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Abstract. We revisit Markowitz’s mean-variance portfolio selection model by considering
a distributionally robust version, in which the region of distributional uncertainty is
around the empirical measure and the discrepancy between probability measures is dictat-
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ed by the Wasserstein distance. We reduce this problem into an empirical variance minimi-
zation problem with an additional regularization term. Moreover, we extend the recently
developed inference methodology to our setting in order to select the size of the distribu-
tional uncertainty as well as the associated robust target return rate in a data-driven way.
Finally, we report extensive back-testing results on S&P 500 that compare the performance
of our model with those of several well-known models including the Fama—French and
Black-Litterman models.
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1. Introduction

We study data-driven mean-variance portfolio selec-
tion with model uncertainty (or ambiguity). The classi-
cal one-period Markowitz mean—variance model (Mar-
kowitz 1952) is to choose a portfolio weighting vector
¢ € R? (all the vectors in this paper are by convention
columns) among d stocks to maximize the risk-
adjusted expected return. The precise formulation is'

Engl {pTVarp(R)p: ¢ 1=1,¢ Ex(R)=p}, (1)

where R is the d-dimensional vector of random returns
of the stocks; P* is the probability measure underlying
the distribution of R; Ep and Varp are, respectively,
the expectation and variance under P*; and p is the tar-
geted expected return of the portfolio.

It is well known that this model has a major draw-
back when applied in practice. On one hand, its solu-
tions are very sensitive to the underlying parameters,
namely, the mean and the covariance matrix of the
stocks. On the other hand, Ep+ is unknown in practice,
so one has to resort to the empirical versions of the
mean and the covariance matrix instead, which are
usually significantly deviated from the true ones (es-
pecially the mean because of the notorious “mean-
blur” problem).

This motivates the development of the “robust” for-
mulation of the Markowitz model, which recognizes
and tries to account for the impact of the (potentially sig-
nificant) discrepancies between P* and its empirical ver-
sion. This idea originates in the robust control approach
from control theory (see, for example, Petersen et al.
2000). Hansen and Sargent (2008) give a systematic ac-
count on applications of robust control to economic
models. There is also a rich literature on robustification
of portfolio choice. The paper by Lobo and Boyd (2000)
is among the first to provide a worst-case robust analy-
sis with respect to the second-order moment uncertainty
within the Markowitz framework. Goldfarb and Iyengar
(2003) consider a robust Markowitz problem with the
uncertainty set based on vector/matrix distance. Pflug
and Wozabal (2007) present a Markowitz model with
distributional robustness based on a Wasserstein dis-
tance, a metric measuring the discrepancy between two
probability measures that we also apply in this paper.®
Nevertheless, their formulation involves an additional
value-at-risk type of constraint that leads to a much
more complex optimization problem. More importantly,
their choice of the uncertainty size is exogenous, and no
guidance for optimally selecting the size is given.

Esfahani and Kuhn (2018) provide representations
for the worst-case expectations in a Wasserstein-based
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ambiguity set centered at the empirical measure and
then apply their results to portfolio selection using dif-
ferent risk measures, leading to models different from
the Markowitz model. An important difference in our
approach, which is related to the work in Blanchet
et al. (2016), as we discuss, is that we focus on the
order-two Wasserstein distance. This is important be-
cause, as a result of the quadratic nature of the vari-
ance objective that we consider, applying an uncer-
tainty set based on Wasserstein of order one could
potentially lead to arbitrarily large variances. We also
note that the work in Esfahani and Kuhn (2018) pro-
vides guidance to choose the uncertainty size, 6. But
this choice of the uncertainty size deteriorates sub-
stantially with an increase in the dimension of the un-
derlying portfolio. So, as we elaborate, we employ an
approach similar to that proposed in Blanchet et al.
(2016), which must be adapted and extended to our
setting. Our current work relates to the broad litera-
ture on distributionally robust optimization (DRO). In
addition to Esfahani and Kuhn (2018), related duality
results for Wasserstein DRO formulations in which
the probability model appears linearly in the objective
function are studied in Zhao and Guan (2018), Esfahani
and Kuhn (2018), and Gao and Kleywegt (2016). A gen-
eral result (with conditions that match the standard as-
sumptions of the general optimal transport theory) is
given in Blanchet and Murthy (2019). These results are
not directly applicable to our setting because our objec-
tive function is not linear, but quadratic in the underly-
ing probability model, so the techniques need to be
adapted.

Also, in connection to robust portfolio optimization,
we mention the work in Delage and Ye (2010), which
constructs uncertainty regions involving means and
covariances of the return vector. The paper of Woza-
bal (2012) also considers a robust portfolio model with
risk constraints based on expected shortfall, resulting
in an optimization problem that requires solving mul-
tiple convex problems. These papers do not consider
an optimal choice of the size of the uncertainty sets as
we do here.

Then, there is a number of papers that address a
wide range of optimization techniques (such as
interior-point methods, conic programming, and line-
ar matrix inequalities) in solving robust portfolio
selection problems. A selection of these includes Hall-
dorsson and Tutuncu (2003), Costa and Paiva (2002),
and Ghaoui et al. (2003). We obtain formulations that
can be solved with basically any standard convex op-
timization software. Finally, we mention the work of
Goh and Sim (2010) and Wiesemann et al. (2014), who
investigate different forms of distributional ambiguity
sets, as well as those of Hu and Hong (2013) and Jiang
and Guan (2016), who study distributional robust for-
mulations based on the Kullback-Leibler divergences.

It is worth noting that the Kullback-Leibler
divergence-based formulation is popular in economics
(see Hansen and Sargent 2008). Our formulation
focuses on the use of Wasserstein ambiguity sets be-
cause of the intuitive out-of-sample exploration in-
duced by the Wasserstein distance and because of the
regularization interpretation which, as we see, results
from our formulation.

Precisely, in this paper, we are interested in study-
ing a distributionally robust mean-variance (DRMYV)
model given by

. T
ot £, 10 Ver R @
where P, is the empirical probability derived from
historical information of the sample size n; Us(P,) :=
{P: D.(P,P,) < 6} is the ambiguity set;

Fosa(n)= {gi) :¢'1=1, min [Ep(¢p"R)]> éz},
PeUs(P,)
is the feasible region of portfolios; Ep and Varp(R) de-
note, respectively, the mean and the covariance matrix
under P; and D.(,,-) is a notion of discrepancy be-
tween two probability measures based on a suitably
defined Wasserstein distance.’

Intuitively, Formulation (2) introduces an artificial
adversary P (whose problem is that of the inner maxi-
mization) as a tool to account for the impact of the
model uncertainty around the empirical distribution.
There are two key parameters, 6 and @, in this formu-
lation, and they need to be carefully chosen. The
parameter 6 can be interpreted as the power given to
the adversary: the larger the value of 0, the more pow-
er is given. If 0 is too large relative to the evidence
(i.e., the size of n), then the portfolio selection tends to
be unnecessarily conservative. On the other hand, &
can be regarded as the lowest acceptable target return
given the ambiguity set. Naturally, the choice of &
should be based on the original target p given in (1),
but one also needs to take into account the size of the
distributional uncertainty, 6. Using @ = p tends to gen-
erate portfolios that are too aggressive; it is more
sensible to choose & < p in a way such that p—a is
naturally informed by 0.

This paper makes three main contributions. First,
we show that (2) is equivalent to an (explicitly formu-
lated) nonrobust minimization problem in terms of
the empirical probability measure in which a proper
penalty term or “regularization term” is added to the
objective function. The explicit regularization term
that is derived from (2) is given in Theorem 1. This
connects (and contrasts) to the directly introduced use
of regularization in variance minimization techniques
widely employed in both the statistics/machine learn-
ing literature and practice to, among others, address
the issue of overfitting. Indeed, practitioners who use
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mean-variance portfolio selection models often
introduce regularization penalties, inspired by Lasso,
in order to enhance the sparsity so as to include fewer
stocks in their portfolios. Our use of Wasserstein
distance to model distributional uncertainty naturally
gives rise to a regularization term, suggesting an alter-
native, yet theoretical, justification and interpretation
for its use in practice. Our result shows that our robust
strategies are able to enhance out-of-sample perfor-
mance with basically the same level of computational
tractability as the standard mean—variance selection.

Our second main contribution provides guidance
on the choice of the size of the ambiguity set, 6, as
well as that of the worst mean return target, &. This is
accomplished by adapting and extending the robust
Wasserstein profile inference (RWPI) framework, re-
cently introduced and developed by Blanchet et al.
(2016), to our setting in a data-driven way that com-
bines optimization principles and basic statistical theo-
ry under suitable mixing conditions on historical data.

The last contribution empirically compares the
performance of our DRMV strategies with those of
several well-known and well-practiced models, in-
cluding the classical Markowitz, Fama—French, and
Black-Litterman models. We also compare our strate-
gies with those of another robust model, the one put
forward by Goldfarb and Iyengar (2003) in which ro-
bustness is based on vector/matrix distance. All these
models (including ours) are static, single-period ones,
whereas in practice, a stock market is highly dynamic.
In our empirical experiments, we implement them
in the same rolling horizon fashion to account for the
market dynamics. It should be noted that our
theory applies to only a one-period model, and
the numerical implementation to the multiperiod
market is heuristic based on rolling horizons. Finally,
we also include in our comparison precommitted
optimal strategies based on a well-calibrated, nonro-
bust continuous-time model in Cui et al. (2012). The
experiments are carried out on S&P 500 for the back-
testing period 2000-2017 with the prior 10 years as the
training period. Our experiments show that DRMV
compares favorably against all other models in
achieving no worse (far better against most models)
average returns and much lower variabilities. This,
we believe, is another important insight that we can
draw from this research and that merits further
investigation.

We should acknowledge, however, that our ap-
proach fails when the number of stocks d is not small
compared with the sample size 1 because the infer-
ence method for choosing 6 and & theoretically relies
on some central limit theorems that require n to as-
ymptotically approach infinity. Moreover, when d >
n, both the empirical probability measure and the
plug-in portfolios are not consistent. The application

in our mind is asset allocation in which relatively
small portfolios (i.e., those having dozens of assets)
are desired. Indeed, one of the main goals of the regu-
larization technique is to reduce the number of stocks
in a portfolio. In our empirical study, we have 100
stocks and only 108 data points, and our algorithm
achieves good performance.

Ao et al. (2018) also provide a theoretical justifica-
tion on the L'-norm regularization by proving that the
regularized portfolios asymptotically achieve the opti-
mal mean and variance when the size of the portfolio
approaches infinity. However, their result relies on the
normality of return distribution, whereas we only re-
quire the data to be stationary, which, in particular, al-
lows heavy tail distributions commonly seen in finan-
cial data. Ao et al. (2018) estimate the regularization
coefficient—6 in our setting—using the cross-
validation technique, and we use the statistical infer-
ence to derive this parameter in a data-driven way.*
Moreover, all the results in Ao et al. (2018) seems to
work only with the L'-norm, whereas our results can
be applied to any L”-norm by choosing a proper Was-
serstein distance. A significant contribution of Ao et al.
(2018), on the other hand, is that it allows a large size
of the underlying portfolio even though it must be of
the same order of the sample data size.

The rest of the paper is organized as follows: In
Section 2, we formulate the DRMV model and present
necessary preliminaries. Section 3 demonstrates the
tractability of our DRMV model after a series of trans-
formations, and Section 4 studies the choices of distri-
butional uncertainty size and the worst return level.
Then, in Section 5, we report the empirical perfor-
mance of our strategies against those of several other
models. Concluding remarks are given in Section 6.
Technical proofs of our results are given in appendi-
ces at the end of the paper.

2. Model Formulation

In this section, we formulate our distributionally ro-
bust Markowitz model while reviewing some useful
concepts.

Let P (R? x R?) be the space of all Borel probability
measures supported on RY x R?. A given element 7 €
P (R? x RY) can be assumed to be the joint distribution
of a random vector (U, V), where U € R? and V € R“.
We use 1y and 7ty to denote the marginal distribu-
tions of U and V under m. In particular, 7y (A) =
(A xRY) and 7y (A) = n(RY x A) for every Borel set
ACRY

We start with a “cost” function ¢ : R? x R — [0, 0],
which we assume to be lower semicontinuous and
such that ¢(u,u) =0 for any u € R?. For a given such
cost function ¢, we introduce D,(:,-) representing
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some “discrepancy” between two probability meas-
ures as follows:

Dc(P,Q) := inf{Ex[c(U, V)] : m € P(R! x RY), iy =P,y = Q},

where P and Q are two probability measures supported
on RY. This can be interpreted as the optimal (minimal)
transportation cost (also known as the optimal trans-
port discrepancy or the Wasserstein discrepancy) of
moving the mass from PP into the mass of Q under a
cost ¢(x, y) per unit of mass transported from x to y.

If, for a given p > 0, c!/P(,+) is a metric, then so is
DM, -); see Villani (2003). Such a metric DYr (-,-) is
known as a Wasserstein distance of order p. Most of
the times in this paper, we choose the following cost
function:

2
C(M/ U) = ”u - U”q/

where g > 1 is fixed (which leads to a Wasserstein dis-
tance of order two).”

Recall that R is the d-dimensional vector of random
returns of the d stocks. Let IP, be the empirical proba-
bility measure on R? with a sample size 7, that is,

l n
P,(dx) = - > 0, (dx),
i=1

where R; (i=1,2,...,n) are realizations of R and 0g,(-)
is the indicator function. Define the ambiguity set as

Us(P,) ={P: D.(P,P,) <6},

and the feasible region of portfolios as

_ — d. o T1_ . T > 7
Fsa(n) {qb eR*:¢p'1 1'11»?2};51?”) [Ep(¢p'R)] > a}.

The DRMV approach then consists in choosing a
portfolio ¢ € Fs (1), which achieves the optimal min-
max value in (2).

3. Transformations, Duality, and

Regularization

Problem (2) appears, in principle, very complex. First
of all, the inner maximization problem is over a set of
probability measures, which renders it an infinite di-
mensional optimization problem. Second, it is not
clear whether the outer minimization problem, al-
though finite dimensional, is convex. Therefore, (2) at
its outset seems computationally insurmountable. In
this section, we reformulate (2), through a series of
transformations and a duality argument, as an equiva-
lent problem that is computationally tractable.

The following theorem, whose proof is relegated to
Appendix A, is the main result of the paper, which
states that (2) is equivalent to a nonrobust portfolio se-
lection problem in terms of the empirical measure PP,
with an additional regularization term.

Theorem 1. The primal formulation given in (2) is equiva-
lent to the following dual problem:

Vo Vare, (R)d + Voli¢ll,,

subjectto ¢'1=1,Ep,(¢p'R)>a+ \/5||¢||pr

min
per?

®)

in the sense that the two problems have the same optimal
solutions and optimal value.

It is not hard to verify that the mapping ¢ —

Vo' Varp, (R)¢p + \/5||(P||p is convex, and the feasible re-

gion of (3) is clearly convex. So (3) and, therefore, (2)
are both convex optimization problems. As such, they
are tractable optimization problems.

Problem (3) has an additional term, \/5||¢)||p, in its
objective function. In the asset management industry,
fund managers using a mean—variance portfolio selec-
tion model often add a “penalty” or regularization
term—in the form of k||¢||, where || -|| is an appropri-
ately chosen norm—in order to enhance the sparsity
of the vector as a way to include fewer stocks in the
portfolios and to address the issue of overfitting.®
Here, we provide interpretability of this regularization
technique (which is based on experience or heuristics)
by a well-established robustification idea backed by
precise rationality principles; see, for example, Delage
et al. (2019). Moreover, the parameter 0 that reflects
the level of regularization is also endogenously in-
formed by data as we show in the next section.

Theorem 1 has another interesting interpretation re-
lated to transactions costs. Introducing the Lagrange
multiplier to the second constraint in Problem (3), the
latter is equivalent to

min  yy¢' Vars, (R) — Ep, (¢ R) + ko]l

PeRr?

subjectto ¢'1=1 )

for some constants y >0 and k>0. Following
Olivares-Nadal and DeMiguel (2018), we can regard
the term in the objective function, kl|¢||,, as a transac-
tion cost term. Therefore, (4) is a classical
mean-variance model with transaction costs.” With
this interpretation, Theorem 1 yields that a
mean-variance model with transaction costs in the
form of (4) is equivalent to a distributionally robust
mean-variance model in the form of (2). This result is
related to one of the results in Olivares-Nadal and
DeMiguel (2018), which states that a mean—variance
portfolio problem with LF-norm transaction costs is
equivalent to a robust optimization problem. Howev-
er, there are important differences between the two
results. The robust problem in Olivares-Nadal and
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DeMiguel (2018) has an ellipsoidal uncertainty set
around the sample mean only, and there is no robusti-
fication on the variance. The distributionally robust
model in our paper is the most comprehensive one
because it robustifies not only the mean but also the
variance and indeed the whole distribution. Methodo-
logically, the result of Olivares-Nadal and DeMiguel
(2018) follows directly (and indeed trivially) from
what is essentially the Legendre transformation or the
convex conjugate (see the online companion of
Olivares-Nadal and DeMiguel 2018). This implication
is actually well documented in earlier papers, such as
Bertsimas et al. (2004) and, in a portfolio selection con-
text, Gotoh and Takeda (2011), which shows that any
norm constraint can be turned into a robust constraint
associated with the return vector. In contrast, the
proof of Theorem 1 is much more involved and subtle
because of the distributional constraint (see Appendix
A). In turn, the distributional formulation is key in
providing a natural statistical approach to selecting
the size of the uncertainty. These constitute one of the
main methodological contributions of this paper.

As indicated earlier, it should be noted that Theorem -
1 does not directly follow from any of the strong duali-
ty results mentioned in the introduction. This is because
the portfolio variance in the objective function (2) is not
a linear function of the probability measure. A related
work, Gao et al. (2017) proves only an asymptotic
equivalence to regularization. On the other hand, we
have the exact equivalence between (2) and a regular-
ized optimization problem given in Theorem 1.

To conclude this section, we note that, although the

cost function is chosen as c(u,v) = ||u — v||§ in the study
here, our result (Theorem 1) actually holds for any

cost function of the form c(u,v) = |ju — v||>, where ||-||
is any given norm with a suitable dual. More precise-
ly, define the dual norm as |[|x]|, = sup,_;|x"z|. Then,
the primal distributionally robust model under this al-
ternative cost function is equivalent to the following
dual problem:

where the feasible region is modified as

2
7

.Tmﬂn)z{@eﬂ@:¢T1=]4ER(¢TR)2&—FV5WML}

For example, consider a norm as ||x|| = (xTzx)?,
where ¥ is a strictly positive definite matrix. Then,
||x||*=(xTZ‘1x)1/ 2. Interested readers may refer to
Blanchet and Kang (2017) for discussions on some oth-
er interesting norms.

4. Choice of Model Parameters
There are two key parameters, 6 and &, in Formula-
tion (2), the choice of which is not only curious in the-
ory, but also crucial in practical implementation and
for the success of our algorithm. The idea is that the
choice of these parameters should be informed by the
data (i.e., in a data-driven way) based on some statisti-
cal principles rather than being arbitrarily exogenous.
Specifically, we define the distributional uncertainty
region just large enough so that the correct optimal
portfolio (the one that we would apply if the underly-
ing distribution was known) becomes a plausible
choice with a sufficiently high confidence level. Once
this is determined, then we determine the feasible set
of portfolios just large enough so that the correct opti-
mal portfolio is feasible with adequately high
confidence.

We need to impose several technical/statistical
assumptions.

Assumption 1. The underlying return time series (Ry :
k>0) is a stationary, ergodic process satisfying

EP*(HR,(H‘;) < oo for each k > 0. Moreover, for each measur-
able g(-) such that |g(x)| < c(1+ ||x||§)for some ¢ > 0, the
limit

Y, := lim Varp
n—oo

n 2> ¢ (Re)
pa=

exists and the central limit theorem holds:
n'2[E, (3 (R)) ~ Ex (3 (R))] = N(0,Y),

where (and henceforth) “=" denotes weak convergence.

Assumption 2. For any matrix A € R and any vector
C € R? such that either A +0or (+0,

P*(|AR + CJl, > 0) > 0.

Assumption 3. The classical model (1) has a unique solu-
tion ¢*. Moreover, Varp[R] is positive definite.

Assumption 1 is standard for most time series mod-
els (after removing seasonality). Assumption 2 holds,
assuming, for example, that R has a density. Assump-
tion 3 is a technical assumption that can be relaxed, but
then the evaluation of the optimal choice of 6 becomes
more cumbersome as we explain.

4.1. Choice of 6

The choice of the uncertainty size 0 is crucial. If 6 is
too large, then there is too much model ambiguity,
and the available data becomes less relevant. In this
case, the resulting optimal portfolios tend to be just
equal allocations. If 6 is too small, then the effect of ro-
bustification is negligible. Therefore, the choice of o
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should not be exogenously specified; rather, it should
be endogenously informed by the data.

Theorem 1 actually suggests an appropriate order
of 6 =0, (here, n is the size of the available return time
series data) in terms of n. Because the differences be-
tween the optimal standard deviation by solving (1)
and that obtained by solving the empirical version of
(1) are of order O(n~'/2), it follows from Theorem 1
that any choice of 6, in the order of o(n™') would be
too small. Hence, an “optimal” order of 0, should be
of order O(n™?).

In order to choose an appropriate 6, here we follow
the idea behind the RWPI approach introduced in Blan-
chet et al. (2016). Intuitively, 6 should be chosen such
that the set Us(P,) = {P: D.(P,P,) < 6} contains all the
probability measures that are plausible variations of the
data represented by P,. Denote by Q(P) the classical
Markowitz portfolio selection problem with target re-
turn p, assuming that P is the underlying model:

min ¢ E[RR" ¢

L=t 5)
subject to ¢ Ep[R] = p,

and by ¢, a solution to Q(I?) and ®p the set of all such

solutions. According to Assumption 3, we have ®p =

{¢"} for some portfolio ¢*. Therefore, there exist

(unique) Lagrange multipliers A} and A3 such that

2Ep (RRT)p" — AJEp[R] — 231 =0,

(¢") "Ex[R]-p=0.

Now, when ¢ is suitably chosen so that ¢/s(P,) consti-
tutes the models that are plausible variations of P, any

¢p with IP € U;(PP,) is a plausible estimate of ¢". This in-
tuition motivates the definition of the following set

As(Pr) = Upeysye,) Dps

which corresponds to all the plausible estimates of ¢".
As a result, As(P,) is a natural confidence region for
¢*, and therefore, 6 should be chosen as the smallest
number 6, such that ¢* belongs to this region with a
given confidence level. Namely,

6, =min{0 > 0:P(¢" € As(Py)) =1 -0},

(6)

where 1- 9 is a user-defined confidence level (typi-
cally 95%).

However, by the mere definition, it is difficult to
compute o;,. We now provide a simpler representation
for 0, via an auxiliary function called the robust
Wasserstein profile (RWP) function. To this end, first
observe that any ¢ € As(P,) if and only if there exist
P eUs(P,) and Ay, Ay € (—o0, 0) such that

ZEP(RRT)(P -2 AlEP[R] — Azl = 0,
¢ Ep(R)—p =0.

From these two equations, multiplying the first
equation by ¢, substituting the expression in the sec-
ond equation and noting that ¢ - 1 = 1, we obtain

A2 =2(¢p) "Ep(RRT)p — A1p.
We now define the following RWP function

7_?/11 ((Z)/ /\1/ Z'/ ,u)
= inf {DC(]P’, P,): {224) —hp = (2(¢)TZ¢ ~Ap ¢)1 }

i = Es[R], £ = Eo(RR")

for (¢, A1, Z, 1) € R X R x S x RY, where S is the
set of all the symmetric positive semidefinite matrices,
and we convent that inf( := +co. Moreover, define

R, (¢7) = inf Ru(", A1, L, ).
£es™ ueR?, A1€R

It follows directly from the definitions that
¢* € Ao (Pr) = R;(¢7) <9, @)
and for any given € > 0,
R, () <o+e= " € As(Py). (8)
Let us define
5f =inf {6 > 0: P(Ri(¢") <6) =1~ g}
It follows from (7) and (8) that 5; <65 <8+ e As
€ > 0 is arbitrary, we obtain
6, =08, =inf{6 : P*(R5(¢*) <6) = 1-5p}.

In other words, 0;, is the quantile corresponding to
the 1 — &y percentile of the distribution of R (¢").?

Still, even under Assumption 3, the statistic R, (¢p")
is somewhat cumbersome to work with as it is de-
rived from solving a minimization problem in terms
of the mean and variance. So, instead, we define an al-
ternative statistic involving only the empirical mean
and variance while producing an upper bound of
0 = 04, which still preserves the target rate of conver-
gence to zero as n — oo (which, as we argue, should
be of order O(n!)).

Denote L, =Ep,(RR"), and let A] be the Lagrange
multiplier in (6). Set

= p1+2(Tut" = T /A7. ©)
Define
RTL(ZTL/ [’ln) = 7_211(@[)*/ A;r ZH/ [Jn)

It is clear that
Ru(Zn, 1) 2 Ry (9)-
Therefore,
Ru(Zn, 11,) <6 = R($") <0,
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and consequently,
5y =inf{6 > 0: P (Ru(Z, p,) <8) 21— 80} > 6.
(10)
Moreover, because of the choice of X, and u,, we

have

Ru(Zn, t,) = inf {Dc(P,P,) : Ep[RR"] = Ly, Ep[R] = p1, }.

The next result shows 6%, = O(n™!) as n — co.

Theorem 2. Assume Assumptions 1 and 2 hold and
write i, =Ep(R) and L. =Ep(RR"). Define g(x)=x+

2 (xxT FoXE *Txqub*l) /A}. Then,

R (S, i1,) = Lo = sup (/\ Z~ inf Ep [||AR+A|| ])
AeRr?

where Z ~N (0, Yg). Moreover, if p = 2, then

1213

" :4(1 —HIZZW*).

A proof of Theorem 2 is provided in Appendix B.
Note that L has an explicit expression when p = 2.

> |l if p

> ||x||§ if p > 2, we can find a stochas-

When p # 2, using the inequalities that ||x||f,

<2and d77||x?
tic upper bound of L that can be explicitly expressed.
In that case, we can obtain 0%, in exactly the same way,
namely, first compute the 1- 0y quantile of L, and
then let 0, be such quantile multiplied by 1/n. The
distribution of Ly can be calibrated using a natural
plug-in estimator, leading to an asymptotically equiv-
alent estimator of 0. The validity of this type of
(plug-in) approach is explained in the next section in
the context of choosing &, but the principle applies di-
rectly in the setting of L, as well. In simple words,
whenever an asymptotic limiting distribution de-
pends continuously on various parameters and con-
sistent estimators are available for those parameters,
then consistent plug-in estimators can be safely used
still preserving exactly the same asymptotic distribu-
tions. The details of this approach are investigated in
proposition 2 of Blanchet et al. (2019), and the perfor-
mance of such plug-in estimators are tested empirical-
ly in Section 5 of this paper.

4.2. Choice of &

Once 6 has been chosen, the next step is to choose a.
The idea is to select & just large enough to make sure
that we do not rule out the inclusion ¢* € Fs5(n) with
a given confidence level chosen by the user, and ¢" is

the optimal solution to (1). It is equivalent to choosing
vy, where

& = p = Voli¢"lIpvo-

Therefore, it follows from Proposition A.1 that ¢* €
Fs,a(n) if and only if

(¢") "Ee,(R) = Vo 1¢"ll, = p = Vollg'll,vo-

However, p = (¢*) Ep(R), so the previous inequali-
ty holds if and only if

(¢) [Ez,(R) - Ep(R)] = [l¢°ll, V& (1 —vo).  (11)

Hence, we can choose Vo (1 -vp) <0 sufficiently
negative so that the previous inequality holds with a
specified confidence level. We hope to choose a v
such that ¢* satisfies (11) with confidence level 1 —e.
This can be achieved asymptotically by a central limit
theorem as the following result indicates.

Proposition 1. Suppose that Assumptions 1 and 3 hold
and let {q);};ozl be any consistent sequence of estimators of
¢" in the sense that ¢, — ¢* in probability as n — co.
Then,

oy { ¢ [En» (R) - Ep (R)]} = N(0vy)

)

A proof of this proposition is delayed to
Appendix C.

Using the previous result, we can estimate v, as-
ymptotically. Let ¢, denote the optimal solution of
problem Q(P,). We know that ¢, converges to ¢* in
probability. So we choose a vy such that the following
inequality holds with confidence level 1 —¢,

as n — oo where

1/22

Yy = lim Varp(n
n—oo

T q> I (@,)[Ez,(R) —Ex(R)] 2 Vo(1-vg).  (12)

According to Proposition 1 the left-hand side of (12)
is approximately normally distributed, and thus, we
can choose its 1 — € quantile and consequently decide
the value of vy > 1.

For the reader’s convenience, we present a simple
“menu” for estimating 6 and a.

1. Choose the target return rate p.

2. Collect return data {R;}}_ ;.

3. Use the sample mean u, = Ep,(R) and the sample
second-moment matrix X, = Ep, (RR") to approximate
u, and Y., respectively, appearing in Theorem 2.

4. Use the solution ¢,,, which is the solution to prob-
lem Q(P,) (see (5)), to approximate ¢" in Theorem 2.


sixia
Highlight
This "p" should be placed in subscript


Blanchet, Chen, and Zhou: XXX
Management Science, Articles in Advance, pp. 1-30, © 2021 INFORMS

5. Apply Theorem 2 and (10) to determine 0 = 5
with the 95% confidence level.

6. Choose v, based on the 95% quantile according to
(12) and Proposition 1 and, consequently, obtain &.

Choose vj such that the equation (¢,) Ep,(R)-

Volip,ll, = p = Volig,ll,vy  holds.
max(vj, vy ).

To conclude this section, we note that the choices of
0 and a are separate, each with a given confidence lev-
el. Jointly, the chosen (6, @) may have a completely
different confidence level. It remains an interesting
problem to develop a joint way of choosing the two
parameters to ensure a given, fixed confidence level.

Then, set ©vg=

5. Empirical Performance and
Comparisons

In this section, we report the results of our back-testing
experiments on S&P 500 constituents that compare the
performance of our DRMV portfolios with those of the
portfolios based on the following models: classical
(nonrobust) single-period Markowitz, continuous-time
Markowitz, Fama-French, Black-Litterman, robust
Goldfarb-Iyengar, Olivares-Nadal-DeMiguel, and an
equally weighted portfolio. The first four models are
well known and are widely used in practice, the fifth
one is an alternative robust model not based on distri-
butional uncertainty, and the sixth one has transaction
costs turned into an equivalent robust model that has
an ellipsoidal uncertainty around the mean. The equal-
ly weighted strategy is actually an extreme outcome of
the DRMV model when the uncertainty size 0 = co.

5.1. Experiment Design and Data Preparation

We back-tested for the period January 2000-December
2016 with the training (estimation) period being Janu-
ary 1991-December 1999 (i.e., the previous 10 years).”
All the stock monthly price data was obtained from
the database of Wharton Business School. At the be-
ginning of 2000, we randomly chose 100 stocks from
the constituents of S&P 500 that have at least 10 years’
historical price data available.'” The basic period is set
to be one year in all the single-period models involved
with the target annual mean return rate fixed to be
p =10% when applicable. Then, we used the training
period to estimate the out-of-sample parameters,
namely, the mean and the variance, to construct the
optimal strategies of the various models tested.

5.1.1. DRMV Model. Let us first describe in detail the
construction of the DRMV strategy for the selected
100 stocks. We generated this 17-year-long strategy in
an (overlapping) rolling horizon fashion with each ho-
rizon being a month. Specifically, on the first trading
day of January 2000, we solved our DRMV model to
obtain a portfolio, denoted as ¢. In doing so, we set

p=q=2 and p=10% and obtained the parameters, o
and &, using the menu at the end of Section 4. We
then substituted 6 and & in the optimization problem
described in Theorem 1 to obtain ¢y.

We kept ¢, until only the first trading day of Febru-
ary 2000. At that point we reestimated the parameters
0 and & using the immediate previous 10-year (namely
February 1991-January 2000) price data, resolved the
DRMYV model, and generated a new portfolio ¢, for
February 2000, the second month in our back-testing
period. We repeated the same steps for all the subse-
quent months.

If, at the beginning of a month, some stocks in our
portfolio had been removed out of the S&P 500 during
the previous month, then we would also remove them
from our portfolio, replace them by the same number
of stocks that were randomly picked from S&P 500
(yet having at least 10 years’ historical data), and then
rebalance based on our DRMV model. We still de-
noted by ¢, the overall portfolio for the 17-year peri-
od and kept track of the wealth process that had been
updated at the end of each month.

In what follows, we describe the implementations of
the other models, mentioned at the beginning of this
section, under comparison. Except for the continuous-
time Markowitz model, all the rest are single-period
models, so we applied the same monthly rolling hori-
zon approach to build the respective strategies. More-
over, for these single-period models, whenever there
were stocks dropped from S&P 500, we would replace
them with exactly the same set of stocks as in the
DRMYV model so as to maintain consistency across dif-
ferent models. The case of the continuous-time model
is slightly more complicated, and we explain how we
deal with these issues separately.

5.1.2. Single-Period and Continuous-Time Markovitz
Models. For the single-period Markovitz model, for
each period (month) we used the sample mean and
covariance matrix of the immediate previous 10-year
return data to estimate the corresponding parameters
in Problem (1). Then, we generated the optimal port-
folio of the classical Markowitz model, ¢,,, by setting
p =10% and solving Problem (1) on exactly the same
rolling horizon basis as the DRMV model.

The continuous-time Markowitz mean-variance
model is based on Cui et al. (2012) in which portfolios
are constructed on risky stocks only. This setting is
consistent with ours.'" It is assumed that the stock
price process follows correlated time-inhomogeneous
Black-Scholes dynamics. Let {X(t):t€[0,T]} be the
wealth process (also called an admissible wealth pro-
cess) under any given admissible portfolio. The
mean-variance problem is

Minimize Var(X(T)) (13)
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subject to
{X(t):t€[0,T]} is admissible, X(0) =x, E[X(T)] =z,

where z is a given parameter representing the ex-
pected payoff at the end of the investment horizon, T.
An optimal strategy is given explicitly in theorem 1.1
of Cui et al. (2012), which gives the portfolio at each
given time t € [0, T] as a function of the wealth, a cou-
ple of auxiliary feedback processes, and the estimates
(at time t) of the (time-inhomogeneous) diffusion and
drift coefficients.

In theory, a continuous-time model requires continu-
ous rebalancing all the time. Naturally, it is not possible
(indeed not necessary) in practice or in our empirical
implementation. In our experiments, we set T = 1
(year) and z=1.1xy corresponding to an annual ex-
pected return p = 10%, and we rebalance only monthly
(instead of continuously). The one-year period is consis-
tent with the other models under comparison. There-
fore, on the first trading day of January 2000, we esti-
mated all the necessary parameters/coefficients based
on the previous 10-year data and then applied the ex-
plicit formula for the optimal portfolio, denoted as ¢,
given by theorem 1.1 of Cui et al. (2012). On the first
trading day of February 2000, we applied the same for-
mula but with updated estimates of the parameters/
coefficients based on the immediate previous 10-year
data. This way we have constructed a strategy for the
whole year of 2000. For all the subsequent years, we re-
peat the same procedure to generate a 17-year-long
strategy ¢ and the corresponding wealth process.

It is important to note that this model does not have
an explicit no-bankruptcy constraint (i.e., it does not
rule out the possibility that the wealth process may go
negative during [0, T]). Indeed, as we see in the dis-
cussions, this model led to bankruptcy in all of our nu-
merical experiments for portfolios of 100 stocks.'?
Once a bankruptcy happened, we then considered it
game over and kept the zero wealth until December
2016."

5.1.3. Fama-French Model. The celebrated Fama-
French model helps estimate the covariance matrix
when the number of stocks d is close to or greater than
the sample size n. In this section, we follow the ap-
proach proposed by Fan et al. (2011) to implement the
Fama-French model. Specifically, we assume the
stock returns follow the factor model

r=Bf +u, (14)

where r = (Ry,...,Ry)" is the random vector of stock re-
turns; f=(f1,f2, f3)T consists of the three factors of the
Fama-French model (i.e., Rm-Rf, SMB, and HML),
respectively; B=(by,...,b;)" is the vector of factor

loading; and u = (u1,... 1) is the vector of uncorre-
lated errors.

Let (f1,11),...,(f,,1,) be n independent and identi-
cally distributed samples of (f,r). For notational sim-
plicity, we define

X=(f,....f), R=(ry,...,ry) and U = (uy,...,u,),
where u;,i=1,...,n are the corresponding error vec-

tors. Under Model (14), the covariance matrix ¥ of

stock returns satisfies
Y =Bcov(f) BT + X, (15)

where L, is the covariance matrix of u.
Then, we estimate X using a substitution estimator
(16)

where B =YXT(XX")™, cov(f) = ;1 XXT - L X11TXT,

and L7 is obtained by applying the same adaptive

% =Beov(H)B' + 5,

thresholding approach in Fan et al. (2011) on %, with
La=cov(0) being the sample covariance matrix of U
with U =Y - BX. £ is obtained by applying the same
adaptive thresholding approach mentioned in Fan
etal. (2011) on £,. In that paper, they used the thresh-

old w=Cx%3= #, where C = 0.1. However, in our

experiment, the value C = 0.1 leads to bankruptcy in
all the cases. So we tune this parameter and find the
optimal C = 0.01.
Finally, we have a substitution estimator
[t = Bf (17)
of the mean vector i, where f = s fi.

In implementing the Fama-French model, we first
downloaded the monthly data of the three factors'*
from Kenneth French’s personal website.'® Then, on
the first trading day of each month during January
2000-December 2016, we used its immediate prior
10-year history returns and factors data to estimate
the covariance matrix and mean vector using (16) and
(17), respectively. We used these estimates for all the
randomly chosen 100 stocks as the mean vector and
solve the single-period classical Markowitz model
with p = 10%. The generated portfolio was denoted as
¢p. This process was then repeated in the subsequent
months on a rolling horizon basis.

5.1.4. Black-Litterman Model. The Black-Litterman
model was developed to address the mean-blur prob-
lem, namely, the fact that compared with variance, it
is much more difficult to estimate within a workable
accuracy the expected returns of stocks purely based
on sample means. The model estimates the stock re-
turns by the market portfolio while keeping the sam-
ple covariance matrix and feeds them into the classical
Markowitz model to obtain the optimal strategies.

Q:10
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To implement this model, on the first trading day of
each month during January 2000-December 2016, we
calculated the implied returns of all the S&P 500 con-
stituent stocks having at least 10 years” historical data
by using the following formula:

Rimplied = /\Z(Pmarket’

where A =3.07, X is the sample covariance matrix of
the previous 10 years’ returns of these stocks and
ket 1S the corresponding market portfolio (i.e.,
O arker 18 @ vector whose components add up to one
and are proportional to the capitalizations of the S&P
500 constituents having at least 10 years’ historical
data) at the closing prices of the previous trading day;
see Idzorek (2002).'° Then, we picked from Ripiied the
implied returns of the 100 stocks that had been ran-
domly chosen. We input these returns and the sample
covariance matrix into the classical Markovitz model
with p =10% to obtain the portfolio ¢,. This process
was repeated in subsequent months on a rolling hori-
zon fashion.

5.1.5. Goldfarb-lyengar Robust Model. Goldfarb and
Iyengar (2003) consider the following robust Marko-
vitz problem with a factor model for the return rate:

Minimize ; ~ max Var[r"¢]
VeS,, DeS,
subject to min Elr'¢p]l>p, 17¢ =1,
HESy
where

r=pu+Vif+e e~N(0,D),
So={V:V=Vo+W,IWil,<p,i=1,...n}

with W; being the ith column of W and ||w||g =VwTGw
for some positive definite matrix G,

Sy ={D: D = diag(d),d; € [, d™),i =1,...,n},
Sy = {V V=V, +W,||Wl-||g <A,i= 1,...,7’[},

and
Sm={uru=py+& &<y, i=1,... n}k

So the uncertainty set of this model is based on vec-
tor/matrix distance as opposed to our uncertainty set
that is defined through the Wasserstein distance be-
tween probability measures.

In implementing this model, we followed the in-
structions in section 7.2 of Goldfarb and Iyengar
(2003). Specifically, we calculated the 10 years’ sample
returns r of the chosen 100 stocks. Then, we used the
top five principal components of r together with the
return data of DJA, NDX, SPC, RUT, and TYX to be
the factor vector f. By choosing the confidence thresh-
old w to be 95%, we estimated u,, Vo, 0,2, v G, and A,
With the target annual return p =10% and plugging
all the parameters from the preceding steps, we used

SeDuMi to solve the second-order cone programming
formulation (problem (32) in Goldfarb and Iyengar
2003) to obtain the portfolio ¢ for each month on a
rolling horizon basis, starting from January 2000.

5.1.6. Olivares-Nadal-DeMiguel Model. Olivares-
Nadal and DeMiguel (2018) examine, in the context of
a mean—variance model, the equivalence between cer-
tain transaction costs and ellipsoidal robustification
around the mean. They then devise a data-driven ap-
proach to portfolio selection by treating the transac-
tion costs as a regularization term to be calibrated.
Their numerical experiments test for different variants
of their model, but the minimum-variance portfolios
(MVPs) based on quadratic transaction costs have the
overall best performance in terms of the Sharpe ratio
(see table 1 of Olivares-Nadal and DeMiguel 2018)
with which we compare in our setting.

The MVP model is
Minimize ¢ ¢ X¢ (18)
subjectto 1T =1’

where ¢ € R? is the portfolio weight vector and X €

R the estimated covariance matrix of asset returns.
Adding a quadratic transaction cost, Olivares-Nadal
and DeMiguel (2018) consider the following model:

Minimize , ¢7Z + KIZHe — I3

oot (19)

subject to

where x € R is the transaction cost parameter and ¢, €

RY is the starting portfolio. By the conjugate represen-
tation of the L*norm, the connection of (19) to a ro-
bust model is straightforward.
It can be shown that the optimal solution ¢,
of (19) is
1 K
Poom =T Pm T Por (20)

where ¢, solves (18).

In Model (19), one needs to calibrate the parameter
k. Olivares-Nadal and DeMiguel (2018) do this by cal-
ibrating the trading volume 7t (ie., [|p—,ll; <1).
They use 10-fold cross-validation to select the best 7.
Specifically, they divide the empirical returns into 10
intervals. For each j from 1 to 10, they remove the jth
interval and use the remaining returns to estimate pa-
rameters and obtain the corresponding portfolio.
Then, they evaluate the portfolio on the jth interval.
After completing this process for each of the 10 inter-
vals, they compute the variance of the out-of-sample
returns for different © from the set {0%,0.5%,1%,
2.5%,5%,10%} and then choose the 7 that corresponds
to the portfolio with the smallest variance.

Now, we show how to infer the value of k from that
of 7 once the latter has been calibrated. By (20), the
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trading volume can be expressed as

“(PODM _¢o||1 “(PM (]50”1.

To determine x, we equate the trading volume to 7,
that is,

1+1<

Ibopm = Polh = 75 o —
This leads to

¢()”1 =T

(||¢M 9ulh )

T

where (x), := max (x,0)."”

In implementing this model, we followed the in-
structions in section 3.1 of Olivares-Nadal and DeMi-
guel (2018). Specifically, we calculated the 10 years’
sample monthly return r of the chosen 100 stocks. In
the first month (January 2000), because we did not
have the value of ¢,, we set k¥ = 0 and generated the
optimal portfolio ¢, of (19) for that month. In any
subsequent month, we took the portfolio of the previ-
ous month as ¢, applied the aforementioned cross-
validation method on the 10 years” sample return r to
select the best 7, and plugged the corresponding «
into (19) to generate the optimal portfolio ¢,

5.2. Comparisons

Assume that the initial wealth at the start of the back-
testing period (i.e., January 2000) is one. For each ran-
domly selected set of 100 stocks, we generate the
wealth process for the period 2000-2016 under each of
the seven models as described in the previous sections
as well as that under equal weighting. Then, we re-
peat the experiments on 100 such sets of 100 stocks
and obtain the average realized wealth process for
each model. These processes, along with that of S&P
500 (normalized to start from one at the start of the
testing period), are plotted in Figure 1.

Graphically, Figure 1 is “corrupted” because of the
extreme behavior of the continuous-time Markowitz
model. Its average performance went through the roof
initially and then quickly dived to zero (all 100 experi-
ments ended up in bankruptcy). So the continuous-
time Markowitz is an extremely volatile model. This
may be explained as follows. The dynamic strategies
incorporate considerable feedback effects, which are
computed assuming the underlying model is correct.
As such, model misspecifications are compounded pre-
cisely because of feedback effects. The inclusion of
feedback in the optimal dynamic policy, in outputs
that are close to typical realizations of the underlying
assumed model, results in highly profitable portfolios.
On the other hand, even moderate discrepancies from
the underlying model dynamics might lead to rela-
tively poor performance. As a consequence, the

dynamic model exhibits significantly high variability
than the static rolling-horizon robust counterpart.

In order to be able to visualize the comparison
among other portfolios, it is necessary to remove the
continuous-time Markowitz from Figure 1, resulting
in Figure 2. It is evident that all seven models, except
Black-Litterman, (almost) uniformly and substantially
outperform S&P 500 during the 17-year period. In
terms of the final realized wealth, of the seven models,
DRMYV, equal weighting, and Fama-French lead by a
substantial margin. The second-tier league includes
Olivares-Nadal-DeMiguel and Goldfarb-Iyengar. The
classical single-period Markowitz lags behind but still
manages to outperform the market most of the time.

The average performances of DRMV and equal
weighting are close although the former beats the lat-
ter most of the time. This is no surprise as the latter
can be regarded as an extreme case of the distribution-
ally robust model when the uncertainty size 6 = oo,
whereas the former has a nearly optimal choice of 6
informed by the data.'"® We can study more closely
the variability of the performances and the overall
return-risk efficiency of the two models by examining
their histograms of annualized returns (i.e., the distri-
butions of the annualized returns of the 100 experi-
ments) and those of Sharpe ratios. These are plotted in
Figures 3 and 4, respectively. In both figures, DRMV
is more shifted to the right than equal weighting, indi-
cating the former outperforms the latter in the two cri-
teria. Moreover, the two are almost equally concen-
trated, suggesting that both strategies have stable
performance. We can also compare the histograms of
kurtosis of the two; see Figure 5. There are no statisti-
cally significant differences between the two: most re-
turn distributions under both strategies are platy-
kurtic (i.e., the kurtosis values are less than three),
implying there are fewer extreme outliers than the
standard normal. Overall, we can conclude that both
DRMYV and equal-weighting are robust and stable, but
the former is superior to the latter in terms of the
return-risk efficiency.

Similarly, we compare the respective histograms be-
tween DRMV and Fama-French; see Figures 6-8.
DRMYV has a much more concentrated return histogram,
indicating a significantly more robust performance; a
much more right-shifted Sharpe ratio histogram; and a
more left-shifted kurtosis histogram, implying fewer ex-
treme returns. We can, therefore, conclude that DRMV
compares favorably with Fama-French in all the key
metrics reported. However, it is interesting to note that
DRMV utilizes only the price data, whereas
Fama-French requires additional fundamental informa-
tion on the companies concerned.

Likewise, DRMV outperforms the Olivares-
Nadal-DeMiguel model (Olivares-Nadal and DeMi-
guel 2018) based on all the histogram comparisons;
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Figure 1. Wealth Processes of All Portfolios (Including Continuous Time Markowitz) and S&P 500 from January 2000 to Decem-

ber 2016
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Notes. All the portfolios except S&P 500 consist of 100 stocks, and the averages are calculated over 100 numerical experiments. The x-axis indi-
cates the time in months (from 1 to 204), and the y-axis indicates the portfolio wealth. Initial wealth is set to be one.

see Figures 9-11. This suggests that, among other
things, the inference method for selecting the uncer-
tainty /regularization size is advantageous compared
with the cross-validation.

As for the robust portfolio model by Goldfarb and
Iyengar (2003), we notice that it has a reasonably

concentrated return histogram (Figure 12), indicating
its robustness. However, DRMV’s returns are not only
more concentrated but also distributed more to the
right than Goldfarb-lyengar’s. Together with the
Sharpe ratio histogram (Figure 13), the kurtosis histo-
gram (Figure 14), and the average wealth comparison

Figure 2. Wealth Processes of All Portfolios (Excluding Continuous-Time Markowitz) and S&P 500 from January 2000 to De-

cember 2016
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Notes. All the portfolios except S&P 500 consist of 100 stocks, and the averages are calculated over 100 numerical experiments. The x-axis indi-
cates the time in months (from 1 to 204), and the y-axis indicates the portfolio wealth. Initial wealth is set to be one.
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Figure 3. Histograms of the Annualized Returns of the 100 Different Experiments on DRMV (Blue) and Equal-Weighting (Or-
ange) Portfolios
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Note. The x-axis represents the annualized returns, and the y-axis represents the numbers of returns.

(Figure 2), it is clear that our uncertainty set formula- Finally, we provide comparisons of histograms be-
tion based on Wasserstein distance is a significant im-  tween DRMV and single-period Markowitz and be-
provement to the matrix/vector distance. tween DRMV and Black-Litterman; see Figures 15-20.

Figure 4. Histograms of the Sharpe Ratio of the 100 Different Experiments on DRMV (Blue) and Equal-Weighting (Orange)
Portfolios
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Note. The x-axis represents the Sharpe ratio, and the y-axis represents the numbers of Sharpe ratios.
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Figure 5. Histograms of the Kurtosises of the 100 Different Experiments on DRMV (Blue) and Equal-Weighting (Orange)
Portfolios

Kurtosis Histograms of DRMV and Equal-Weighting
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Note. The x-axis represents the kurtosis, and the y-axis represents the numbers of kurtoses.

Figure 6. Histograms of the Annualized Returns of the 100 Different Experiments on DRMV (Blue) and Fama-French (Orange)
Portfolios

Annual Return Rate Histograms of DRMV and Fama—French
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Note. The x-axis represents the annualized returns, and the y-axis represents the numbers of returns.
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Figure 7. Histograms of the Sharpe Ratio of the 100 Different Experiments on DRMV (Blue) and Fama-French (Orange)
Portfolios

Sharpe Ratio Histograms of DRMV and Fama—French
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Note. The x-axis represents the Sharpe ratio, and the y-axis represents the numbers of Sharpe ratios.

Clearly, DRMYV has far superior performance in all the ~ 5.3.1. Wasserstein Order p = 1. In all the previously

metrics. reported experiments, we set the order of the Wasser-

stein distance to be p = 2. We have also tried p = 1
5.3. Discussions (and, hence, g = c0) and find that the performance of
In this section, we offer discussions on various issues  the resulting strategies becomes very volatile. So we
related to our empirical experiments. recommend using p = 2.

Figure 8. Histograms of the Kurtoses of the 100 Different Experiments on DRMV (Blue) and Fama-French (Orange) Portfolios

Kurtosis Histograms of DRMV and Fama—French
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Note. The x-axis represents the kurtosis, and the y-axis represents the numbers of kurtoses.
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Figure 9. Histograms of the Annualized Returns of the 100 Different Experiments on DRMV (Blue) and Olivares-

Nadal-DeMiguel (Orange) Portfolios

Annual Return Rate Histograms of DRMV and Olivares-Nadal—DeMiguel
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Note. The x-axis represents the annualized returns, and the y-axis represents the numbers of returns.

5.3.2. Different Targeted Returns. We also tested dif-
ferent (plausible/reasonable) values of the targeted
return p =5%,15%,20% in addition to p =10%, and
find that DRMV maintains the same outperformance

with respect to other models, and indeed, some other
models become worse under higher targets. Figure 21
plots DRMV’s average wealth processes under these
four values of p when d = 100. They are almost identical,

Figure 10. Histograms of the Sharpe Ratios of the 100 Different Experiments on DRMV (Blue) and Olivares-Nadal-DeMiguel

(Orange) Portfolios

Sharpe Ratio Histograms of DRMV and Olivares-Nadal—DeMiguel
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Note. The x-axis represents the Sharpe ratios, and the y-axis represents the numbers of Sharpe ratios.
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Figure 11. Histograms of the Kurtoses of the 100 Different Experiments on DRMV (Blue) and Olivares-Nadal-DeMiguel
(Orange) Portfolios

Kurtosis Histograms of DRMV and Olivares-Nadal—DeMiguel
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Note. The x-axis represents the kurtosis, and the y-axis represents the numbers of kurtoses.

so one could probably see only one plot in Figure 21.  specific value of p is unimportant for DRMV so long as
Hence, the average performance is very robust with dif- it is in the reasonable range of [5%,20%], thereby releas-
ferent p’s. This, in turn, suggests that the choice of a  ing us from the tuning and calibration of this parameter.

Figure 12. Histograms of the Annualized Returns of the 100 Different Experiments on DRMV (Blue) and Goldfarb-Iyengar
(Orange) Portfolios

Annual Return Rate Histograms of DRMV and Goldfarb—Ilyengar
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Notes. There are two experiments in which Goldfarb-Iyengar went bankrupt, which are not included in this histogram. The x-axis represents the
annualized returns, and the y-axis represents the numbers of returns.
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Figure 13. Histograms of the Sharpe Ratios of the 100 Different Experiments on DRMV (Blue) and Goldfarb-Iyengar (Orange)
Portfolios
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Note. The x-axis represents the Sharpe ratios, and the y-axis represents the numbers of Sharpe ratios.

5.3.3. Turnover Rates. Fabozzi et al. (2007) observe discussion in Section 3), whereas transaction costs in
empirically that robust portfolios have low turnover  general discourage active trades. We support this
rates. This phenomenon is justified theoretically by  with our distributionally robust strategies. Figure 22
the stipulation that robust models are equivalent to  shows the histograms of the turnover rates (including
nonrobust models with transaction costs (see the  buy and sell) with 100 experiments for d = 100 stocks

Figure 14. Histograms of the Kurtoses of the 100 Different Experiments on DRMV (Blue) and Goldfarb-Iyengar (Orange)
Portfolios
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Note. The x-axis represents the kurtosis, and the y-axis represents the numbers of kurtoses.
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Figure 15. Histograms of the Annualized Returns of the 100 Different Experiments on DRMV (Blue) and Single-Period Marko-
witz (Orange) Portfolios

Annual Return Rate Histograms of DRMV and Single-Period Markowitz
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Note. The x-axis represents the annualized returns, and the y-axis represents the numbers of returns.

for both DRMV and the equally weighted portfolio. Clearly, our result reconciles with the finding of Fa-
We include the latter as it is known to have low turn-  bozzi et al. (2007). Indeed, the two histograms are al-
over and is a special instance of distributionally ro-  most identical, and most of the monthly turnover
bust portfolios. rates are lower than 10%, which is considered to be

Figure 16. Histograms of the Sharpe Ratios of the 100 Different Experiments on DRMV (Blue) and Single-Period Markowitz
(Orange) Portfolios
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Note. The x-axis represents the Sharpe ratios, and the y-axis represents the numbers of Sharpe ratios.
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Figure 17. Histograms of the Kurtoses of the 100 Different Experiments on DRMV (Blue) and Single-Period Markowitz
(Orange) Portfolios
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Note. The x-axis represents the kurtosis, and the y-axis represents the numbers of kurtoses.

very good and reasonable in practice. If we take the 5.3.4. Shrinkage Estimators. In all the experiments
average monthly turnover rate to be 10% (definitely ~ reported so far, sample covariance was used for the
an upper bound for the average), then the annual  single-period Markovitz model as well as the
turnover rate is around only 120%. Black-Litterman model. Upon the recommendation of

Figure 18. Histograms of the Annualized Returns of the 100 Different Experiments on DRMYV (Blue) and Black-Litterman
(Orange) Portfolios
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Note. The x-axis represents the annualized returns, and the y-axis represents the numbers of returns.
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Figure 19. Histograms of the Sharpe Ratios of the 100 Different Experiments on DRMV (Blue) and Black-Litterman (Orange)

Portfolios
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Note. The x-axis represents the Sharpe ratios, and the y-axis represents the numbers of Sharpe ratios.

Figure 20. Histograms of the kurtoses of the 100 Different Experiments on DRMV (Blue) and Black-Litterman (Orange)

Portfolios
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The x-axis represents the kurtosis, and the y-axis represents the numbers of kurtoses.
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Figure 21. DRMV’s Average Wealth Processes from January 2000 to December 2016 with Different Values of p
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Notes. The averages are calculated over 100 numerical experiments. The x-axis indicates the time, and the y-axis indicates the portfolio wealth.
Initial wealth is set to be one.

one of the referees of an earlier version of the paper, =~ where ¥, is the sample covariance matrix and I, is the
we tested using the shrinkage covariance matrices for 7 X n identity matrix. The parameters a and f are esti-

these two models. mated by the following:
We used the shrinkage estimator of Ollila and Rani- A = (1-p)h
nen (2018): a={1=pn o1
j— B = ’y -
Fap = BT+ aly, @b PG -D+r@r +din+G+djn-1’

Figure 22. Histograms of the DRMYV (Blue) and Equally Weighted Portfolio (Orange) Monthly Turnover Rates of 100
Experiments
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Note. The x-axis represents the turnover rate (in percentage), and the y-axis represents the numbers of turnover rates.
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Figure 23. Portfolios” Average Wealth Processes Using Shrinkage Estimators from January 2000 to December 2016

2000-2017 Average Portfolio Wealth
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Notes. All the portfolios except S&P 500 consist of 100 stocks, and the averages are calculated over 100 numerical experiments. The x-axis indi-
cates the time in months (from 1 to 204), and the y-axis indicates the portfolio wealth. Initial wealth is set to be one.

where d is the number of stocks, f]=tr(;:”)

, P =

Ri—2T and

i Ri-)(Ri-p)"
. [tr(ngn) %] with T, =1 Zlf’:lw
5 2 1wd §
k= max(—mf @ijle)

s @

fir = argmin, >3, [IR; — i,

with I< ISlr= 2)(n 3)[(n+1)k +6] and k =3, m;

(m ‘2’>
denoting the gth order sample moment.

The two models, single-period Markowitz and
Black-Litterman, are both improved with the shrink-
age estimators. Figure 23 presents the comparison of
average wealth processes between the two models,
DRMV and S&P 500. Notably, the Black-Litterman
model now outperforms S&P 500 most of the time as
opposed to that without shrinkage (see Figure 2).
However, DRMV still dominates the two models. His-
tograms of return distributions and Sharpe ratio distri-
butions show the superiority of DRMV over the other
models similar to those without shrinkage."”

6. Concluding Remarks

We provide a data-driven distributionally robust the-
ory for Markowitz’s mean-variance portfolio selec-
tion. The robust model can be solved via a nonrobust
one based on the empirical probability measure with
an additional regularization term. The size of the dis-
tributional uncertainty region is not exogenously giv-
en; rather, it is informed by the return data in a
scheme that we have developed in this paper.

Our results may be generalized in different direc-
tions. We chose the [, norm in defining our Wasserstein
distance because of its popularity in regularization, but
other transportation costs can be used. For example,
one may consider the type of transportation cost related
to adaptive regularization that is studied by Blanchet
et al. (2017) or the one related to industry cluster as in
Blanchet and Kang (2017). Another significant direction
is a dynamic (discrete- or continuous-time) version of
the DRMV model.

Appendix A. Proof of Theorem 1

The first step is to show that the feasible region over ¢ in
the outer minimization part of Problem (2) can be explicit-
ly evaluated. This is given in the following proposition.

Proposition A.1. For c(u,v) = |ju - U||§, q>1, we have
,min Ex(¢R)=Er,(0TR)=Vollgl,, (A1)
where p satisfies 1/p+1/q=1.
Proof. We consider the following problem
. T
perfil e @ B IR (A.2)
or, equivalently,
- max Ep[(-¢)"R]. (A3)

PeD, (P, P,)<6
By checking Slater’s condition and using proposition 4
of Blanchet et al. (2016), we obtain the dual problem:

Q:11
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n D(R;) := su Tu)? = Are(u, R;) — Aadd "1l
max  Ee[(~9) Rl =inf |16+ - S 0uR)|, (A4 ®e) L (@) ~Aaet .) 20 ]
PeD. (P, P,)<5 120 n4= Proof. The proof is based on a duality argument. Intro-
ducing a slack random variable S =v, where v is a deter-
where ministic number. Then, we can recast Problem (A.7) as
D, (R)) = h(u) — Ac(u, R;
A(R)) = sup {h(u) = Ac(u, R)} max (B [(UT$)*] : Exlc(U,R) + 5] = b, 75 = By, (S = ) =
= sup {(=¢")u = Allu = Ri} (49)
E [UT¢]=a,meP(R" x R" X R4)}. (A.10)
= sup {(-p7)(A +R) — AlAI} Define
= { T)A = AllA]| } OTR: Q:={(u,1,5): c(i,r) < 00,5 > 0,r € {Rq,...,R,}},
{ } and let
= sup [l l1All, = AIAIG = @ R;
[ 11’=R1 (u/ r/ S) 1 %
Il
T 4A : 1
L=k, (u,7,5) 2
Thus, (A.4) becomes f(u,r,s) = o and g=| 5 (A.11)
u
1 [llolly “
—F_ ; lo=o(u,1,s
e, s EP @) R] = {M tala Ok Aere) 1
L c(u,r)+s | 5
ol S
= inf {Ab +—" = ¢ Ep,[R] Thus, (A.9) can be written as
= Voligll, - ¢ Es, [R] max{E;[(UT¢)’]: B[ f(U,R,S)] =q,mePa}. (A12)
or Let fo=1o,f=(fof)§=19), Q:={[fx)du(x):uc
MG}, where M{ denotes the set of nonnegative measures
min ¢ "Ep[R] = ¢ Ep,[R] - \/5||<j)||p. (A5) on Q. If ¢ # 0, then it is easy to see that j lies in the inte-
PeDe(P, Pu)<6 rior of Q;. By proposition 6 in Blanchet et al. (2016), the
[ | optimal value of Problem (A.12) equals that of its dual

Therefore, the feasible region can be rewritten as

Fsaln) = {¢ eER":9pT1=1,Ep, (¢ R)>a+ \/5||¢|Ip},

which can now be seen as clearly convex.
Next, by fixing Ep(¢"R) =a > & in the inner maximiza-
tion part of Problem (2), we obtain the following equiva-
TEp(RRT)} - a?
Peldy(P,) Ep(¢" R)= a{¢ #(RR7)¢}

lent formulation:

min {Jmax } (A.6)

OeFsa | aza

Introducing EP((p%R) «a is useful because the innermost
maximization problem in the preceding is now linear in P.
So let us concentrate on the problem

¢ Ep(RR" ).

max

max (A7)

Pl (P,), Ep(¢p" R)=a
The following proposition solves this problem in terms
of a general cost function c.

Proposition A.2. For any cost function c that is lower semi-
continuous and nonnegative, the optimal value function of
Problem (A.7) is given by

inf Z D(R)) + A6 + Aar|,

M20, Az |1 (B.8)

where

problem, that is,

max {E.[(UT¢)*]: B[ f(U,R,S)] = g, € Pa}

(A13)
= inf ag + = Za,- + Qlysq + Ayro + Odyss b,
a=(ag, - .. ,an+3)€A n i=1
where
A= {a =(ag,...,an43) ER™ :ag+= Za 1yeg, (1, 7,8) + ps1p 1
i=1

+an+2ls:v(u/ r, S) + a,,+3[c(u, 1’) + S] > (‘PTu)z/ V(u, 7’15) € Q}

From the definition of A, replacing r=R;, we obtain
that the inequality

ap+a; +aysp = sup {((PT u)z —apy3lc(u, R;) +s] - a;1+1¢Tu}

(u,s)eQ)
(A.14)
holds for each i € {1,...,n}. It follows directly that
sup {((PTM)Z = an3c(, Ri) + 5] = ani ¢Tu} (A.15)
(u,s)eQ
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+00, if A3 < 0
= T 2 T .
sup {((P )" =430, Ry) — aps1 u}, if ay3>0.
(A.16)

Thus, the dual problem can be expressed as

. 18

inf {ao + - E A + Alyy1 + Apyo + O00yy3 : Apy3 > 0,00+

n=
i=1

(A.17)
a; + Apsp > SUP {((j)Tu)z — apy3c(u, R;) — a,,+1quu}},
u
which can be transformed into
1 n
anifgo {E ; D(R;) + aays1 + 5ﬂn+3}, (A.18)

with
D(R;) == sup { (1) = Ansac(tt, Ry) — i1 quu}.

Using A, to replace a,.3 and A, to replace 4,1, the dual
problem becomes

mf{ Z(D(R Y+ Asar +/\16} (A.19)

where
D(R;) := sup {(¢)Tu)2 — Ao, Ry) — )\z(j)Tu}A
]

Thanks to this proposition, we are able to reduce the in-
ner (infinite dimensional) optimization problem in (2) into
a two-dimensional optimization problem in terms of A;
and A,, which can be further simplified if the cost func-
tion ¢ has additional structure. We make this statement
precise in the case of a quadratic /; cost.

with g>1 and
<0, then the value of

Proposition A.3. Let c(u,0)=u—ol}

1/p+1/9=1.If (a =" Eg, [R]) - 6ll¢ll
(A.7) is equal to

ha, ¢) = Ee,|(9TRY | +2(a — ¢ Es, [RD Ex, [R] + 5l
+2,[olIg| - (= ¢, [RI*VG Vare, (R).

Proof. Writing A :=u - R;, we have
O(R;) = sup {(quu)2 —Aic(u, R;) — A2¢Tu}

= sup {(¢"u) = Aulu — R} = 226 u}
= sup {(¢7 (A +R))* = MIIAI - A2gT (R, + )}
=sup T(MRi)z +(@TA +2(¢TR)@TA)
— MlIAl = 2297 (Ri+ )}
=(¢"R)* ~ A" R;
+sup {(0TAF + 2007 R)@TA) ~ MlIAI] - 12074
=(¢"R)* ~ A" R;
+sup {91 = AIAIE +2(RT )

= Aal(lpl, Al

We can consider four cases: (1) ||(/)||§>/\1, D(R;) = +o0;
@) 9l = A1, 2RT ¢ # Aa, D(R;) = +00; (3) |IBIl> = A1, 2RT p =
Ay, ®R)=0; (4 [l <A1, PR) = (@TR))* = AagpT Ri+
@RT -1 llpI1

40101

For any of the first three cases, the value of %Z:’:](D(Ri)
is +co. Hence, only the fourth case is nontrivial. In this
case, Problem (A.8) is transformed into

inf
1120, A5

e 1S

2
Mzl A2 (=1

Z@(R)+/\20{+/\16
i3

("R = 120" R;

T4 2 2
JERIO = LU0l qub””j + Moa+ Alé}
400 - 191D

(A.20)

Define
(2RT ¢ - L) Il
4 - 1iolR)

Taking a partial derivative with respect to A, and set-
ting it to be zero, we get

(@TR) = A20TR; + + Asa + Ay

1 n
:HZ

i=1

oOH 1”[

o 9TR = )il

200~ lI6ID)

which implies (note that ¢ "1 = 1 guarantees that ||qb||; > 0)

Ay =2a-2C—

I|<f>||2' (A2

where C := @ — ¢ "Ep, [R]. Moreover, A, is optimal because

FH_ 19l am
2 20— Iol) '

We plug (A.21) into (A.20) and obtain

inf

Z(D(R ) + /120( + /\15
120, 1p

i=1

= —Z(QNR,-)Z + inf
ni3 Aazliplis, A2
1 n
o2

i=1

(2RT ¢ = L)l ll;

b R;
R o)

+ Aa + A]é}
1 n

==>¢"R)+ inf
nig

A1ZH¢||,2,;/\2
18RI G - 1 19
D

i=1

Z((pTR) + inf

40 - 1I9l)
IOl

+AC+ /\15}

2
o (2R7o - 20 22 ot
21 4~ lIglI3) (

1
= —2C—)C+A15
n

oty
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Writing A1 = ¢+ [[§], we have Proof of Theorem 1. Note that
o h(a, p) — a?
inf D(R;) + Ara+ A0 = (¢'Ry) )
n2aa | Z Mo Z} = Ep, [(q{)TR)z] +2(@— ¢ Ep, [R))§ Bz, [R] - a? + 0]

K+HBIR

n R;F(P—Oé-l—c IR N
4 inf 12("”) +(2a 2190, )c+< IR

20 153 K ||¢’H

:12"1(4, R +mf{”(7)”2k+2||q>||2(¢ W-a+0)

202 -
— ()
¢”§)+u¢np }

" (Rfp—a+C
12( p-at O o [

}

If 6-C?/ ||c{)||2 <0, then the optimal value of the preced-
ing problem is —co, which means that the primal Problem
(A.7) is not feasible. If 6 — C2/||cp|| >0, then

7Z(¢TR ) +2aC —2C +[¢l[35 + inf

i=1

n (RT¢ — 2
{32 RT ¢ — Ep, [R]p) ||(P||p+K 5

n< K

CZ
||<Z>||2

1 ,
EZ(q)TRi)Z +2aC —2C +[¢|20
i=1

(R7 ¢ —Ex, [RIDPIIDl, (. 2
nf o—
i {nz K K( llplI? )}

= S YGTR)? + 2@ ¢TEz, [RGBz, [R]+ D0l
i=1

#2JolIg} - (@ — ¢ Bz, [R])?

LT SR~ e, [RI(R ~ B, [R]) 6
i=1

%@TR) +2(a = ¢ Ep, [RGB, [R] + 6l

+2\/6||¢||p — (@ = ¢TEx, [R)*V Var, [RI¢.

Thus, Problem (A.7) can be written as

min 330" R)? + 20 - ¢ B [RDO"Ex, [R] + 01
i=1
#2JolII2 - (o = ¢ B, [RI*V Vare, [RI9,

subject to 17¢p = 1 and (a — ¢ " Ep, [R])* - 6||(j>||}2, <0. v

The condition (a— ¢ Ep,[R])* - 6||qb||f, <0 is to make
sure that (A.7) is feasible, failing which the optimal value
h(a, ¢) = —co. Proposition A.3 ultimately leads to the fol-
lowing main result of the paper, one that transforms (2)
into a nonrobust portfolio selection problem in terms of
the empirical measure P, with an additional regulariza-
tion term.

We are now ready to prove Theorem 1.

+2J8llgI2 = (a = ¢ "B, [RD)* Vo Varz, (R)
= Ez,|(¢"R)’| +20¢ "Bz, [R]

~ (9 Ez, [R)’ - 0% = (¢"Ex, [RI)” + 5|61

+2J8llgI2 - (& = ¢, [RD)? Vo Varz, (R}
= ¢"Vare, (R)p + {8ll9l; - (@ = 9" Ez, [R]?}

+2J8llgI2 - (a = ¢ "B, [R]* Vo Vars, (R)

2
= (Vo Vare, (R)) + B9l - (@ — ¢ "Ex, [RI) .

Therefore, it follows from Proposition A.3 that

2
max - [h(a,¢)-a’] = (\/quVarp,, Ry + \/anbnp) ,

aza (a=¢ " Ep, [R])*~06¢ll,<0

with the optimal gy = ¢ " Ep, [R] > a. This concludes the proof.

Appendix B. Proof of Theorem 2
Define
ho(R,X) = RRT —Zand hy(R, u) =R —p.
Then, by proposition 1 of Blanchet et al. (2016), we
have that, for any given u and %,

Ru(Z,u)= sup { Ep,

AR AeR?

sup {Tr (Aho(u, Z)) + AThy(u, 1) = |lu = R|| }

ueR?

Observe that
sup {Tr(AhO(u, %)) + ATha (1, 1) — i — R||§}

ueR?

= sup {Tr(Aho(A +R,%))+AThi(A+R, ) - ||A||;}
AeR?

= sup {Tr(A[hO(A +R, )~ ho(R, Z)]) + ATA
AeR?
+ Tr(Aho(R, X)) + /\Thl(R, y).
Moreover, let us write

Tr(Alho(A + R, T) — hy(R, T)]) = / STr(ARo(R + tA)dt.

~ llalg}

However,
%Tr(AhO(R +tA)) = 2Tr(AR + tA)AT)
= 2Tr(ARAT) + 2tATAA.
Furthermore,

Eg, [Tr(Aho(R, 2))]|z-x, = 0. (B.1)

So, we deduce

Ru(Zn, p) = sup { - Ep,[AT(R - p)]
AeR?

+ sup (—Em [sup {ZTr(ARAT) +ATAA+ATA - ||A||§}D}.
AeRH A
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_Introduce the scaling A=A/n"? and A=An"? and
A = An'/2. Then, we obtain

Ry (T, )
n
=sup {—n_l/zz/_\T(Ri —u,)+ sup
AeRr? i=1 AeRr?d

. )

In the proof of proposition 3 in Blanchet et al. (2016),
under Assumption 2, a technique is introduced to show
that A and A can be restricted to compact sets with high
probability, and therefore, the term ATAA/n'? is asymp-
totically negligible. On the other hand,

sup {ZTr(AT/_\R) +ATA - ||A||;}
A

s%p{ZTr(/_\RA )+ ATAR /2 +ATA - AR}

= sup {2IAR + A, IAll, - JAIZ} = AR + AJF.
A

Therefore, if
n
n P (Ri— ) = -
i=1

for some Z (to be characterized momentarily), then we con-
clude that

Ru(Xn, ) = Lo = sup {A Z— mf E]p [||AR + Al ]}
AeRrd

If p = 2, then we have
]E]p*[”/_\R + /_\”%] = Z ]Elp'(/_\,: -R+ ii)z.
i

So, taking derivative with respect to the ith row, As,
of the matrix A, A;, we obtain

Vi, Ex[IAR + 13| = 285 (RTA, + 1)R)
=2Ep(RTA:R)+21,E(R)=0. (B.2)
Writing
i, = Ep(R) and %, = Ep-(RRT),
we obtain
Z*/_\z-, = —)_\,-y*.

Solving this equation yields Ap = —)_\,Zjllu*. Therefore,
Ep (AiR+ )" = A LA+ 20A i, + A7 = A[(1-uT =g,

By Assumption 3, Varp(R) is positive definite and,

hence, invertible. It then follows from the
Sherman-Morrison formula that

(Z)7" = (Varp (R) + p,ul) ™

Varp (R) " uTVarp (R) ™}
~ Varp(R) — arp( )T [ afni( )
1+ p!Varp(R) ",

So

(! Varg (R)"'11,)®
1+ uTVarp(R) ',

pl(Z) 'y, = plVare- (R) ', -

_ ulVare(R) g,
1+ I Varg(R) g,

7

leading to

Ly =sup {/\ Z - 1nf IEP [IIAR + )\||2]}
AeRr?

=sup {ATZ - Ilﬁllﬁ(l - #3221#*)}
oz
4(1 —ulrxy 1;1*)'
It remains to identify Z. Observe that
iy = p1+ 2L — 7T 1)/]
= pl+2(n¢" - ¢ TT.¢'1)/A;
+2(Hu¢" - ¢ THLi'1)/
= .+ 2Hyg" ¢ Hi 1)/,

where H,, := L, — Z.. By Assumption 1, we have

n
V23 (Ri— ) = Zo ~ N(O, Yy),

i=1
n'/2H, =Y ~N(0,Yy,).
Thus,

—1/22/\

:>)k Z—/\ (Zo+Z1),

— )+ 20120 (H o — & TH,o" 1)//\1

where
=2ve' - TV 1)/
Appendix C. Proof of Proposition 1

Note that

nl/2 (‘P;)T[]Eﬂ”u (R) -
ll3ll,

Ep (R)] — 2 (@ — ¢*)T[EP,, (R) — Ep(R)]
631,
@) B R ~Er R)] 117l
7T, 631, |

By the standard central limit theorem and the fact that
¢,, — ¢ in probability, we conclude

12) (@) [Ee, (R) ~ B (R)] _ (¢")"[Ee, (R) - Ex(R)]
" { 61, 67T, =0

as n — oo. However, again by the central limit theorem, we

have
T Epn (R) —Ew»(R
nl/2{(¢ )| P?|E;j*|)|p P ( )]} = N(O,Y(p”)/

which yields the desired result.

Endnotes

! There are several mathematically equivalent formulations of the
original mean—variance model.

2 A Wasserstein distance is the optimal value for a specific optimal
transport problem. The notion was first formulated by Monge
(1781) and its theory developed by Kantorovich (1942). It is widely
used in the study of DRO problems.
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3 Recent work by Blanchet et al. (2016) shows that a similar defini-
tion of discrepancy in some other models recovers exactly certain
well-known machine learning algorithms, such as square-root Lasso
and support vector machines.

4 Cross-validation, although a standard technique, is generally
data-intensive and time-consuming. In the rolling horizon setting,
for instance, one has to assume the parameter 6 to be constant dur-
ing the horizon and estimate it. In contrast, in our data-driven ap-
proach, the parameter 6 changes over the horizon in a way that is
sensitive to the variability in the data.

5 Different cost functions can be used, resulting in different
regularization penalties as we discuss at the end of Section 3 and in
Section 6.

SIn practice, it is not desirable to include, in the case of S&P 500
stocks, for example, all the 500 stocks in one’s portfolios even
though one of the key implications of the mean—variance model is
diversification. From a practical perspective, including too many
stocks is costly and prone to mismanagement. Therefore, adding a
proper regularization term not only reduces overfitting, but also
helps achieve a balance between diversification and manageability.

7 Strictly speaking, (4) is a mean-standard deviation model, which
is equivalent to the mean-variance one.

® Herein, the analysis is under Assumption 3. If @+ contained more
than just one element, then there would be several possible options
to formulate an optimization problem for choosing 6. For example,
we may choose 6 as the smallest uncertainty size such that ®p C
As(P,) with probability 1- 0, in which case we would need to
study sup;cq,,. Rou(@).

9 We chose the period 2000-2016 for our back-testing for a reason:
the market was overall very volatile during this period, experienc-
ing two major crashes: the dotcom bubble burst and the subprime
financial crisis, followed by a long bull run until this day of writing
(February 2018). We were particularly interested to see how robust
our DRMV strategies would have been when sailing through such a
bumpy journey.

0 theory, we should have included all the constituents of S&P
500 in our portfolios. However, that would be computationally inef-
ficient and practically (almost) infeasible for most of the models
under testing (e.g., the original Markowitz model). Therefore, it is
desirable to choose a small subset of stocks based on which to apply
various models. This “stock selection” is an ultimately important
part of the overall portfolio management. In this paper, however,
we aim to test the performances of “stock allocation” (namely, to al-
locate wealth among the stocks that have been already selected in or-
der to achieve the best risk-adjusted return) of these models. That is
why we randomly selected the small subset of stocks in order to fo-
cus on the part of the stock allocation. On the other hand, the require-
ment that the selected stocks have at least 10 years’ price data is due
to the length of the training period.

" There is an extensive literature on continuous-time Markowitz
models; however, to our best knowledge, all the other existing mod-
els include a risk-free asset.

12 We also tested for portfolios with 20 stocks and observed bank-
ruptcy in more than half of our experiments. On the other hand, al-
though the other six single-period models have no explicit
no-bankruptcy constraint either, a total of only two instances of
bankruptcy occurred in our experiments.

3 Bielecki et al. (2005) solve a continuous-time mean—variance
model with the no-bankruptcy constraint. However, there is a risk-
free asset in that model. To have a fair comparison with the other
models in which there is no risk-free account available, it is proper
to choose the model of Cui et al. (2012) in our experiments. We are
not aware of a work on continuous-time Markowitz models without
a risk-free asset and with bankruptcy prohibition.

14 We assume that the factors have been processed according to the
available papers (Fama and French 1992, 1993).

5 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library html.

16 Here, we include only those having at least 10 years’ historical
data to be consistent with the other models.

7 Here, if ||¢h,; — ¢oll; < 7, then ¢, satisfies the trading volume con-
straint, and hence, itself is the optimal portfolio. In this case, x = 0.

8 The good performance of the equally weighted portfolio is well
documented in the literature; see, for example, DeMiguel et al. (2009).

19 As those histograms are similar, we do not present them here.
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