively N times, we obtain

bðtþ 2NLÞ ¼ bðtÞ − 2N½r1ðtÞ þ r2ðtÞ�: ð3:18Þ

Similarly, we find

aðtþ 2NLÞ ¼ aðtÞ þ 2N½r1ðL − tÞ þ r2ðL − tÞ�: ð3:19Þ

Equations (3.18) and (3.19) describe the secular evolu-

tion of a string attached to a BH. At lowest order in m=M
the string oscillates with a period P ¼ 2L, but due to

boundary conditions it acquires a change in shape, whose

amplitude grows linearly with the number of oscillations.

The string configuration changes significantly after

N ∼M=m oscillations. Our approximation scheme breaks

down at about the same time, but it can be extended by

adjusting the string solution and recomputing the cyclic

function r1;2ðtÞ.
As the loop changes its shape, it may acquire an

intersection after ∼M=m oscillations. If the string recon-

nects as a result of the self-intersection, it will eject a

daughter loop of length ≲L. The rate of length loss from a

sequence of such intersections is given by

dL

dt
∼ −

�

max

�

M

m

P

L
; p−1

��

−1

∼ −

�

max

�

R

μL
; p−1

��

−1

; ð3:20Þ

where p is the probability of reconnection when the two

string segments cross each other. If p ≫ μL=R (we remind

the reader that p ∼ 1 for ordinary cosmic strings), then the

loop shrinks approximately exponentially, on a timescale

tshrink ∼ R=μ: ð3:21Þ

As we will see in the next section, this is comparable to the

timescale on which a spinning black hole transfers angular

momentum to the string.

IV. ANGULAR MOMENTUM AND ENERGY

EXCHANGE WITH THE BLACK HOLE

The loop motion takes place on a much longer timescale

than the light-crossing time R for the black hole, and we

imagine that the loop is mostly smooth on the lengthscale

∼R. It is likely that a realistic loop has kinks. However, they
will be quickly smoothed, because the string distortions on

scales ≲R get quickly absorbed by the black hole. We will

thus assume that as viewed from the vicinity of the black

hole, a string stretches toward the black hole horizon from a

distance ≫ R on a nearly radial straight line, until it is

curved by the dragging of the inertial frames near the black

hole. The asymptotic direction of the radial straight line

changes slowly compared to R, so to first approximation

the string is stationary (i.e., t-independent) in Boyer-

Lindquist coordinates ðt; r; θ;ϕÞ describing the Kerr metric

of the black hole. Such stationary solutions have been

explored in [21,13,14]. It was shown that the string lies on a

constant θ surface, and its shape is given by

ϕðrÞ ¼ ϕ0 þ
a

rþ − r−
log

�

r − r−

r − rþ

�

; ð4:1Þ

where a is the Kerr parameter, and r� ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − a2
p

.

When r ≫ R, ϕ ¼ ϕ0 þ a=r, and the tension force along

the string pulling away from the black hole is given by

F ≃ μ

�

er þ r sin θ
∂ϕ

∂r
eϕ

�

¼ μ

�

er −
a sin θ

r
eϕ

�

; ð4:2Þ

where er;ϕ are the unit vectors in r;ϕ directions. The torque

applied to the black hole is given by

Q ¼ r × F ¼ μa sin θ eθ: ð4:3Þ
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A. Interaction of a spinning black hole

with a single stationary infinite string

The angular momentum of the black hole J evolves due

to the torque applied by the string. For the case with a single

string entering the horizon, we can use Eq. (4.3) to write

down the evolution equation in vector form

dJ

dt
¼ −

μ

R
½J − ðn · JÞn�; ð4:4Þ

where n is the unit vector along the string at R ≪ r ≪ L.
This implies

Jk ¼ Jk0; ð4:5Þ

J⊥ ¼ J⊥0 exp

�

−
μ

R
t

�

; ð4:6Þ

where Jk and J⊥ are components of the angular momentum

vector parallel and perpendicular to the string, respectively.

Therefore the angular momentum vector of the black hole

aligns with the string on a timescale tμ ¼ R=μ, while

keeping Jk fixed. If the black hole is threaded through

by a straight string, the alignment would occur on a

timescale tμ=2. We note that while the spin-down of a

black hole from a stationary string was noted in, e.g., [22],

the alignment of the spin direction with the string is pointed

out here for the first time.

As the string is stationary, no energy is extracted from the

black hole by the string [23]. The black hole converts its

rotational energy into its irreducible mass, by increasing its

entropy through dissipation at the horizon. The full mass of

the black hole stays fixed.

B. Horizon friction

In the previous subsection we assumed that the tangent

unit vector representing the long string at a black hole n

was stationary. However, since we are exploring a moving

string loop, we also consider the case where n is rotating

slowly about the black hole, with the angular velocity

o ¼ n × _n. If the black hole is not spinning, this creates

torques acting on the black hole, which in the limit joj ≪
1=R must scale linearly as

Q ¼ βo: ð4:7Þ

In order to find the coefficient β, let us perform a mental

experiment in which we add a small spin to the black hole

around an axis that is perpendicular to n. Using Eq. (4.4),

we can express the total torque acting on the black hole to

linear order in o and J:

Q ¼ βo −
μ

R
J: ð4:8Þ

For jJj ≪ R2, the angular velocity of the black hole is

given by

ΩBH ¼ J

4R3
: ð4:9Þ

Therefore,

Q ¼ βo − 4μR2
ΩBH: ð4:10Þ

The torque acting on n has to be zero when it is corotating

with the black hole. Therefore,

β ¼ 4μR2: ð4:11Þ

The expression for the torqueQ allows us to estimate the

timescale on which a loop bound to the nonspinning black

hole will dissipate and be swallowed by the black hole. The

torques −Q1;2 applied to the string at its ends 1 and 2,

combined with the motion of those ends, will result in a loss

of energy and length by the string:

dE

dt
¼ −βðo2

1
þ o2

1
Þ ¼ −β

��

dn1

dt

�

2

þ
�

dn2

dt

�

2
�

: ð4:12Þ

To order-of-magnitude,

dE

dt
∼ −βL−2 ∼ −μðR=LÞ2;

dL

dt
∼ −ðR=LÞ2;

tfr ¼
L

jdL=dtj ∼ L3=R2; ð4:13Þ

where tfr is the timescale for the loop to be absorbed by the

nonspinning black hole through horizon friction.

C. Superradiance

In this section we show that a circularly polarized tension

wave is amplified upon reflection from a spinning black

hole, provided its direction of rotation is the same as that of

the black hole, and its angular frequency ω < ΩBH cos θ,

where θ is the angle between the string and the spin axis of

the black hole. This leads to a very fast growth of short

wavelength perturbations on a bound string loop. Our

treatment gives an exact answer for ΩBH;ω ≪ 1=R, but
order-of magnitude extrapolation to greater angular

frequencies is warranted. A more general treatment is

possible but is beyond the scope of our paper.

Consider a small-amplitude incoming elliptically-polar-

ized wave coming toward the black hole along a string that

is straight for σ ≫ R. Mathematically it is given by

δrin ¼ A1e1 cos½ωðσ þ tÞ� þ A2e2 sin½ωðσ þ tÞ�; ð4:14Þ
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where δr is the string displacement from the resting

position and e1;2 are two unit vectors chosen so that

(e1; e2;n0) form a right-handed orthonormal basis, and

that the polarization tensor is diagonalized. Here n0 stands

for the asymptotic unit vector of the unperturbed string. To

zeroth order, the reflected outgoing wave is given by

δrout ¼ −A1e1 cos½ωðσ − tÞ� þ A2e2 sin½ωðσ − tÞ�: ð4:15Þ

However, as we presently see, the black hole exchanges

energy and angular momentum with the wave, and there-

fore the amplitudes of the outgoing wave are expected to be

slightly different from those of the ingoing wave.

The incoming fluxes of energy and of the n0-component

of angular momentum are given by

dEin

dt
¼ 1

2
μω2ðA2

1
þ A2

2
Þ ð4:16Þ

n0 ·
dJin

dt
¼ μωA1A2; ð4:17Þ

and similarly for the outgoing wave. We can figure out the

incremental changes in the reflected amplitudes by com-

puting the time-averaged power and torque applied by the

black hole to the wavy string.

The vector nðtÞ is oscillating periodically, as follows:

n ¼ n0 − 2ω½A1e1 sinðωtÞ − A2e2 cosðωtÞ�
− 2ω2½A2

1
sin2ðωtÞ þ A2

2
cos2ðωtÞ�n0: ð4:18Þ

The last term ensures that jnj ¼ 1 up to the second order in

A1, A2. The torque applied to the string by the black hole is

given by

Qs ¼ 4μR2

�

ΩBH − ðn ·ΩBHÞn − n ×
dn

dt

�

: ð4:19Þ

The last term on the right-hand side represents horizon

friction. When integrating it over the wave period, we get

twice the directed area of the contour drawn by the n-vector

on the unit sphere:

Z

2π=ω

0

n ×
dn

dt
dt ¼ 8πω2A1A2n0: ð4:20Þ

Integrating over one cycle, we get

Z

2π=ω

0

n0 ·Qsdt ¼ 16πμR2ω × ½ΩBH cos θAþ − ωA×�;

ð4:21Þ

where

Aþ ¼ A2

1
þ A2

2
;

A× ¼ 2A1A2: ð4:22Þ

The time-averaged torque about the string line is given by

n0 · hQsi ¼ 8μR2ω2 × ½ΩBH cos θAþ − ωA×�: ð4:23Þ

Comparing Eqs. (4.23) and (4.17), we see that upon

reflection

ΔA× ¼ 16R2ω½ΩBH cos θAþ − ωA×�: ð4:24Þ

The second relation is obtained from the conservation of

energy. The work done by the black hole on the string over

one cycle equals

ΔEs ¼
Z

2π=ω

0

Qs ·

�

n ×
dn

dt

�

dt: ð4:25Þ

Evaluating this using Eq. (4.19), we obtain

ΔEs ¼ 16πμR2ω2½ΩBH cos θA× − ωAþ�: ð4:26Þ

Comparing this with Eq. (4.16), we get

ΔAþ ¼ 16R2ω½ΩBH cos θA× − ωAþ�: ð4:27Þ

It is of interest to consider the eigenmodes of the system,

i.e., the waves that do not change their polarization state

upon reflection from the black hole. This implies

ΔAþ=Aþ ¼ ΔA×=A×. From Eqs. (4.24) and (4.27) we

see that this is equivalent to

Aþ ¼ �A×; ð4:28Þ

and

A1 ¼ �A2; ð4:29Þ

which corresponds to circularly polarized waves. For the

string in the northern hemisphere, with cos θ > 0, the A1 ¼
−A2 wave is partially absorbed by the black hole, with

ΔAþ
Aþ

¼ −16R2ω½ΩBH cos θ þ ω�: ð4:30Þ

On the other hand, the wave with A1 ¼ A2 is amplified if

ω < ΩBH cos θ, and is partially absorbed if ω > ΩBH cos θ:

ΔAþ
Aþ

¼ 16R2ω½ΩBH cos θ − ω�: ð4:31Þ

Intuitively this makes sense. If the wave is rotating in the

direction opposite that of the BH, horizon friction domi-

nates. The greater the black hole spin, the stronger is the
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absorption. If, on the other hand, the wave is rotating in the

same direction as the black hole, it is amplified if the black

hole spins faster than the wave (measured after projection

ofΩBH onto the string) and is partially absorbed if the wave

spins faster than the black hole. Qualitatively similar results

can be derived for an ordinary string viscously interacting

with a rotating sphere, in the spirit of the original rotational

superradiance proposal by Zeldovich ([24]). The maximum

growth rate is achieved for

ω ¼ 1

2
ΩBH cos θ; ð4:32Þ

with the relative amplitude increase of

½ΔA1;2=A1;2�max ≃
1

2
ðΔAþ=AþÞmax ¼ 2R2

Ω
2
BHcos

2θ:

ð4:33Þ

We emphasize again that this result is exact in the limit

ΩBHR ≪ 1, but we expect that both the criterion for

superradiance and the expression for the maximum growth

rate are correct to order of magnitude for all values of ΩBH.

D. Black-hole bomb

A wave reflected from the black hole along a straight

string will never come into contact with the black hole

again. This is not so if the string is a bound loop with both

ends attached to the black hole. Consider a pulse of

circularly polarized waves with angular frequency ω <
ΩBH cos θ that is reflected from the black hole when the

corresponding string end is making a polar angle θ with the

black hole spin axis. If the waves in the pulse are rotating in

the same sense as the black hole, then the pulse is amplified

upon reflection from the black hole. As the pulse travels to

the other end of the string, it approaches the black hole

along the same direction along which it was traveling upon

the first reflection. This is because n2ðtþ LÞ ¼ −n1ðtÞ.
Since the helicity of the wave is conserved as it travels

along the loop, the pulse is rotating in the same direction as

the black hole upon the second approach, and therefore it is

amplified upon the second reflection also. The amplifica-

tion repeats with each bounce, leading to an exponential

growth of the pulse with the timescale

tsr ¼ ½8R2ωðΩBH cos θ − ωÞ�−1L: ð4:34Þ

The fastest growth will take place for the wave’s angular

frequency

ω0 ¼
1

2
ΩBH cos θmin ð4:35Þ

where θmin is the smallest angle between the spin

axis and the string end. The pulse of wavelength

λ0 ¼ 2π=ω0 ¼ 4π=ðΩBH cos θminÞ and timed to reflect from

the black hole when θ ¼ θmin, will grow on a timescale

tbomb ¼
L

2ðRΩBH cos θminÞ2
: ð4:36Þ

The subscript in the equation above refers to the concept of

a black-hole bomb, originally conceived by Press &

Teukolsky ([25]). They pointed out that if a spinning black

hole was placed in a cavity with reflecting walls, then there

would be exponentially amplified superradiant modes. In

our case, the string loop itself plays a role of the cavity,

causing repeated superradiant interaction between the black

hole and pulses of tension waves.

The growth timescale in Eq. (4.34) is likely to be shorter

than all other evolutionary timescale for the loop, and

therefore one can expect the short-wavelength waves to

quickly reach a nonlinear amplitude on the string. What

happens afterward is not clear from the arguments given

above, and a new approach is needed. In the next section we

make a step in this direction, by exploring the evolution of

the auxiliary curve. We finish this section by a discussion of

angular momentum exchange between the black hole and

the string loop.

E. Black hole spindown

Since the loop has two ends attached to the black hole,

the angular momentum equation (4.4) is modified to

dJ

dt
¼ −

μ

R
N J; ð4:37Þ

where N is a linear evolution operator defined by

N J ¼ 2J − ðn1 · JÞn1 − ðn2 · JÞn2: ð4:38Þ

Recall that n1ðtÞ and n2ðtÞ are the unit vectors at the 2 ends
of the string that are pointing away from the black hole,

which are given by

n1ðtÞ ¼ a0ð−tÞ
n2ðtÞ ¼ −a0ðL − tÞ: ð4:39Þ

As was already noted above, n1 and −n2 trace out the same

trajectory during the loop’s oscillation period, but with a

half-period delay. Thus the oscillation-averaged angular

momentum evolution operator is given by

hN iJ ¼ 2

�

J −
1

2L

Z

2L

0

½a0ðtÞ · J�a0ðtÞdt
�

: ð4:40Þ

If vectors n1 and n2 are not pointing along the same line,

the operator N is positive-definite. Therefore all three

components of angular momentum J will reduce exponen-

tially, on a timescale
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tspindown ∼ R=μ: ð4:41Þ

Note that this timescale is similar to that of tshrink from

Eq. (3.21), which is the timescale for loop depletion due to

the black hole’s finite mass.

The lost black hole angular momentum will be acquired

by the string loop; its angular momentum Λ will evolve

according to the equation

dΛ

dt
¼ μ

R
hN iJ; ð4:42Þ

where we averaged over the loop’s oscillation period. Let

z-axis point in the direction of the black hole spin. It is clear
that

dΛz

dt
∼ μRα > 0; ð4:43Þ

where α ¼ a=R is the dimensionless spin of the black hole.

Since Λ ∼ μL2, the loop’s angular momentum will change

on a timescale

tam ∼
L2

αR
: ð4:44Þ

Over time t > tam, the component Λz becomes positive.

We note that the computation above did not consider the

angular momentum drained from the black hole by a

superradiant wave. It is easy to check, however, that

ðdJ=dtÞwave
ðdJ=dtÞloop

∼ ðAωÞ2; ð4:45Þ

and thus the two contributions become comparable

only when Aω ∼ 1, i.e., in a strongly nonlinear regime.

Similarly, the change of rotational energy of the black hole

due to a superradiant wave is related to the total loss of

rotational energy by

ðdErot=dtÞwave
ðdErot=dtÞtotal

∼ ðAωÞ2 ð4:46Þ

for Aω≲ 1. Therefore, the fraction of the black hole’s

rotational energy that gets converted into string is deter-

mined by the nonlinear saturation of the string super-

radiance. The rest of the rotational energy is converted into

the irreducible mass of the black hole.
3

To make further progress, we need to consider the

nonlinear evolution of the string loop due to its interaction

with a spinning black hole.

V. EVOLUTION OF THE AUXILIARY CURVE

In Sec. II we saw that the trajectory of a loop pinned to a

point is described by a stationary fixed auxiliary curve

aðσÞ, with 0 ≤ σ ≤ 2L and að0Þ ¼ að2LÞ. If instead a loop
is anchored on a spinning black hole, its periodic orbit is

changing slowly on a timescale much longer than a single

oscillation period 2L. It is attractive to think of this in terms

of slow deformation of the auxiliary contour a. Suppose the

contour is deforming with velocity vðσÞ, where it makes

sense to restrict vðσÞ to be perpendicular to the curve’s

tangent a0ðσÞ. Recalling Eq. (2.5), we can write down the

rate of change of the loop’s angular momentum:

dΛ

dt
¼ −

1

2
μ

I

2L

0

v × a0dσ: ð5:1Þ

This needs to be compared to the expression in Eq. (4.19)

for the torque applied to the string. Integrating this over an

oscillation period, recalling nðtÞ ¼ a0ð−tÞ, and multiplying

by 2 to account for the two ends of the loop attached to the

black hole, we obtain the change of the strings angular

momentum over an oscillation period:

ΔΛ ¼ −8μR2

I

2L

0

½ΩBH × a0 þ a00� × a0dσ: ð5:2Þ

In order to make the two expression consistent, one needs

to choose

vðσÞ ¼ 8R2

L
½ΩBH × a0ðσÞ þ a00ðσÞ�; ð5:3Þ

where the derivatives are understood to be evaluated with

respect to the length along the curve. Clearly, as the curve

evolves under the action of this flow, L changes as well.

The change of length in the auxiliary curve is given by

dLa

dt
¼ −

I

2L

0

v · a00dσ: ð5:4Þ

One can check that with the expression for v above, one

obtains the average rate of energy change dE=dt ¼
0.5μðdLa=dtÞ that is consistent with what one would

obtain from Eq. (4.25) where the integration is over an

oscillation period 2L.

A. Curve-shortening flow

Equation (5.3) describes the nonlinear evolution of the

auxiliary curve, with the nonlinearity implicit due to σ

being understood as the length coordinate. It represents a

one-dimensional geometric flow, and as such is of

3
It is easy to see that the most efficient, albeit the slowest spin

energy conversion into string length takes place if the string
nearly co-rotates with the black hole. In that case the black hole is
spun down nearly adiabatically, with vanishing increase in its
area/entropy.

SPINNING BLACK HOLES AS COSMIC STRING FACTORIES PHYS. REV. D 103, 083019 (2021)

083019-11



considerable interest to mathematicians. In fact, when

ΩBH ¼ 0, the equation of motion

v ∝ a00 ð5:5Þ

describes a famous and extensively studied curve-short-

ening flow (see, e.g., [26–28]). For practical purposes, the

main result of this exploration is something of which one

can immediately convince oneself through qualitative

arguments and simple numerical experiments (we have

done both): asymptotically, the curve becomes a shrinking

planar circle and disappears in a singularity after a finite

time. A circular auxiliary curve of length 2L corresponds to

a degenerate physical loop that extends radially from the

black hole to radius L=π and then traces the same radial line

back to the black hole. This double-line is rotating around

the black hole with the angular velocity π=L; the tip of the

double-line is moving with the speed of light and thus

the double-line is a prolific emitter of gravitational waves.

The length of the line is shrinking due to horizon friction

and the line disappears after the time

tshort ≃
L3

24π2R2
; ð5:6Þ

cf. Eq. (4.13). In the process the double-line makes

Nshort ≃
1

2

�

L

4πR

�

2

ð5:7Þ

turns around the black hole. The approximate equality in

the equation above is due to the fact that our curve-

shortening formalism is only valid for L ≫ R.

B. Curve-lengthening due to black-hole spin

Consider now a non-self-intersecting auxiliary curve in

the plane perpendicular to ΩBH, with the circulation in the

same sense as rotation of the black hole. Clearly in the long

term, the effect of the first term on the right in Eq. (5.3) is to

expand the curve outward and make it increasingly more

round. If only the first term is included in the evolution

equation, some of the initial configurations transiently

develop kinks and singularities, however the inclusion of

the second term smooths them out.

If one can neglect the second term (a good approxima-

tion when ΩBH ≫ 1=L), then one can prove the following.

Suppose the auxiliary curve is convex and everywhere

differentiable. Choose the point of origin inside the curve

and find maximum and minimum radii amax and amin. As

the curve lengthens, the difference amax − amin remains

constant. Therefore the ellipticity

ϵ≡
amax − amin

amax þ amin

∼ 1=L; ð5:8Þ

and therefore the loop becomes increasingly circular. The

latter expands according to

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2

0
þ 16πR2

ΩBHt

q

; ð5:9Þ

where L0 is the initial invariant length of the loop with

circular auxiliary curve.

A circular auxiliary curve corresponds to a double-line

which in this case is rotating around the black hole in its

equatorial plane and is growing in length, while reducing its

angular velocity of rotation. If the double-line is rotating at

the same angular velocity as the black hole (and thus has

L ¼ π=ΩBH), there is no energy and angular momentum

exchange with the black hole and L does not change. This

equilibrium, however, is unstable: double lines longer/

shorter than π=ΩBH will lengthen/shorten in their extent.

C. Superradiance revisited

It is straightforward to compute the growth rate for

superradiant modes by considering a helical short-wave-

length perturbation on a part of the auxiliary curve that can

be considered locally straight. For simplicity, let us assume

that the straight part is along the spin axis, and choose z-
axis to be also aligned with the spin. The helical wave can

be written as

axðσÞ ¼ A cos

�

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2ω2
p σ

�

;

ayðσÞ ¼ A sin

�

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2ω2
p σ

�

;

azðσÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2ω2
p σ; ð5:10Þ

where it is understood that the above expression is valid

only in some small part of the auxiliary loop (please note

that ja0j ¼ 1). The amplitude of the helical perturbation

evolves according to the following equation:

dA

dt
¼ 8R2ωA

L

�

ΩBH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2ω2
p −

ω

1þ A2ω2

�

: ð5:11Þ

In the linear case Aω ≪ 1, the amplitude grows exponen-

tially with the timescale

tsr ¼ ½8R2ωðΩBH − ωÞ�−1L; ð5:12Þ

which is identical to Eq. (4.34) for the case θ ¼ 0. In the

nonlinear case Aω ≫ 1, the auxiliary curve is tightly

winding up the z-axis with its tangent nearly horizontal.

For ΩBH ≫ 1=A, the amplitude grows at a constant rate so

long as the overall-length of the curve has not changed

much,
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dA

dt
¼ 8R2

ΩBH

L
; ð5:13Þ

with remarkable independence from ω.

The general lesson from the above discussion is that the

curve-lengthening due to black-hole spin will amplify any

wiggle on the curve that has the right helicity into a nearly

horizontal and nearly closed circular arc. Because of

superradiance, we expect αL=R of such nearly circular

segments to develop.

D. Self-intersection of the auxiliary curve and

production of new bound loops

The curve-lengthening described in previous para-

graphs will likely lead to multiple (of order αL=R) self-
intersections of the evolving auxiliary curve, provided that

the physical reconnections of the loop will not drastically

alter the picture. Suppose that loop reconnections do not

take place, as could be the case if the loop is made of a

superstring. What then is the meaning of self-intersections

of the auxiliary curve?

Suppose aðσ1Þ ¼ aðσ2Þ. Then for t ¼ −ðσ1 þ σ2Þ=2 and
σ ¼ jσ2 − σ1j=2, rðσ; tÞ ¼ 0. This is not surprising, since

rðσ; tÞ span all possible directed half-chords of the auxiliary
curve, which must include 0 if the curve is self-intersecting.

Physically, this means that some middle part of the loop

gets captured by the black hole and the loop splits into two

loops both attached to the black hole.

One may wonder whether the capture actually happens,

since the self-intersection of the auxiliary curve is instanta-

neous while it takes time L for the loop to complete a half-

oscillation during which the capture would take place.
4
We

note however, that a black hole has a Schwarzschild radius

Rs ¼ 2R. From Eq. (5.3) we see that the maximal speed

with which the curve moves is 2R2
sΩBH=L; during half-

oscillation time it moves by a distance no greater than 2Rs

(recall Ω < 1=Rs). Since the radius is a half-chord, even if

the two segments of the curve cross with maximal possible

velocity, there will be a half-oscillation interval such that

the distance of the closest approach of the loop to the black

hole is less than 2Rs. As numerical experiments of [10]

show, strings with such small impact parameter with

respect to a black hole typically get captured. Thus the

string capture is overwhelmingly likely, especially for

nonmaximally-spinning black holes. Thus remarkably,

without string reconnections the initially captured loop

will split into ∼αL=R loops independently bound to the

spinning black hole. Each of the bound loops will evolve

into a double-line rotating close to the equatorial plane.

E. Asymptotically expanding double lines and

reconnections

At a first glance, expanding double lines that correspond

to nearly circular auxiliary curves, do not appear stable if

any amount of reconnection is present in the system.

However, we argue that this intuition could be misleading.

Below, we obtain a general asymptotic form for a nearly-

circular auxiliary curve that is expanding due to the

spin-induced curve lengthening. We show that it is straight-

forward to find examples of such solutions that never self-

intersect.

1. Asymptotic loop

By appropriate rescaling of time and spatial dimension in

Eq. (5.3), we obtain the dimensionless evolution equation

for the auxiliary curve, for a BH rotating around the z-axis:

∂ta ¼ ∂2
σa − ẑ × ∂σaþ u∂sa; ð5:14Þ

where dσ ¼ j∂sajds is the increment of the auxiliary-curve

length at a fixed time t, and s is a parametrization of the

curve. Here we assume 0 < s < 2π, so that aðt; sÞ is a 2π-
periodic function of s. The last term on the right-hand side

contains an arbitrary 2π-periodic function of s, uðt; sÞ,
which accounts for a continuous arbitrary reparametrization

of the curve.

For a long auxiliary curve, the first term in the right-hand

side can be dropped. Since we expect an asymptotic

solution that is close to circular, we parameterize the curve

in cylindrical coordinates aðsÞ ¼ ½ρðsÞ;ϕðsÞ; zðsÞ� by

choosing s ¼ ϕ. Denoting ∂t and ∂ϕ by the “dot” and

“prime,” we get

ð_ρ; 0; _zÞ ¼ −
ð0; 0; 1Þ × ðρ0; ρ; z0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ02 þ ρ2 þ z02
p þ ðρ0; ρ; z0Þu: ð5:15Þ

The second of these three equations gives u, and then the

other two equations read

_ρ ¼ ρ02 þ ρ2

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ02 þ ρ2 þ z02
p ð5:16Þ

_z ¼ ρ0z0

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ02 þ ρ2 þ z02
p ð5:17Þ

An expanding circle is an exact solution, ρ ¼ t0, z ¼ 0,

where t0 is the “age” in terms of the rescaled time and more

usefully, the radius of the auxiliary curve. Therefore, the

evolution of a slightly deformed circle, to the first two

nonvanishing orders, is given by _ρ ¼ 1, _z ¼ 0, and we get

4
To make this concern more precise, consider the moment that

auxiliary curve self-intersects. If at that moment the evolution of
the auxiliary curve is switched off, from an argument above we
see that a portion of the loop would be captured within the half-
cycle from that moment. However, if the curve keeps evolving,
then it is not a priori clear that it would not evolve far enough
during the half-cycle, so that the string would just miss the black
hole.
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ρ ¼ t0 þ hðϕÞ; z ¼ gðϕÞ: ð5:18Þ

Since we are only interested in the shape of the curve, we

can rescale the axes by t0. The late-time asymptotic form of

the auxiliary curve can be written as

ρ ¼ 1þ hðϕÞ=t0; z ¼ gðϕÞ=t0: ð5:19Þ

Equation (5.19) is valid up to the first order in 1=t0. In terms

of the length parameter σ, again up to the first order in 1=t0,
with hðϕÞ≡ f0ðϕÞ, we get

ρ ¼ 1 − f0ðσÞ=t0; ϕ ¼ σ þ fðσÞ=t0; z ¼ gðσÞ=t0:
ð5:20Þ

This is the general late-time form of the nearly-circular

expanding auxiliary curve rescaled by its radius.

2. Non-self-intersecting asymptotic loop

Recall that the string loop rðt; σÞ can be expressed

through the auxiliary curve aðσÞ:

2rð−t; σÞ ¼ aðtþ σÞ − aðt − σÞ: ð5:21Þ

It is convenient to use Cartesian coordinatization

ðax; ay; azÞ of the curve. From Eq. (5.20) (to first order

in 1=t0) we have

ax þ iay ¼
�

1 −
f0

t0
þ i

f

t0

�

eiσ: ð5:22Þ

Then for the string loop, in Cartesian ðx; y; zÞ, we have

2ðxþ iyÞ ¼ eitf2i sin σ
þeiσ½ifðtþ σÞ − f0ðtþ σÞ�=t0
−e−iσ½ifðt − σÞ − f0ðt − σÞ�=t0g: ð5:23Þ

If the string loop self-intersects at time t at points σ and σ̃,

then to zeroth order in 1=t0

sin σ ¼ sin σ̃⇒ σ̃ ¼ π − σ; ð5:24Þ

and this value can be used when calculating the first-order

terms of the string loop. In the zeroth order term of the

string loop, 2i sin σ̃, the first order correction of σ̃ will make

the imaginary parts of the bracket in Eq. (5.23) match at σ̃

and at σ up to first order. Only the real part matching leads

to an equation for f:

Fðt; σÞ ¼ Fðt; π − σÞ; ð5:25Þ

Fðt; σÞ≡ cos σ½f0ðtþ σÞ − f0ðt − σÞ�
þ sin σ½fðtþ σÞ þ fðt − σÞ�; ð5:26Þ

or

cos σ½f0ðtþ σÞ − f0ðtþ σ − πÞ
−f0ðt − σÞ þ f0ðt − σ þ πÞ�
þ sin σ½fðtþ σÞ − fðtþ σ − πÞ
þfðt − σÞ − fðt − σ þ πÞ� ¼ 0: ð5:27Þ

Recalling that fðσÞ is a 2π-periodic function of σ, we see

that Eq. (5.27) is an identity for all even-m Fourier

harmonics, cosðmσÞ and sinðmσÞ. Assuming that f has

only odd-m harmonics, we can simplify Eq. (5.27):

cos σ½f0ðtþ σÞ − f0ðt − σÞ�
þ sin σðfðtþ σÞ þ fðt − σÞÞ ¼ 0: ð5:28Þ

For a self-intersection the string loop z-components must

also match, zðt; σÞ ¼ zðt; π − σÞ. We will assume that g has
only the even-m harmonics (as the odd-m ones do not

contribute), and get the second necessary condition for the

self-intersection

gðtþ σÞ − gðt − σÞ ¼ 0: ð5:29Þ

Now we can give the simplest possible example of a non-

self-intersecting string loop. We take fðσÞ ¼ cosð3σÞ,
because Eq. (5.28) is an identity for m ¼ 1. We take

gðσÞ ¼ sinð2σÞ. Then Eqs. (5.28), (5.29) read

cosð3tÞcos3σ sin σ ¼ 0; cosð2tÞ cos σ sin σ ¼ 0:

ð5:30Þ

This system of equations does not have any physically

relevant solutions: cos σ ¼ 0 is not an option because then

σ ¼ π
2
coincides with π − σ; sin σ ¼ 0 is not an option

because σ ¼ 0 and σ ¼ π are the points where the string

loop attaches to the black hole; the only remaining option is

cosð3tÞ ¼ 0; cosð2tÞ ¼ 0; ð5:31Þ

which is impossible. Numerically we have confirmed that

this asymptotic loop indeed does not self-intersect.

The existence of nonintersecting asymptotic solution

means that there exist loop configurations that will inflate

until the black hole is spun down, with L ∼ Rμ−1=2.
Whether such nonintersecting asymptotic states can be

reached generically through curve-lengthening combined

with reconnections is an open question.

VI. EVOLUTION OF A BOUND LOOP

In this section we explore the implications of the results

from previous sections on the evolution of the loop bound

to the black hole. We distinguish two cases, that of a
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nonrotating and rotating black hole. In the former case, our

estimates and conclusions are reliable (if a bit boring for

astrophysics), while in the latter case our conclusions are

tentative since we do not yet have a detailed understanding

of the role of reconnections on the evolution of the loop that

is being inflated by a spinning black hole.

A. Nonrotating black hole

Three processes lead to depletion of the bound loop:

(1) Change of the loop’s orbit and subsequent ejection,

due to the finite mass of the black hole. If the recon-

nection probability p > μL=R, the loop length de-

creases approximately exponentially [see Eq. (3.21)],

on a timescale

tshrink ∼ R=μ: ð6:1Þ

If p < μL=R, the loop shrinks on a timescale ∼L=p.
(2) Horizon friction depletes the loop on a timescale

tfr ∼ 5 × 10−3L3=R2; ð6:2Þ

cf. Eq. (5.6). The auxiliary curve shortening caused

by the friction will drive the loop toward a double-

line configuration on the same timescale. Since

the tip of an ideal double-line moves with the speed

of light, one expects copious production of gravi-

tational waves.

(3) Gravitational radiation depletes the loop on a

timescale

tGW ∼
L

ΓμM
; ð6:3Þ

where Γ ∼ 50 is the numerical factor computed for a

typical loop with finite number of cusps, andM ∼ 1

for a typical loop and is logarithmically large for the

double line due to the ultrarelativistic motion of its

tip [29].

For simplicity, let us assume reconnections are efficient.

For L > ð5 × 10−3μÞ−1=3R, process 1 dominates over

process 2, while for L < ð5 × 10−3μÞ−1=3R process 2

dominates over process 1. For

μ < 200ðΓMÞ−3 ∼ 2 × 10−3M−3; ð6:4Þ

the gravitational radiation is not the dominant mechanism

for the loop depletion for any L, with respect to the

combination of two other processes. For M≲ 100, this

criterion is satisfied extremely well for observationally

allowed values of μ.

Therefore a loop with the initial size L0 ≫

ð5 × 10−3μÞ−1=3R evolves in two stages. First, it shrinks

by ejection of the daughter loops due to the finite mass of

the black hole,

logL ∼ logL0 − χ
μ

R
t; ð6:5Þ

where χ ∼ 1. After reaching L ∼ ð5 × 10−3μÞ−1=3R, the

evolution proceeds by horizon friction and the loop turns

into a double line before being swallowed by the black

hole. If tdeath is the time at which the loop disappears, then

before that the loop evolves according to

L ∼ R2=3ðtdeath − tÞ1=3: ð6:6Þ

In this stage of evolution, the energy of the loop is absorbed

into the irreducible mass of the black hole.

B. Rotating black hole

We have much less certainty in assessing the loop’s

evolution if the black hole is rotating, because while we

understand the spin-driven lengthening of the auxiliary

curve, we do not know how reconnections would affect this

evolution. One reasonable guess is that the superradiance of

short-wavelength helical tension waves will cause recon-

nection at a distance ≲1=ΩBH from the black hole, with the

remaining bound loop dissipating due to the horizon

friction. For this size, the auxiliary curve shortening due

to horizon friction occurs on a timescale comparable to that

of the curve lengthening due to the black hole spin. One can

then suppose that in some cases the shrinking wins and the

loop gets swallowed by the black hole, and in other cases

the curve lengthening wins and the loop grows by

extracting the rotational energy of the black hole. What

exactly reconnections do to the expanding loop needs to be

explored. While asymptotic nonintersecting solutions do

exist, it is far from certain that they will be reached through

reconnections. One can imagine limit cycles, where the

loop grows, reconnects, ejects a subloop, grows again, etc.

As our code is not powerful enough to efficiently find

reconnections of loops with changing shapes, this will have

to be explored in future work.

If a loop reaches a non-self-intersecting asymptotic form,

its invariant length will grow as ∝
ffiffi

t
p

, according to

Eq. (5.9). The black-hole spindown will limit the maximum

to which the loop’s spacial extent can grow:

Lmax ∼ ðα0=μÞ1=2R: ð6:7Þ

where α0 is the initial dimensionless spin of the black hole.

At L ≫ 1=ΩBH, the conversion of the black hole spin

energy into the loop length becomes inefficient. Only a

fraction ∼2πðLΩBHÞ−1 of the spin energy gets converted

into the loop length, and the rest adds to the irreducible

mass of the black hole. Eventually the black hole becomes

virtually nonrotating. This could take place in the real

Universe if
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μ ≳ 4 × 10−16
1017 s

t0

M

MSgrA�
; ð6:8Þ

where t0 is the age of the black hole, and MSgrA�≃

4 × 106 M⊙ is the mass of the supermassive black hole

at the center of our Galaxy.

This picture is different if the black hole is accreting from

a thin disc that is spinning it up. For

μ ≲ _M ∼ 5 × 10−15
M

MSgrA�

_M

_MEd

; ð6:9Þ

the spin-down torque from the string is unable to com-

pensate the spin-up accretion torque. Here _M is the

accretion rate and _MEd ∼ 10−8 M⊙ yr−1 ðM=M⊙Þ is the

Eddington accretion rate. Please note that in geometric

units, _M is a dimensionless quantity. If μ≳ _M, the

dimensionless spin of the black hole saturates at

αeq ∼ _M=μ: ð6:10Þ

In this case a fraction of the rest mass of the accreted

material is converted into string length and the loop grows

indefinitely.

For sufficiently small values of the reconnection prob-

ability p, the auxiliary curve will develop self-intersections

and the loop will break into smaller loops, all bound to the

black hole. If all the smaller loops survive reconnections

and settle into asymptotic non-self-intersecting double

lines, the latter will rotate around the black hole in near-

equatorial planes, each with its own angular velocity. An

important effect would be an enhanced slow-down of the

black hole, by a factor that equals to the number of the

attached double-lines.

While the physics of black holes’ interaction with string

loops is interesting, are they likely to ever meet in the real

world if strings do exist? In the next section we argue in the

affirmative, for reasonable parameters of the string

network.

VII. COSMOLOGICAL CONSIDERATIONS

The probability for a black hole to have a string attached

to it crucially depends on whether the black holes are

primordial or they are formed by gravitational collapse and

accretion in the late universe. We will mostly focus on the

latter possibility and will only briefly comment on pri-

mordial black holes in Sec. VII C.

A. String evolution and capture

Numerical simulations of cosmic string evolution indi-

cate that strings evolve in a self-similar manner. A Hubble-

size volume at any time t contains a few long strings

stretching across the volume and a large number of closed

loops of size L ≪ t (for an up to date review of string

simulations, see [30] and references therein). Long strings

move, typically at mildly relativistic speeds (v ∼ 0.2), and

reconnect when they cross. Reconnections lead to the

formation of closed loops. The loops oscillate periodically

and emit gravitational radiation at the rate

_E ¼ Γμ2; ð7:1Þ

where Γ ∼ 50 is a numerical factor depending on a

particular loop configuration. As loops lose their energy,

they gradually shrink and eventually disappear. The life-

time of a loop of invariant length L is τ ∼ L=Γμ. The
smallest and most numerous loops surviving at cosmic time

t have length

LminðtÞ ∼ Γμt: ð7:2Þ

Such loops, which are near the end of their lives, acquire

large velocities, typically v ∼ 0.1, due to the asymmetric

emission of gravitational waves (this is the so-called

gravitational rocket effect.) These velocities are too high

for the loops to be bound to galaxies. However, larger loops

move slower and, if they are longer than a certain length,

they can be captured in galactic halos during the epoch of

galaxy formation. Such galactic loops are also the best

candidates for capture by a black hole.

Loop clustering in galaxies was originally studied by

Chernoff in [31]. In that work however, the gravitational

rocket effect on the loops before their capture into the halos

was not properly taken into account. Recently [32] per-

formed an analysis where the rocket effect was fully

accounted for, and showed that the original computations

overestimated the number of captured loops by orders of

magnitude. Still, as we show below, those loops that do get

captured can collide with the black holes inside the halos, at

a rate that is astrophysically significant. According to the

calculations in [32], the smallest and most numerous

galactic loops have length

LG ∼ 30Γμt0 ∼ 5 × 10−8μ−20 pc; ð7:3Þ

where t0 is the present cosmic time and μ−20 ≡ μ=10−20.
The number of such loops in the halo of a typical galaxy

like the Milky Way is

N ∼ 1012μ
−3=2
−20 ηðpÞ: ð7:4Þ

Here the function ηðpÞ reflects the fact that low-p networks

are more efficient in producing subhorizon loops; ηð1Þ ¼ 1.

Numerical simulations in [33] give ηðpÞ ∝ p−ζ, where

ζ ∼ 0.6 with considerable uncertainty.

Let us estimate the rate of capture of loops by a

supermassive black hole of the mass

M ¼ 4 × 106 M⊙

M

MSgrA�
: ð7:5Þ
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It is convenient to restore G and c for our computations in

the rest of this subsection, since geometric units are not

suitable for classical galactic dynamics calculations that

follow.

What is the distribution of loops near supermassive black

holes? A classic argument was given by Young in [34], in

the context of computing stellar distribution near an

adiabatically growing black hole. One can show [see

Young’s equation (29)] that in a spherically symmetric

system the steady-state distribution function fðE; JÞ
remains conserved as the potential evolves and thus the

energy E changes due to the black hole growth; the angular

momentum J is conserved. Here it must be understood that

E, J, and f are functions of position and momentum. The

distribution function away from the black hole is simply

f ∼ v−3G N =V, where vG ∼ 200 km= sec is the virial veloc-

ity of the halo and V ∼ 1015 pc3 is the halo volume. The

distribution function near the black hole is given by

f ∼ nloopsðrÞr3=2ðGMÞ−3=2; here nloops is the number den-

sity of loops. Equating the two we get

nloopsðrÞ ¼
ðGMÞ3=2
v3Gr

1.5
N =V: ð7:6Þ

Of interest for us is the case where LG > R, in which case

we need to consider the loops whose centers are within

r ∼ LG from the BH. Not all of them will be captured; their

capture probability in one dynamical time ∼L
3=2
G =ðGMÞ1=2

is ∼ðR=LGÞðc=vÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffi

R=LG

p

, where v ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GM=LG

p

.

The rate of loop captures is given by

CR ∼ nloopsðLGÞ
�

GM

LG

�

1=2

L2
G

ffiffiffiffiffi

R

Lg

s

∼
N

V

c4

v3g
R5=2L

−1=2
G

∼
μ−2−18

3 × 109 yr

�

M

MSgrA�

�

2.5

½ηðpÞ�: ð7:7Þ

The estimate above implies that there are reasonable

values of μ for which all supermassive black holes,

including the one in our galactic center, will acquire a

loop during their lifetime. Even within the simple model we

used, the estimate is uncertain and we want to point out two

caveats. First, even before the black hole formation, the

loops are likely to cluster toward the inner halo which

would enhance their phase space density near the black

hole. Second, a merger with another black hole could cause

the loops to be ejected from the nucleus of the galaxy by a

slingshot mechanism. We shall for now ignore these

complications.

The steep M-dependence in the equation above implies

that masses of the black holes that do capture strings, could

be clustered toward the high end of their range. The details

will clearly depend on the mass function of the super-

massive black holes

ϕðMÞ ¼ dNBH

dV d logM
; ð7:8Þ

where NBH is the number of black holes, V is volume, and

logM is the decimal logarithm of the black hole mass.

Useful illustrative plots of ϕðMÞ can be found in, e.g.,

Fig. 7(a) of [35] (the grey region corresponds to the mass

function measured at redshift 0) and Fig. 2 of [36]. As can

be seen from the latter figure, ϕðMÞ changes slowly from

∼0.01 Mpc−3 to ∼0.001 Mpc−3 between 106 M⊙ and

108.4 M⊙ and falls off more steeply at higher masses, very

roughly as ∝ M−2 between 108.4 M⊙ and 109.5 M⊙. For a

given tension μ−18, the greatest number of loops will be

captured by black holes with masses

Mμ ∼MSgrA�μ
4=5
−18η

−2=5; ð7:9Þ

such that the CR ∼ 1=ð3 × 109 yrÞ and the capture prob-

ability for the black hole is of order unity (we assume here

that there is no benefit for a black hole to capture > 1 loop,

since after reconnections only one loop will remain bound

to the black hole).

B. Gravitational wave signature

At this stage we are unable to make definitive predictions

about gravitational waves, since we are unable to model the

evolution of the captured loop with reconnections. Some

general quantitative remarks can however be made.

First, we note that in an ultraoptimistic scenario, all of

the spin energy of supermassive black holes can be

converted into string loops which in turn convert their

energy into gravitational waves. The average mass density

of supermassive black holes is ∼2 × 105 M⊙=Mpc3 [36].

One can then easily estimate the ratio between the energy

density in black holes’ spin and the energy density of the

universe:

Ωspin ∼ 10−7ᾱ2; ð7:10Þ

where ᾱ is the average dimensionless spin of the black

holes. Measurements of x-ray and radio emission from

accreting supermassive black holes in galactic nuclei

indicate that they are rapidly rotating (e.g., [37,38], and

references therein
5
). This is consistent with an argument

5
However, recently [39] provided an interesting argument for

the upper bound α≲ 0.1 on the spin of the SgrA* black hole. It
was based on the fact that the S-stars near SgrA* appear to belong
to two mutually inclined discs [40], while the large spin of the
black hole would destroy such structures through the Lense-
Thirring precession of the orbits [41].
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that the supermassive black holes acquire most of their

mass from thin accretion discs [42,43], in which case one

might expect that a significant fraction of them rotate

rapidly, with α ∼ 1.

The estimate in Eq. (7.10) is six orders of magnitude

above the projected sensitivity of LISA ofΩGW ∼ 10−13=h2

and many orders of magnitude greater than the projected

ΩGW produced by current cosmological models with

cosmic strings [16]. While the spectrum of emitted gravi-

tational waves is likely broad, we note that ΩBH is in the

LISA band for supermassive black holes. Therefore the

emission of gravitational waves in this scenario is worth

some exploration. The efficiency of the black-hole spin

energy conversion into the loops is ∼ð2π=αÞðR=LÞ and is a
strong function of the invariant length L of the loop

attached to the black hole. Thus determining average L
is one of the key targets of future simulations.

C. Primordial black holes

If both strings and primordial black holes are present in

the universe, the strings are formed at a phase transition at a

very early time and reach the scaling regime of evolution by

the time when black holes are formed. At that time each

horizon volume contains Oð10Þ long strings and newly

formed black holes have sizes comparable to the horizon.

Hence each black hole typically captures Oð10Þ strings,

resulting in an interconnected black hole-string network

[6]. The strings will wiggle around, cross and reconnect,

and it is possible that most of the black holes will be

detached from the network. But even then such black holes

will retain string segments with both their ends attached to

the horizon.

Thus, in the primordial black hole scenario we can

expect nearly all black holes to end up with string loops

attached to them. The evolution of black hole-string net-

works is now poorly understood, so we cannot determine

the length distribution of the attached string segments.

Progress in this direction would require numerical simu-

lations, which are now being developed.

Another difference from astrophysical black holes is that

primordial black holes are expected to be slowly rotating. In

models where they are formed at high peaks of the density

field, their dimensionless angular momentum has been

estimated as α ∼ 0.01 in two independent studies [44,45].

This is a small value, but it may be sufficient for the effects

described in the preceding sections to be significant. On the

other hand, primordial black holes formed by spherical

domain walls or vacuum bubbles nucleated during inflation

are nonrotating at birth and can acquire angular momentum

only by accretion of matter [46,47].

For black holes with negligible spin, a combination of

finite-black-hole mass and black hole spindown will result

in an approximately exponential reduction of the length of

the loop attached to the black hole. The loop will disappear

after

t ∼ 3 × 1017 sM2μ
−1
−21 log

�

L0μ
1=3

R

�

; ð7:11Þ

where per common notation, M2 ¼ M=100 M⊙, and L0 is

the initial size of the loop. Primordial black holes with

loops, if they exist, end up inside galactic halos, but for the

loops to survive to the present day, M and μ must satisfy a

rather strict constraint specified by the equation above. This

constraint can be relaxed if the black holes can acquire

rotational energy through accretion of gas or mergers with

other black holes.

VIII. CONCLUSIONS

The wonderful physics of interactions between black

holes and strings, explored in a long series of publications

by Valery Frolov and his collaborators, comes alive if the

string is bound into a loop so that its both ends are captured

by the black hole. The new features that we identify with

certainty are 1. the existence of non-self-intersecting loop

orbits, 2. the depletion of the loop by horizon friction and

by reconnections from the secular evolution of the string

orbit due to the finite black hole mass, and 3. the growth of

the string loop by a superradiant extraction of the black

hole’s rotational energy. A formalism for the evolution of

the loop shape has been developed that utilizes a beautiful

geometric deformation of an auxiliary curve. It is a matter

for future numerical work, to determine the influence of

reconnections on the sizes of loops attached to black holes.

We show that encounters between string loops and black

holes may well be a common occurrence in the real

Universe. Gravitational waves could well be an observable

signature of such encounters and subsequent evolution of

the loops, and in a very general ultraoptimistic scenario

their background exceeds the projected sensitivity of LISA

by six orders of magnitude. Concrete predictions must wait,

however, for future numerical work.

Finally, we note that there is another potential cause of

catastrophic reconnection that we have ignored in this

paper. The solution in Eq. (4.1) describes a string that winds

many times around the horizon. In our case we will have

both ends of the loop behave in this way. There is a danger

that these winding ends of the loop will intersect. We

suspect that this danger is not so severe, since the spirals are

ordered, each occupying its own cone of polar angle θ and

each with a different asymptotic angle ϕ0. Thus the two

stationary string spirals with different asymptotes never

intersect. However the problem deserves a careful consid-

eration once the strings’ movement is taken into account.

This paper clearly motivates further theoretical studies of

the string superradiance, as well as observational searches for

gravitational waves from loops ejected from galactic nuclei.
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APPENDIX A: NUMERICAL ALGORITHM FOR

GENERATING RANDOM STRINGS

As discussed in Sec. II C, we simulate a random string

loop by generating a set of vectors a0 which satisfies:

(i) ja0ij ¼ 1 (on unit sphere)

(ii)
P

a0i ¼ 0 (periodicity)

(iii) ja0iþ1
− a0ij ≤ B0 ¼ 2 sin θm (smoothness)

It is trivial to construct a random vector chain that satisfies

conditions 1. and 3. However, in order to satisfy constraint

2., we need to adjust the chain and iterate. An outline of the

general procedure is given in Algorithm 1. This algorithm

will guarantee that the 2N output vectors all lie on the unit

sphere, that the aðσÞ curve made of equal-length segments

parallel to the output vectors is periodic within some

tolerance (j
P

a0ij ≤ ϵ) and that it is sufficiently smooth.

At line 4 of Algorithm 1, we generate a set of random

unit vectors with a random walk step upper bounded by

fðB0Þ. The function mapping f is chosen so that the final

vector chain (approximately) satisfies constraint 3. This

requires some experimentation and will be discussed later.

First we choose a unit vector a0
1
in a random direction.

We then sequentially generate a0iþ1
for each a0i until we

have 2N vectors. We orient a0i as the polar axis and let θ and
ϕ be the polar and azimuthal angle the next vector makes

with the current one. We draw ϕ uniformly in ½0; 2π�. To
satisfy the random walk constraint, we require

θ ≤ θm ¼ 2 arcsin
fðB0Þ
2

: ðA1Þ

We choose a0iþ1
uniformly from this solid angle, by

drawing θ from the distribution

PðθÞ ¼ sin θ

1 − cos θmax

: ðA2Þ

We use inverse sampling to achieve this. First, we define

the cumulative distribution function as

QðθÞ ¼
Z

θ

0

Pðθ0Þdθ0 ¼ 1 − cos θ

1 − cos θm
ðA3Þ

We can then draw θ ¼ Q−1ðχÞ where χ is a uniform

random variable drawn from [0, 1]. We then apply spherical

trigonometry to retrieve the Cartesian coordinates of a0iþ1
.

Now, since a (and hence a0) is periodic in 2L, we also

need to constrain the starting and ending points of the chain

(ja0
1
− a0

2N j). Line 5 achieves this through shifting each

vectors by an amount that is linear in its index. This will

ensure the tight inequality in Eq. (A4). Here α0 is a0

obtained in Line 4.

ja0ðiþ1Þmod 2N
− a0ij ≤

1

2N
½jα0

1
− α0

2N j þ ð2N − 1ÞB�: ðA4Þ

The next part of the algorithm repeatedly and alterna-

tively makes the vectors periodic (line 7) and normalizes

them unto the unit sphere (line 8). Both conditions will be

satisfied (within tolerance), after sufficient iterations. We

do not have a rigorous proof of its convergence (and the

algorithmmay not converge if the initial vectors are linearly

dependent). Empirically, the number of iteration required to

achieve a tolerance of 10−10 is plotted in Fig. 4. We need

fewer iterations for larger N and for larger fðB0Þ. The
algorithm will converge in few iterations for reasonable

input parameters.

Now we use fðB0Þ instead of B0 at line 4 because the

iterations do not preserve the maximum random walk step.

Empirically, we observe that the maximum step before and

after line 6–8 of the algorithm exhibit a linear relationship

(as shown in Fig. 5). In practice, to simulate a closed chain

with the desired N and B0, we first calculate this linear

relationship by simulating initial chains with a range of

Algorithm 1. Algorithm for generating a random string

1: Input: N, B0, ϵ
2: Output: A set of 2N vectors a0 that satisfy the all three

conditions

3: do

4: Generate 2N unit vectors with ja0iþ1
− a0ij ≤ fðB0Þ;

5: ∀ i; a0i → a0i þ ði=2NÞð1 − fðBÞ=ja0
1
− a0

2N jÞða01 − a0
2NÞ

6: while jP a0ij > ϵ do

7: ∀ i; a0i → a0i −
P

a0i=2N;

8: ∀ i; a0i → a0i=ja0ij;
9: while max ja0iþ1

− a0ij > B0
FIG. 4. Iteration required for the algorithm to converge for

different values of N and fðB0Þ (ϵ ¼ 10−10). The results are

averaged across 10 independent trials.
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values of f and calculating corresponding values of B0 once
the iterations converge. Using linearity, we then obtain an

estimate for f that we can use for the initial chain in order to

obtain a final chain with the specified B0. We thus add the

external “while” loop to guarantee the correct random walk

step bound. We need fewer iterations for a larger number of

segments.

APPENDIX B: NUMERICAL ALGORITHM FOR

SELF-INTERSECTIONS

Since our loop motion is periodic in 2L, it suffices for
our algorithm to detect intersection with 0 ≤ t < 2L. We

divide this time period into intervals of Δt and search for

intersection within each interval iteratively. Let t0 be the

time that an interval starts and t0 þ Δt is the time it ends.

One can choose any value from 0 to 2L for Δt. In practice

we can choose Δt ¼ L=N to be the average length of

segments which gives satisfactory results. Now, we assume

the intersection occurs at location σi and σj. We have:

rðσi; tÞ ¼ rðσj; tÞ: ðB1Þ

With our formulation in Eq. (2.3), this becomes:

aðσi − tÞ − að−σi − tÞ ¼ aðσj − tÞ − að−σj − tÞ: ðB2Þ

Now, as specified in Eq. (2.6), our algorithm discretizes

a into 2N connected line segments. We assume that σi − t is
on the segment mi, σj − t is on the segment mj, −σi − t is

on the segment ni and −σj − t is on the segment nj. We

have:

aðσi − tÞ ¼
X

p<mi

Lpa
0
p

þ
�

ðσi − tÞmod 2L −
X

p<mi

Lp

�

a0mi
; ðB3Þ

constrained by:

0 ≤ ðσi − tÞmod 2L −
X

p<mi

Lp < Lmi
; ðB4Þ

and similarly for σj − t, −σi − t, and −σj − t. Here mod is

real number modulo function defined as xmod y ¼ x−
ybx=yc. Since a is periodic in 2L, we first use the mod

function to make 0 ≤ σi − t < 2L where our discretization

scheme is defined. To work with mod, we let:

ðσi − tÞmod 2L ¼ σi − tþ 2MiL ðB5Þ

ðσj − tÞmod 2L ¼ σj − tþ 2MjL ðB6Þ

ð−σi − tÞmod 2L ¼ −σi − tþ 2NiL ðB7Þ

ð−σj − tÞmod 2L ¼ −σj − tþ 2NjL ðB8Þ

whereMi, Mj, Ni, Nj are integers. Consequently, Eq. (B2)

becomes:

ða0mi
þ a0niÞσi − ða0mj

þ a0njÞσj
þ ð−a0mi

þ a0mj
þ a0ni − a0njÞt

¼
X

p<mi

ða0mi
− a0pÞLp −

X

p<mj

ða0mj
− a0pÞLp

−
X

p<ni

ða0ni − a0pÞLp þ
X

p<nj

ða0nj − a0pÞLp

þ 2Lð−Mia
0
mi

þMja
0
mj

þ Nia
0
ni
− Nja

0
nj
Þ: ðB9Þ

This is a linear equation system with 3 variables. We look

for a solution that satisfies the following constraints:

�

t0 ≤ t < t0 þ Δt

0 ≤ σi; σj < L
ðB10Þ

Furthermore, for our discretization scheme to work, we

also need the constraints from Eq. (B4):

FIG. 5. Linear relationship between the maximum step size

before and after the line 6–8 of Algorithm 1.
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:

0 ≤ σi − t −
P

p<mi

Lp þ 2MiL < Lmi

0 ≤ σj − t −
P

p<mj

Lp þ 2MjL < Lmj

0 ≤ −σi − t −
P

p<ni

Lp þ 2NiL < Lni

0 ≤ −σj − t −
P

p<nj

Lp þ 2NjL < Lnj

ðB11Þ

Naively, we can try all integer combinations of

Mi;Mj; Ni; Nj; mi; mj; ni; nj and check if Eq. (B9) has a

solution. However, this algorithm will then have time

complexity OðN8L=ΔtÞ and is not computationally fea-

sible. We thus seek to constrain these parameters and trim

our search space.

1. Constraining Mi, Mj, Ni, Nj

From the inequalities in (B11), we have:

X

p<mi

Lp − σi þ t ≤ 2MiL <
X

p≤mi

Lp − σi þ t ðB12Þ

X

p<ni

Lp þ σi þ t ≤ 2NiL <
X

p≤ni

Lp − σi þ t ðB13Þ

and similarly forMj and Nj. Then, using the inequalities in

(B10) as well as 0 ≤
P

p<k Lp ≤ L for all k, we obtain the

following constraints:

ðt0 − LÞ=2L ≤ Mi;Mj < ðt0 þ Lþ ΔtÞ=2L ðB14Þ
t0=2L ≤ Mi;Mj < ðt0 þ 2Lþ ΔtÞ=2L: ðB15Þ

Consequently, there are at most 2 feasible values for each of

Mi, Mj, Ni and Nj (since Δt < 2L). We are left with at

most 16 combinations to try, effectively reducing the time

complexity to OðN4L=ΔtÞ.

2. Constraining ni, nj

We can further accelerate the algorithm by constraining

ni and nj given mi, mj, Mi, Mj, Ni and Nj. Using the

inequalities in (B11) and t < t0 þ 2L, we have:

X

p<ni

Lp ≤ −
X

p<mi

Lp − 2t0 þ 2ðMi þ NiÞL ðB16Þ

X

p<nj

Lp ≤ −
X

p<mj

Lp − 2t0 þ 2ðMj þ NjÞL ðB17Þ

X

p≤ni

Lp > −
X

p≤mi

Lp − 2t0 − 2Δtþ 2ðMi þ NiÞL ðB18Þ

X

p≤nj

Lp > −
X

p≤mj

Lp − 2t0 − 2Δtþ 2ðMj þ NjÞL: ðB19Þ

These will filter out a significant proportion of the

available values for ni and nj. The right-hand side of

inequalities (B16) and (B18) differ by Lmi
þ 2Δt. If there

are k segments falling into this range, we will have kþ 2

possible values for ni. Assigning the average segment

length to Δt, we will have k ∼ 3. Thus, on average, we

will have approximately 5 ni values to try. This reduces the

time complexity to OðN2L=ΔtÞ ¼ OðN3Þ.

3. Constraining mj

Moreover, with a given mi, we can develop a constraint

on the available values for mj. From the inequalities in

(B11), we can find a bound for σi and σj:

t0 þ
X

p<mi

Lp − 2MiL ≤ σi < t0 þ Δtþ
X

p≤mi

Lp − 2MiL

ðB20Þ

t0 þ
X

p<mj

Lp − 2MjL ≤ σj < t0 þ Δtþ
X

p≤mj

Lp − 2MjL

ðB21Þ

Note that the right side of these inequalities are larger than

the left side by Δtþ Lmi
and Δtþ Lmj

, respectively. That

is, the σ values are constrained within this region given mi

and mj. Now, at t0, the spatial distance between two

intersection points has:

dist ¼ krðσi; t0Þ − rðσj; t0Þk

≥

	

	

	

	

r

�

t0 þ
X

p<mi

Lp − 2MiL; t0

�

− r

�

t0 þ
X

p<mj

Lp − 2MjL; t0

�	

	

	

	

− 2Δt − Lmi
− Lmj

ðB22Þ

The last three terms come from the aforementioned two

intervals for σ. When varying σ, the two points can approach

each other by at most 2Δtþ Lmi
þ Lmj

. Then, in the time

intervalΔt, these two points will move toward each other to

form an intersection. Both points move at a maximum speed

of 1 (light speed) so the distance must satisfy:

dist < 2Δt: ðB23Þ

This will give us the constraint on mj:

kr
�

t0 þ
X

p<mi

Lp − 2MiL; t0

�

− r

�

t0 þ
X

p<mj

Lp − 2MjL; t0

�

k ≤ 4Δtþ Lmi
þ Lmj

:

ðB24Þ

The effectiveness of this constraint will rely on the shape

of the string. For example, if the string is a perfect circle
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(r ¼ L=2π), the number of mj values that satisfy this

constraint is approximately

2 arcsinðð2Δtþ L=NÞ=rÞ
2π

N ≈ 6 ðB25Þ

assuming N ≫ 1. In general, the smoother the string is (or

the smaller B0 is), the more values that we can filter out.

4. Computational imprecision

Our scheme of using segments is not a precise model of a

smooth physical string. Particularly, if σi and σj are too

close, the discrete nature of our string will be manifest. So

the detected intersection could simply be due to the failure

of our approximation. Therefore, we filter out the inter-

sections that are too close together by requiring:

minfjσi − σjj; jσi − σj þ Ljg > threshold: ðB26Þ
Empirically, we find that the algorithm is stable if we

choose threshold ¼ 10L=N. That is, if two intersections are

separated by, on average, at least 10 segments, we are

confident that this is not due to numerical error.
This also means that if our string length becomes smaller

than 10Li=N where Li is the initial length, our algorithm is
no longer entirely reliable. As shown in Fig. 3(c), we can
see that the final lengths of our simulated string are well

above this threshold (2 × 10−3).
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Astrophys. J. 690, 20 (2009).

[36] B. C. Kelly and A. Merloni, Adv. Astron. 2012, 1 (2012).

[37] M. Jones, L. Brenneman, F. Civano, G. Lanzuisi, and S.

Marchesi, arXiv:2008.08588.

[38] R. A. Daly, Astrophys. J. 886, 37 (2019).

[39] G. Fragione and A. Loeb, Astrophys. J. Lett. 901, L32

(2020).

[40] B. Ali, D. Paul, A. Eckart, M. Parsa, M. Zajacek, F. Peißker,

M. Subroweit, M. Valencia-S., L. Thomkins, and G. Witzel,

Astrophys. J. 896, 100 (2020).

[41] Y. Levin and A. M. Beloborodov, Astrophys. J. Lett. 590,

L33 (2003).

[42] A. Soltan, Mon. Not. R. Astron. Soc. 200, 115 (1982).

[43] Q. Yu and S. Tremaine, Mon. Not. R. Astron. Soc. 335, 965

(2002).

[44] M. Mirbabayi, A. Gruzinov, and J. Noreña, J. Cosmol.

Astropart. Phys. 03 (2020) 017.

[45] V. De Luca, V. Desjacques, G. Franciolini, A. Malhotra, and

A. Riotto, J. Cosmol. Astropart. Phys. 05 (2019) 018.

[46] H. Deng, J. Garriga, and A. Vilenkin, J. Cosmol. Astropart.

Phys. 04 (2017) 050.

[47] H. Deng and A. Vilenkin, J. Cosmol. Astropart. Phys. 12

(2017) 044.

XING, LEVIN, GRUZINOV, and VILENKIN PHYS. REV. D 103, 083019 (2021)

083019-22


