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Abstract

We study distributional robustness in the context of Extreme Value Theory (EVT).
We provide a data-driven method for estimating extreme quantiles in a manner that is
robust against incorrect model assumptions underlying the application of the standard
Extremal Types Theorem. Typical studies in distributional robustness involve com-
puting worst case estimates over a model uncertainty region expressed in terms of the
Kullback-Leibler discrepancy. We go beyond standard distributional robustness in
that we investigate different forms of discrepancies, and prove rigorous results which
are helpful for understanding the role of a putative model uncertainty region in the
context of extreme quantile estimation. Finally, we illustrate our data-driven method
in various settings, including examples showing how standard EVT can significantly
underestimate quantiles of interest.
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1 Introduction

Extreme Value Theory (EVT) provides reasonable statistical principles which can be
used to extrapolate tail distributions, and, consequently, estimate extreme quantiles.
However, as with any form for extrapolation, extreme value analysis rests on assump-
tions that are rather difficult (or impossible) to verify. Therefore, it makes sense to
provide a mechanism to robustify the inference obtained via EVT.

The goal of this paper is to study non-parametric distributional robustness (i.e.
finding the worst case distribution within some discrepancy of a natural baseline
model) in the context of EVT. We ultimately provide a data-driven method for
estimating extreme quantiles in a manner that is robust against possibly incorrect
model assumptions. Our objective here is different from standard statistical robust-
ness which is concerned with data contamination only (not model error); see, for
example, Tsai et al. (2010), for this type of analysis in the setting of EVT.

Our focus in this paper is closer in spirit to distributionally robust optimization
as in, for instance, Dupuis et al. (2000), Hansen and Sargent (2001), Ben-Tal et al.
(2013), and Breuer and Csiszar (2013). However, in contrast to the literature on robust
optimization, the emphasis here is on understanding the implications of distributional
uncertainty regions in the context of EVT. As far as we know this is the first paper
that studies distributional robustness in the context of EVT.

We now describe the content of the paper, following the logic which motivates the
use of EVT.

1.1 Motivation and standard approach

In order to provide a more detailed description of the content of this paper, its moti-
vations, the specific contributions, and the methods involved, let us invoke a couple
of typical examples which motivate the use of extreme value theory. As a first exam-
ple, consider the problem of forecasting the necessary strength that is required for a
skyscraper in New York City to withstand a wind speed that gets exceeded only about
once in 1000 years, using wind speed data that is observed only over the last 200
years. In another instance, given the losses observed during the last few decades, a
reinsurance firm may want to compute, as required by Solvency II standard, a capital
requirement that is needed to withstand all but about one loss in 200 years.

These tasks, and many others in practice, present a common challenge of extrap-
olating tail distributions over regions involving unobserved evidence from available
observations. There are many reasonable ways of doing these types of extrapolations.
One might take advantage of physical principles and additional information, if avail-
able, in the windspeed setting; or use economic principles in the reinsurance setting.
In the absence of any fundamental principles which inform tail extrapolation of a
random variable X, one may opt to use purely statistical considerations.

One such statistical approach entails the application of the popular extremal types
theorem (see Section 2) to model the distribution of block maxima of a modestly
large number of samples of X, by a generalized extreme value (GEV) distribution.
Once we have a satisfactory model for the distribution of M,, = max{Xy, ..., X,},
evaluation of any desired quantile of X is straighforward because of the relationship
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that P(M,, < x) = (P(X < x))" for any x € R. Another common approach is to
use samples that exceed a certain threshold to model conditional distribution of X
exceeding the threshold. The standard texts in extreme value theory (see, for example,
Leadbetter et al. (1983), de Haan and Ferreira (2006), and Resnick (2008)) provide a
comprehensive account of such standard statistical approaches.

Regardless of the technique used, various assumptions underlying an application
of a result similar to the extremal types theorem might be subject to model error.
Consequently, it has been widely accepted that tail risk measures, particularly for
high confidence levels, can only be estimated with considerable statistical as well
as model uncertainty (see, for example, Jorion (2006)). The following remark due
to Coles (2001) holds significance in this discussion: “Though the GEV model is
supported by mathematical argument, its use in extrapolation is based on unverifi-
able assumptions, and measures of uncertainty on return levels should properly be
regarded as lower bounds that could be much greater if uncertainty due to model
correctness were taken into account.”

Despite these difficulties, however, EVT is widely used (see, for example, de Haan
and Ferreira (2006)) and regarded as a reasonable way of extrapolation to estimate
extreme quantiles.

1.2 Proposed approach based on infinite dimensional optimization

We share the point of view that EVT is a reasonable approach, so we propose a proce-
dure that builds on the use of EVT to provide upper bounds which attempts to address
the types of errors discussed in the remark above from Coles (2001). For large values
of n, under the assumptions of EVT, the distribution of M, lies close to, and appears
like, a GEV distribution. Therefore, instead of considering only the GEV distribution
as a candidate model, we propose a non-parametric approach. In particular, we con-
sider a family of probability models, all of which lie in a “neighborhood” of a GEV
model, and compute a conservative worst-case estimate of Value atrisk (VaR) over
all of these candidate models. For p € [0, 1], the value at risk VaR ,(X) is defined as

VaR,(X) = F* (p) := inf{x : P{X <x} > p}.

Mathematically, given a reference model, P, o which we consider to be obtained
using EVT (using a procedure such as the one outlined in the previous subsection),
we consider the optimization problem

sup {P{X >x}: d(P,P,) < 5}. )

Note that the previous problem proposes optimizing over all probability measures
that are within a tolerance level § (in terms of a suitable discrepancy measure d) from
the chosen baseline reference model P, .

There is a wealth of literature that pursues this line of thought (see Dupuis et al.
2000; Hansen and Sargent 2001; Ahmadi-Javid 2012; Ben-Tal et al. 2013; Breuer
and Csiszar 2013; Glasserman and Xu 2014), but, no study has been carried out
in the context of EVT. Moreover, while the solvability of problems as in (1) have

understandably received a great deal of attention, the qualitative differences that arise
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by using various choices of discrepancy measures, d, has not been explored, and this
is an important contribution of this paper. For tractability reasons, the usual choice
for discrepancy d in the literature has been KL-divergence. In Section 3 we study the
solution to infinite dimensional optimization problems such as (1) for a large class
of discrepancies that includes KL-divergence as a special case, and discuss how such
problems can be solved at no significant computational cost.

1.3 Choosing discrepancy and consistency results

One of our main contributions in this paper is to systematically demonstrate the qual-
itative differences that arise by using different choices of discrepancy measures d in
(1). Since our interest in the paper is limited to robust tail modeling via EVT, this nar-
row scope, in turn, let us analyse the qualitative differences that may arise because of
different choices of d.

As mentioned earlier, the KL-divergence! is the most popular choice for d. In
Section 4 we show that for any divergence neighborhood P, defined using d = KL-
divergence around a baseline reference P, ;, there exists a probability measure P in
‘P that has tails as heavy as

P(x,00) > clog 2 P, (x, 00),

for a suitable constant ¢, and all large enough x. This means, irrespective of how small
8 is (smaller § corresponds to smaller neighborhood P), a KL-divergence neighbor-
hood around a commonly used distribution (such as exponential, (or) Weibull (or)
Pareto) typically contains tail distributions that have infinite mean or variance, and
whose tail probabilities decay at an unrealistically slow rate (even logarithmically
slow, like logfzx, in the case of reference models that behave like a power-law or
Pareto distribution). As a result, computations such as worst-case expected short-
fall> may turn out to be infinite. Such worst-case analyses are neither useful nor
interesting.

For our purposes, we also consider Renyi divergence measures D, (see
Section 3.1) that includes KL-divergence as a special case (when o = 1). It turns out
that for any o > 1, the divergence neighborhoods defined as in {P : Dy (P, Pref) <
8} consists of tails that are heavier than P, , but not prohibitively heavy. More
importantly, we prove a “consistency” result in the sense that if the baseline refer-
ence model belongs to the maximum domain of attraction of a GEV distribution with
shape parameter y,,, then the corresponding worst-case tail distribution,

Fo5(x) := sup{P(x, 00) : Dy(P, P,,;) <68}, )

belongs to the maximum domain of attraction of a GEV distribution with shape
parameter y* = (1 — a‘l)_lyref (if it exists).

! KL-divergence, and all other relevant divergence measures, are defined in Section 3.1
2Similar to VaR, expected shortfall (or) conditional value at risk (referred as CVaR) is another widely
recognized risk measure.
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Since our robustification approach is built resting on EVT principles, we see this
consistency result as desirable. If a modeler who is familiar with certain type of data
expects the EVT inference to result in an estimated shape parameter which is positive,
then the robustification procedure should preserve this qualitative property. An anal-
ysis of the maximum domain of attraction of the distribution F, (x), depending on &
and y,, ., is presented in Section 4, along with a summary of the results in Table 1.

Note that the smaller the value of «, the larger the absolute value of shape parame-
ter *, and consecutively, heavier the corresponding worst-case tail is. This indicates
a gradation in the rate of decay of worst-case tail probabilities as parameter o
decreases to 1, with the case @ = 1 (corresponding to KL-divergence) representing
the extreme heavy-tailed behaviour. This gradation, as we shall see, offers a great
deal of flexibility in modeling by letting us incorporate domain knowledge (or) expert
opinions on the tail behaviour. If a modeler is suspicious about the EVT inference
he/she could opt to select « = 1, but, as we have mentioned earlier, this selection
may result in pessimistic estimates.

The relevance of these results shall become more evident as we introduce the
required terminology in the forthcoming sections. Meanwhile, Table 1 and Fig. 1
offer illustrative comparisons of F, (x) for various choices of «.

1.4 The final estimation procedure

The framework outlined in the previous subsections yields a data driven procedure
for estimating VaR which is presented in Section 5. A summary of the overall proce-
dure is given in Algorithm 2. The procedure is applied to various data sets, resulting
in different reference models, and we emphasize the choice of different discrep-
ancy measures via the parameter «. The numerical studies expose the salient points
discussed in the previous subsections and rigorously studied via our theorems. For
instance, Example 3 shows how the use of the KL divergence might lead to rather
pessimistic estimates. Moreover, Example 4 illustrates how the direct application of

Table 1 A summary of domains of attraction of Fy(x) = 1 — Fa,g(x) for GEV models. Throughout the
paper, y* == 2%y,

Domain of attraction of Domain of attraction of
Reference model Worst-case tail 1:"0,,,;(~), a>1 Worst-case tail Fa.a(-), a=1

(the KL-divergence case)

Go Gy G
(Gumbel light tails) (Gumbel light tails) (Frechet heavy tails)
Get> Vier = 0 Gy -
(Frechet heavy tails) (Frechet heavy tails) (slow logarithmic decay of
Fa,a(x) asx — o0)
Gretr Vrep < 0 Gy -
(Weibull) (Weibull) (slow logarithmic decay of Favg (x)t0 0

at a finite right endpoint x*)
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Fig.1 Comparison of 1:"%5 (x) for different GEV models: The solid curves represents the reference model
Gy (x) for y,,. = 1/3 (top left figure), y,,, = O (top right figure) and y,,, = —1/3 (bottom figure).
Computations of corresponding Fa,g(x) are done for « = 1 (the dotted curves), and « = 5 (the dash-
dot curves) with § fixed at 0.1. The dotted curves (corresponding to « = 1, the KL-divergence case)

conform with our reasoning that Fy.5(x) have vastly different tail behaviours from the reference models
when KL-divergence is used

EVT can severely underestimate the quantile of interest, while the procedure that we
advocate provides correct coverage for the extreme quantile of interest.

The very last section of the paper, Section 6, contains technical proofs of various
results invoked in the development.

2 Generalized extreme value distributions

The objective of this section is to mainly fix notation and review properties of gen-
eralized extreme value (GEV) distributions that are relevant for introducing and
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proving our main results in Section 4. For a thorough introduction to GEV distribu-
tions and their applications to modeling extreme quantiles, we refer the readers to
the wealth of literature that is available (see, for example, Leadbetter et al. (1983),
Embrechts et al. (1997), de Haan and Ferreira (2006), and Resnick (2008) and
references therein).

If we use M,, to denote the maxima of n independent copies of a random variable
X with cumulative distribution funtion F(-), then extremal types theorem identifies
all non-degenerate distributions G (-) that may occur in the limiting relationship,

. Mn - bn . n
lim P{— <x¢; = lim F" (a,x + b,) = G(x), 3)
n—o00 a n— 00
for every continuity point x of G(-), with a, and b, representing suitable scaling
constants. All such distributions G(x) that occur in the right-hand side of (3) are
called extreme value distributions.

Extremal types theorem (Fisher and Tippet (1928), Gnedenko (1943)). The class of
extreme value distributions is G, (ax + b) witha > 0, b, y € R, and

Gy (x) :=exp (— a1+ yx)fl/”) , 1+ yx>0. 4)

If y = 0, the right-hand side is interpreted as exp(— exp(—x)).

The extremal types theorem asserts that any G (x) that occurs in the right-hand side
of (3) must be of the form G, (ax + b). As a convention, any probability distribution
F(x) that gives rise to the limiting distribution G(x) = G, (ax + b) in (3) is said
to belong to the maximum domain of attraction of G, (x). In short, it is written as
F € D(G). The parameters y, a > 0 and b are, respectively, called the shape, scale
and location parameters. From the above we have

M, — b — b —
P(M,,Sx)zP( . nfx n)%GVo(x
a a a

n n

bﬂ

) = Gylaox + bo),

where yp, a,, b, are estimated by a parameter estimation technique such as maxi-
mum likelihood and ag := 1/ay, by := —b, /a,. We will use Pggy to denote the
distribution G, (apx + bo).

2.1 Frechet, Gumbel and Weibull types

Though the limiting distributions G, (ax + b) seem to constitute a simple parametric
family, they include a wide-range of tail behaviours in their maximum domains of
attraction, as discussed below: For a distribution F, let F(x) = 1 — F(x) denote
the corresponding tail probabilities, and x; = sup{x : F(x) < 1} denote the right
endpoint of its support.

1) The Frechet Case (y > 0). A distribution F € D(G,,) for some y > 0, if and
only if right endpoint x7 is unbounded, and its tail probabilities satisfy

L(x)

F@)=—7

x>0 %)
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for a function L(-) slowly varying at 0o>. As a consequence, moments greater
than or equal to 1/y do not exist. Any distribution F'(x) that lies in D(G,,) for
some y > 0 is also said to belong to the maximum domain of attraction of a
Frechet distribution with parameter 1/y. The Pareto distribution 1 — F(x) =
x~% A 1is an example for a distribution that belongs to D(G1/4).

2) The Weibull case (y < 0). Unlike the Frechet case, a distribution F' € D(G,)
for some y < 0, if and only if its right endpoint x7 is finite, and its tail
probabilities satisfy

Fat—e)=e 7L <1> €>0 (6)

€

for a function L(-) slowly varying at co. A distribution that belongs to D(G,)
for some y < 0 is also said to belong to the maximum domain of attraction
of Weibull family. The uniform distribution on the interval [0, 1] is an example
that belongs to this class of extreme value distributions.

3) The Gumbel case (y = 0). A distribution F' € D(Gy) if and only if

lim M = exp(—x), x eR @)

1x, F(t)
for a suitable positive function f(-). In general, the members of Gg have
exponentially decaying tails, and consequently, all moments exist. Probability
distributions F'(-) that give rise to limiting distributions G(ax + b) are also said
to belong to the Gumbel domain of attraction. Common examples that belong to
the Gumbel domain of attraction include exponential and normal distributions.

Given a distribution function F, Proposition 1 is useful to test to determine its domain

of attraction:

Proposition 1 Suppose F”(x) exists and F'(x) is positive for all x in some left
neighborhood of x7. If

) 1—F\
hm< ) x)=v, (8)

then F belongs to the domain of attraction of G,,.

The proof of Proposition 1 and further details on the classification of extreme
value distributions can be found in any standard text on extreme value theory (see,
for example, Leadbetter et al. (1983) or de Haan and Ferreira (2000)).

3A function L : R — R is said to be slowly varying at infinity if lim, oo L(rx)/L(x) = 1 for every
t > 0. Common examples of slowly varying function include log x, loglog x, 1 —exp(—x), constants, etc.
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2.2 On model errors and robustness

After identifying a suitable GEV model P, for the distribution of block maxima
M, it is common to utilize the relationship P{M, < x} = P{X < x}", to com-
pute a desired extreme quantile of X. It is useful to remember that P, (—00, x]
is only an approximation for P{M, < x}, and the quality of the approximation is,
in turn, dependent on the unknown distribution function F (see Resnick 2008; de
Haan and Ferreira 2006). Therefore, in practice, one does not know the block-size n
for which the GEV model P, well-approximates the distribution of M,,. Even if
a good choice of n is known, one cannot often employ it in practice, because larger
n means smaller m, the number of blocks, and consequentially, the inferential errors
could be large. Due to the arbitrariness in the estimation procedures and the nature
of applications (calculating wind speeds for building sky-scrapers, building dykes for
preventing floods, etc.), it is desirable to have, in addition, a data-driven procedure
that yields a conservative upper bound for x,, that is robust against model errors. To
accomplish this, one can form a collection of competing probability models P, all
of which appear plausible as the distribution of M,,, and compute the maximum of
p"-th quantile over all the plausible models in P. This is indeed the objective of the
sections that follow.

3 A non-parametric framework for addressing model errors

Let (2, F) be a measurable space and M;(F) denote the set of probability mea-
sures on (€2, F). Let us assume that a reference probability model P,,, € M;(F) is
inferred by suitable modelling and estimation procedures from historical data. Nat-
urally, this model is not the same as the distribution from which the data has been
generated, and is expected only to be close to the data generating distribution. In the
context of Section 2, the model P, corresponds to P, , and the data generating
model corresponds to the true distribution of M,,. With slight perturbations in data,
we would, in turn, be working with a slightly different reference model. Therefore, it
has been of recent interest to consider a family of probability models P, all of which
are plausible, and perform computations over all the models in that family. Follow-
ing the rich literature of robust optimization, where it is common to describe the set
of plausible models using distance measures (see Ben-Tal et al. 2013), we consider
the set of plausible models to be of the form

P={PeM(F):d(P.P,) <6}

for some distance functional d : M{(F) x M{(F) — Ry U {+oc}, and a suitable
§ > 0. Since d(P,,;, P,,;) = 0 for any reasonable distance functional, P, lies in P.
Therefore, for any random variable X, along with the conventional computation of

E, ; [X], one aims to provide “robust” bounds,
re

inf E,[X]<E X] < sup E,[X].
inf, E,1X) < E, | [X] < sup E,[X]
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326 J.Blanchet et al.

Here, we follow the notation that E,[X] = f XdP for any P € M{(F). Since the
state-space €2 is uncountable, evaluation of the above sup and inf-bounds, in general,
are infinite-dimensional problems. However, as it has been shown in the recent works
(Breuer and Csiszar 2013; Glasserman and Xu 2014), it is indeed possible to evaluate
these robust bounds for carefully chosen distance functionals d.

3.1 Divergence measures

Consider two probability measures P and Q on (€2, F) such that P is absolutely
continuous with respect to Q. The Radon-Nikodym derivative d P /d Q is then well-
defined. The Kullback-Liebler divergence (or KL-divergence) of P from Q is defined

as
) dpP ) dP
Di(P, Q) :=E, [@ og <@>] : ©)
This quantity, also referred to as relative entropy (or) information divergence, arises
in various contexts in probability theory . For our purposes, it will be useful to con-
sider a general class of divergence measures that includes KL-divergence as a special
case. For any o > 1, the Rényi divergence of degree « is defined as:

) 1 ) dP\*

Da(P, Q) —ﬁ OgEQ [(@) i| (10)
It is easy to verify that for every o, Dy (P, Q) = 0, if and only if P = Q. Addi-
tionally, the map « — D, is nondecreasing, and continuous from the left. Letting
o — 1in (10) yields the formula for KL-divergence D1 (P, Q). Thus KL-divergence
is a special case of the family of Rényi divergences, when the parameter o equals
1. If the probability measure P is not absolutely continuous with respect to Q, then
D, (P, Q) is taken as co. Though none of these divergence measures form a metric
on the space of probability measures, they have been used in a variety of scientific
disciplines to discriminate between probability measures. For more details on the
divergences Dy, see Rényi (1961) and Liese and Vajda (1987).

3.2 Robust bounds via maximization of convex integral functionals

Recall that P, ,, is the reference probability measure obtained via standard estimation
procedures. Since the model P, could be misspecified, we consider all models that
are not far from P, . in the sense quantified by divergence Dy, for any fixed o > 1.
Given a random variable X, we consider optimization problems of form

Va(8) :=sup {E,[X]: Dy(P, P,,) < 68}. (11)

Though KL-divergence has been a popular choice in defining sets of plausible prob-
ability measures as above, use of divergences D,, o # 1 is not new altogether:
see Atar et al. (2015) and Glasserman and Xu (2014). Due to the Radon-Nikodym
theorem, V,, (§) can be alternatively written as,

Vi (8) = sup {E,,w [LX1:E, [¢a(L]<8,E, [L1=1L=> 0} . (12
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where L = dP/d P,y and

x“ ifa > 1,

xlogx ifa=1

exp ((¢ — 1)) ifa>1,

8 ifa=1. (13)

qba(x):{ and S:{
A standard approach for solving optimization problems of the above form is to write
the corresponding dual problem as below:

Va(8) < infio supy 2o [LX — A (po(L) —8) + (L — 1)].

The above dual problem can, in turn, be relaxed by taking the sup inside the
expectation:

V,(8) < inf HAS —WAHIE, [sup {(XAL“)L _ ¢a(L)}“ . (14

220, L>0
By first order condition the inner supremum is solved by

ci exp(c2X), ifa=1,

1/(a—1) (15)

L*(cy, =
a(c1 €2) {(c1+ch)+ Cifa>1,

for some suitable constants ¢c; € R, ¢p; > Owhena > 1;and c; € (0,1) and ¢, > 0
when o = 1. Then the following result is intuitive:

Proposition 2 Fix any o > 1. For L}(c1, c2) defined as in (15), if there exists
constants ¢ and ¢y such that

Li(ci,c2) >0, E, [Li(c1,c2)] = 1and E, [¢a (LE(c1, c2))] =6,

then L} (c1, c2) solves the optimization problem (12). The corresponding optimal
value is

Vy(8) = Eme [Li(cr,e)X]. (16)

Proof Under the specified assumptions, when we plug L} (c1, c2) into the right-
hand-side of inequality (14), it is simplified to E, , [L%(ci.c2)X], so we have

Vu(§) < E, ’ [Lf; (c1, cz)X]. On the other hand, since L} (c1, c2) satisfies all the
constraints in the problem (12), we have V,(§) > E, ; [L; (c1, cz)X]. O

Remark 1 Let us say one can determine constants c¢; and ¢, for given X, o and §.
Then, as a consequence of Proposition 2, the optimization problem (11) involving
uncountably many measures can, in turn, be solved by simply simulating X from
the original reference measure P, ., and multiplying by corresponding L (c1, c2)
to compute the expectation as in (16). Interested readers are referred to Glasserman
and Xu (2014) for specific examples illustrating this procedure. A general theory for
optimizing convex integral functionals of form (12), that includes a bigger class of
divergence measures, can be found in Breuer and Csiszar (2013).
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In this paper, we restrict to the case where the random variable X above is an
indicator function. As illustrated in Section 3.3 below, the computation of bounds
Vi (8) turns out to be simpler for this special case.

3.3 Evaluation of worst case probabilities

From here onwards, suppose that P, is a probability measure on (R, B(R)) satisfy-

ing Pref (x,00) = 0asx — sup{x : Pref (x,00) > 0}. Foragiven§ > 0, o > 1,

define the worst-case tail probability function, Fa’a :R — [0, 1], as,
Fo5(x) := sup{P(x, 00) : Dy(P, P,,;) < §}. (17)
In addition, for a given « > 1, define the functions
Stnr(m) == ugpy(1/u) for wue(0,1)

and

1—0u
- ) for {(u,0) € (0,1)x(1,00) :ub<1}.

8a (U, 0) := uge (0)+(1—-u)¢py (
The following result is a corollary of Proposition 2.

Corollary 1 Suppose thqt Fa,,g(-) is defined as in (17) and x € R is such that
Pref (x,00) > 0. Then, if § < &¢pr(P of (x, 00)), there exists 0, > 1 satisfying,

r

ga (P, (x,00), 6x) = 6. (18)

Moreover,

(19)

- |} Ox Prep(x, 00) lfg = (Sthr(Pref (x, 00)),
Fas() = { 1 otherwise.

Proof Consider the canonical mapping Z(w) = w, @ € R. Then, for a given x,
Fas0) =sup{Ep [LNZ > 0] E, (9] =8, E, [LI=1,L=0].

is an optimization problem of the form (11). Therefore, due to Proposition 2 and (15),
the optimal L* has the form

c1exp(c21(Z > x)), ifa =1,

L*(cy, = _
a(cr ) {(c1+c21(2>x))1+/<" D ifg > 1,

When we consider the two cases of Z > x and Z < x, and combine the range
information on c1, ¢, following equation (15), the above formulation of L7 (c1, ¢2)
can further be simplified to 6, 1(x, co0) + éxl(—oo, x] for some constants 6, > 1 and
éx € [0, 1). Substituting

LY = 0,1(x, 00) + 6,1(—00, x]
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in the constraints L* > 0, E, , (¢ (L¥)] = & and E, , [L*] = 1, we obtain that for

any 6, and 0, satisfying,

. 1-6,P, (x,00)
Ox € (1, l/Pref(x, OO)] s Qx = TW € [0, 1) and

5= P, (x,00¢a0) + (1 — P, (x,00)¢u () = ga(P,,, (x, 00), 62),

we have, _
Fys(x) = E, [LEU(Z > x)] = 0, Prey(x, 00).

Next, for any fixed u € (0, 1), observe that g, (u, 6) is increasing continuously in
0 over the interval (1, 1/u], taking values in the range (1, §;5,(u)] when a > 1,
and in the range (0, &, (#)] when o = 1. Therefore, an assignment of 6 satisfying
ga(u,0) = § exists only when 8§ < 8pr(u). In particular, the assignment 6 satis-
fying gy (u,0) = 5 increases as & increases until when § = 8,5, (1) for which the
corresponding 0 satisfying gy (u, 8) = §;(u) is given by 6 = 1/u.

Thus, given x € R such that me (x,00) € (0, 1), there exists 6, > 1 satisfying
(18) only if

5 < Sunr (P,,, (x, 00)),

and specifically for the case, 8§ = 8 (P, (x,00)), we have 6, = 1/P

ref ref ('x’ OO)
Therefore,

Ox Pref(x,00)  if § < 8y (P, (x, 00)),

Fas(s) = cFrs (5, 00) = { ! if5 = 8unr (P, (x, 50)

Since Fa,g(x) is nondecreasipg in &, it follows that Fa,g(x) = 1, also for values of §
such that the corresponding 6 > ;1 (P, y (x, 00)). L]

4 Asymptotic analysis of robust estimates of tail probabilities

In this section we study the asymptotic behaviour of F, s(x) := sup{P(x,o0) :
Dy (P, P,_ef) < §}, foranye > 1 and § > 0, as x — oo. We first verify in Proposi-
tion 3 below that Fa,(g(x), viewed as a function of x, satisfies the properties of a tail
distribution function. A proof of Proposition 3 is presented in Section 6.

Proposition 3 The function, Fy s(x) == 1— Fa,g (x), viewed as a function of x, satis-
fies properties of cumulative distribution function of a real-valued random variable.

Thus from here onwards, we shall refer to Fa,,g(') as the a-family worst-case tail
distribution, and study its qualitative properties such as domain of attraction for the
rest of this section. All the probability measures involved, unless explicitly specified,
are taken to be defined on (R, B(R)). Since Do (P, P,;) =0, itis evident that the
worst-case tail estimate I:”o,,(g(x) is at least as large as P, (x, 00). While the overall
objective has been to provide robust estimates that account for model perturbations,

it is certainly not desirable that the worst-case tail distribution I:"a,,g(), for example,
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has unrealistically slow logarithmic decaying tails. Seeing this, our interest in this
section is to quantify how heavier the tails of F;, 5(-) are, when compared to that of
the reference model.

The bigger the plausible family of measures {P : Dy (P, P,,,) < 8}, the slower
the decay of tail F,, 5(x) is, and vice versa. Hence it is conceivable that the parameter
8 is influential in determining the rate of decay of Fy s(-). However, as we shall
see below in Theorem 2, it is the parameter o (along with the tail properties of the
reference model P, /) that solely determines the domain of attraction, and hence the
rate of decay, of Fa’5(~).

Since our primary interest in the paper is with respect to reference model P,
being a GEV model, we first state the result in this context:

Theorem 1 Let the reference GEV model P, have shape parameter y,,.. Then the
distribution F induced by P, satisfies the regularity assumptions of Proposition 1
with y = Vrer- For any a > 1, let Fy 5(x) := sup{P(x,00) : Dy(P, P;,,) < 8},
and

V L o — lyrcf‘
Then the distribution function Fys5(x) = 1 — I:"a,(s(x) belongs to the domain of
attraction of G+.

Theorem 1 is, however, a corollary of Theorem 2 below.
Theorem 2 Let the reference model P,,, belong to the domain of attraction of G .
In addition, let P, induce a distribution F that satisfies the regularity assumptions
of Proposition 1 with y = y,,.. For any o > 1, let Fa’g(x) = sup{P(x, 00) :
Dy (P, P,,;) < 6}, and
A .

Vom S e
Then the distribution function Fy s(x) = 1— Fa,g (x) belongs to the maximum domain
of attraction of Gx.

The special case corresponding to @ = 1 is handled in Propositions 4 and 5. Proofs
of Theorems 1 and 2 are presented in Section 6.

Remark 2 First, observe that P(x, 00) < Fa,g(x), for every P in the neighborhood
set of measures Py s := {P : Dy (P, Pref) < §}. Therefore, for any @ > 1, apart
from characterizing the domain of attraction of ﬁa’(g, Theorem 2 offers the following
insights on the neighborhood P s :

1) If the reference model belongs to the domain of attraction of a Frechet dis-
tribution (that is, y,,, > 0), and if P is a probability measure that lies in its
neighborhood P, s, then P must satisfy that

_ o=l +
P(x.o0) = O (x res ) (20)
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as x — oo, for every € > (. This conclusion is a consequence of (5): Fa,,; is in
the domain of attraction of G+, then by (5) we have

o—

_ 1
Fus(x) = LO)x ™" = L(x)x s ,

and the observation that P(x,00) < Fa,(g(x). In addition, as in the proof

of Theorem 2, one can exhibit a measure P € Py s such that P(x,c0) >

ex @V for some ¢ > 0 and all large enough x.

2)  On the other hand, if the reference model belongs to the Gumbel domain of
attraction (yref = 0), then every P € P, s satisfies P(x,00) = o(x~), as
x — o0, for every € > 0.

3) Now consider the case where Pref € D(Gy,,) for some Yeer < 0 (that is, the

reference model belongs to the domain of attraction of a Weibull distribution).

Let x; < oo denote the supremum of its bounded support. In that case, any

probability measure P that belongs to the neighborhood Py, s must satisfy that

P(—00,x7) = 1and

_a—l i
* N ay, -
P(xF—e,xF)— 0(6 ref >,

as € — 0, for every ¢’ > 0. In addition, one can exhibit a measure P € Py s
such that P(x* — e, x¥) > ce @ D/ay,
€ > 0 sufficiently small.

¢/ | for some positive constant ¢ and all

It is important to remember that the above properties hold for all « > 1, and is not
dependent on §.

For a fixed reference model P, ., it is evident from Remark 2 that the neighbor-
hoods Py,5s = {P : Do(P, P,,;) < 8} include probability distributions with heavier
and heavier tails as o approaches 1 from above. This is in line with the observation
that Dy (P, P, f) is a non-decreasing function in ¢, and hence larger neighborhoods
Pa,s for smaller values of . In particular, when o = 1 and shape parameter y,,, = 0,
the quantity y* = y,,,o/(e — 1) defined in Theorem 1 is not well-defined. This
corresponds to the set of plausible measures { P : D1 (P, Gg) < §} defined using KL-
divergence around the reference Gumbel model Gy. The following result describes
the tail behaviour of Fa‘a in this case:

Proposition 4 Recall the definition of extreme value distributions G, in (4). Let
F1,5(x) = sup{P(x,00) : D1(P, Go) < 8}, and Fy 5(x) = 1 — Fy 5(x). Then Fy s
belongs to the domain of attraction of G1.

The following result, when contrasted with Remark 2, better illustrates the
difference between the cases « > 1 and o = 1.

Proposition 5 Recall the definition of G, as in (4). For every 6 > 0, one can find

a probability measure P in the neighborhood {P : D1(P, Gy, < 8}, along with
positive constants c4 or c_ or cq, and x4 or xo or €_ such that
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a) P(x,00) > cylog™3 x forevery x > x, 1V, >0

b) P(x,00) > cox ! log_zxfor every x > xo, if y,,;, = 0; and

¢) P(—oo,x%)=1and P(x} —¢€,x}) > c3 log™? éforeverye <€, ify,, <O.
Here, the right endpoint xé = sup{x : GVref (x) < 1} is finite because Vi < 0.

In addition, it is useful to contrast these tail decay results for neighboring measures
with that of the corresponding reference measure G, characterized in (5), (6) or
(7). It is evident from this comparison that the worst-case tail probabilities Fy, 5(x)
decay at a significantly slower rate than the reference measure when o = 1 (the
KL-divergence case). Table 1 below summarizes the rates of decay of worst-case
tail probabilities Fa75(~) over different choices of @ when the reference model is a
GEV distribution. In addition, Fig. 1, which compares the worst-case tail distributions
Fa) s (x) for three different GEV example models, is illustrative. Proofs of Theorems
1 and 2, Propositions 4 and 5 are presented in Section 6.

5 Robust estimation of VaR

Given independent samples X1, ..., Xy from an unknown distribution F', we consider
the problem of estimating F < (p) for values of p close to 1. In this section, we develop a
data-driven algorithm for estimating robust upper bounds for these extreme quantiles
by employing traditional extreme value theory in tandem with the insights derived in
Sections 3 and 4. Our motivation has been to provide conservative estimates for F < (p)
that are robust against incorrect model assumptions as well as calibration errors.
Naturally, the first step in the estimation procedure is to arrive at a reference model
Py (—00,x) = Gyy(apx + bp) for the distribution of block-maxima M, . Once
we have a candidate model P, for M,, the p"-th quantile of the distribution P,
serves as an estimator for F " (p). Instead, if we have a family of candidate models
(as in Sections 3 and 4) for M,,, a corresponding robust alternative to this estimator is
to compute the worst-case quantile estimate over all the candidate models as below:

£p :=sup{G(p") : Da(G, P,,,) <8} 21

Here G denotes the usual inverse function G (1) = inf{x : G(x) > u} with
respect to distribution G. Since the framework of Section 3 is limited to optimization
over objective functionals in the form of expectations (as in (11)), it is immediately
not clear whether the supremum in (21) can be evaluated using tools developed in
Section 3. Therefore, let us proceed with the following alternative: First, compute the
worst-case tail distribution

Fus (@) 1= 5up {G(x,00) : Du(G, Poy,) <8}, x € R
over all candidate models, and compute the corresponding inverse
Fos(p") i=inflx 1 1 = Fas(x) = p"}.

The estimate X, (defined as in (21)) is indeed equal to Fo:,_ﬁ (p"), and this is the
content of Lemma 1.
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Lemma 1 Foreveryu € (0, 1), F, 5(14) sup{G(_(u) i Dy (G, Pspy) < 8}.

Proof For brevity, let P = {G : Du(G, P;,,) < 8}. Then, it follows from the
definition of Fy 5(-) and F 50 that

F ) = inf{x s sup G(x,00) < 1— u}
' GeP
= inf m {x:G(x,oo) < 1—u}
GeP
= inf () [G~ (), 00) = sup G~ (u).
GeP GeP
This completes the proof of Lemma 1. O

Now that we know %, = F, ;(p") is the desired upper bound, let us recall from
Corollary 1 how to evaluate ng(x) for any x of interest. If 6, > 1 solves

— 0, Py (x, oo)) _s
P, (—00,x) ’

1
PGEV (.X', oo)¢ot(9x) + PGEV (—OO, x)¢0( (

then Fa,(g(x) = 0, P, (x, 00). Though 6, cannot be obtained in closed-form, given
any x > 0, one can numerically solve for ,, and compute Fa,g(x) to a desired level
of precision. On the other hand, given a level u € (0, 1), it is similarly possible to
compute Fofa (u) by solving for x that satisfies P, (x,00) < 1 —u and

P,y (x, 00)¢q ( ) + P, (—00, X)) ( ) =3.(22)

ey (X, 00) ey (—00, X)
Therefore, given « and §, it is computationally not any more demanding to evaluate

the robust estimates F 5(1’ ) for F< (p).
5.1 On specifying the parameter §

For a given choice of paramter @ > 1, there are several divergence estimation meth-
ods available in the literature to obtain an estimate § = D, (PM”, PcEv), where PM
is the empirical distribution of M,,. For our examples, we use the k-nearest neigh-
bor (k-NN) algorithm of Péczos and Schneider (2011) and Wang et al. (2009). See
also Nguyen et al. (2009), Nguyen et al. (2010), and Gupta and Srivastava (2010)
for similar divergence estimators. These divergence estimation procedures provide
an empirical estimate of the divergence between sample maxima and the calibrated
GEV model P, .

The specific details of the k-NN divergence estimation procedure we employ from
Pdczos and Schneider (2011) and Wang et al. (2009) are provided in Remark 3 below:

Remark 3 Suppose My, 1, ..., M, » are independent samples of M,,, and L1, ..., L;

are samples from Py . Define pi (i) to be the Euclidean distance between M), ; and
its k-th nearest neighbour among all M,, 1, ..., M, , and similarly v (i) the distance
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between M, ; and its k-th nearest neighbour among all Ly, ..., L;. The k-NN based
density estimators are

k —1 k/l
he(My ) = “Lm =D /

| B(pr ()] | Bk ()]’
where | B(px (i))| denotes the volume of a ball with radius o (i). Then, for a fixed «,
the estimator for § = Dy (Py,, PGEv) 1s given by

n

S L\ (= Do)y 1= Ik)*
S_a—llog(ﬁl;( 1ok ) ) 'r(k—a+1)r(k+a—1)>’

for o > 1, where I" denotes the gamma function, and

m

N 1 [ (1)
"= z}k’g ((m - 1)pk(i))’

i=

and Gk(My,;) =

fora = 1.

For a fixed choice of @ > 1 and desired p close to 1, the ROB-ESTIMATOR(p, o)
procedure in Algorithm 1 below provides a summary of the prescribed estimation proce-
dure.

Algorithm 1 To compute a robust upper bound X, for VaR ,(X)
Given: N independent samples X1, ..., Xy of X, alevel p close to 1, and a fixed
choice ¢ > 1.

procedure ROB-ESTIMATOR(p, «)
Initialize n < N, and let m = L%J.

Step 1 (Compute block-maxima): Partition X1, ..., Xy into blocks of size n,
and compute the block maxima for each block to obtain samples My, 1, ..., My
of maxima M,,.

Step 2 (Calibrate a reference GEV model): Treat the samples M, 1, ..., My
as independent samples coming from a member of the GEV family and use a
parameter estimation technique (for example, maximum-likelihood) to estimate
the parameters a,, b, and y,), along with suitable confidence intervals.

Step 3 (Determine the family of candidate models): For chosen « > 1, deter-
mine § using a divergence estimation procedure (for an example, see Section 5.1).
Then the set {P : Dy (P, P, ) < 8} represents the family of candidate models.

Step 4 (Compute the p"-th quantile for the reference GEV model, and as well
as the worst-case estimate over all candidate models):
Solve for x such that Gy, (a,x + by) = p", and let x, be the corresponding
solution.
Solve for x > x, in (22) and let the solution be X ,.

Return x, and x,
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5.2 On specifying the parameter o

To input to the estimation procedure ROB-ESTIMATOR(p, «) in Algorithm 1, one can
perhaps choose « via one of the three approaches explained below:

1y

2)

3)

Choose « so that the corresponding y* = ypa /(o — 1) matches with an appro-
priate confidence interval for the estimate yy : For example, if yp > 0 and the
confidence interval for yp, estimated from data, is given by (yp — €, yo + €),
then we choose « satisfying

Yo—— = o + €. (23)
a—1
See Examples 1 and 2 for demonstrations of choosing « following this approach.
Alternatively, one can choose « based on domain knowledge as well: For exam-
ple, consider the case where one uses Gaussian distribution to model returns of
a portfolio. In this instance, if a financial expert identifies the returns are instead
heavy-tailed, then one can take ¢ = 1 to account for the imperfect assumption
of Gaussian tails. See Example 3 for a demonstration of choosing « based on

this approach.

One can also adopt the following approach that mimicks the cross-validation
procedure used in machine learning for choosing hyperparameters:

Recall that our objective is to estimate F < (p) for some p close to 1. With this
approach, we first estimate F < (g) as a plug-in estimator from the empirical
distribution, for some ¢ < p; while it is desirable that ¢ is closer to p, care
should be taken in the choice that F <~ (g) should be estimable from the given N
samples with high confidence.

Having estimated F < (g) directly from the empirical distribution, the idea
now is to divide the given N samples, uniformly at random, into K mini-
batches, each of which is independently input as samples to the procedure
ROB-ESTIMATOR(q, «) in Algorithm 1 to yield K different robust estimates of
F < (gq) for an initially chosen value of « (say, « = 1). If the mini-batches are
of size N /r, then it is reasonable to choose the scale-down factor r to be of the
same order of magnitude as (1 —q)/(1 — p). The rationale behind this choice is
to subject the estimation task (that is, to estimate F < (q) with N/r samples) in
cross-validation mini-batches to the same level of statistical difficulty as in our
original task (which is to estimate F <~ (p) with N samples).

We repeat the above experiment for small increments of « to identify the largest
value of o for which the robust estimates obtained from the K sub-problems
still cover the plug-in estimate for F' <~ (g) obtained initially from the empirical
distribution. We utilize this largest value of « that performs well in the scaled-
down sub-problems to be the choice of « for robust estimation of F < (p).

The third approach avoids using the upper end-point of a confidence interval of
y to pick «. Instead it incorporates a trade-off between the choice of o and §é.
Estimating § requires the estimation of the Rényi divergence, which is typically
handled by k-NN methods as explained in Remark 3. Large values of o may
be desirable because they generate better upper bounds, but since « — D, is
nondecreasing as mentioned in Section 3.1, it also requires large neighborhoods
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to include the true distribution and hence large values of §. Further, by Theo-
rem 2 if the true distribution has heavier tail than the chosen GEV model, then
there does exist a threshold of o over which the neighborhoods will not include
the true distribution or any other distributions with the same or more tail heavi-
ness than the true distribution, regardless of how large § is. Therefore when the
chosen « is so large that the true distribution has the tail with an index greater
than y*, any attempt to estimate such § will be unstable and underestimated and
causes the failure of coverage for true quantile. The above cross-validation-like
procedure incorporates this trade-off and picks a suitable pair («, §). Example 4
gives the corresponding numerical experiments using this approach.

5.3 Numerical examples

Example 1 For a demonstration of the ideas introduced, we consider the rainfall
accumulation data, due to the study of Coles and Tawn (1996), from a location in
south-west England (see also Coles (2001) for further extreme value analysis with
the dataset). Given annual maxima of daily rainfall accumulations over a period of
48 years (1914-1962), we attempt to compute, for example, the 100-year return level
for the daily rainfall data. In other words, we aim to estimate the daily rainfall accu-
mulation level that is exceeded about only once in 100 years. As a first step, we
calibrate a GEV model for the annual maxima. Maximum-likelihood estimation of
parameters results in the following values for shape, scale and location parameters:
yo = 0.1072, ag = 9.7284 and by = 40.7830. The 100-year return level due to
this model yields a point estimate 98.63mm with a standard error of +17.67mm
(for 95% confidence interval). It is instructive to compare this with the correspond-
ing estimate 106.3 £ 40.7mm obtained by fitting a generalized Pareto distribution
(GPD) to the large exceedances (see Example 4.4.1 of Coles (2001)). To illustrate
our methodology, we pick o = 2, as suggested in (23). Next, we obtain § = 0.05 as
an empirical estimate of divergence D, between the data points representing annual
maxima and the calibrated GEV model P, = G,,(aox + bo). This step is accom-
plished using a simple k-nearest neighbor estimator (see Péczos and Schneider 2011).
Consequently, the worst-case quantile estimate over all probability measures satisfy-
ing Dy (P, P;,,) < & is computed to be F,;~ (1 — 1/100) = 132.24mm. While not
being overly conservative, this worst-case 100 year return level of 132.44mm also
acts as an upper bound to estimates obtained due to different modelling assumptions
(GEV vs GPD assumptions). To demonstrate the quality of estimates throughout the
tail, we plot the return levels for every 1/(1 — p) years, for values of p close to 1, in
Fig. 2a. While the return levels predicted by the GEV reference model is plotted in
solid line (with the dash-dot lines representing 95% confidence intervals), the dotted
curve represents the worst-case estimates F,;~ (p). The empirical quantiles are drawn
in the dashed line.

Example 2 In this example, we are provided with 100 independent samples of a
Pareto random variable satisfying P{X > x} = 1 — F(x) = 1 A x73. As before,
the objective is to compute quantiles F " (p) for values of p close to 1. As the
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GEV quantiles
obust quantiles
empirical quantiles
Cl of GEV quantiles
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(a) Quantile plots for rainfall data, Eg. 1
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GEV n=10 and 15
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0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

(b) Quantile plots for Pareto data, Eg. 2

Fig.2 Plots for Examples 1 and 2

entire probability distribution is known beforehand, this offers an opportunity to
compare the quantile estimates returned by our algorithm with the actual quan-
tiles. Unlike Example 1, the data in this example does not present a natural means
to choose block sizes. As a first choice, we choose block size n = 5 and per-
form routine computations as in Algorithm 1 to obtain a reference GEV model
P, with parameters yp = 0.11,ap = 0.58, by = 1.88, and corresponding tol-
erance parameters « = 1.5 and § = 0.8. Then the worst-case quantile estimate
Fy(p") = sup{G(p") : Du(G, P;,) < 8} is immediately calculated for vari-
ous values of p close to 1, and the result is plotted (in the dotted line) against the

@ Springer



338 J.Blanchet et al.

true quantiles F < (p) = (1 — p)~'/3 (in the solid line) in Fig. 2b. These can, in

turn, be compared with the quantile estimates x, (in the solid line) due to tradi-
tional GEV extrapolation with reference model P, . Recall that the initial choice
for block size, n = 5, was arbitrary. One can perhaps choose a different block size,
which will result in a different model for corresponding block-maximum M,,. For
example, if we choose n = 10, the respective GEV model for Mo has parameters
o = 0.22, ag = 0.55 and by = 2.3. Whereas, if we choose n = 15, the GEV model
for M5 has parameters yg = 0.72, ag = 0.32 and by = 2.66. When considering the
shape parameters, these models are different, and subsequently, the corresponding
quantile estimates (plotted using dashed lines in Fig. 2b) are also different. However,
as it can be inferred from Fig. 2b, the robust quantile estimates (in the dotted line)
obtained by running Algorithm 1 forms a good upper bound to the actual quantiles
F < (p), as well as to the quantile estimates due to different GEV extrapolations from
different block sizes n = 10 and 15.

Example 3 The objective of this example is to demonstrate the applicability of Algo-
rithm 1 in an instance where the traditional extrapolation techniques tend to not yield
stable estimates. For this purpose, we use N = 2000 independent samples of the ran-
dom variable ¥ = X 4 501(X > 5) as input to the maximum likelihood based
GEV model estimation, with the aim of calculating the extreme quantile F < (0.999).
Here, F denotes the distribution function of random variable Y, and X is a Pareto

1300 T T T T T T T T T
GEV quantiles
1200 |— = actual quanu!e i
-------- robust quantiles
== === C| of GEV quantiles
1100

1000

900

800

700

600

500

400

300

Fig.3 Plot for Example 3, instability in estimated quantile F < (0.999)
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random variable with distribution max(1 — x~!-1, 0). The quantile estimates (and
the corresponding 95% confidence intervals) output by this traditional GEV estima-
tion procedure, for various choices of block sizes, is displayed with the solid line in
Fig. 3. Even for modestly large block size choices, it can be observed that the 95%
confidence regions obtained from the calibrated GEV models are far below the true
quantile drawn in the dashed line. This underestimation is perhaps because of the sud-
den shift of samples of block-maxima M,, from a value less than 5 to a value larger
than 55 (recall that the distribution F assigns zero probability to the interval (5, 55)).

Next, we use Algorithm 1 to yield an upper bound that is robust against model
errors. Unlike previous examples where standard errors are used to calculate the suit-
able «, in this example, we use the domain knowledge that the samples of Y have
finite mean, which means, y* < 1. Assuming no additional information, we resort
to the conservative choice y* = 1. The dashed curve in Fig. 3 corresponds to the
upper bound on F < (0.999) output by Algorithm 1. We note the following observa-
tions: First, the worst case estimates output by Algorithm 1 indeed act as an upper
bound for the true quantile (drawn in solid line), irrespective of the block-size chosen
and the baseline GEV model used. Second, for block-sizes smaller than n = 45, it
appears that the calibrated baseline GEV models are not representative enough of the
distribution of M,,, and hence higher the value of § for these choices of block sizes.
Understandably, this results in a conservative worst case estimate for the smaller
choices of block sizes. However, we argue that the overall procedure is not discourag-
ingly conservative, by observing that the spread of 95% confidence region for block
size choices n = 50 to 60 (where the traditional GEV calibration appears correct) is
comparable to the difference between the true quantile and the worst-case estimate
produced by Algorithm 1 for majority of block size choices (from n = 20 to 60).

Example 4 In this example we consider the St. Petersburg distribution, which is not
in the maximum domain of attraction of any GEV distribution (see e.g. Fukker et al.
(2016)). Recall that X is St.Petersburg distributed if

Pix=28=27% k=1,2,... (24)

Note that the St. Petersburg distribution takes large values with tiny probability. Let
B denote a Bernoulli random variable with parameter 1/5. In addition let W be expo-
nentially distributed with mean 8 and define Z = B - X + W. Suppose we have 5000
data points from the distribution of Z. Similar to the previous example, we want to
estimate its quantile F<(0.999).

Here we demonstrate another approach to choose the parameter «. The idea, as
described earlier in Item 3) is to first choose a tail probability level g for which
F < (q) can be accurately estimated from the whole data set. For our example, we take
g = 0.99 and compute the plug-in estimate F“ (g) from the empirical distribution.
Then we independently divide the given data set uniformly at random into 10 batches
each of size 625 samples (corresponding to a scale-down factor = 8). We employ the
procedure ROB-ESTIMATOR(q, «) for various values of « on each of these 10 sub-
sampled mini-batches independently, and choose the largest value of « such that the
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robust estimates from each of the 10 sub-samples cover the earlier plug-in estimate
F<(0.99). The specific details for this example are as follows:

1) The plug-in estimate for F<(0.99) from the given 5000 samples is 44.9.
Note that with 5000 samples, this estimate from empirical distribution is with
reasonably high confidence.

2) Resample the data into 10 mini-batches of size 5000/8 = 625 samples. With
blocksize = 20 we utilize the procedure ROB-ESTIMATOR(0.99, ) on each of
the 10 mini-batches to choose the largest « such that the respective robust esti-
mates from all the 10 sub-sampled mini-batches cover the empirical estimate of
F<(0.99) obtained from step 1). This approach leads us to the choice of « =
4.47. Computing block maxima from blocks of samples with size = 48, the sub-
sequent robust upper bound from the procedure ROB-ESTIMATOR(0.999, 4.47)
turns out to be 652.90, which covers the true quantile, F < (0.999) = 268.27. In
contrast, the 95%-confidence interval of GEV estimate is [93.81, 201.60], which
fails to cover the true quantile.

This approach incorporates the trade-off between the choice of o and §. Large values
of o« may be desirable because they generate less conservative upper bounds. But
Step 2) avoids picking too large values of «, because too large values of o, combined
with the corresponding estimators for § empirically do not lead to good coverage for
F<(0.99). Therefore this cross-validation-like procedure automatically incorporates
the trade-off between the choice of hyperparameters « and §.

6 Proofs of main results

In this section, we provide proofs of Theorems 1 and 2, along with proofs of
Propositions 3, 4 and 5.

6.1 Proof of Proposition 3

By definition, Fy s(x) is non-decreasing in x. Since Fy 5(x) < Pror(—00,x), we
have lim,_, _o Fy 5(x) = 0. In addition, we have from Corollary 1 that Fa,g(x) =
Ox Prey (x, 00), where 0, satisfies (18). Since Prf(x, 00)¢g(6x) < 5 (follows from
(18)), we have 6, < ¢;1(8_/P,ef(x, o0)), where ¢;1(~) is the inverse function of
¢« (+) (recall the defintion of ¢ () in (13) to see that the inverse is well-defined for
every o > 1). As a result,

Fos(x) < ¢y ( Pref(x, 00). (25)

Pref(xa OO))

If we let W (x) denote the product log function®, then o Yu) =u="* whena > 1
and d)(;l(u) = u/W(u) when o = 1. Consequently for any o > 1, 6¢;1(1/6) -0

4W is the inverse function of f(x) = xe*

@ Springer



On distributionally robust extreme value analysis 341

as € — 0. As aresult, lim,_, o Fa,g(x) = 0 for any choice of « > 1 and § > 0. Thus
limy 00 Fy 5(x) = 1.

To show that Fy s(x) is right-continuous, we first see that

Fos(x+€) — Fos(x) =  sup  P(x,00)—  sup  P(x+e 00)

P:Dy(P,Prof)<é P:Dy(P,Prof)<8
< sup P(x,x +¢€],

P:Dy(P,Prof)<8

for any € > 0, for every choice of § > 0, > 1 and P,.r. Following the same
reasoning as in (25), we obtain that

sup P(x,x + €] 5%‘1( )Pref(x,ere],

P:Dy (P, Pref)=<$ Pref(-x,X+6]

for which the right hand side vanishes when € — 0. As a result, F, 5(x) is right-
continuous as well, thus verifying all the properties required to prove that Fy s(-) is
a cumulative distribution function. ]

6.2 Proofs of Theorems 1-2

The following technical result, Lemma 2, is useful for proving Theorem 2. Given
oa>1,ue(0,1)and § < &, (u), define

h(u) ;= ub(u), (26)
where 6 (u) is a value of 6 satisfying
o 1—6u\* -
ud” + (1 —u) 1 =34. (27)
—Uu

Lemma 2 Foranyo > 1l and§ > 1,

0(u) o . hGh" (w) 1
im —— = and lim = — .
uNO R () o —1 N0 (K (u))? a—1

Proof of Lemma 2 For u € (0, 1),_9(u) satisfying (27) exists if u is small enough

such that & (u) := u¢y(1/u) > & (see Corollary 1). For all such small enough u,

an application of implicit function theorem gives that,

(1 =)0 () — (1 —ub@))* + (1 —6w)(1 — ub())*!
a(l —wu[(1 —ud@)*= — (1 —u)*=16=1(u)]

0'(u) =

’

and consequently,

(@ = DIA —ub@)* — (1 —w)*6% ()]
a(l —w)[(1 —ub@)*~! — (1 —w)>=1oe=1 ()]
Since uf(u) < u¢;1(5/u) (see (25)), we have u6(u) — 0 as u N\, 0. Moreover,
since O (u) > (8 — (1 —u)~ @~ D) /u (from (27)), we have that 6 (1) — 00, as u N\ 0.
Combining these observations with the above expression for /' (u), we arrive at the
first conclusion that lim,~ 0 6 (u)/ h'(u) = o/ (o — 1).

W (u) =
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To verify the second limiting statement, we proceed by rewriting as follows:
h(u)h" (1) _ O) h"(u) ub’(u)
(W) @) 6'w) I (u)
We know from the above that (1) /h’ (1) converges to /(o — 1), as u N\, 0; and by
I’Hospital’s rule, we have A" (1) /0’ (u) converges to (o« — 1)/c. Finally,
ud’ (u) uf’ (u)
()  0(u) + ub(u)
(1 —w)*0%w) — (1 —ud@)* +a(l —0w))(1 — ub(u)*!
B (¢ = DIA = ub@))* — (I —u)*6*(u)]

3

which converges to ———, since uf(u) — 0 as u \, 0.Combining the above

a—1°
observations, the verification of the second conclusion that & (u)h"” (u)/(h' (u))> —
—1/(a — 1) is complete. O

Proof of Theorem 2 Our goal is to determine the maximum domain of attraction
membership of Fys(x) = sup{P(x,00) : Do(P, P,;) < §}. For brevity, let
F(x) := P, (x, 00). Then for values of x such that P, (x, co) small enough, we

have from Corollary 1 that I:"agg(x) = h(F(x)). Since F(-) satisfies the regularity
conditions in the statement of Proposition 1, we have

F(xX)F" (x)
m _

li = Vref + 1, (28)

g (F(x)
and the following from elementary calculus:
F 5(x) = W/(F(x))F'(x) and
Fys(x) = h"(F))(F' () + b (F () F" (x).
Combining these observations with the definition in (26), we arrive at,
FasFL5(0)  h(E)R(FR) | 6(F(x)) (F<x)ﬁ”<x)> 9
(@) WE) HEO (W)

Since F(x) — 0 as x — x;’;, it follows from Lemma 2, (29) and (28) that,
(1= Fys\  Fas()F! ()
lln}( 7 x) = hm* — -1
XPXg .8 X X (F;’(;(X))
h@)h"w) . 0w . F)F"(x)
im —————= + lim — — > —1
uNO - (h(un)) uNO I/ (1) u\0 (F/(x))

! +
a—1 a-—1

(yref + 1) -1= Olaleref~

Thus, due to the characterization in Proposition 1, we have that Fy s lies in the
maximum domain of attraction of G +. ]
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Proof of Theorem I Theorem 1 follows as a simple corollary of Theorem 2, once we
verify that any GEV model G (x) := P, (—00, x] satisfies G'(x) > 0 and G” (x)
exists in a left neighborhood of x{; = sup{x : G(x) < 1}, along with the property

that .
1-G
llm < 7 ) (_x) = yref’
XX G

where y, . is the shape parameter of G. Such a GEV model satisfies G(x) =
Gy.ilax + b) for some scaling and translation constants a and b. Therefore, it

is enough to verify these properties only for G(x) = G,,(x). Once we recall
the definition of G, in (4), the desired properties are elementary exercises in
calculus. O

6.3 Proofs of Propositions 4 -5

Given u € (0, 1) and § < &1, (u), let 6(u) be a value of 6 that solves the equation,

1—06u

u6log® + (1 — 6u) log 1 =34. (30)

Define h(u) := uB(u) (as in the proof of Theorem 2, see (26)). The following
technical result, Lemma 3, is useful for proving Proposition 4.

Lemma 3 For anyS > 1,
O@w)  h(u)h"(u)
m =
WNO R/ (u) (W (u))?

Proof of Lemma 3 For u € (0, 1), 6(u) satisfying (27) exists if u is small enough
such that 8;, (1) := u¢y(u) > 8§ (see Corollary 1). For all such small enough #, an
application of implicit function theorem gives that,

@ —1 — 9(u)’ where L(u) := log w
u(l —u)L(u) 1 —ub(u)
Since A’ (1) = 0(u) + ub’(u), it follows that,

O(u) —1
' (u)
Differentiating both sides and multiplying by /(u), we obtain,
/! "

% — 0w -1 % = ub @) (L' (u)(1 — 1) — L(w)).

Since the first term in the left hand side above simplifies to
h(u)6’ (u) — o) <1 _l-u L(”)) ’

 (u) 1 —1/6(u)
we obtain that,

(1 B ;) R _ (=L
ow)) (Ww)?: 1—1/6(u)

0’ (u) =

= L)1 —u). (31)

+uLl@) —u(l —u)L' @). (32)
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Differentiating L(u), we obtain,

o' 0(u) — 1
(1 —ub@) L' ) = % + (IM)T

Substituting this observation in (32), we obtain
(1 B L) h(u)h" (1)
0w ) (W w))*
B 1—u _ l-u ud’'(w) u@@)—1)
_1+(“_ 1—1/9(u))L(“) 1 — ubu) ( 0w T 1-u )
Combining this observation with that in (31), we obtain,
<1 B 1 ) (9(14) n h(u)h”(u))
Ou) ) \W' @) (Wu)?
=1_1—u9(u)L(u) 1—u (1—1/9(14) _1+u(9(u)—1)).
(1 —u)L(u) 1—u

O(u) — 1 1 —ub)

Since uf(u) < ud)fl(g/u) (see (25)), we have uf (1) — 0as u N\ 0. Moreover, since
O(u) > ¢_1((8_ + log(1 — u))/u) (from (30)), we have that 6(u) — oo, as u \ 0.
Therefore, we have from the above displayed equation that,

lim 1 x (9(14) n h(u)h”(u)>

uN\O W) (W (u))?
—1—(1—0)lim —£® —1_0< 1-0 —1—9>.
0 0) — 1 1—0 \ 1 x limyo L) 1

It follows from the definition of L(u) that L(u) — oo as u N\ 0; due to L’Hdspital’s
rule, we also obtain lim,~\o L(u)/(0(u) — 1) = 0. This verifies the statement of
Lemma 3. O

Proof of Proposition 4 Our objective is to identify the maximum domain of attrac-
tion memberiship of the tail probability function,

F1.5(x) := sup{P(x, 00) : D1(P, Gg) < 8}.

For brevity, let Gox) := 1 — Go(x). :Fhen for Vah_les of x such Ehat Go(x) small
enough, we have from Corollary 1 that F7 s(x) = h(Go(x)). Since Go(-) satisfies the
regularity conditions in the statement of Proposition 1, we have

G G//
lim M =1

- (33)
1o (Gh)”
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Then, as in the proof of Theorem 2, we have from Lemma 3, (33), (29) that,

. 1= Fis\ o Fis()FYg(x)
i\, ) O
X—> 00 -

Ls (Ff,a(x))

o MG (Gox) | 0Go) Go)Ghx)
= (W (Go(x)) W(Go()  (Gyx))*
—2-1=1

1

Thus, due to the characterization in Proposition 1, we have that Fj s lies in the
maximum domain of attraction of G;. O]

Proof of Proposition 5 First, we treat the case y,,, = 0: Consider the probability

density function f(x) = c(xlog x)"21(x > 2), where c is a normalizing constant
that makes f f(x)dx = 1. In addition, let g(x) = Gé)(x) denote the probability
density function corresponding to the distribution G¢. Clearly,

/ f(x) log (&) dx
g(x)

. N c(xlogx)™? )
CA ()C IOgX) log (exp(— exp(—x)) CXp(_-x) o
fmx+wM<ﬂ+by

5 x2log? x

Di(f, 2)

<

dx < oo.

Next, consider the family of densities {h, : a € [0, 1]}, where
hg:=af + (1 —a)g. (34)

Since Dj(ho, g) = 0, due to the continuity of D(h,, g) with respect to a, there
exists an a € (0, 1) such that Dy (hgz, g) < §. Then,

f ha(w)du =/ (af+( —a)g) (u)du

o _
Eﬁf c du:ac+0(l)’
 ulog?u xlog? x

The asymptotic equivalence used above in the last equality is due to Karamata’s
theorem (see Theorem 1 in Chapter VIIL.9 of Feller (1966)). This demonstrates the
existence of a probability distribution P and constants cg, xo such that P(x, co) >
cox ! log_zx for all x > xo.

Next, we treat the case y,,, # 0: Consider the probability measure Q whose
Radon-Nikodym derivative is given by,

") =4, ((1 — Gy, ()1 —log(1 =G, <x>>>2> ’
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for a suitable positive constant c. Here ¢, ! (-) denotes the inverse function of ¢ (x).
Then Di(Q, P,,;) < oo because of the change of variable from x to u via the
relationshipu =1 — G,,ref (x) in the integration below:

/ o (22 ) uc / 1 < 4
= ———du < oo.
"\aG,_ )7 T Jo u=Togup ™"

Let g(x) := G;, y (x) and f denote the probability density of the measure Q. Con-

sider the family of probability density functions {h, : a € [0, 1]}, where h, is
defined in (34). Since Di(hg,g) = 0, due to the continuity of Di(h,, g) with
respect to a, there exists an a € (0, 1) such that D (hg, g) < 6. Moreover, if we let
A(t) = qbl_l(c(l — log 1)~2/1), then observe that there exists a #o such that A(¢) is
decreasing in the interval (0, 7). Therefore,

\

/00 ha(w)du > a - Mg(u)du =a /00 Al -G, (u)g)du
x x &) x ref

v

aA(l — Gmf (x)) /Xoo gwydu=aA(l— nygf (x)(1- Gmf (x)),
for all x large enough. To proceed further, observe that

1= Gy () = (1 + 3,20 Trer |
for some constant ¢ < 1 and all x close enough to the right endpoint x7, := sup{x :

G (x) < 1}. In addition, t A(?) strictly decreases to 0 as # decreases to 0. Therefore,
for all x close to the right endpoint x{; := sup{x : G,(x) < 1}, it follows that

o
/ ha(u)du > A (5(1 + ‘}/refx)_l/yref) el + )/refx)_l/yref.
X

Since ¢f] (u) > u/logu for large enough wu, A(t) >
act™' (1 — log t)_2 log_1 (c/t), for all ¢ close to 0. As a result, there exists a con-
stant ¢’ such that tA(t) > ¢/(1 — log )73 forall ¢ sufficiently close to 0. This allows
us to write

o
f haGdu > ¢/ (1 —1og@(1 + y,,x) e )7
X

1 ) _
= /(1 +1og@/77 (14 y,,2)) /7,7,

for x sufficiently close x(";, thus verifying the statement in cases (a) and (c) where
V,er 7 0. This completes the proof of Proposition 5. O
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