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We consider the evolution of a cosmic string loop that is captured by a much more massive and much
more compact black hole. We show that after several reconnections that produce ejections of smaller
loops, the loop that remains bound to the black hole moves on a nearly-periodic non-self-intersecting
trajectory, “the orbit.” The orbit evolves due to an energy and angular momentum exchange between
the loop and the spinning black hole. We show that such evolution is mathematically equivalent to a
certain continuous deformation of an auxiliary closed curve in a 3-dimensional space; for zero black-
hole spin this deformation is curve-shortening that has been extensively studied by mathematicians as a
prominent example of one-dimensional geometric flows. The evolution features competing effects of
loop growth by the superradiant extraction of the black-hole spin energy, and loop decay by the friction
of the moving string against the horizon. Self-intersection of an auxiliary curve may be a common
occurrence, which corresponds to a capture by the black hole of a new string segment and thus an
addition of a new captured loop. Possible asymptotic states of such evolution are explored and are
shown to be strong emitters of gravitational waves. Whether reconnections prevent reaching the
asymptotic states remains to be explored. Additionally, the orbit’s shape also evolves due to 1. an
emission of gravitational waves, and 2. a finite mass of the black hole, which leads to the recoil that
secularly changes the orbit and likely leads to self-intersections. We argue that for a significant range of
the dimensionless tension y, string loops are captured by supermassive black holes at the centers of
galaxies. This strongly motivates further study of interaction between string loops and black holes,
especially the influence of this process on the black hole spindown and on the production of
gravitational waves by strings captured in galactic nuclei. We also discuss potential loop captures by

primordial black holes.
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I. INTRODUCTION

Black holes are fundamental objects in theoretical
physics, and at the same time they are the subject of
intense study by much of modern astronomy and astro-
physics. Cosmic strings do not share the same status with
black holes. They arise naturally in theoretical physics as
possible remnants of a phase transition in the early
Universe [1,2]. Fundamental strings of superstring theory
can be formed at the end of brane inflation and can also
play the role of cosmic strings [3]. Moreover, the structure
of spacetime generated by an undisturbed, straight cosmic
string is very simple: the geometry of a plane perpendicular
to the string is that of a cone, with the deficit angle
proportional to the string tension. The motion of a string is
specified by minimizing its Nambu-Goto action, which
equals the area of the surface swept in space-time by the

2470-0010/2021/103(8)/083019(22)

083019-1

string’s trajectory. Therefore, a string is also a fundamental
relativistic object in theoretical physics. However, there is
currently no observational evidence for the existence of
cosmic strings in our Universe. Still, if they do exist they
may produce a number of potentially detectable phenom-
ena, notably a stochastic background of gravitational waves
from oscillating cosmic string loops [4,5].

In this paper we investigate the hypothetical interaction
of a cosmic string loop with a black hole. In particular, we
are interested in what happens to the loop once a small part
of it gets captured by the black hole. Our motivation for
studying this is two-fold. First, as we show later, for
reasonable values of y, string loops are expected to be
captured by supermassive black holes in galactic nuclei.
The captures will also take place if both a cosmic string
network and a multitude of primordial black holes formed
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in the early Universe [6].] Second, nontrivial interaction
between two fundamental relativistic objects is a good
problem in its own right, and it might become relevant in a
context that we cannot foresee.

The interaction between cosmic strings and black holes
has been investigated in a number of previous studies.
Gravitational capture and the scattering of an initially
straight string by a black hole have been studied in
[8—12]. Stationary horizon-crossing cosmic string solutions
in Kerr metric were found in [13,14], and it was demon-
strated that the stationary string can extract angular
momentum from the black hole. We will be guided by
the results from these papers in our exploration of the
dynamics of a string loop captured by a black hole. The
plan of our paper is as follows. In Sec. II, we discuss
the dynamics of a loop bound to a black hole, in the limit
where the loop mass is zero, and show that such motion is
specified by a stationary 3-dimensional closed auxiliary
curve. We demonstrate through numerical experiments that
after several self-intersections and reconnections, a fraction
of the loop’s original length remains bound to the black
hole and is moving on a stable non-self-intersecting
trajectory. In Sec. Il we relax the assumption of zero-
loop-mass, and show that the loop trajectory evolves
secularly on a timescale ~(M/m)P, where M and m are
the masses of the black hole and the string, and P is the
period of motion of the bound loop. In the absence of other
effects this evolution would lead to a continuous chain of
physical self-intersections, that, if accompanied by efficient
reconnections, deplete the loop length approximately
exponentially with time. In Sec. IV we consider the
exchange of energy and angular momentum between the
string and the spinning and nonspinning black hole, and
show that this leads to horizon friction, superradiance of
tension waves and the spindown of the black hole. In Sec. V
we develop a formalism that allows one to model the
change in the loop shape, by showing that it corresponds to
easily modeled deformation of an auxiliary curve. We find
and explore the late-time asymptotic states of the captured
loops, which are shown to be particularly strong emitters of
gravitational waves. In Sec. VI we outline the evolutionary
scenarios for loops captured by both spinning and non-
spinning black holes, and we argue that the spinning black
holes might be string factories that are converting their spin
energy into string length. In Sec. VII we estimate the rate of
loop captures by supermassive black holes in galactic
nuclei as well as by primordial black holes, both of which
are shown to be potentially significant. We argue qualita-
tively that black-hole string factories in galactic nuclei may
be prolific sources of gravitational waves which strongly
motivates further study. In Sec. VIII we conclude.

"There is also a scenario, due to Hawking [7], in which a nearly
circular string loop collapses to form a small black hole.
However, these occurrences are expected to be exceptionally rare.

II. MOTION OF AN INFINITELY
LIGHT STRING LOOP

A. General solutions

In this work we focus on the case where the invariant
length of a string loop is much greater than the black-hole
gravitational radius, L > R = GM/c?, but at the same
time its mass is much smaller than that of the black
hole, GuL/c* < R; here y is the string tension force,
L = mc?/u is the invariant length of the string, and m is the
mass of the string.2 From here on we will be using
geometric units with G =c¢ =1; in these units u is
dimensionless.

The best observational bound on the string tension y is
based on the lack of detection of gravitational waves from
freely oscillating string loops by Pulsar Timing Arrays. A
somewhat model-dependent constraint 4 < 1.5 x 107! has
been obtained in [16]. This small value of the dimension-
less tension allows a large range of possible string length
that satisfies our constraints, 1 < L/R < (u)~".

In this section we focus on the kinematics of string
motion and we will neglect its influence on the black hole
position. In this approximation of an infinitely light string,
we model the influence of the black hole by rigidly fixing a
point on the loop in space. The rest of the loop is assumed
to move in Minkowski space; we neglect the general-
relativistic character of the string motion through the
curved spacetime at distances ~R from the black hole,
since R < L.

The motion of the free part of the string (i.e., all of it
except for the pinned point) is given by

fo.) =5l -0 +be+n]l (21
Here o is the invariant length coordinate marking points
along the string, r = (x, y, z) is the position of a string point
o at time ¢, and a and b are vector functions of a single
variable, such that |a’| = [b| = 1; see [2] for derivation.
We shall take 0 = 0 and o = L at the black hole location
r = 0. The boundary conditions r(0, 1) = r(L,t) = 0 lead
to the following constraints:

a(n) = =b(-n),

a(n) = a(n+2L). (2.2)

Here 7 is a point on a real axis, —co < 17 < o0. The general
solution for the pinned loop is therefore given by

It is important to note that the literature contains a number
of investigations of chaotic dynamics and capture of circular,
axisymmetrically positioned string loops in Kerr spacetime (see,
e.g., [15]; we thank the referee for bringing our attention to this
work). However, here we are considering large noncircular loops,
without axisymmetry, and the results we obtain are unrelated to
the results obtained previously.
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r(o.f) = = [a(c — 1) — a(—o — 1)), (2.3)

| =

with the requirement that a is periodic with the period of
2L. Formally r(c,t) is defined for all real values of ¢
and ¢, but the physical loop corresponds to the values of
0 <o < L. Extending o to the interval between L and 2L
would produce a “ghost” loop obtained from the original
loop by reflection with respect to the origin, since the
solution observes the symmetry

r(o,t) = -r(2L —0,1). (2.4)
In other words, a loop pinned at a point can be considered
as half of a free loop that self-intersects at the origin and has
a reflection symmetry with respect to the origin.

B. Self-intersections

Self-intersections are important because they can lead to
reconnections and ejections of daughter loops, which
deplete the loop bound to the black hole. The reconnection
probability p for a cosmic string that is a solution of a
classical gauge field theory is close to unity [2], unless the
segments collide at ultrarelativistic velocities [17]. On the
other hand, the reconnection probability for cosmic super-
strings may be smaller than unity by orders of magnitude,
plausibly as small as 10~ in some superstring models [18].
In this work we keep an open mind about the value of p, but
it is clear that reconnections are very important for the loop
evolution.

1. Geometric interpretation

Equation (2.3) provides us with a geometrical interpre-
tation of the loop’s dynamics. The loop trajectory is
completely specified by an auxiliary closed curve of length
2L in 3-dimensional space, a(c), where o is the cyclic
coordinate that marks the length along the curve. The
position vector of r(c, ) equals half of the directed chord
connecting 2 points on the curve a. The energy E and
angular momentum A of the loop have a simple geometrical
interpretation in terms of the length L, = §’* do and the

directed area S, = 0.5 7~ a x a’do of the auxiliary curve:

1
E=—ulL
2” a
1
A = —iﬂsa. (25)

From Eq. (2.3) one can see that a self-intersection of the
loop corresponds to a pair of chords AB and DC that are
parallel to each other, equal in size, and such that the length
along the curve between the points A and D equals that
between B and C; see Fig. 1. After the self-intersection
takes place, if the string reconnects, the new bound loop
corresponds to the new closed curve that is obtained by

FIG. 1. Auxiliary closed curve a(c); a position vector r(o, 1)
corresponds to a directed chord connecting points on the curve
with coordinates —¢ — o and —¢+ o. The energy and angular
momentum of the loop equal ; multiplied by the half-length and
half of the directed area of the auxiliary curve, respectively. A pair
of parallel chords AB and DC mark a self-intersection of the loop
iff their lengths are equal and if the path lengths along the curve
from A to D and from B to C are equal. After reconnection and
ejection of the newly formed loop, the remaining loop is
described by a new closed curve obtained from the old one by
gluing the 2 chords.

throwing away the segments AD and BC of the old curve
and gluing A to D and B to C.

It is quite straightforward to find examples of the closed
curves a(o) that do not allow for self-intersections. For a
concrete example, consider

a=oce, for0<o<1,

a=e,+(c—1)e,forl <o <2,

a=e,+e +(c—-2)e for2<oc<3

a=[1-(c-3)/V3](e,+e,+e,)

for 3 <o <3+/3.

In other words, a(s) follows a closed curve via 3 equal
steps along x, then y, then z, and then back to the origin.
One can easily inspect that this quadrilateral does not have
a pair of chords that satisfy the conditions described above,
and therefore the string loop corresponding to this closed
curve does not have self-intersections. A little more work is
required to show that if a(s) is a general, nonflat quadri-
lateral, then the corresponding loop is self-intersecting only
if the quadrilateral’s side lengths are fine-tuned.

2. Quadrilaterals

Consider a general nonflat quadrilateral PORS, and
assume that there exists a parallelogram ABCD with
vertices lying on the quadrilateral’s sides; see Fig. 2.
First assume that two vertices, say A and B, lie on the
same side of the quadrilateral, say PQ. A plane that passes
through PQ, either contains QR, or contains PS, or
intersects RS at a single point, or does not intersect the
rest of the quadrilateral. C and D must lie in one such plane,
but in that case it is clear that CD cannot be parallel to AB.
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FIG. 2. 1In this example, a(c) is a nonflat quadrilateral PQRS.
The self-intersection, if it exists, is marked by equal chords AB
and DC that must be parallel to one of the diagonals, here PR. As
explained in the text, self-intersections exists if and only if
|PO| + |PS| = |RQ| + |RS].

Therefore ABCD cannot have two of its vertices on the
quadrilateral sides, and instead it must have one vertex
located on each of the quadrilateral’s sides.

From this it also follows that neither AB nor CD can
have their vertices located on the opposite sides of the
quadrilateral. To show this, suppose (say) AB was so
located. C and D must be located on the same side of
the curve a(o) relative to AB, in a sense that one could
move along the curve from C to D without encountering A
or B. But this implies that at least 2 of A,B, C, and D would
have to be on the same quadrilateral side.

Therefore the only possible way for parallel chords AB
and DC to be accommodated is for their ends to lie on the
neighboring sides of the quadrilateral, e.g., for A on PQ, B
on OR, C on RS, and D on SP. Since AB and DC are
parallel to each other, they should both be parallel to PR.
The fact that |AB|= |DC| implies that |PA|/|PQ|=
|PD|/|PS|. With these choices, the remaining constraint
|PA| + |PD| = |RB| + |RC| is satisfied if and only if
|PS|+ |PQ| = |RS| + |RQ)|. Clearly the set of quadrilat-
erals that satisfy this constraint has measure zero relative to
the set of general nonflat quadrilaterals.

C. Numerical experiments

The fact that a generic quadrilateral auxiliary curve a(c)
corresponds to a non-self-intersecting loop makes it
plausible that such loops are pretty common, and that a
general-shape loop will settle into a non-self-intersecting
configuration after several reconnections. We did not
manage to find a rigorous mathematical proof to this
statement. Instead we carried out numerical experiments
with assumed reconnection probability p = 1, that showed
that this is indeed what happens to loops with initially
arbitrary shapes.

The reader uninterested in details is urged to accept this
statement on faith and skip the rest of this subsection.
Methodologically, we are interested in how the number of
reconnections and the length of the final loop depends
on the complexity of the initial loop. Our task is then to
first, introduce some way of initializing loops of variable
complexity, and second, to develop a reliable and efficient
algorithm that searches for self-intersections of a moving
loop.

We construct the initial loop as follows. We discretize the
a vector function into 2N connected line segments. Each
segment is defined by its length L; and direction unit
vectors a} for i = 1, ..., 2N. For a point on a that falls into
the jth segment, we have:

a(n) =a(0) + > L)+ <n - ZL,) a. (2.6)

i<j i<j

Since a should be periodic in 2L, we require that

N L;=2L and Y 2 L;al =0. We also note that r
does not change if we add a constant vector to a. Therefore,
we assign a(0) = 0 in the simulation.

To make the curve random, the direction vectors a’
perform a random walk on a unit sphere; the larger is the
step of the random walk, the greater is the complexity of the
loop. For the self-intersection search, it is convenient for all
segment lengths to be equal L; = L/N. Our algorithm
generates the set of random a} which satisfies:

(1) |aj| =1 (on unit sphere)

(2) > al =0 (periodicity)

(3) |aj,, —aj| < B’ =2 sin(6,,/2) (smoothness)

Here 0,, is the maximum angle between the neighboring
segments; it is assumed that 1/N <« 8,, < 1. Our iterative
procedure is described in Appendix A.

We also design an algorithm for detecting self-intersec-
tions and for implementing reconnections that follow. An
intersection occurs when, for some 0<o¢; #0; <L,
r(c;,t) =r(c;,t). We can use Eq. (2.3) and Eq. (2.6) to
formulate a linear equation and solve for o;, 6; and 7. After
intersection, the relevant portion of a will break off from the
original function. In practice, since a is periodic in 2L, we
search for self-intersection in the time range 0 <7f <
2L. The simulation method is described in Appendix B.
The algorithm was tested (a) by running it on loops specified
by a(o) that were general quadrilaterals, to check that it does
not find spurious intersections, and (b) by performing
resolution tests in segment lengths and timesteps.

We simulate strings with L = 1, N = 500 and a range of
different smoothness constraints. Fifty random initializa-
tions are used for each B’. We find that there exists loops
that are stable (i.e., non-self-intersecting). A randomly
initialized loop will always, after a series of self-intersec-
tion and reconnection, reduce to a stable configuration.

Figure 3(a) shows a histogram of the number of recon-
nections a string undergoes before it stabilizes. A larger B’
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FIG. 3.

Numerical experiment results for randomly initialized string loops attached to an infinitely massive BH. (a) Number of self-

intersections before string stabilizes. (b) Final length after string stabilizes. Orange curve shows tted exponential distribution. (c) Linear
relationship between average number of self-intersections and relative curvature bound, R?> = 97%. (d) Linear relationship between
exponential decay constant for L, and relative curvature bound, R? = 96%.
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causes more complexity in the initial loop and leads to
more self-intersections. As illustrated in Fig. 3(c), the
average number of intersections scales approximately
linearly with B’. Figure 3(b) shows the distribution of
Ly, the final invariant length of the string after all self-
intersections. The result approximately follows an expo-
nential distribution
ORI 72
P(Ly) ¢ ! (2.7)
where « is the decay constant. A similar statistical result for
free cosmic strings has been shown [19]. We further
demonstrate in Fig. 3(d) that there is an approximate linear

relationship x ~ 0.01B’; note that this relation is only valid
for N =500 and x > 1.

III. STRING ORBIT EVOLUTION DUE
TO THE BLACK HOLE’S FINITE MASS

The discussion of the previous section was based on the
premise that the string loop is rigidly pinned by the black
hole at a point in space. This ensures that the motion of the
rest of the loop is strictly periodic and therefore non-self-
intersecting solutions are stationary. However, once the
black hole is allowed to move under the influence of the
string tension, the motion of the string is no longer strictly
periodic and one can expect the string orbit to change
secularly on a timescale

oo~ p = 2R /. (3.1)
m
We show this rigorously in this section, using perturbation
theory with respect to the small parameter m/M to derive
the evolution of the string orbit with time.

We begin by noting that even though the string and black
hole are relativistic objects, the motion of the black hole is
nonrelativistic, with characteristic velocity ~m/M. The
equation of motion of the black hole is given simply by the
Newton’s second law,

Migy = p(n; +ny), (3.2)
where rpy is the displacement of the black hole and n(7)
and n, () are the unit vectors at the 2 ends of the string that
are pointing away from the black hole. The string satisfies
the wave equation

5? ?
== (3.3)
o=  Jo
with the boundary conditions
r(Gl, t) = r(L — 0p, [) = rBH([). (34)

The quantities o, and o, are not zero, because the string
does work on the moving black hole and its invariant length

changes. Each end of the string loses or gains invariant
length, depending on the sign of work that the end segment
is performing. We have

6y = Ipy - Ny,

(.72 = l.'BH sy, (35)
Similar equations have been derived in [20] for the motion
of massive monopoles attached to pairs of strings.
Equations (3.2)—(3.5) form a complete system that can
be modeled numerically using standard methods. However,
in direct brute-force methods, the smallness of rgy is not
manifest. We therefore choose a different approach. We
find the variable domain [6,, L — o,] inconvenient. Note
however that if 6; < 0 and o, < 0, we can easily evaluate
the string positions at the ends of the old o-interval [0, L]:

r, (1) = (0. 1) = rgu() — (%) o (39

and

ry(t) =r(L, 1) = rpy(t) + (%) 162’ (3.7)

both correct to first order in 6,0, ~ L(m/M). Given
reu(t), o1(t), and o,(¢), one could then use Egs. (3.6)
and (3.7) as the boundary conditions for the wave equation
on the fixed o-interval [0, L]. In fact, in this we are not
limited to the negative values of o, ¢,. In case they are
positive, Egs. (3.6) and (3.7) represent simple incremental
extensions of the string by lengths o, o, at each end.
Therefore, to the first order in m/M, the motion of the
string is represented by a wave equation (3.3) on the o-
interval [0, L] with boundary conditions

r(0,7) =r(1) (3.8)

r(L,t) = ry(1), (3.9)
where the latter are given by Egs. (3.6) and (3.7).

The linear wave equation (3.3) can be solved for any
given pair of boundary values r, ,. Perturbatively, r, , are
2L-periodic, and therefore they are in resonance with the
unperturbed (homogeneous) solutions of (3.3). This leads
to a secular evolution of the loop. The details follow.

Recall that the general string trajectory is given by
Eq. (2.1)

r(t,0) :%[a(a— D4b(+0)]  (3.10)
with a(o) and b(o) satisfying
|a’| = |b'| = 1. (3.11)
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We want to solve Eq. (3.10) in the range 0 <o < L, 0 <
t < oo with the boundary conditions in Egs. (3.8) and (3.9).

The unperturbed solution (assuming the black-hole mass
is infinite) was obtained in Sec. II and is given by

ro(0,1) = % lag(c— 1) — ag(=o = ). (3.12)

with
ag(c +2L) = ay(o). (3.13)

This solution is periodic with period P =2L. If we
substitute it in Eq. (3.2), we find that in a properly chosen
inertial frame, up to the linear order in (m/M) the BH
motion has the same period and has the property

rgu(r + L) = —rpu(1). (3.14)

This also implies that r) (1 + L) = —r,(1).
Substituting the general solution (3.10) in the boundary
conditions (3.8) and (3.9), we obtain the relations

a(—1) + b(t) = 2r, (1), (3.15)

a(L — 1) + b(t + L) = 2ry(1). (3.16)

Let us now use these relations to compare the string
configuration at time ¢+ 2L to that at time ¢. We find

b(r+2L) = b(r) =2[ry(t + L) =1 (1)]
= 2fry(1) +1,(1)]. (3.17)

Applying this relation iteratively N times, we obtain

b(t 4+ 2NL) = b(t) — 2N[r;(t) + ry(7)]. (3.18)
Similarly, we find
a(t+2NL) =a(t) + 2N[r (L —t) + (L —1)]. (3.19)

Equations (3.18) and (3.19) describe the secular evolu-
tion of a string attached to a BH. At lowest order in m/M
the string oscillates with a period P = 2L, but due to
boundary conditions it acquires a change in shape, whose
amplitude grows linearly with the number of oscillations.
The string configuration changes significantly after
N ~ M /m oscillations. Our approximation scheme breaks
down at about the same time, but it can be extended by
adjusting the string solution and recomputing the cyclic
function ry (7).

As the loop changes its shape, it may acquire an
intersection after ~M /m oscillations. If the string recon-
nects as a result of the self-intersection, it will eject a
daughter loop of length <L. The rate of length loss from a
sequence of such intersections is given by

(3.20)

where p is the probability of reconnection when the two
string segments cross each other. If p > uL /R (we remind
the reader that p ~ 1 for ordinary cosmic strings), then the
loop shrinks approximately exponentially, on a timescale

Tsheink ~ R/p. (3.21)
As we will see in the next section, this is comparable to the
timescale on which a spinning black hole transfers angular
momentum to the string.

IV. ANGULAR MOMENTUM AND ENERGY
EXCHANGE WITH THE BLACK HOLE

The loop motion takes place on a much longer timescale
than the light-crossing time R for the black hole, and we
imagine that the loop is mostly smooth on the lengthscale
~R. It is likely that a realistic loop has kinks. However, they
will be quickly smoothed, because the string distortions on
scales <R get quickly absorbed by the black hole. We will
thus assume that as viewed from the vicinity of the black
hole, a string stretches toward the black hole horizon from a
distance > R on a nearly radial straight line, until it is
curved by the dragging of the inertial frames near the black
hole. The asymptotic direction of the radial straight line
changes slowly compared to R, so to first approximation
the string is stationary (i.e., f-independent) in Boyer-
Lindquist coordinates (t, r, 0, ¢) describing the Kerr metric
of the black hole. Such stationary solutions have been
explored in [21,13,14]. It was shown that the string lies on a
constant @ surface, and its shape is given by

b = g+ —° log<r‘ ’—),
re—r_ r—ry

where a is the Kerr parameter, and r. = R = VR?> — a’.
When r > R, ¢ = ¢y + a/r, and the tension force along
the string pulling away from the black hole is given by

Fzﬂ<e,+ r sineg—¢e¢) :ﬂ{e, -4 Smge(p}, (4.2)
r r

where e, ;, are the unit vectors in r, ¢ directions. The torque
applied to the black hole is given by

Q =rxF =pasinfe,. (4.3)
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A. Interaction of a spinning black hole
with a single stationary infinite string

The angular momentum of the black hole J evolves due
to the torque applied by the string. For the case with a single
string entering the horizon, we can use Eq. (4.3) to write
down the evolution equation in vector form

dJ )%
— = 4.4
dt R (44)
where n is the unit vector along the string at R < r < L.
This implies

Ji=Jjo: (4.5)

JL :JLoeXp |:—%t:|, (46)

where J| and J, are components of the angular momentum
vector parallel and perpendicular to the string, respectively.
Therefore the angular momentum vector of the black hole
aligns with the string on a timescale 7, = R/u, while
keeping J| fixed. If the black hole is threaded through
by a straight string, the alignment would occur on a
timescale 7,/2. We note that while the spin-down of a
black hole from a stationary string was noted in, e.g., [22],
the alignment of the spin direction with the string is pointed
out here for the first time.

As the string is stationary, no energy is extracted from the
black hole by the string [23]. The black hole converts its
rotational energy into its irreducible mass, by increasing its
entropy through dissipation at the horizon. The full mass of
the black hole stays fixed.

B. Horizon friction

In the previous subsection we assumed that the tangent
unit vector representing the long string at a black hole n
was stationary. However, since we are exploring a moving
string loop, we also consider the case where n is rotating
slowly about the black hole, with the angular velocity
o =n x n. If the black hole is not spinning, this creates
torques acting on the black hole, which in the limit |o| <
1/R must scale linearly as

Q = po. (4.7)
In order to find the coefficient f, let us perform a mental
experiment in which we add a small spin to the black hole
around an axis that is perpendicular to n. Using Eq. (4.4),
we can express the total torque acting on the black hole to
linear order in o and J:

Q :ﬂo—%J. (4.8)

For |J| < R?, the angular velocity of the black hole is
given by

J
Qpy = —. 4.9
BH 4R3 ( )
Therefore,
Q = fo — 4uR*Qpyy. (4.10)

The torque acting on n has to be zero when it is corotating
with the black hole. Therefore,
p = 4uR>. (4.11)
The expression for the torque Q allows us to estimate the
timescale on which a loop bound to the nonspinning black
hole will dissipate and be swallowed by the black hole. The
torques —Q;, applied to the string at its ends 1 and 2,
combined with the motion of those ends, will result in a loss
of energy and length by the string:

o =a| () (],

To order-of-magnitude,

dE
— ~—BL7* ~—u(R/L)?,
et #(R/L)

dL

—— ~—(R/L)*

o~ T(R/L)%,
= —= ~L3/R? (4.13)
" dLy di] ’ ‘

where f; is the timescale for the loop to be absorbed by the
nonspinning black hole through horizon friction.

C. Superradiance

In this section we show that a circularly polarized tension
wave is amplified upon reflection from a spinning black
hole, provided its direction of rotation is the same as that of
the black hole, and its angular frequency @ < Qg cos 6,
where @ is the angle between the string and the spin axis of
the black hole. This leads to a very fast growth of short
wavelength perturbations on a bound string loop. Our
treatment gives an exact answer for Qpy, w < 1/R, but
order-of magnitude extrapolation to greater angular
frequencies is warranted. A more general treatment is
possible but is beyond the scope of our paper.

Consider a small-amplitude incoming elliptically-polar-
ized wave coming toward the black hole along a string that
is straight for ¢ > R. Mathematically it is given by

ory, = Aje; coslw(o +1)] + Aye, sinjw(c +1)],  (4.14)
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where Or is the string displacement from the resting
position and e;, are two unit vectors chosen so that
(eq,e,,ny) form a right-handed orthonormal basis, and
that the polarization tensor is diagonalized. Here n,, stands
for the asymptotic unit vector of the unperturbed string. To
zeroth order, the reflected outgoing wave is given by
O = —Aje; cos[w(o —1)] + Asey sinjw(o — 1)].  (4.15)
However, as we presently see, the black hole exchanges
energy and angular momentum with the wave, and there-
fore the amplitudes of the outgoing wave are expected to be
slightly different from those of the ingoing wave.

The incoming fluxes of energy and of the ny-component
of angular momentum are given by

dE, 1

—dt — Eﬂa)z(A% + A%) (416)
dJ.

ng- (ji]ll‘n = /l(!)AlAz, (417)

and similarly for the outgoing wave. We can figure out the
incremental changes in the reflected amplitudes by com-
puting the time-averaged power and torque applied by the
black hole to the wavy string.

The vector n(z) is oscillating periodically, as follows:

n =ng —2w[A;e; sin(wt) — Aye, cos(wt)]

— 2w*[A%sin?(wt) + Alcos?(wt)|ny. (4.18)

The last term ensures that [n| = 1 up to the second order in

Aj, A,. The torque applied to the string by the black hole is
given by

d
QS = 4IUR2 |:9BH - (n . QBH)H —nXx dil; . (419)

The last term on the right-hand side represents horizon
friction. When integrating it over the wave period, we get
twice the directed area of the contour drawn by the n-vector
on the unit sphere:

27/ @ d
A n x d—I;dt = 870”A,Ang. (4.20)

Integrating over one cycle, we get

2r/w
/ ng - Q,dt = 167uR*w x [Qpy cos OA, — wA,],
0
(4.21)

where

AX - 2A1A2. (422)

The time-averaged torque about the string line is given by

ng - (Q,) = 8uR’*w? x [QpycosOA, —wA,]. (4.23)
Comparing Eqgs. (4.23) and (4.17), we see that upon
reflection

AA, = 16R?w|[Qpy cos 0 A, — wA,]. (4.24)
The second relation is obtained from the conservation of

energy. The work done by the black hole on the string over
one cycle equals

AE, — A 7. <n x %) du. (4.25)
Evaluating this using Eq. (4.19), we obtain
AE; = 167uR*w*[Qpy cos A, — oA, ]. (4.26)
Comparing this with Eq. (4.16), we get
AA,. = 16R*w[Qgcos OA, —wA,].  (4.27)

It is of interest to consider the eigenmodes of the system,
i.e., the waves that do not change their polarization state
upon reflection from the black hole. This implies
AA, /A, =AA,/A,. From Egs. (4.24) and (4.27) we
see that this is equivalent to

A, =+A,, (4.28)

and

Al - :l:Az, (429)
which corresponds to circularly polarized waves. For the
string in the northern hemisphere, with cos @ > 0, the A| =
—A, wave is partially absorbed by the black hole, with

A
A _ —16R?*w[Qpy cos 6 + w).
Ay

(4.30)

On the other hand, the wave with A; = A, is amplified if
@ < Qpy cos @, and is partially absorbed if @ > Qg cos 6:

AA,
A,

= 16R?w|Qpy cos O — w). (4.31)

Intuitively this makes sense. If the wave is rotating in the
direction opposite that of the BH, horizon friction domi-
nates. The greater the black hole spin, the stronger is the
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absorption. If, on the other hand, the wave is rotating in the
same direction as the black hole, it is amplified if the black
hole spins faster than the wave (measured after projection
of Qg onto the string) and is partially absorbed if the wave
spins faster than the black hole. Qualitatively similar results
can be derived for an ordinary string viscously interacting
with a rotating sphere, in the spirit of the original rotational
superradiance proposal by Zeldovich ([24]). The maximum
growth rate is achieved for

1

w = EQBH COS 9, (432)

with the relative amplitude increase of

[AA| /A 2] e &

max

(AALJAL) pax = 2R2Q3c0s%0).

N[ =

(4.33)

We emphasize again that this result is exact in the limit
QpuR <« 1, but we expect that both the criterion for
superradiance and the expression for the maximum growth
rate are correct to order of magnitude for all values of Qgy.

D. Black-hole bomb

A wave reflected from the black hole along a straight
string will never come into contact with the black hole
again. This is not so if the string is a bound loop with both
ends attached to the black hole. Consider a pulse of
circularly polarized waves with angular frequency <
Qpy cos @ that is reflected from the black hole when the
corresponding string end is making a polar angle € with the
black hole spin axis. If the waves in the pulse are rotating in
the same sense as the black hole, then the pulse is amplified
upon reflection from the black hole. As the pulse travels to
the other end of the string, it approaches the black hole
along the same direction along which it was traveling upon
the first reflection. This is because n,(¢# + L) = —n(?).
Since the helicity of the wave is conserved as it travels
along the loop, the pulse is rotating in the same direction as
the black hole upon the second approach, and therefore it is
amplified upon the second reflection also. The amplifica-
tion repeats with each bounce, leading to an exponential
growth of the pulse with the timescale

ty = [BR20(Qpy cos O — )]~ L. (4.34)
The fastest growth will take place for the wave’s angular
frequency

1

gy = EQBH COS Qmin (435)

where 6.;, is the smallest angle between the spin
axis and the string end. The pulse of wavelength

Ao = 2x/wy = 4r/(Qpy c0s Oy ) and timed to reflect from
the black hole when 6 = 6,,;,, will grow on a timescale

L
1 = .
bomb 2(RQBH COS Qmin)z

(4.36)

The subscript in the equation above refers to the concept of
a black-hole bomb, originally conceived by Press &
Teukolsky ([25]). They pointed out that if a spinning black
hole was placed in a cavity with reflecting walls, then there
would be exponentially amplified superradiant modes. In
our case, the string loop itself plays a role of the cavity,
causing repeated superradiant interaction between the black
hole and pulses of tension waves.

The growth timescale in Eq. (4.34) is likely to be shorter
than all other evolutionary timescale for the loop, and
therefore one can expect the short-wavelength waves to
quickly reach a nonlinear amplitude on the string. What
happens afterward is not clear from the arguments given
above, and a new approach is needed. In the next section we
make a step in this direction, by exploring the evolution of
the auxiliary curve. We finish this section by a discussion of
angular momentum exchange between the black hole and
the string loop.

E. Black hole spindown

Since the loop has two ends attached to the black hole,
the angular momentum equation (4.4) is modified to

dJ U
—=—-=N]J, 4.37
dt RN‘J ( )
where N is a linear evolution operator defined by
NJZZJ—(HI ‘J)nl —(nz'J)nz. (438)

Recall that n; (¢) and n,(¢) are the unit vectors at the 2 ends
of the string that are pointing away from the black hole,
which are given by

ny (1) = a'(~1)
n,(1) = —a'(L —1). (4.39)
As was already noted above, n; and —n, trace out the same
trajectory during the loop’s oscillation period, but with a
half-period delay. Thus the oscillation-averaged angular
momentum evolution operator is given by

ANV = 2{.1 -5 A 1 (s) -J]a’(t)dt}. (4.40)

If vectors n; and n, are not pointing along the same line,
the operator N is positive-definite. Therefore all three
components of angular momentum J will reduce exponen-
tially, on a timescale
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tspindown ~ R//’t (441)
Note that this timescale is similar to that of #y,;, from
Eq. (3.21), which is the timescale for loop depletion due to
the black hole’s finite mass.

The lost black hole angular momentum will be acquired
by the string loop; its angular momentum A will evolve
according to the equation

dA_ﬁ

R (M), (4.42)

where we averaged over the loop’s oscillation period. Let
z-axis point in the direction of the black hole spin. It is clear
that

dA
dt

Z

~uRa > 0, (4.43)

where @ = a/R is the dimensionless spin of the black hole.
Since A ~ uL?, the loop’s angular momentum will change
on a timescale

L2
fam ™~ — - 4.44
e (4.44)
Over time t > t,,, the component A, becomes positive.
We note that the computation above did not consider the
angular momentum drained from the black hole by a
superradiant wave. It is easy to check, however, that

(d‘]/ dt) wave

(d]]dt)e, (Ao)?,

(4.45)

loop

and thus the two contributions become comparable
only when Aw ~ 1, i.e., in a strongly nonlinear regime.
Similarly, the change of rotational energy of the black hole
due to a superradiant wave is related to the total loss of
rotational energy by

dE,./dt
( rot/ )wave ~ (Aa))2

4.46
(dE rot/ dt )total ( )

for Aw < 1. Therefore, the fraction of the black hole’s
rotational energy that gets converted into string is deter-
mined by the nonlinear saturation of the string super-
radiance. The rest of the rotational ener%y is converted into
the irreducible mass of the black hole.

Tt is easy to see that the most efficient, albeit the slowest spin
energy conversion into string length takes place if the string
nearly co-rotates with the black hole. In that case the black hole is
spun down nearly adiabatically, with vanishing increase in its
area/entropy.

To make further progress, we need to consider the
nonlinear evolution of the string loop due to its interaction
with a spinning black hole.

V. EVOLUTION OF THE AUXILIARY CURVE

In Sec. I we saw that the trajectory of a loop pinned to a
point is described by a stationary fixed auxiliary curve
a(o), with0 <6 < 2L and a(0) = a(2L). If instead a loop
is anchored on a spinning black hole, its periodic orbit is
changing slowly on a timescale much longer than a single
oscillation period 2L. It is attractive to think of this in terms
of slow deformation of the auxiliary contour a. Suppose the
contour is deforming with velocity v(c), where it makes
sense to restrict v(o) to be perpendicular to the curve’s
tangent a’(c). Recalling Eq. (2.5), we can write down the
rate of change of the loop’s angular momentum:

Lj;t\:—;,u%nvxa’do. (5.1)
This needs to be compared to the expression in Eq. (4.19)
for the torque applied to the string. Integrating this over an
oscillation period, recalling n(7) = a’(—t), and multiplying
by 2 to account for the two ends of the loop attached to the
black hole, we obtain the change of the strings angular
momentum over an oscillation period:

2L

AA = —SﬂRz% [Qpy x a' +a"] x a'do. (5.2)
0

In order to make the two expression consistent, one needs
to choose

v(o) = K 0 x 8/(0) + 2'(0))

. (5.3)

where the derivatives are understood to be evaluated with
respect to the length along the curve. Clearly, as the curve
evolves under the action of this flow, L changes as well.

The change of length in the auxiliary curve is given by

dL 2L
dta = —7{ v-a'do.

(5.4)

One can check that with the expression for v above, one
obtains the average rate of energy change dE/dt=
0.5u(dL,/dt) that is consistent with what one would
obtain from Eq. (4.25) where the integration is over an
oscillation period 2L.

A. Curve-shortening flow

Equation (5.3) describes the nonlinear evolution of the
auxiliary curve, with the nonlinearity implicit due to o
being understood as the length coordinate. It represents a
one-dimensional geometric flow, and as such is of
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considerable interest to mathematicians. In fact, when
Qg = 0, the equation of motion

Vo a (5.5)

describes a famous and extensively studied curve-short-
ening flow (see, e.g., [26-28]). For practical purposes, the
main result of this exploration is something of which one
can immediately convince oneself through qualitative
arguments and simple numerical experiments (we have
done both): asymptotically, the curve becomes a shrinking
planar circle and disappears in a singularity after a finite
time. A circular auxiliary curve of length 2L corresponds to
a degenerate physical loop that extends radially from the
black hole to radius L/ and then traces the same radial line
back to the black hole. This double-line is rotating around
the black hole with the angular velocity z/L; the tip of the
double-line is moving with the speed of light and thus
the double-line is a prolific emitter of gravitational waves.
The length of the line is shrinking due to horizon friction
and the line disappears after the time

L3
hort &~ =5 » 5.6
short 247‘[2R2 ( )
cf. Eq. (4.13). In the process the double-line makes
1/ L \?
Nshort - E <47TR) (57)

turns around the black hole. The approximate equality in
the equation above is due to the fact that our curve-
shortening formalism is only valid for L > R.

B. Curve-lengthening due to black-hole spin

Consider now a non-self-intersecting auxiliary curve in
the plane perpendicular to Qgy, with the circulation in the
same sense as rotation of the black hole. Clearly in the long
term, the effect of the first term on the right in Eq. (5.3) is to
expand the curve outward and make it increasingly more
round. If only the first term is included in the evolution
equation, some of the initial configurations transiently
develop kinks and singularities, however the inclusion of
the second term smooths them out.

If one can neglect the second term (a good approxima-
tion when Qgy > 1/L), then one can prove the following.
Suppose the auxiliary curve is convex and everywhere
differentiable. Choose the point of origin inside the curve
and find maximum and minimum radii a,,,, and a,;,. As
the curve lengthens, the difference ap, — @i, remains
constant. Therefore the ellipticity

Amax — 9min

Amax + Amin

€

~1/L, (5.8)

and therefore the loop becomes increasingly circular. The
latter expands according to

L= \/L} + 162R Q. (5.9)
where L, is the initial invariant length of the loop with
circular auxiliary curve.

A circular auxiliary curve corresponds to a double-line
which in this case is rotating around the black hole in its
equatorial plane and is growing in length, while reducing its
angular velocity of rotation. If the double-line is rotating at
the same angular velocity as the black hole (and thus has
L = z/Qgy), there is no energy and angular momentum
exchange with the black hole and L does not change. This
equilibrium, however, is unstable: double lines longer/
shorter than 7/Qgy will lengthen/shorten in their extent.

C. Superradiance revisited

It is straightforward to compute the growth rate for
superradiant modes by considering a helical short-wave-
length perturbation on a part of the auxiliary curve that can
be considered locally straight. For simplicity, let us assume
that the straight part is along the spin axis, and choose z-
axis to be also aligned with the spin. The helical wave can
be written as

0]
a,(c6) =Acos | ————o0c |,
(©) <V1+A2w2 )

. [0)]
20) = Asin (o)
- 1
:00) = Fraa”

where it is understood that the above expression is valid
only in some small part of the auxiliary loop (please note
that |a’| = 1). The amplitude of the helical perturbation
evolves according to the following equation:

(5.10)

d_A_ SRZO)A QBH _ w (5 11)
dt L VI+AZ? 1+ A% '

In the linear case Aw < 1, the amplitude grows exponen-
tially with the timescale

tye = [8R?0(Qpy — )] 'L, (5.12)
which is identical to Eq. (4.34) for the case 8 = 0. In the
nonlinear case Aw > 1, the auxiliary curve is tightly
winding up the z-axis with its tangent nearly horizontal.
For Qg > 1/A, the amplitude grows at a constant rate so

long as the overall-length of the curve has not changed
much,
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dA  8R*Qpy
- L (5.13)
with remarkable independence from .

The general lesson from the above discussion is that the
curve-lengthening due to black-hole spin will amplify any
wiggle on the curve that has the right helicity into a nearly
horizontal and nearly closed circular arc. Because of
superradiance, we expect aL/R of such nearly circular
segments to develop.

D. Self-intersection of the auxiliary curve and
production of new bound loops

The curve-lengthening described in previous para-
graphs will likely lead to multiple (of order aL/R) self-
intersections of the evolving auxiliary curve, provided that
the physical reconnections of the loop will not drastically
alter the picture. Suppose that loop reconnections do not
take place, as could be the case if the loop is made of a
superstring. What then is the meaning of self-intersections
of the auxiliary curve?

Suppose a(c;) = a(o,). Then for r = —(6, + 6,)/2 and
6 =|o, —061]/2, r(6,t) = 0. This is not surprising, since
r(o, t) span all possible directed half-chords of the auxiliary
curve, which must include 0 if the curve is self-intersecting.
Physically, this means that some middle part of the loop
gets captured by the black hole and the loop splits into two
loops both attached to the black hole.

One may wonder whether the capture actually happens,
since the self-intersection of the auxiliary curve is instanta-
neous while it takes time L for the loop to complete a half-
oscillation during which the capture would take place.4 We
note however, that a black hole has a Schwarzschild radius
R, = 2R. From Eq. (5.3) we see that the maximal speed
with which the curve moves is 2R?Qgy/L; during half-
oscillation time it moves by a distance no greater than 2R,
(recall Q < 1/R,). Since the radius is a half-chord, even if
the two segments of the curve cross with maximal possible
velocity, there will be a half-oscillation interval such that
the distance of the closest approach of the loop to the black
hole is less than 2R,. As numerical experiments of [10]
show, strings with such small impact parameter with
respect to a black hole typically get captured. Thus the
string capture is overwhelmingly likely, especially for
nonmaximally-spinning black holes. Thus remarkably,
without string reconnections the initially captured loop
will split into ~aL/R loops independently bound to the

*To make this concern more precise, consider the moment that
auxiliary curve self-intersects. If at that moment the evolution of
the auxiliary curve is switched off, from an argument above we
see that a portion of the loop would be captured within the half-
cycle from that moment. However, if the curve keeps evolving,
then it is not a priori clear that it would not evolve far enough
during the half-cycle, so that the string would just miss the black
hole.

spinning black hole. Each of the bound loops will evolve
into a double-line rotating close to the equatorial plane.

E. Asymptotically expanding double lines and
reconnections

At a first glance, expanding double lines that correspond
to nearly circular auxiliary curves, do not appear stable if
any amount of reconnection is present in the system.
However, we argue that this intuition could be misleading.
Below, we obtain a general asymptotic form for a nearly-
circular auxiliary curve that is expanding due to the
spin-induced curve lengthening. We show that it is straight-
forward to find examples of such solutions that never self-
intersect.

1. Asymptotic loop

By appropriate rescaling of time and spatial dimension in
Eq. (5.3), we obtain the dimensionless evolution equation
for the auxiliary curve, for a BH rotating around the z-axis:

0,a=0%a—2%x0,a+uda, (5.14)
where do = |0,a|ds is the increment of the auxiliary-curve
length at a fixed time 7, and s is a parametrization of the
curve. Here we assume 0 < s < 2z, so that a(z, s) is a 27-
periodic function of s. The last term on the right-hand side
contains an arbitrary 2z-periodic function of s, u(,s),
which accounts for a continuous arbitrary reparametrization
of the curve.

For a long auxiliary curve, the first term in the right-hand
side can be dropped. Since we expect an asymptotic
solution that is close to circular, we parameterize the curve
in cylindrical coordinates a(s) = [p(s),p(s),z(s)] by
choosing s = ¢. Denoting 0, and J, by the “dot” and
“prime,” we get

(0.0.1) x (p'.p. 2')

/p/2 +P2+Z/2

The second of these three equations gives u, and then the
other two equations read

(5.0.2) = -

+(p'.p.d)u. (5.15)

. P2+ p?

p—p 02+ 2+ 72 (5.16)
/!

s pe (5.17)

p /p/2+p2+z/2

An expanding circle is an exact solution, p = t,, z = 0,
where 1 is the “age” in terms of the rescaled time and more
usefully, the radius of the auxiliary curve. Therefore, the
evolution of a slightly deformed circle, to the first two
nonvanishing orders, is given by p = 1, z = 0, and we get
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p=to+h(e), (5.18)

z=g(¢).
Since we are only interested in the shape of the curve, we
can rescale the axes by #(. The late-time asymptotic form of
the auxiliary curve can be written as

p=1+h(p)/t, z=g(#)/ 1.

Equation (5.19) is valid up to the first order in 1/1,. In terms
of the length parameter o, again up to the first order in 1/¢,

with h(¢) = f'(¢), we get

p=1-f"(o)/t, ¢ =o+f(o)/t,

(5.19)

z = g(o) /1.
(5.20)

This is the general late-time form of the nearly-circular
expanding auxiliary curve rescaled by its radius.

2. Non-self-intersecting asymptotic loop

Recall that the string loop r(z,6) can be expressed
through the auxiliary curve a(o):

2r(—t,0) = a(t+o0) —a(t—o). (5.21)

It is convenient to use Cartesian coordinatization
(ay,ay, a;) of the curve. From Eq. (5.20) (to first order
in 1/1y) we have

!
a, +ia, = (1 ———|—i£>ei".

5.22
o i (5.22)

Then for the string loop, in Cartesian (x,y, z), we have
2(x + iy) = €'"{2isinc
Telif (1 4+ 0) = f1(t + o)/t
—e lif(t=0) = f'(t = 0)]/1o}.

If the string loop self-intersects at time ¢ at points ¢ and &,
then to zeroth order in 1/¢,

(5.23)

sinc =siné = 6 =n—o0, (5.24)
and this value can be used when calculating the first-order
terms of the string loop. In the zeroth order term of the
string loop, 2i sin &, the first order correction of 6 will make
the imaginary parts of the bracket in Eq. (5.23) match at 6
and at ¢ up to first order. Only the real part matching leads
to an equation for f:

F(t,0) = F(t,x — o), (5.25)
F(t,o) =cosolf' (t+0)— f(t—0)]
+sino[f(t+0) + f(t —0)], (5.26)

or

cosolf'(t+o0)—f(t+0—n)
—f'(t=0)+ f(t—0+7)
+sino[f(t+0)—f(t+0—n)

+f(t—0) - f(t—0+r)]=0. (5.27)
Recalling that f(o) is a 2z-periodic function of o, we see
that Eq. (5.27) is an identity for all even-m Fourier
harmonics, cos(meo) and sin(mo). Assuming that f has
only odd-m harmonics, we can simplify Eq. (5.27):

cosolf'(t+ o) — f'(t —0)]

+sino(f(t+o0)+ f(t—0)) =0. (5.28)
For a self-intersection the string loop z-components must
also match, z(t, 0) = z(, 7 — 6). We will assume that g has
only the even-m harmonics (as the odd-m ones do not
contribute), and get the second necessary condition for the
self-intersection
g(t+0)—g(t—0)=0. (5.29)
Now we can give the simplest possible example of a non-
self-intersecting string loop. We take f(o) = cos(30),
because Eq. (5.28) is an identity for m = 1. We take
g(c) = sin(26). Then Egs. (5.28), (5.29) read

cos(3t)cos’s sine = 0, cos(2t) cososine = 0.

(5.30)

This system of equations does not have any physically
relevant solutions: cos ¢ = 0 is not an option because then
o =7 coincides with 7 —o; sine =0 is not an option
because 6 = 0 and ¢ = & are the points where the string
loop attaches to the black hole; the only remaining option is

cos(37) =0, cos(2t) =0, (5.31)
which is impossible. Numerically we have confirmed that
this asymptotic loop indeed does not self-intersect.

The existence of nonintersecting asymptotic solution
means that there exist loop configurations that will inflate
until the black hole is spun down, with L ~ Ru~'/2.
Whether such nonintersecting asymptotic states can be
reached generically through curve-lengthening combined
with reconnections is an open question.

VI. EVOLUTION OF A BOUND LOOP

In this section we explore the implications of the results
from previous sections on the evolution of the loop bound
to the black hole. We distinguish two cases, that of a
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nonrotating and rotating black hole. In the former case, our
estimates and conclusions are reliable (if a bit boring for
astrophysics), while in the latter case our conclusions are
tentative since we do not yet have a detailed understanding
of the role of reconnections on the evolution of the loop that
is being inflated by a spinning black hole.

A. Nonrotating black hole

Three processes lead to depletion of the bound loop:
(1) Change of the loop’s orbit and subsequent ejection,
due to the finite mass of the black hole. If the recon-
nection probability p > uL /R, the loop length de-
creases approximately exponentially [see Eq. (3.21)],
on a timescale
Lshrink ~ R/ p. (6.1)
If p < uL/R, the loop shrinks on a timescale ~L/ p.
(2) Horizon friction depletes the loop on a timescale
ty ~5x 1073L3/R?, (6.2)
cf. Eq. (5.6). The auxiliary curve shortening caused
by the friction will drive the loop toward a double-
line configuration on the same timescale. Since
the tip of an ideal double-line moves with the speed
of light, one expects copious production of gravi-
tational waves.
(3) Gravitational radiation depletes the loop on a
timescale

L
where " ~ 50 is the numerical factor computed for a
typical loop with finite number of cusps, and M ~ 1
for a typical loop and is logarithmically large for the
double line due to the ultrarelativistic motion of its
tip [29].

For simplicity, let us assume reconnections are efficient.
For L > (5x1073u)"'3R, process 1 dominates over
process 2, while for L < (5x 1073u)"'/3R process 2
dominates over process 1. For

p < 200(CM)73 ~2 x 1073 M3, (6.4)
the gravitational radiation is not the dominant mechanism
for the loop depletion for any L, with respect to the
combination of two other processes. For M < 100, this
criterion is satisfied extremely well for observationally
allowed values of .

Therefore a loop with the initial size Ly>
(5 x 1073u)~'3R evolves in two stages. First, it shrinks
by ejection of the daughter loops due to the finite mass of
the black hole,

log L ~log L —)(%t,

(6.5)
where y ~ 1. After reaching L ~ (5 x 1073u)~'/?R, the
evolution proceeds by horizon friction and the loop turns
into a double line before being swallowed by the black
hole. If #40, 1s the time at which the loop disappears, then
before that the loop evolves according to

L~ R2/3<tdeath - t)l/B' (66)

In this stage of evolution, the energy of the loop is absorbed
into the irreducible mass of the black hole.

B. Rotating black hole

We have much less certainty in assessing the loop’s
evolution if the black hole is rotating, because while we
understand the spin-driven lengthening of the auxiliary
curve, we do not know how reconnections would affect this
evolution. One reasonable guess is that the superradiance of
short-wavelength helical tension waves will cause recon-
nection at a distance <1/Qgy from the black hole, with the
remaining bound loop dissipating due to the horizon
friction. For this size, the auxiliary curve shortening due
to horizon friction occurs on a timescale comparable to that
of the curve lengthening due to the black hole spin. One can
then suppose that in some cases the shrinking wins and the
loop gets swallowed by the black hole, and in other cases
the curve lengthening wins and the loop grows by
extracting the rotational energy of the black hole. What
exactly reconnections do to the expanding loop needs to be
explored. While asymptotic nonintersecting solutions do
exist, it is far from certain that they will be reached through
reconnections. One can imagine limit cycles, where the
loop grows, reconnects, ejects a subloop, grows again, etc.
As our code is not powerful enough to efficiently find
reconnections of loops with changing shapes, this will have
to be explored in future work.

If a loop reaches a non-self-intersecting asymptotic form,
its invariant length will grow as «+/7, according to
Eq. (5.9). The black-hole spindown will limit the maximum
to which the loop’s spacial extent can grow:

L ~ (a0/1)'R. (6.7)

where ;) is the initial dimensionless spin of the black hole.
At L > 1/Qpy, the conversion of the black hole spin
energy into the loop length becomes inefficient. Only a
fraction ~27(LQgy)~" of the spin energy gets converted
into the loop length, and the rest adds to the irreducible
mass of the black hole. Eventually the black hole becomes
virtually nonrotating. This could take place in the real
Universe if
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(6.8)

where 7, is the age of the black hole, and Mgy~

4 x 10° M, is the mass of the supermassive black hole
at the center of our Galaxy.

This picture is different if the black hole is accreting from
a thin disc that is spinning it up. For

M M

U<SM~5x10"1 .
SerA* Mg

: (6.9)

the spin-down torque from the string is unable to com-
pensate the spin-up accretion torque. Here M is the
accretion rate and Mgy ~ 1078 Mg yr~' (M/M) is the
Eddington accretion rate. Please note that in geometric
units, M is a dimensionless quantity. If pu > M, the
dimensionless spin of the black hole saturates at

g ~M/pu. (6.10)

In this case a fraction of the rest mass of the accreted
material is converted into string length and the loop grows
indefinitely.

For sufficiently small values of the reconnection prob-
ability p, the auxiliary curve will develop self-intersections
and the loop will break into smaller loops, all bound to the
black hole. If all the smaller loops survive reconnections
and settle into asymptotic non-self-intersecting double
lines, the latter will rotate around the black hole in near-
equatorial planes, each with its own angular velocity. An
important effect would be an enhanced slow-down of the
black hole, by a factor that equals to the number of the
attached double-lines.

While the physics of black holes’ interaction with string
loops is interesting, are they likely to ever meet in the real
world if strings do exist? In the next section we argue in the
affirmative, for reasonable parameters of the string
network.

VII. COSMOLOGICAL CONSIDERATIONS

The probability for a black hole to have a string attached
to it crucially depends on whether the black holes are
primordial or they are formed by gravitational collapse and
accretion in the late universe. We will mostly focus on the
latter possibility and will only briefly comment on pri-
mordial black holes in Sec. VIIC.

A. String evolution and capture

Numerical simulations of cosmic string evolution indi-
cate that strings evolve in a self-similar manner. A Hubble-
size volume at any time ¢ contains a few long strings
stretching across the volume and a large number of closed
loops of size L <t (for an up to date review of string

simulations, see [30] and references therein). Long strings
move, typically at mildly relativistic speeds (v ~ 0.2), and
reconnect when they cross. Reconnections lead to the
formation of closed loops. The loops oscillate periodically
and emit gravitational radiation at the rate
E=Tu2, (7.1)
where I'~50 is a numerical factor depending on a
particular loop configuration. As loops lose their energy,
they gradually shrink and eventually disappear. The life-
time of a loop of invariant length L is v~ L/Tu. The
smallest and most numerous loops surviving at cosmic time
t have length
Luin(1) ~ Tt (12)
Such loops, which are near the end of their lives, acquire
large velocities, typically v ~ 0.1, due to the asymmetric
emission of gravitational waves (this is the so-called
gravitational rocket effect.) These velocities are too high
for the loops to be bound to galaxies. However, larger loops
move slower and, if they are longer than a certain length,
they can be captured in galactic halos during the epoch of
galaxy formation. Such galactic loops are also the best
candidates for capture by a black hole.

Loop clustering in galaxies was originally studied by
Chernoff in [31]. In that work however, the gravitational
rocket effect on the loops before their capture into the halos
was not properly taken into account. Recently [32] per-
formed an analysis where the rocket effect was fully
accounted for, and showed that the original computations
overestimated the number of captured loops by orders of
magnitude. Still, as we show below, those loops that do get
captured can collide with the black holes inside the halos, at
a rate that is astrophysically significant. According to the
calculations in [32], the smallest and most numerous
galactic loops have length

LG ~ 30F,Ltl0 ~5x 10_8//!_20 pc, (73)
where #, is the present cosmic time and y_,, = /1072,
The number of such loops in the halo of a typical galaxy
like the Milky Way is

N ~ 10205307 5(p). (7.4)

Here the function #(p) reflects the fact that low-p networks
are more efficient in producing subhorizon loops; (1) = 1.
Numerical simulations in [33] give n(p) x p~¢, where
¢ ~ 0.6 with considerable uncertainty.

Let us estimate the rate of capture of loops by a
supermassive black hole of the mass

M

SgrA*

M =4x10% Mg (7.5)
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It is convenient to restore G and ¢ for our computations in
the rest of this subsection, since geometric units are not
suitable for classical galactic dynamics calculations that
follow.

What is the distribution of loops near supermassive black
holes? A classic argument was given by Young in [34], in
the context of computing stellar distribution near an
adiabatically growing black hole. One can show [see
Young’s equation (29)] that in a spherically symmetric
system the steady-state distribution function f(E,J)
remains conserved as the potential evolves and thus the
energy E changes due to the black hole growth; the angular
momentum J is conserved. Here it must be understood that
E, J, and f are functions of position and momentum. The
distribution function away from the black hole is simply
f~vz N/V, where vg ~ 200 km/ sec is the virial veloc-
ity of the halo and V ~ 10" pc? is the halo volume. The
distribution function near the black hole is given by
I~ Nigops ()22 (GM)73/%; here nypps is the number den-
sity of loops. Equating the two we get

B (GM>3/2
o

nloops(r) N/V (76)

Of interest for us is the case where L; > R, in which case
we need to consider the loops whose centers are within
r ~ L from the BH. Not all of them will be captured; their

capture probability in one dynamical time ~L./*/(GM)'/?

is ~(R/Lg)(c/v) ~+/R/Lg, where v ~/GM/Lg.

The rate of loop captures is given by

GM\ /2 | R
CR ~ NMioops (LG> <K) L%? L_g

oy < M >2~5[77(p)}-

T3IX10° yr \Mggenr

(7.7)

The estimate above implies that there are reasonable
values of u for which all supermassive black holes,
including the one in our galactic center, will acquire a
loop during their lifetime. Even within the simple model we
used, the estimate is uncertain and we want to point out two
caveats. First, even before the black hole formation, the
loops are likely to cluster toward the inner halo which
would enhance their phase space density near the black
hole. Second, a merger with another black hole could cause
the loops to be ejected from the nucleus of the galaxy by a
slingshot mechanism. We shall for now ignore these
complications.

The steep M-dependence in the equation above implies
that masses of the black holes that do capture strings, could

be clustered toward the high end of their range. The details
will clearly depend on the mass function of the super-
massive black holes

P(M) = dVdlogh' (7.8)

where Npy is the number of black holes, V is volume, and
log M is the decimal logarithm of the black hole mass.
Useful illustrative plots of ¢(M) can be found in, e.g.,
Fig. 7(a) of [35] (the grey region corresponds to the mass
function measured at redshift 0) and Fig. 2 of [36]. As can
be seen from the latter figure, ¢y(M) changes slowly from
~0.01 Mpc™ to ~0.001 Mpc™ between 10° M, and
1034 M, and falls off more steeply at higher masses, very
roughly as o« M~2 between 1034 M and 10°> M. For a
given tension p_;g, the greatest number of loops will be
captured by black holes with masses

4/5 _
M;t ~ MSgrA*/'l—/lgrl 2/5’ (79)

such that the CR ~ 1/(3 x 10° yr) and the capture prob-
ability for the black hole is of order unity (we assume here
that there is no benefit for a black hole to capture > 1 loop,
since after reconnections only one loop will remain bound
to the black hole).

B. Gravitational wave signature

At this stage we are unable to make definitive predictions
about gravitational waves, since we are unable to model the
evolution of the captured loop with reconnections. Some
general quantitative remarks can however be made.

First, we note that in an ultraoptimistic scenario, all of
the spin energy of supermassive black holes can be
converted into string loops which in turn convert their
energy into gravitational waves. The average mass density
of supermassive black holes is ~2 x 10° My /Mpc® [36].
One can then easily estimate the ratio between the energy
density in black holes’ spin and the energy density of the
universe:

Qqpin ~ 1077a2, (7.10)
where & is the average dimensionless spin of the black
holes. Measurements of x-ray and radio emission from
accreting supermassive black holes in galactic nuclei
indicate that they are rapidly rotating (e.g., [37,38], and
references therein’). This is consistent with an argument

5 However, recently [39] provided an interesting argument for
the upper bound a < 0.1 on the spin of the SgrA* black hole. It
was based on the fact that the S-stars near SgrA* appear to belong
to two mutually inclined discs [40], while the large spin of the
black hole would destroy such structures through the Lense-
Thirring precession of the orbits [41].
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that the supermassive black holes acquire most of their
mass from thin accretion discs [42,43], in which case one
might expect that a significant fraction of them rotate
rapidly, with a ~ 1.

The estimate in Eq. (7.10) is six orders of magnitude
above the projected sensitivity of LISA of Qgw ~ 10713 /h?
and many orders of magnitude greater than the projected
Qgw produced by current cosmological models with
cosmic strings [16]. While the spectrum of emitted gravi-
tational waves is likely broad, we note that Qpy is in the
LISA band for supermassive black holes. Therefore the
emission of gravitational waves in this scenario is worth
some exploration. The efficiency of the black-hole spin
energy conversion into the loops is ~(2z/a)(R/L) and is a
strong function of the invariant length L of the loop
attached to the black hole. Thus determining average L
is one of the key targets of future simulations.

C. Primordial black holes

If both strings and primordial black holes are present in
the universe, the strings are formed at a phase transition at a
very early time and reach the scaling regime of evolution by
the time when black holes are formed. At that time each
horizon volume contains O(10) long strings and newly
formed black holes have sizes comparable to the horizon.
Hence each black hole typically captures O(10) strings,
resulting in an interconnected black hole-string network
[6]. The strings will wiggle around, cross and reconnect,
and it is possible that most of the black holes will be
detached from the network. But even then such black holes
will retain string segments with both their ends attached to
the horizon.

Thus, in the primordial black hole scenario we can
expect nearly all black holes to end up with string loops
attached to them. The evolution of black hole-string net-
works is now poorly understood, so we cannot determine
the length distribution of the attached string segments.
Progress in this direction would require numerical simu-
lations, which are now being developed.

Another difference from astrophysical black holes is that
primordial black holes are expected to be slowly rotating. In
models where they are formed at high peaks of the density
field, their dimensionless angular momentum has been
estimated as @ ~ 0.01 in two independent studies [44,45].
This is a small value, but it may be sufficient for the effects
described in the preceding sections to be significant. On the
other hand, primordial black holes formed by spherical
domain walls or vacuum bubbles nucleated during inflation
are nonrotating at birth and can acquire angular momentum
only by accretion of matter [46,47].

For black holes with negligible spin, a combination of
finite-black-hole mass and black hole spindown will result
in an approximately exponential reduction of the length of
the loop attached to the black hole. The loop will disappear
after

L 1/3
1~3x 10" sMou~}, log< 02 ) (7.11)

where per common notation, M, = M /100 Mg, and L is
the initial size of the loop. Primordial black holes with
loops, if they exist, end up inside galactic halos, but for the
loops to survive to the present day, M and x must satisfy a
rather strict constraint specified by the equation above. This
constraint can be relaxed if the black holes can acquire
rotational energy through accretion of gas or mergers with
other black holes.

VIII. CONCLUSIONS

The wonderful physics of interactions between black
holes and strings, explored in a long series of publications
by Valery Frolov and his collaborators, comes alive if the
string is bound into a loop so that its both ends are captured
by the black hole. The new features that we identify with
certainty are 1. the existence of non-self-intersecting loop
orbits, 2. the depletion of the loop by horizon friction and
by reconnections from the secular evolution of the string
orbit due to the finite black hole mass, and 3. the growth of
the string loop by a superradiant extraction of the black
hole’s rotational energy. A formalism for the evolution of
the loop shape has been developed that utilizes a beautiful
geometric deformation of an auxiliary curve. It is a matter
for future numerical work, to determine the influence of
reconnections on the sizes of loops attached to black holes.

We show that encounters between string loops and black
holes may well be a common occurrence in the real
Universe. Gravitational waves could well be an observable
signature of such encounters and subsequent evolution of
the loops, and in a very general ultraoptimistic scenario
their background exceeds the projected sensitivity of LISA
by six orders of magnitude. Concrete predictions must wait,
however, for future numerical work.

Finally, we note that there is another potential cause of
catastrophic reconnection that we have ignored in this
paper. The solution in Eq. (4.1) describes a string that winds
many times around the horizon. In our case we will have
both ends of the loop behave in this way. There is a danger
that these winding ends of the loop will intersect. We
suspect that this danger is not so severe, since the spirals are
ordered, each occupying its own cone of polar angle € and
each with a different asymptotic angle ¢,. Thus the two
stationary string spirals with different asymptotes never
intersect. However the problem deserves a careful consid-
eration once the strings’” movement is taken into account.

This paper clearly motivates further theoretical studies of
the string superradiance, as well as observational searches for
gravitational waves from loops ejected from galactic nuclei.
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APPENDIX A: NUMERICAL ALGORITHM FOR
GENERATING RANDOM STRINGS

As discussed in Sec. II C, we simulate a random string
loop by generating a set of vectors a’ which satisfies:

(i) |a}| =1 (on unit sphere)

(i) > a} = 0 (periodicity)

(iii) |af,, —a}| < B’ = 2sin6,, (smoothness)
It is trivial to construct a random vector chain that satisfies
conditions 1. and 3. However, in order to satisfy constraint
2., we need to adjust the chain and iterate. An outline of the
general procedure is given in Algorithm 1. This algorithm
will guarantee that the 2N output vectors all lie on the unit
sphere, that the a(o) curve made of equal-length segments
parallel to the output vectors is periodic within some
tolerance (| Y al| <€) and that it is sufficiently smooth.

At line 4 of Algorithm 1, we generate a set of random
unit vectors with a random walk step upper bounded by
f(B'). The function mapping f is chosen so that the final
vector chain (approximately) satisfies constraint 3. This
requires some experimentation and will be discussed later.

First we choose a unit vector a} in a random direction.
We then sequentially generate aj,; for each aj until we
have 2N vectors. We orient a’ as the polar axis and let # and
¢ be the polar and azimuthal angle the next vector makes
with the current one. We draw ¢ uniformly in [0, 2z]. To
satisfy the random walk constraint, we require

B/
0<6,= 2arcsin¥. (A1)

We choose a) , uniformly from this solid angle, by
drawing 6 from the distribution

P(0) sin 6 (A2)

1 —cos Oy

Algorithm 1. Algorithm for generating a random string

1: Input: N, B, ¢
2: Output: A set of 2N vectors a’ that satisfy the all three
conditions

4 Generate 2N unit vectors with |a},, — a}| < f(B');

5 Vi,a, — al + (i/2N)(1 - f(B)/|a} — aby|)(a] — ahy)
6: while | > a}| > e do

T Vialal -3 al/aN;

8: Vi a, - al/|al
9: while max |a},, —aj| > B

s

We use inverse sampling to achieve this. First, we define
the cumulative distribution function as

1—-cos@

0(0) = / " p()der = (A3)

0 1 —cos@,,

We can then draw 6 = Q~!(y) where y is a uniform
random variable drawn from [0, 1]. We then apply spherical
trigonometry to retrieve the Cartesian coordinates of a]_ .

Now, since a (and hence a’) is periodic in 2L, we also
need to constrain the starting and ending points of the chain
(|]a} —a%y|). Line 5 achieves this through shifting each
vectors by an amount that is linear in its index. This will
ensure the tight inequality in Eq. (A4). Here o is a’
obtained in Line 4.

1
101y moaon — Al S 5 lloy — oy + (2N =~ 1)B]. (Ad4)

The next part of the algorithm repeatedly and alterna-
tively makes the vectors periodic (line 7) and normalizes
them unto the unit sphere (line 8). Both conditions will be
satisfied (within tolerance), after sufficient iterations. We
do not have a rigorous proof of its convergence (and the
algorithm may not converge if the initial vectors are linearly
dependent). Empirically, the number of iteration required to
achieve a tolerance of 1070 is plotted in Fig. 4. We need
fewer iterations for larger N and for larger f(B’). The
algorithm will converge in few iterations for reasonable
input parameters.

Now we use f(B’) instead of B’ at line 4 because the
iterations do not preserve the maximum random walk step.
Empirically, we observe that the maximum step before and
after line 68 of the algorithm exhibit a linear relationship
(as shown in Fig. 5). In practice, to simulate a closed chain
with the desired N and B’, we first calculate this linear
relationship by simulating initial chains with a range of

# of iterations

0 20 40 60 80 100

FIG. 4. Tteration required for the algorithm to converge for
different values of N and f(B') (¢ = 107'%). The results are
averaged across 10 independent trials.
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FIG. 5. Linear relationship between the maximum step size
before and after the line 6-8 of Algorithm 1.

values of f and calculating corresponding values of B’ once
the iterations converge. Using linearity, we then obtain an
estimate for f that we can use for the initial chain in order to
obtain a final chain with the specified B’. We thus add the
external “while” loop to guarantee the correct random walk
step bound. We need fewer iterations for a larger number of
segments.

APPENDIX B: NUMERICAL ALGORITHM FOR
SELF-INTERSECTIONS

Since our loop motion is periodic in 2L, it suffices for
our algorithm to detect intersection with 0 < ¢ < 2L. We
divide this time period into intervals of Az and search for
intersection within each interval iteratively. Let 7, be the
time that an interval starts and 7, + At is the time it ends.
One can choose any value from O to 2L for At. In practice
we can choose At =L/N to be the average length of
segments which gives satisfactory results. Now, we assume
the intersection occurs at location ¢; and ;. We have:

r(c;,t) = r(gj, 7). (B1)
With our formulation in Eq. (2.3), this becomes:
a(a,-—t)—a(—a,-—t) :a(Gj—l)—a(—Uj—t). (BZ)

Now, as specified in Eq. (2.6), our algorithm discretizes
a into 2N connected line segments. We assume that o; — 7 is
on the segment m;, 6; — 1 is on the segment m;, —o; — 1 is
on the segment n; and —o; —t is on the segment n;. We
have:

a(o; — 1) = ZLpa;,

p<m;

+ |:(ai — 1) mod 2L — ZLP] aj,. (B3)

p<m;

constrained by:

0<(o;—t)mod2L =Y L, <L,

p<m;

(B4)

and similarly for 6; — 1, —6; — 1, and —¢; — t. Here mod is
real number modulo function defined as xmody = x—
y|x/y]. Since a is periodic in 2L, we first use the mod
function to make 0 < 6; — t < 2L where our discretization
scheme is defined. To work with mod, we let:

(6;—t)mod2L =6, —t +2M,L (B5)
(6;—t)mod2L =o; —t +2M;L (B6)
(—o; —t)mod2L = —o; — t + 2N,L (B7)
(=0;—t)mod2L = —o; — t 4 2N, L (B8)

where M;, M;, N;, N; are integers. Consequently, Eq. (B2)
becomes:

(ay, +a,)o; — (a,, + a, )o;
+ (—ay,, + ay,, +aj, —ap )t

= Z (a;n,- - a/p)Lp - Z (a;nj - alp)Lp

p<m; p<m;
= (@, —ay)L, + > (a, —a))L,
p<n; p<n;

+2L(-M;a,, + M;a,, + N;a, —Nja;, ). (B9)

This is a linear equation system with 3 variables. We look
for a solution that satisfies the following constraints:

to <t <ty+ At
{0 0 (B10)

OSO',-,O'j<L

Furthermore, for our discretization scheme to work, we
also need the constraints from Eq. (B4):
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p<m; l
e (B11)
0<-0;—t— > L,+2N,L<L,
p<n;
0<—o;—t— YL, +2N;,L <L,
p<n;

Naively, we can try all integer combinations of
M;,M;,N;,Nj,m;,mj,n;,n; and check if Eq. (B9) has a
solution. However, this algorithm will then have time
complexity O(N8L/At) and is not computationally fea-
sible. We thus seek to constrain these parameters and trim
our search space.

1. Constraining M;, M;, N;, N;

From the inequalities in (B11), we have:

Y L,—0;+1<2M;L <Y L,-c;+1 (BI2)
p<m; p<m;
S L,+o+t<2N,L<» L,—o;+t (BI3)
p<n; p=n;

and similarly for M; and N ;. Then, using the inequalities in
(B10)as wellas 0 < >, L, < L for all k, we obtain the
following constraints:

(ty—=L)/2L < M, M; < (to + L + Ar)/2L
t0/2L < M;,M; < (ty + 2L + At)/2L.

(B14)
(B15)

Consequently, there are at most 2 feasible values for each of
M;, M;, N; and N; (since Ar < 2L). We are left with at
most 16 combinations to try, effectively reducing the time
complexity to O(N*L/At).

2. Constraining n;, n;
We can further accelerate the algorithm by constraining
n; and n; given m;, mj, M;, M;, N; and N;. Using the
inequalities in (B11) and ¢ < t, + 2L, we have:

S L,<=> L,—=2ty+2(M;+N))L (B16)
p<n; p<m;
S L,<=> L,-2t+2(M;+N;)L  (Bl7)
p<n; p<m;
> L,>=) L,-2ty—2At+2(M;+N,)L  (BI8)
psn; psm;
> L,>=> L,-2-2At+2(M;+N;)L. (B19)

p<n; p<m;

These will filter out a significant proportion of the
available values for n; and n;. The right-hand side of
inequalities (B16) and (B18) differ by L,, + 2Ar. If there

are k segments falling into this range, we will have k + 2
possible values for n;. Assigning the average segment
length to At, we will have k ~ 3. Thus, on average, we
will have approximately 5 n; values to try. This reduces the
time complexity to O(N>L/At) = O(N?).

3. Constraining m;

Moreover, with a given m;, we can develop a constraint
on the available values for m;. From the inequalities in
(B11), we can find a bound for ¢; and o;:

to+ Y L,—2M;L <o;<ty+At+ Y L,—2M;L

p<m; p<m;
(B20)
to+ Y L,—2M;L <o;<ty+At+ Y L,-2M;L
p<m; p<m;
(B21)

Note that the right side of these inequalities are larger than
the left side by Az + L, and At + Ly, respectively. That

is, the o values are constrained within this region given m;
and m;. Now, at t, the spatial distance between two
intersection points has:

dist = [[r(o;, ty) — (0. 19)||

r<t0 + ) L, -2ML, r0>

p<m;

_r<lo+ ZLP —2MjL,t()>

p<m;

2

The last three terms come from the aforementioned two
intervals for 6. When varying o, the two points can approach
each other by at most 2Ar + L, + Ly, Then, in the time
interval At, these two points will move toward each other to
form an intersection. Both points move at a maximum speed
of 1 (light speed) so the distance must satisfy:

~2At-L,, ~L, (B22)

dist < 2Ar. (B23)

This will give us the constraint on m;:

||r<t0 + Y L, -2ML, t0>

p<m;

- r<zo + > L, -2M|L, r0> | <4A1+ L,y + Ly,

p<m;

(B24)

The effectiveness of this constraint will rely on the shape
of the string. For example, if the string is a perfect circle
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(r = L/2x), the number of m; values that satisfy this
constraint is approximately
2 arcsin((2A7 + L/N)/r)
2n

assuming N > 1. In general, the smoother the string is (or
the smaller B’ is), the more values that we can filter out.

N=~6

(B25)

4. Computational imprecision

Our scheme of using segments is not a precise model of a
smooth physical string. Particularly, if ¢; and o; are too
close, the discrete nature of our string will be manifest. So
the detected intersection could simply be due to the failure

of our approximation. Therefore, we filter out the inter-
sections that are too close together by requiring:

0; — 0+ L|} > threshold.

mln{ |Gi - Uj (B26)

’

Empirically, we find that the algorithm is stable if we
choose threshold = 10L/N. That is, if two intersections are
separated by, on average, at least 10 segments, we are
confident that this is not due to numerical error.

This also means that if our string length becomes smaller
than 10L;/N where L; is the initial length, our algorithm is
no longer entirely reliable. As shown in Fig. 3(c), we can
see that the final lengths of our simulated string are well
above this threshold (2 x 1073).
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