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Abstract

Many clustering problems can be solved using semidefinite programming. Theoret-
ical results in this vein frequently consider data with a planted clustering and a notion
of signal strength such that the semidefinite program exactly recovers the planted clus-
tering when the signal strength is sufficiently large. In practice, semidefinite programs
are notoriously slow, and so speedups are welcome. In this paper, we show how to
sketch a popular semidefinite relaxation of a graph clustering problem known as mini-
mum bisection, and our analysis supports a meta-claim that the clustering task is less
computationally burdensome when there is more signal.

1 Introduction

In many data science applications, one is tasked with partitioning objects into clusters so
that members of a common cluster are more similar than members of different clusters.
For example, given a graph, one might cluster the vertices in such a way that most edges
are between vertices from a common cluster. At the same time, one ought to ensure that
clusters are appropriately balanced in size, since otherwise a cluster could degenerate to a
single vertex. There are a variety of graph clustering objectives that simultaneously penalize
edges across clusters and varying sizes of clusters, and for each objective, there are families
of graphs for which finding an optimal clustering appears to be computationally difficult.
For example, given a graph with an even number of vertices, one might bisect the vertex set
in such a way that minimizes the number of edges across clusters. This minimum bisection
problem is known to be NP-hard [5].

Recently, it has been popular to demonstrate instances of the meta-claim that clustering
is only difficult when it doesn’t matter. For example, while one can encode hard instances of
the traveling salesman problem as instances of minimum bisection, these sorts of instances
would never appear in the context of real-world data science. Rather, a data scientist will
cluster data that is meant to be clustered. With this perspective in mind, researchers have
studied how a variety of clustering algorithms perform for datasets with a planted cluster-
ing structure. For example, one might attempt to solve the minimum bisection problem
for random graphs drawn from the stochastic block model, in which edges are drawn within
planted communities at a higher rate than edges across planted communities. In this setting,
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it was shown in [1, 3] that a slight modification of the Goemans–Williamson semidefinite
program [6] exactly recovers the planted clustering whenever it is information theoretically
feasible to do so, i.e., in the regime where there are no isolated vertices with high prob-
ability; see Proposition 1 for details. Similar approaches have treated other semidefinite
programming–based clustering algorithms in various settings [2, 9, 15, 13, 14].

Many of these results take the following form: “Given enough signal, the semidefinite
program exactly recovers the planted clusters.” In the context of graph clustering, “signal”
refers to the extent to which there are more edges within clusters than across clusters (in an
appropriate quantitative sense). In this paper, we pose a subtler meta-claim:

Clustering is easier when there is more signal.

Indeed, while previous results determined how much signal is necessary and sufficient for
clustering to be computationally feasible, the above meta-claim suggests that the computa-
tional burden should decline gracefully with additional signal. This makes intuitive sense
considering it’s easier to find a needle in a haystack when the haystack contains more nee-
dles. Such behavior is particularly welcome in the context of semidefinite programming, as
solvers are notoriously slow for large datasets despite having polynomial runtime. The goal
of this paper is to demonstrate this meta-claim in the special case of minimum bisection by
semidefinite programming under the stochastic block model. In other words, we provide a
method to systematically decrease runtime for instances with more signal.

We start by formally defining the stochastic block model. Let G ∼ SBM(n1, n2, p, q)
denote a random graph with vertex set V (G) = S1 t S2 such that |S1| = n1 and |S2| = n2

and whose edges are independent Bernoulli random variables. For every pair of vertices, if
they reside in the same community Si, we draw an edge between them with probability p,
and otherwise the edge probability is q. If p > q, then this models how a social network
exhibits more connections within a community than between communities. In our problem,
we do not have access to the partition {S1, S2}. One might randomize the communities to
model this lack of information, but we do not bother with this formality here.

In the special case where n1 = n2, one may exactly recover {S1, S2} from G provided
p is appropriately large compared to q. To do so, we follow [1, 3] by encoding G with the
matrix B defined by Bij = 1 if i ↔ j, Bii = 0, and otherwise Bij = −1, and we then solve
the program

maximize x>Bx subject to 1>x = 0, x ∈ {±1}n. (1)

This corresponds to finding the minimum bisection of G, and one may show that the optimiz-
ers of this combinatorial program take the form ±(1Ŝ1

−1Ŝ2
), where {Ŝ1, Ŝ2} is the maximum

likelihood estimator of {S1, S2}. In pursuit of a computationally efficient alternative, one is
inclined to consider a semidefinite program obtained by lifting X := xx> and relaxing:

maximize tr(BX) subject to diag(X) = 1, X � 0. (2)

Following [1, 3], we relaxed away the convex constraint 1>x = 0, but this does not hurt
performance. In fact, this relaxation exactly recovers {S1, S2} in the regime in which it is
information theoretically feasible to do so:

Proposition 1 ([1, 3]). Select α > β > 0 and for each n ∈ 2N, draw G ∼ SBM(n/2, n/2, p, q)
with p = (α log n)/n and q = (β log n)/n and with planted communities {S1, S2}.
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(a) If
√
α−
√
β >
√

2, then (2) recovers {S1, S2} from G with probability 1− o(1).

(b) If
√
α−
√
β <
√

2, then it is impossible to recover {S1, S2} from G.

This phase transition partitions the set of all (α, β) into two regimes: one in which
{S1, S2} can be recovered from G in polynomial time by semidefinite programming, and
another in which no algorithm exists (not even an inefficient one) that recovers {S1, S2}
from G. Recalling our meta-claim, we would like to show that in the former case, a larger
choice of α for a fixed β makes it more computationally efficient to recover {S1, S2} from G.
In this spirit, we first consider Figure 1. This figure illustrates that the SDP solver empirically
behaves according to our meta-claim, taking less time to identify the clustering when there
is more signal available. In this paper, we do not explain this specific phenomenon. Instead,
we analyze a modification to the SDP algorithm using an idea that might be transferred
more easily to other settings. In fact, Figure 1 also illustrates that our modification provides
a substantial speedup over the original SDP.

Recall the general sketch-and-solve approach: Given a large problem, we

1. randomly project to a smaller version of the same problem,

2. solve the smaller version of the problem, and then

3. use the solution to the smaller problem to (approximately) solve the original problem.

Notice that step 2 promises to be faster since the size of the problem is smaller. This approach
has been particularly effective in approximately solving large least squares problems [18], and
some work has been done to transfer these ideas to the setting of semidefinite programs [19,
4, 20].

We will apply the sketch-and-solve approach to systematically decrease the computational
burden of clustering given more signal. In the next section, we show how to perform steps 1
and 3 above, thereby reducing our task to solving step 2. Specifically, we sketch by passing
to the subgraph induced by a random subset of vertices, but in doing so, we no longer
have communities of equal size. This motivates the study of the unbalanced stochastic
block model, and in Section 3, we show a slight modification of (2) exactly recovers the
communities in this setting. In Section 4, we combine the ideas and results in Sections 2
and 3 to state and prove our main result. As we will see, we can afford to sketch down
to a smaller subgraph when there is more signal, which corroborates our meta-claim. We
conclude in Section 5 with a discussion.

2 Exact recovery from a sketch oracle

As discussed in the previous section, our approach is to sketch the original graph to a smaller
graph, solve the clustering problem for the smaller graph, and then use these small clusters
to determine a clustering for the entire graph. For the last step, we will assign each vertex
to the small cluster that it shares more edges with. The following lemma indicates that
this sketch-and-solve approach identifies the planted clusters provided (1) the small graph
we sketch to is not too small relative to the signal (measured in terms of the sketching

3



Figure 1: For each α ∈ {2, 4, . . . , 50} and β ∈ {1, 2, . . . , 10}, perform the following exper-
iment 10 times and plot the results. Draw a random graph with distribution SBM(n1 =
150, n2 = 150, p = (α log n)/n, q = (β log n)/n). Attempt to exactly recover the planted
communities by solving the Abbe–Bandeira–Hall SDP (2) in CVX [7]. The proportion of
recovery is displayed in (top left), while the average runtime (in seconds) is displayed in
(top right). Next, attempt to exactly recover the planted communities using the sketch-
and-solve method described in this paper; see Section 5 for details. The recovery rate and
average runtime are displayed in (bottom left) and (bottom right), respectively. The
red curve depicts the phase transition from Proposition 1. For both approaches, the runtime
is smaller when α � β, and more dramatically so for the sketch-and-solve method. For
example, when α = 50 and β = 1, the average runtime for the Abbe–Bandeira–Hall SDP is
3.8170 seconds, while the sketch-and-solve method is over 8 times faster, taking an average
of 0.4520 seconds.
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parameter γ relative to the edge density parameters α and β) and (2) we correctly identify
the planted small clusters R1 and R2. We discuss how to accomplish (2) in the next section.

Lemma 2. Draw G ∼ SBM(n/2, n/2, p, q) with planted communities {S1, S2} and with p =
(α log n)/n and q = (β log n)/n, where α > β > 0. Draw vertices V at random according to
a Bernoulli process with rate γ and put Ri := Si ∩ V for both i ∈ {1, 2}. Let e(v, S) denote
the number of edges in G between v and S ⊆ V (G) and take

Ŝi := Ri ∪ {v ∈ V (G) \ V : e(v,Ri) > e(v,R3−i)}.

Then (Ŝ1, Ŝ2) = (S1, S2) with probability 1− o(1) provided

γ >
8

3
· 2α + β

(α− β)2
.

Proof. Let E denote the success event. After conditioning on V , the union bound gives

P(Ec|V ) ≤
∑
i∈{1,2}

∑
v∈Si

1{v∈V (G)\V } · P({e(v,Ri) ≤ e(v,R3−i)}|V ).

Conditioned on V , then for each v ∈ Si∩ (V (G)\V ), the quantity e(v,Ri)− e(v,R3−i) takes
the form

Ki∑
j=1

B
(p)
j −

K3−i∑
j=1

B
(q)
j ,

where Ki := |Ri| and the terms in the sums are independent Bernoulli random variables with
rate indicated by the superscript. The mean of this sum is Kip − K3−iq. After centering,
each term has absolute value at most 1 almost surely, and the variance of the sum is

Kip(1− p) +K3−iq(1− q) ≤ Kip+K3−iq.

If in addition to {v ∈ Si ∩ (V (G) \ V )} we restrict to the event E1 ∩ E2, where Ei :=
{Kip−K3−iq ≥ 0}, then taking K := K1+K2

2
and J := |K1−K2

2
| gives K − J = min{K1, K2},

K + J = max{K1, K2}, and

|(K − J)p− (K + J)q| = |min{K1, K2}p−max{K1, K2}q|
= min{K1, K2}p−max{K1, K2}q
= min{K1p−K2q,K2p−K1q} ≤ Kip−K3−iq = |Kip−K3−iq|

for each i ∈ {1, 2}. Thus, on this event, we may apply Bernstein’s inequality for bounded
variables (see Theorem 2.8.4 in [17]):

P({e(v,Ri)− e(v,R3−i) ≤ 0}|V ) ≤ exp

(
− (Kip−K3−iq)

2/2

Kip+K3−iq + (Kip−K3−iq)/3

)
≤ exp

(
− (K(p− q)− J(p+ q))2/2

K(4
3
p+ 2

3
q) + J(4

3
p− 2

3
q)

)
.
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Denote E3 := {J ≤ εK} for some ε ∈ (0, α−β
α+β

) to be selected later. Then on the event

{v ∈ Si ∩ (V (G) \ V )} ∩ E1 ∩ E2 ∩ E3, it further holds that

P({e(v,Ri)− e(v,R3−i) ≤ 0}|V ) ≤ exp

(
− (K(p− q)− J(p+ q))2/2

K(4
3
p+ 2

3
q) + J(4

3
p− 2

3
q)

)
≤ exp

(
− ((p− q)− ε(p+ q))2/2

(4
3
p+ 2

3
q) + ε(4

3
p− 2

3
q)
·K
)

=: ep,q,ε(K).

Overall, we may bound the failure probability:

P(Ec) = E[P(Ec|V )] ≤ E
[ ∑
i∈{1,2}

∑
v∈Si

1{v∈V (G)\V } · P({e(v,Ri) ≤ e(v,R3−i)}|V )

]

≤ E
[ ∑
i∈{1,2}

∑
v∈Si

1{v∈V (G)\V } ·
(

1(E1∩E2∩E3)c + 1E1∩E2∩E3 · ep,q,ε(K)
)]

≤ E
[ ∑
i∈{1,2}

∑
v∈Si

(
1(E1∩E2∩E3)c + ep,q,ε(K)

)]
= n

(
P((E1 ∩ E2 ∩ E3)c) + E[ep,q,ε(K)]

)
,

where the last inequality uses ep,q,ε(K) ≥ 0. We will find ε ∈ (0, α−β
α+β

) such that

P(Ec1) = e−Ω(n), P(Ec2) = e−Ω(n), P(Ec3) = e−Ω(n), E[ep,q,ε(K)] = o(1/n),

from which it follows that P(Ec) = o(1), as desired.
For the first three estimates, it will be helpful to first consider independent Bernoulli

variables X1, . . . , Xn/2 and Y1 . . . , Yn/2, all with rate γ. Given a > b > 0, we bound

f(a, b) := P
{ n/2∑

j=1

aXj −
n/2∑
j=1

bYj < 0

}
.

Indeed, for each i ∈ {1, 2}, it holds that f(a, b) equals the probability that aKi− bK3−i < 0,
since Ki is the size of the set Ri, which is drawn by a Bernoulli process of rate γ from
the set Si, which in turn is a fixed set of size n/2. The expectation of the above sum is
n
2
(a − b)γ, and after centering, each term in the sum has absolute value at most a almost

surely. The variance of the sum is n
2
(a2 + b2)γ(1 − γ). As such, Bernstein’s inequality for

bounded variables gives

f(a, b) ≤ exp

(
−

(n
2
(a− b)γ)2/2

n
2
(a2 + b2)γ(1− γ) + a · n

2
(a− b)γ/3

)
.

Notice that P(Ec1) = P(Ec2) = f(p, q) = f(α logn
n

, β logn
n

). Simplifying then gives

P(Eci ) ≤ exp

(
−

(1
2
(α− β)γ)2/2

1
2
(α2 + β2)γ(1− γ) + α · 1

2
(α− β)γ/3

· n
)
,
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which is e−Ω(n) since α > β. Next,

P(Ec3) = P{J > εK}
= P{|K1 −K2| > ε(K1 +K2)}
≤ P{K1 −K2 > ε(K1 +K2)}+ P{K2 −K1 > ε(K1 +K2)}
= P{(1 + ε)K2 − (1− ε)K1 < 0}+ P{(1 + ε)K1 − (1− ε)K2 < 0}
= 2 · f(1 + ε, 1− ε),

which is e−Ω(n) since ε ∈ (0, 1).
It remains to show that E[ep,q,ε(K)] = o(1/n). Since K = |V |/2, we may write

ep,q,ε(K) = exp

(
− ((p− q)− ε(p+ q))2/4

(4
3
p+ 2

3
q) + ε(4

3
p− 2

3
q)
· |V |

)
.

Recall that the moment generating function of a random variable X is defined by MX(t) :=
E[etX ]. As such, we may interpret E[ep,q,ε(K)] as the moment generating function of |V |
evaluated at a point. Since |V | has binomial distribution over n trials with rate γ, this gives

E[ep,q,ε(K)] =

[
1− γ + γ · exp

(
− ((p− q)− ε(p+ q))2/4

(4
3
p+ 2

3
q) + ε(4

3
p− 2

3
q)

)]n
=: ((1− γ) + γe−c(logn)/n)n,

where c := ((α−β)−ε(α+β))2/4

( 4
3
α+ 2

3
β)+ε( 4

3
α− 2

3
β)

. Next, we compare to linear approximations to obtain

((1− γ) + γe−c(logn)/n)n = exp(n log((1− γ) + γe−c(logn)/n))

≤ exp(n((1− γ) + γe−c(logn)/n − 1))

= exp(−γn(1− e−c(logn)/n)) = exp(−γn · (1− o(1)) · c logn
n

).

Finally, by our assumption on γ, it holds that γ > 1/c for every sufficiently small ε > 0.
Taking any such ε gives that the above quantity is o(1/n), as desired.

3 The unbalanced stochastic block model

Lemma 2 reduces our problem of exact recovery of balanced communities in the stochastic
block model to a smaller problem. Unfortunately, by sketching to a random subgraph, the
planted communities are no longer balanced, and so we cannot naively apply Proposition 1.
Still, considering the overwhelming success of (2) in the balanced case, one is inclined to try
some version of it in the more general case.

To this end, we first note that the choice of B = 2A− J + I in (1) as an encoding of G is
somewhat arbitrary; here, A denotes the adjacency matrix of G, and J denotes the all-ones
matrix. Suppose we replaced B with any B̃ = aA+bJ+cI with a > 0. Then the constraints
1>x = 0 and x ∈ {±1}n together ensure that

x>B̃x = x>(aA+ bJ + cI)x = a · x>Ax+ c · n.
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Figure 2: Succes rates for exact recovery under SBM(n1 = 100, n2 = 200, p = (α log n)/n, q =
(β log n)/n). (left) Goemans–Williamson SDP. (center) Abbe–Bandeira–Hall SDP. (right)
Proposed SDP, which assumes access to the value of (p + q)/2. The red curve depicts the
curve

√
α −
√
β =
√

2, which by Proposition 1 is the phase transition for exact recovery in
the balanced case. It appears that the same phase transition holds for the proposed SDP in
the unbalanced case.

Observe that the maximizer in (1) is the same for all such objectives. However, we can
expect different choices of B̃ to produce different optimizers once we relax to the SDP. Of
course, there is no change to the SDP if we change c since X is constrained to have all-ones
diagonal, and so we take c = 0 for simplicity. Next, we can rescale B̃ so that a = 1 without
changing the SDP. Overall, we are interested in encodings of the form B̃ = A − µJ . The
choice µ = 1

2
corresponds to the Abbe–Bandeira–Hall encoding [1]. Alternatively, we could

run the Goemans–Williamson relaxation of maximum cut on the complement of G, which
corresponds to taking µ = 1 [6]. These two SDPs behave similarly for G ∼ SBM(n1, n2, p, q)
when n1 = n2, but as Figure 2 illustrates, the Abbe–Bandeira–Hall SDP performs better in
the unbalanced case. Curiously, it appears that the choice µ = (p+ q)/2 exhibits the phase
transition from Proposition 1.

In this paper, we consider the family of semidefinite programs

maximize tr((A− µJ)X) subject to diag(X) = 1, X � 0. ((A, µ)-SDP)

Similar to [1], we pass to the dual program to obtain an optimality condition:

Lemma 3. Let A denote the adjacency matrix of a simple graph G on n vertices. Partition
the vertices S1tS2 = V (G) and put n1 := |S1|, n2 := |S2|, and g := 1S1−1S2. Let G+ denote
the subgraph of G with edge set E(S1, S1) ∪ E(S2, S2), and let G− denote the subgraph with
edge set E(S1, S2). Finally, let D+ and D− denote the diagonal matrices of vertex degrees
in G+ and G−. If the matrix

D+ −D− − µ(n1 − n2) diag(g)− A+ µJ

is positive semidefinite with rank n− 1, then gg> is the unique solution to (A, µ)-SDP.

Proof. The dual of (A, µ)-SDP is given by

minimize tr(Y ) subject to Y � A− µJ, Y diagonal.
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To verify weak duality, we have

tr((A− µJ)X) ≤ tr(Y X) = tr(Y ),

where the first inequality follows from the semidefinite constraints, and the equality follows
from the diagonal constraints. By the hypotheses of the lemma, we see that

X0 := gg>, Y0 := D+ −D− − µ(n1 − n2) diag(g)

are primal- and dual-feasible, respectively. As such, by rearranging the above inequality, it
suffices to show that equality in

tr((Y0 − A+ µJ)X) ≥ 0

holds with primal-feasible X if and only if X = X0. For the “if” direction, note that

tr(Y0) = tr(D+)− tr(D−)− µ(n1 − n2) tr(diag(g)) = g>Ag − µ(n1 − n2)2,

and so

tr((Y0 − A+ µJ)X0) = g>(Y0 − A+ µJ)g = tr(Y0)− g>Ag + µ(g>1)2 = 0.

For the “only if” direction, put Z := Y0 − A + µJ . Then by assumption, Z is positive
semidefinite, and we just showed that g>Zg = 0. It follows that Zg = 0. Furthermore, Z
has rank n− 1 by assumption, and so the nullspace of Z equals the span of g. Suppose X is
primal-feasible with tr(ZX) = 0, and consider the spectral decompositions X =

∑
i λixix

>
i

and Z =
∑

j µjzjz
>
j . Note that 0 = µ1 < µ2 ≤ µn and z1 = n−1/2 · g. Then

0 = tr(ZX) =
∑
i

λi
∑
j>1

µj|〈xi, zj〉|2.

Since each term in the outer sum is nonnegative, it must hold that for each i, either λi = 0
or |〈xi, zj〉|2 = 0 for every j > 1. Considering {zj}j∈[n] is an orthonormal basis for Rn, we see
that |〈xi, zj〉|2 = 0 for every j > 1 only if xi is a scalar multiple of z1. On the other hand,
{xi}i∈[n] is also an orthonormal basis, and so there is at most one such xi. It follows that X
has rank at most 1, and in particular, X is a scalar multiple of gg>. The diagonal constraint
on the primal-feasible X then implies that X = gg> = X0, as desired.

Next, we apply Lemma 3 to the stochastic block model to show when the SDP exactly
recovers the planted clusters. Notice the appearance of p+q

2
as a threshold on µ:

Lemma 4. Take n1, n2 ≥ 1 and p > q > 0, put n := n1 + n2 and m := |n1 − n2|, draw
G ∼ SBM(n1, n2, p, q) with planted communities {S1, S2}, let A denote the adjacency matrix
of G, and put g = 1S1 − 1S2. If µ > q, then gg> is the unique solution to (A, µ)-SDP with
probability at least  1− 2n exp(−3

2
· ((µ−q)n)2

(3p+q+2µ)n+3(p−q)m) if µ < p+q
2

1− 2n exp(− 3
16
· ((p−q)n−(2µ−(p+q))m)2

(2p+q)n+(2p−q−µ)m
) if µ ≥ p+q

2
.
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Proof. By Lemma 3, it suffices to show that with high probability, the random matrix

Z := D+ −D− − µ(n1 − n2) diag(g)− A+ µJ

is positive semidefinite with rank n − 1. As established in the proof of Lemma 3, it holds
that Zg = 0 almost surely. It remains to show that the second-smallest eigenvalue λ2(Z) of
Z is strictly positive with high probability. Weyl’s inequality (see Theorem 4.3.1 in [8]) gives

λ2(Z) = λ2(EZ + Z − EZ) ≥ λ2(EZ)− ‖Z − EZ‖2→2.

To continue, we determine the exact value of λ2(EZ), and then we use matrix Bernstein to
bound ‖Z − EZ‖2→2 in a high-probability event.

To compute λ2(EZ), it is helpful to assume (without loss of generality) that S1 =
{1, . . . , n1} and S2 = {n1 + 1, . . . , n}. We first write the matrix in block form:

EZ =

[
(a1 − b)In1 + b1n11

>
n1

c1n11
>
n2

c1n21
>
n1

(a2 − b)In2 + b1n21n>2

]
,

where the matrix entries are given by

a1 = p(n1 − 1)− qn2 − µ(n1 − n2) + µ, b = −p+ µ,

a2 = p(n2 − 1)− qn1 + µ(n1 − n2) + µ, c = −q + µ.

From this block form, we see that for each i ∈ {1, 2}, every vector supported on Si that is
orthogonal to 1Si is an eigenvector with eigenvalue ai − b. One may simplify to obtain

a1 − b = (p− µ)n1 + (µ− q)n2, a2 − b = (p− µ)n2 + (µ− q)n1.

Considering g = 1S1 − 1S2 is an eigenvector with eigenvalue 0, the remaining eigenvector h
must reside in the span of 1S1 and 1S2 and simultaneously be orthogonal to 1S1 − 1S2 . As
such, we may take h = n21S1 +n11S2 , and multiplying by EZ reveals that the corresponding
eigenvalue is (µ − q)n. Observe that this is the second-smallest eigenvalue provided it is
nonnegative and p− µ > µ− q, i.e., q ≤ µ < (p+ q)/2. On the other hand, if µ ≥ (p+ q)/2,
then the second smallest eigenvalue is the smaller of a1 − b and a2 − b. Overall, we have
λ2(EZ) ≤ 0 if µ < q and otherwise

λ2(EZ) =

{
(µ− q)n if q ≤ µ < (p+ q)/2,

(p− µ) max(n1, n2) + (µ− q) min(n1, n2) if µ ≥ (p+ q)/2.

Notice that in the case µ ≥ (p+ q)/2, we we may simplify this expression:

λ2(EZ) = (p− µ)n+m
2

+ (µ− q)n−m
2

= p−q
2
· n− (µ− p+q

2
) ·m.

It remains to obtain a high-probability upper bound on ‖Z − EZ‖2→2. To accomplish
this, we will apply matrix Bernstein. First, we express Z − EZ as a random series. To
this end, for each (i, j) such that i and j belong to the same community, i.e., (i, j) ∈
(S1×S1)∪ (S2×S2) = S2

1 ∪S2
2 , we let B+

ij denote the Bernoulli random variable with success
probability p that indicates whether i and j are adjacent in the random graph G. Similarly,
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for each (i, j) ∈ S1×S2, let B−ij denote the Bernoulli random variable with success probability
q that indicates whether i and j are adjacent. With these definitions, it is straightforward
to verify the identity

Z − EZ =
∑

(i,j)∈S2
1∪S2

2
i<j

(B+
ij − p)(ei − ej)(ei − ej)> −

∑
i∈S1
j∈S2

(B−ij − q)(ei + ej)(ei + ej)
>.

Each (i, j) with i < j corresponds to a unique term on the right-hand side above, which we
denote by Mij. This yields the desired random series:

Z − EZ =
∑
i,j∈[n]
i<j

Mij.

Then EMij = 0 and ‖Mij‖2→2 ≤ 2 almost surely for every i, j ∈ [n] with i < j. Next,

EM2
ij =

{
2p(1− p)(ei − ej)(ei − ej)> if (i, j) ∈ S2

1 ∪ S2
2 , i < j

2q(1− q)(ei + ej)(ei + ej)
> if (i, j) ∈ S1 × S2,

and so we may write the sum in block form:∑
i,j∈[n]
i<j

EM2
ij =

[
c1In1 − 2p(1− p)1n11

>
n1

2q(1− q)1n11
>
n2

2q(1− q)1n21
>
n1

c2In2 − 2p(1− p)1n21
>
n2

]
,

where c1 = 2p(1− p)n1 + 2q(1− q)n2 and c2 = 2p(1− p)n2 + 2q(1− q)n1. As before, every
vector supported on Si that is orthogonal to 1Si is an eigenvector with eigenvalue ci. The
other two eigenvectors reside in the span of 1S1 and 1S2 . Since g is in the nullspace, the
remaining eigenvector is h = n21S1 + n11S2 . All together, the eigenvalues are

2p(1− p)n1 + 2q(1− q)n2 with multiplicity n1 − 1
2p(1− p)n2 + 2q(1− q)n1 with multiplicity n2 − 1

0 with multiplicity 1
2q(1− q)n with multiplicity 1.

As expected, all of these eigenvalues are nonnegative. Furthermore, since p > q, the largest
eigenvalue is∥∥∥∥ ∑

i,j∈[n]
i<j

EM2
ij

∥∥∥∥
2→2

= 2p(1− p) max(n1, n2) + 2q(1− q) min(n1, n2)

≤ 2pmax(n1, n2) + 2qmin(n1, n2) = (p+ q)n+ (p− q)m.

We are now ready to apply the matrix Bernstein inequality (see Theorem 1.6.2 in [16]):

P{‖Z − EZ‖2→2 ≥ t} ≤ 2n exp(− t2/2
(p+q)n+(p−q)m+2t/3

).

The result then follows by taking t := λ2(EZ) and simplifying.
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As an aside, we point out the following corollary: If we know p+q
2

, then we can solve
the unbalanced case by semidefinite programming, though more signal is required when the
communities are less balanced (at least for this result).

Corollary 5. Select α > β > 0 and δ ≥ 0. For each n1, n2 ∈ N with |n1 − n2| ≤ δ(n1 + n2),
put n = n1+n2, p = (α log n)/n and q = (β log n)/n, draw G ∼ SBM(n1, n2, p, q) with planted
communities {S1, S2}, let A denote the adjacency matrix of G, and put g = 1S1 − 1S2. Then
gg> is the unique solution to (A, p+q

2
)-SDP with probability 1− o(1) provided

3(α− β)2 > 16(2α + β) + 24(α− β)δ.

Proof. Put m = |n1 − n2|. By Lemma 4, the success probability is at least

1− 2n exp(− 3
16
· ((p−q)n−(2µ−(p+q))m)2

(2p+q)n+(2p−q−µ)m
) = 1− 2n exp(− 3

16
· ((p−q)n)2

(2p+q)n+(3/2)(p−q)m)

≥ 1− 2n exp(− 3
16
· ((p−q)n)2

(2p+q)n+(3/2)(p−q)δn)

= 1− 2 exp(−( 3
16
· (α−β)2

(2α+β)+(3/2)(α−β)δ
− 1) · log n),

which is 1− o(1) by our assumption on (α, β, δ).

In the special case where δ = 0, this threshold matches the guarantee provided in [1].
Perhaps surprisingly, the true phase transition appears to be independent of δ; see Figure 2.

4 Main result

We are now ready to state our main result, which combines our sketching approach with our
solver for the sketched problem:

Theorem 6 (main result). Draw G ∼ SBM(n/2, n/2, p, q) with planted communities {S1, S2}
and with p = (α log n)/n and q = (β log n)/n, where α > β > 0. Consider the random
variable µ := |E|/

(
n
2

)
, where E denotes the random edge set of G. Next, draw vertices

V ⊆ V (G) at random according to a Bernoulli process with rate γ, and let A denote the
adjacency matrix of the random subgraph induced by V . In the event that the solution to
(A, µ)-SDP is unique and takes the form gg> for some g ∈ {±1}V , select R̂1 t R̂2 = V such
that g = 1R̂1

− 1R̂2
, and otherwise let {R̂1, R̂2} be a random partition of V . Next, let Ŝi

denote the union of R̂i and the vertices in V (G) \V that share more edges with R̂i than with
R̂3−i. Provided

γ >
16

3
· 2α + β

(α− β)2
,

it holds that {Ŝ1, Ŝ2} = {S1, S2} with probability 1− o(1).

In words, if α � β, then for small choices of γ, we can sketch down to a subgraph with
approximately γn vertices before solving the SDP. Since the runtime of the SDP is sensitive
to the size of the problem instance, this promises to provide a substantial speedup. To
be explicit, [12, 11, 10] give that the complexity of solving an SDP to precision ε > 0 is
O∗(m(k + m2 + nω)), where m is the number of equality constraints, k is the total number
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of nonzero entries in the constraint and cost matrices, n is the number of rows in the square
matrix of decision variables, ω ≤ 2.373 is the matrix multiplication constant, and O∗ hides
factors of the form no(1) and logO(1)(n/ε); interestingly, this complexity can be achieved with
either an interior point method or a cutting plane method. For our SDP, we have m = n and
k ≤ n2, and so the complexity of solving this SDP is O∗(n3.373). Thus, sketching the problem
by a factor of γ < 1 has the effect of multiplying the runtime by γ3.373 � 1. (We note that the
caption of Figure 1 describes a more modest speedup using CVX, which spends a fraction of
the runtime to construct the optimization problem instance from user input before actually
solving it.) For dense graphs, we can expect γ → 0 as n → ∞, but our analysis focuses
on signal levels that are close to the information-theoretic limit, so we encounter constant
values of γ. To prove Theorem 6, we first need a version of Lemma 4 that accounts for the
randomness in our sketching process:

Lemma 7. Draw G ∼ SBM(n/2, n/2, p, q) with planted communities {S1, S2} and with p =
(α log n)/n and q = (β log n)/n, where α > β > 0. Draw vertices V ⊆ V (G) at random
according to a Bernoulli process with rate γ. Let A denote the adjacency matrix of the random
subgraph induced by V . Suppose there exists ε such that β < ε < (n/ log n)µ < 2α − β, and
put η := (α+β

2
− ε)+. Then with probability 1 − o(1), the solution to (A, µ)-SDP is unique

and identifies {S1 ∩ V, S2 ∩ V } provided

γ >
16

3
· 2α + β − η

(α− β − 2η)2
. (3)

Before proving this lemma, we provide the idea of the proof. There are two sources
of randomness, namely, the problem instance G ∼ SBM(n/2, n/2, p, q) and the sketching
variables B1, . . . , Bn ∼ Bernoulli(γ), all of which are independent. Consider the subgraph
G[V ] of G induced by V := {i ∈ [n] : Bi = 1}. Conditioned on the event {V = V0}, we have

G[V0] ∼ SBM(|S1 ∩ V0|, |S2 ∩ V0|, p, q)

with planted communities {S1∩V0, S2∩V0}. By virtue of this conditioning, we may appeal to
Lemma 4. Since our bound on the success probability only depends on the sizes of S1∩V and
S2 ∩ V , we can simply condition on these sizes. The sizes are similar with high probability,
in which case the bound in Lemma 4 gives that we succeed with high probability. Since
Lemma 4 is broken up into cases, it is a somewhat technical exercise to make this last
statement rigorous:

Proof of Lemma 7. Put g := 1S1∩V − 1S2∩V , and let S denote the event that gg> is the
unique solution to (A, µ)-SDP. We condition on K1 := |S1 ∩ V | and K2 := |S2 ∩ V |, which
are independent of each other:

P(Sc) =

n/2∑
k1=0

n/2∑
k2=0

P(Sc|{K1 = k1} ∩ {K2 = k2}) · P{K1 = k1} · P{K2 = k2}. (4)

Notice that K1, K2 ∼ Binomial(n
2
, γ), and so we expect these random variables to concentrate

at γn
2

. With this intuition, we take δ > 0 (to be selected later) and denote

I := {k ∈ N : (γ−δ)n
2
≤ k ≤ (γ+δ)n

2
}.
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We use this interval to split the sum (4) into two parts:

P(Sc) =
∑

(k1,k2)∈I×I

+
∑

k1,k2∈{0,...,n/2}
(k1,k2) 6∈I×I

≤
∑

(k1,k2)∈I×I

P(Sc|{K1 = k1} ∩ {K2 = k2}) · P{K1 = k1} · P{K2 = k2}

+ 2 · P{|K − γn
2
| > δn

2
}

≤
(
P{K ∈ I}

)2

· max
(k1,k2)∈I×I

P(Sc|{K1 = k1} ∩ {K2 = k2}) + 2 · P{|K − γn
2
| > δn

2
}

≤ max
(k1,k2)∈I×I

P(Sc|{K1 = k1} ∩ {K2 = k2}) + 2 · P{|K − γn
2
| > δn

2
} (5)

where K ∼ Binomial(n
2
, γ). We bound the first term above by applying Lemma 4, and we

bound the second term using Bernstein’s inequality.
For the first term, first assume that µ ≥ p+q

2
. Then Lemma 4 gives

P(Sc|{K1 = k1} ∩ {K2 = k2}) ≤ 2(k1 + k2) exp(− 3
16
· ((p−q)(k1+k2)−(2µ−(p+q))|k1−k2|)2

(2p+q)(k1+k2)+(2p−q−µ)|k1−k2| ).

We will select δ > 0 small enough so that

(α− β)(γ − δ) ≥ (2(2α− β)− (α + β))δ,

which in turn implies that every k1, k2 ∈ I satisfies

(p− q)(k1 + k2) ≥ (α− β) logn
n
· (γ − δ)n

≥ (2(2α− β)− (α + β))δ · log n ≥ (2µ− (p+ q))|k1 − k2|.

With this information, we may bound the exponent:

((p−q)(k1+k2)−(2µ−(p+q))|k1−k2|)2
(2p+q)(k1+k2)+(2p−q−µ)|k1−k2| ≥

((α−β)(γ−δ)−(2(2α−β)−(α+β))δ)2

(2α+β)(γ+δ)+(2α−β−ε)δ · log n.

All together, for every k1, k2 ∈ I, we have

P(Sc|{K1 = k1} ∩ {K2 = k2}) ≤ 2(γ + δ) exp((1− 3
16
· ((α−β)(γ−δ)−(2(2α−β)−(α+β))δ)2

(2α+β)(γ+δ)+(2α−β−ε)δ ) log n).

Thanks to our assumption
γ > 16(2α+β−η)

3(α−β−2η)2
= 16(2α+β)

3(α−β)2
,

this bound is o(1) for every sufficiently small δ > 0. Next, we consider the case in which
µ < p+q

2
. Put ζ := µn/ log n. Then Lemma 4 gives

P(Sc|{K1 = k1} ∩ {K2 = k2}) ≤ 2(k1 + k2) exp(−3
2
· ((µ−q)(k1+k2))2

(3p+q+2µ)(k1+k2)+3(p−q)|k1−k2|)

≤ 2(γ + δ) exp((1− 3
2
· ((ζ−β)(γ−δ))2

(3α+β+2ζ)(γ+δ)+3(α−β)δ
) log n)

≤ 2(γ + δ) exp((1− 3
2
· ((ε−β)(γ−δ))2

(3α+β+2ε)(γ+δ)+3(α−β)δ
) log n),
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where the last step applies ζ > ε and the fact that the map ζ 7→ ((ζ−β)(γ−δ))2
(3α+β+2ζ)(γ+δ)+3(α−β)δ

is

increasing over ζ ∈ [β, α+β
2

]. Thanks to the assumption

γ > 16(2α+β−η)
3(α−β−2η)2

=
16(2α+β−(α+β

2
−ε))

3(α−β−2(α+β
2
−ε))2

= 2
3
· 3α+β+2ε

(ε−β)2
,

this bound is o(1) for every sufficiently small δ > 0.
At this point, we know that the first term in (5) is o(1). For the second term, note that

K − γn
2

is a sum of independent, mean zero random variables Xi such that |Xi| ≤ 1 almost
surely and Var(Xi) = γ(1 − γ) ≤ γ. As such, Bernstein’s inequality for bounded variables

gives P{|K − γn
2
| > δn

2
} ≤ 2 exp(− (δn/2)2/2

nγ2+(δn/2)/3
) = o(1), as desired.

Next, we provide a way of estimating p+q
2

so as to select µ:

Lemma 8. Draw G ∼ SBM(n/2, n/2, p, q) with planted communities {S1, S2} and with p =
(α log n)/n and q = (β log n)/n, and consider the random variable µ := |E|/

(
n
2

)
, where E

denotes the random edge set of G. Then for any fixed c > 0, it holds that∣∣∣µ− p+ q

2

∣∣∣ ≤ c log n

n3/2

with probability 1− o(1).

Proof. Let A denote the adjacency matrix of G. It is helpful to assume (without loss of
generality) that S1 = {1, . . . , n1} and S2 = {n1 + 1, . . . , n}. Then

EA =

[
p(J − I) qJ
qJ p(J − I)

]
,

where J and I denote the all-ones and identity matrices of order n/2. Then

Eµ = 1
n(n−1)

n∑
i,j=1

EAij = n−2
2(n−1)

· p+ n
2(n−1)

· q = p+q
2
− p−q

2(n−1)
.

Also, the random variable n(n−1)
2

µ is a sum of n(n−1)
2

independent Bernoulli random variables,
(n

2
)(n

2
− 1) with mean p and (n

2
)2 with mean q. After subtracting the mean, each of these

random variables has absolute value at most 1 almost surely, and the variance of the sum is

Var(n(n−1)
2

µ) = (n
2
)(n

2
− 1)p(1− p) + (n

2
)2q(1− q) ≤ n(n−1)

2
max(p, q).

We may therefore apply Bernstein’s inequality for bounded variables:

P{|µ− Eµ| > t} = P{|n(n−1)
2

µ− En(n−1)
2

µ| > n(n−1)
2

t}

≤ 2 exp

(
−

(n(n−1)
2

t)2/2
n(n−1)

2
max(p, q) + (n(n−1)

2
t)/3

)
= 2 exp(−n(n−1)

2
· t2/2

max(p,q)+t/3
).

Taking t = c logn
2n3/2 then gives

P{|µ− Eµ| > t} ≤ 2 exp(−(1− o(1)) · c2

16 max(α,β)
· log n) = o(1).

All together, with probability 1− o(1), it holds that

|µ− p+q
2
| ≤ |µ− Eµ|+ |Eµ− p+q

2
| ≤ c logn

2n3/2 + |α−β| logn
2n(n−1)

≤ c logn
n3/2 .
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Proof of Theorem 6. Select η > 0 such that (3) is satisfied and put ε := α+β
2
− η. By

Lemma 8, it holds that (n/ log n)µ ∈ (ε, 2α − β) with probability 1 − o(1). As such, by
Lemma 7, we have {R̂1, R̂2} = {S1 ∩ V, S2 ∩ V } with probability 1 − o(1). The result then
follows from Lemma 2.

5 Discussion

In this paper, we applied the sketch-and-solve approach to systematically reduce the com-
putational burden of solving minimum bisection by semidefinite programming when the
problem instance exhibits more signal. Figure 1 illustrates that our approach provides a
substantial speedup over the original semidefinite programming approach. For this figure,
we selected γ assuming access to α and β using the following rule:

γ = min
{

1,
4

(
√
α−
√
β)2

}
.

Based on our experiments, we expect that our sketch-and-solve approach will succeed for
large n in the regime

γ >
2

(
√
α−
√
β)2

, (6)

which corresponds to Proposition 1 in the special case where γ = 1.
Our investigation suggests a few opportunities for future work. First, while Theorem 6

provides a sufficient condition on γ, the apparent sketching threshold (6) warrants an expla-
nation. Also, we did not provide a method for selecting the sketching parameter γ when α
and β are unknown. In practice, one can test whether a given γ is too small by running the
algorithm multiple times and observing whether substantially different clusterings emerge.
Presumably, one can identify a good choice of γ by performing this test for increasing values
of γ, but it would be nice to have a principled approach to select γ. Next, Figure 2 indicates
that the phase transition from Proposition 1 emerges when solving exact recovery under
the unbalanced stochastic block model. A more detailed analysis is required to explain this
phenomenon. To obtain this phase transition empirically, we put µ = p+q

2
, which suggests

another question: Given G ∼ SBM(n1, n2, p, q) with unknown n1, n2, p, q, how does one esti-
mate p+q

2
? In our setting, the fact that n1 = n2 before sketching helped us to estimate p+q

2

in Lemma 8. Finally, it would be interesting if sketching SDPs in other settings (such as
geometric clustering) also supports our meta-claim that clustering is easier in the presence
of more signal.
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