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Abstract—Generalized Canonical Correlation Analysis
(GCCA) is an important tool that finds numerous applications
in data mining, machine learning, and artificial intelligence. It
aims at finding ‘common’ random variables that are strongly
correlated across multiple feature representations (views) of the
same set of entities. CCA and to a lesser extent GCCA have
been studied from the statistical and algorithmic points of view,
but not as much from the standpoint of linear algebra. This
paper offers a fresh algebraic perspective on GCCA based on a
(bi-)linear generative model that naturally captures its essence.
It is shown that from a linear algebra point of view, GCCA
is tantamount to subspace intersection; and conditions under
which the common subspace of the different views is identifiable
are provided. A novel GCCA algorithm is proposed based on
subspace intersection, which scales up to handle large GCCA
tasks. Synthetic as well as real data experiments are provided
to showcase the effectiveness of the proposed approach.

Index Terms—Canonical Correlation Analysis, Generalized
Canonical Correlation Analysis, Subspace Intersection, Multi-
view Learning, Identifiability, Algebraic Algorithm, Common
Subspace Analysis.

I. INTRODUCTION

CANONICAL Correlation Analysis (CCA) is a classical
statistical tool for two-set / two-view factor analysis

[1], [2]. It aims at extracting a common latent structure of
a set of entities observed in two different feature domains,
which are usually referred as the ‘views’ of the entities. For
example, an English document and its French translation is
an entity represented in two different language-views. CCA
can be naturally extended to the multi-view case, where more
than two views are available for processing. Then it is referred
as generalized CCA (GCCA) or multi-view CCA (MCCA)
[3]. CCA/GCCA can also be considered as an extension of
principal component analysis (PCA) to the case where multiple
views of the data are available. On one hand PCA seeks for a
feature representation that maximizes the variance explained,
thus keeping the strong / principal feature components. On
the other hand, CCA/GCCA extracts the common components
between the views and ideally ignores even strong components
that are not present in all the views.

(G)CCA is a powerful set of tools with diverse applications
in machine learning [4]–[7], data mining [8]–[11], signal
processing [12]–[16], biomedical engineering [17]–[21], health
care data analytics [22], and genetics [23], [24], among others.
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In the two view case, CCA can be optimally solved via
generalized eigenvalue decomposition [2]. Furthermore, several
algorithms exist that solve the CCA problem when big and high
dimensional datasets are involved, and eigenvalue solutions are
computationally prohibitive, e.g., [25], [26]. The multi-view
scenario, on the other hand, is more complicated. There exist
a number of different GCCA formulations, e.g., SUMCOR,
MAXVAR, SUQUAR, etc; see [3], [27], and the majority of
them are not solvable in polynomial time. SUMCOR and
MAXVAR are the most popular formulations and various
algorithms have been developed for them, e.g., [9]–[11], [14],
[22].

Although CCA and GCCA are well-known and broadly-used
tools with a long history, there still exist intriguing questions
and open challenges related to (G)CCA theory and practice.
First, our understanding of CCA/GCCA from an algebraic
perspective is limited. The majority of the literature focuses
on the statistical interpretation of CCA, e.g., [1], [3], [28],
where each view is considered as a set of random vector
realizations, and/or on algorithmic aspects. Interpreting (G)CCA
from an algebraic viewpoint is important, since in practice the
matrix views involved in (G)CCA do not necessarily follow a
statistical model. Second, identifiability of CCA/GCCA, i.e.,
conditions under which the common latent components can be
recovered, has only been partially studied. An identifiability
condition for CCA was derived in [16], but only for the two
view case. Also, identifiability of CCA was established in
a statistical sense in [29], albeit under stringent statistical
assumptions. Finally, there is limited analysis regarding the
effect of multiple views compared to just using two views.
Despite the rapid developments in data acquisition and cross-
platform data availability, which enable leveraging multiple
views of a given set of entities, researchers often work with
just two views due to the more complicated nature of GCCA.

A. Organization and contributions of the paper

In this work we give answers to the above research
questions. First, we show that from an algebraic point of view,
GCCA amounts to subspace intersection, i.e., it computes the
intersection of the subspaces of the given matrix views. Next,
we provide both deterministic and generic conditions under
which the common subspace between the views is identifiable.
Our conditions show that having access to more views which
share a common subspace benefits the identifiability of that
subspace. Finally, we propose a simple and effective subspace
intersection algorithm for GCCA which works for any number
of views greater than or equal to two. The algorithm is algebraic
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and it exploits knowledge of the desired rank (useful signal
rank, i.e., the dimension of the dominant information-bearing
‘signal subspace’) of the matrix views. We also develop a large-
scale approximation algorithm which works for big and high-
dimensional data, both dense and sparse. Extensive simulations
with synthetically generated and real datasets showcase the
effectiveness of our proposed framework. The contributions of
the paper can be summarized as follows:
• A subspace intersection interpretation of CCA and GCCA.
• Deterministic and generic identifiability conditions for

GCCA.
• Subspace intersection based algorithms for CCA and

GCCA.
The rest of the introduction will present the notation used

throughout the paper. In Section II we review CCA and
GCCA and present a generative model for GCCA. As our first
contribution, in Section III we present a subspace intersection
interpretation of CCA and GCCA. As our second contribution,
in Section IV we present new identifiability conditions for
GCCA. Based on the obtained identifiability conditions for
GCCA, in Section V we discuss the benefits of processing
more than two views. As our third contribution, in Section
VI we present an algebraic framework for GCCA that is
scalable to high-dimensional data. In Section VII we report
numerical experiments, based on both synthetic and real data,
that corroborate the benefits of processing more than two views.
Section VIII summarizes our findings and concludes the paper.

B. Notation

The notation used throughout the paper is summarized in
Table I.

TABLE I: Overview of notation.

a , scalar
a , vector
A , matrix
A , subspace
ar , r-th column of matrix A

AT , transpose of matrix A

AH , conjugate-transpose of matrix A

‖A‖F , Frobenius norm of matrix A

trace(A) , trace of matrix A

rank(A) , rank of matrix A

range (A) , range of matrix A

ker(A) , kernel of matrix A

⊗ , Kronecker product of two matrices
⊕ , direct sum of two subspaces

dim(A) , dimension of subspace A(m
n

)
, binomial coefficient, i.e.,

(m
n

)
= m!

n!(m−n)!

II. GENERALIZED CANONICAL CORRELATION ANALYSIS

In Sections II-A and II-B we first review CCA and GCCA.
Next, in Section II-C we present a generative model for GCCA
that enables us to study GCCA using tools from linear algebra.

A. Review of CCA

In CCA we consider a pair of zero-mean random vectors
x1 ∈ CJ1 and x2 ∈ CJ2 . The goal of the simplest version

of CCA is to find linear combinations φφφH1 x1 and φφφH2 x2 that
are maximally correlated, i.e., we seek two nonzero vectors
φφφ1 ∈ CJ1 and φφφ2 ∈ CJ2 that maximize the absolute value of
the cosine angle, also known as the canonical correlation:

ρ(φφφ1,φφφ2) =
φφφH1 E[x1x

H
2 ]φφφ2√

φφφH1 E[x1xH1 ]φφφ1

√
φφφH2 E[x2xH2 ]φφφ2

, (1)

where E[ ] denotes expectation and −1 ≤ ρ(φφφ1,φφφ2) ≤ 1. We
say that φφφH1 x1 and φφφH2 x2 are coherent when ρ(φφφ1,φφφ2) = ±1.
In practice, only realizations of the random vectors x1 and
x2 are observed. Let the rows of the matrices X1 ∈ CI×J1
and X2 ∈ CI×J2 correspond to realizations of the random
vectors x1 and x2, respectively. The empirical version of the
correlation measure (1) is given by

ρ̂(φφφ1,φφφ2) =
φφφH1 XH

1 X2φφφ2√
φφφH1 XH

1 X1φφφ1

√
φφφH2 XH

2 X2φφφ2

. (2)

Observe that, from the Cauchy-Schwartz inequality,
ρ̂(φφφ1,φφφ2) = ±1 means that X1φφφ1 ∝X2φφφ2 and consequently
range(X1φφφ1) = range(X2φφφ2). A pair of components
(X1φφφ1,X2φφφ2) is said to be coherent if X1φφφ1 ∝ X2φφφ2.
Assume that we are interested in the R components
(X1φφφ11,X2φφφ21), . . . , (X1φφφ1R,X2φφφ2R) with the largest
canonical correlation values, where φφφ1r ∈ CJ1 and φφφ2r ∈ CJ2 .
The extension of (2) to the case of multiple components yields
the CCA formulation [2], [5], [30]:

max
Φ1,Φ2

trace
(
ΦH

1 XH
1 X2Φ2

)
(3a)

s.t. ΦH
n XH

n XnΦn = IR, n ∈ {1, 2}, (3b)

where Φn = [φφφn1, . . . ,φφφnR] ∈ CJn×R has full column rank
and IR is the R × R identity matrix. Hence, CCA aims to
extract the R principal canonical correlation components from
the two matrix “views” X1 and X2. The trace maximiza-
tion formulation (3) of CCA is equivalent to the following
minimization problem

min
Φ1,Φ2

‖X1Φ1 −X2Φ2‖F ⇔ min
Φ1,Φ2

∥∥∥∥[X1,−X2]

[
Φ1

Φ2

]∥∥∥∥
F

(4a)

s.t. ΦH
n XH

n XnΦn = IR, n ∈ {1, 2}. (4b)

From (4a) it can be verified that the number of coherent
canonical correlation components is equal to the dimension of
ker([X1,−X2]). Thus, in the case where R components have
maximal correlation, we have range(X1ΦΦΦ1) = range(X2ΦΦΦ2).
Therefore in the ideal case where the two views share a common
subspace of dimension R, the optimal CCA solution gives:

X1Φ1 = X2Φ2 (5a)

s.t. ΦH
n XH

n XnΦn = IR, n ∈ {1, 2}. (5b)

Note that the quadratic constraints (3b), (4b) and (5b) simply
say that the columns of X1Φ1 and X2Φ2 must form column-
wise orthonormal bases for the obtained subspaces. However,
nonorthogonal bases can be used and this constraint is strictly
speaking not necessary for CCA.
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B. Review of GCCA

Several extensions of CCA to the case of multiple views
N ≥ 2 have been proposed; see [3], [27] for details. When
N ≥ 2 matrix “views” X1 ∈ CI×J1 , . . . ,XN ∈ CI×JN are
considered, then the problem of finding canonical correlation
components is referred to as GCCA. SUMCOR [3], [27] is a
popular formulation for GCCA, which is an extension of the
trace maximization formulation (3) to the multiview case:

max
Φ1,...,ΦN

∑
1≤n1<n2≤N

trace
(
ΦH
n1

XH
n1

Xn2Φn2

)
, (6a)

s.t. ΦH
n XH

n XnΦn = IR, n ∈ {1, . . . , N}, (6b)

where Φn = [φφφn1, . . . ,φφφnR] ∈ CJn×R. n ∈ {1, . . . , N}. Note
that an N -tuple of components (X1φφφ1r, . . . ,XNφφφNr), with
φφφnr ∈ CJn , n ∈ {1, . . . , N}, is now said to be coherent if
Xn1

φφφn1
∝ Xn2

φφφn2
, ∀n1, n2 ∈ {1, . . . , N}. Similar to (4),

the maximizer of (6) corresponds to the minimizer of

min
Φ1,...,ΦN

∑
1≤n1<n2≤N

∥∥∥∥[Xn1
,−Xn2

]

[
Φn1

Φn2

]∥∥∥∥
F

, (7a)

s.t. ΦH
n XH

n XnΦn = IR, n ∈ {1, . . . , N}. (7b)

Assume that there exists R coherent canonical correlation
components (X1φφφ1r, . . . ,XNφφφNr), r ∈ {1, . . . , R} that can
be extracted from the N matrix “views” X1, . . . ,XN , so that
range(X1ΦΦΦ1) = · · · = range(XNΦΦΦN ). Then, similar to (5),
the solution to (7) will in the ideal case satisfy:

Xn1
ΦΦΦn1

= Xn2
ΦΦΦn2

, n1 6= n2 (8a)

s.t. ΦΦΦHn XH
n XnΦΦΦn = IR, n ∈ {1, . . . , N}. (8b)

Similar to CCA, the quadratic constraints (8b) simply say that
the columns of XnΦn must form a columnwise orthonormal
basis, which is strictly speaking not necessary for GCCA.

It is important to note that other extensions of CCA to the
multiview GCCA case have been proposed. We mention the
MAXVAR formulation [3], [27], which will be reviewed in
Section VI-B. In the next section we will propose a generative
model for GCCA.

C. A generative model for GCCA

a) Definition of generative model for GCCA: Assume
that relation (8a) is satisfied and that ∩Nn=1range(Xn) = R,
then there only exist R linearly independent and maximally
correlated components. Let the columns of A ∈ CI×R form a
basis for the subspace spanned by the R coherent canonical
correlation components, i.e., range(A) = range(XnΦn), ∀n ∈
{1, . . . , N}. Then there always exist matrices Bn ∈ CJn×R
Cn ∈ CI×Ln and Dn ∈ CJn×Ln such that

Xn = ABT
n + CnDT

n

= [A,Cn]STn ∈ CI×Jn , n ∈ {1, . . . , N}, (9)

where Sn = [Bn,Dn] ∈ CJn×(R+Ln) and rank(Xn) =
R+Ln. Note that since ∩Nn=1range(Xn) = R, we may assume,
without loss of generality (w.l.o.g.), that ∩Nn=1range(Cn) =
{0}. Note also that when dim(∩Nn=1range(Cn)) ≥ 0 is
permitted, then (9) can more generally be interpreted as

a coupled low-rank factorization. Thus, the difference be-
tween the discussed generative GCCA model and a cou-
pled low-rank factorization model is that the former model
requires that dim(∩Nn=1range(Cn)) = 0. To summarize,
when dim(∩Nn=1range(Cn)) = 0, then (9) is referred to
as a generative GCCA model for X1, . . . ,XN and when
dim(∩Nn=1range(Cn)) ≥ 0, then (9) is referred to as a coupled
low-rank factorization of X1, . . . ,XN . Note that the generative
GCCA model (9) does not prevent that R = 0.

Our first observation is that since A in (9) is a shared factor
matrix, we can w.l.o.g. assume that the matrices {[A,Cn]} in
(9) have full column rank (see Appendix A for a detailed proof)
and that range(Xn) = range([A,Cn]), ∀n ∈ {1, . . . , N}.
The latter implies that w.l.o.g. we can also assume that the
matrices {Sn} in (9) have full column rank. Hence, w.l.o.g.
we can always assume that the matrices X1, . . . ,XN admit
the factorization in (9), where R denotes the dimension of
the common subspace ∩Nn=1range(Xn), which is equal to
the number of coherent canonical components, and R + Ln
denotes the dimension of the individual subspace range(Xn),
n ∈ {1, . . . , N}. We also note in passing that w.l.o.g. it can
be assumed that Jn = R+Ln, i.e., if Jn > R+Ln, then Xn

of size (I × Jn) can be replaced by a compressed version of
size (I × (R+ Ln)).

To summarize, GCCA with R coherent canonical correlation
components can w.l.o.g. be interpreted as the problem of finding
the common subspace range(A) of X1, . . . ,XN which can
be factored as in (9), where the factor matrices

[A,Cn] and Sn = [Bn,Dn] have full column rank. (10)

We briefly mention that in the non-ideal case where there do
not exist R coherent canonical correlation components, then
A in (9) can be chosen to be the columnwise orthonormal
matrix that minimizes ‖

∑N
n=1 P⊥Xn

A‖2F , where P⊥Xn
denotes

the orthogonal projector onto the orthogonal complement of
range(Xn). This is related to the MAXVAR formulation of
GCCA, as will be explained in Section VI.

It is important to note that the factorization (9) together with
the full column rank properties of {[A,Cn]} and {Sn} allow
us to assume, w.l.o.g. that 1

range(Xn) = range(A)⊕ range(Cn), n ∈ {1, . . . , N},
(11)

which implies that

R ≤ I − max
1≤n≤N

Ln. (12)

Note that equation (11) is a key point of our approach and
follows naturally from the fact that matrix [A,Cn] has full
column rank and that the subspaces range(A) and range(Cn)
are complementary (see Appendix A for details). We also make
use of the convention

L1 ≤ L2 ≤ · · · ≤ LN . (13)

1Recall that if U and V are subspaces of the vector space W , then
W = U ⊕V if and only if U ∩V = {0} and W = U +V . Equivalently,
W = U ⊕ V if and only if for any w ∈ W there exists a unique vector
u ∈ U and a unique vector v ∈ V such that w = u+ v.
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b) Definition of identifiability of range(A): Consider
a set of N views X1, . . . ,XN . Assume that there exist R
coherent canonical correlation components. Let the columns
of A ∈ CI×R form a basis for the span of the R coherent
canonical correlation components. Note that range(A) can only
be identified from X1, . . . ,XN if dim(∩Nn=1range(Xn)) = R.
Thus,

range(A) is identifiable ⇔ dim(∩Nn=1range(Xn)) = R.
(14)

As an example, assume that we want to extract two coherent
canonical correlation components from the two views X1

and X2. Let the model parameters of the coupled low-rank
factorization (9) be I = 3, R = 2, N = 2 and L1 = L2 = 1.
Since dim(range(X1) ∩ range(X2)) = 3 > 2, the two
coherent canonical correlation components of interest cannot
be identified from the two views X1 and X2.

Observe that (14) expresses the identifiability of range(A),
with dim(range(A)) = R, in terms of X1, . . . ,XN . We
can also express it in terms of the factor matrices A and
C1, . . . ,CN in the model (9). More precisely, let the columns
of range(A) in (9) form a basis for the span of the R
coherent canonical correlation components. Then identifiability
of range(A) means that the views X1, . . . ,XN admit the
decompositions (9) with property ∩Nn=1range(Cn) = {0}. This
formulation of identifiability of range(A) will be important in
the next sections and for that reason we state it again below

range(A) is identifiable ⇔ dim(∩Nn=1range(Cn)) = 0.
(15)

III. A SUBSPACE INTERSECTION APPROACH FOR CCA AND
GCCA

In this section we provide a range subspace intersection
approach for finding range(A) via the observed matrices
X1, . . . ,XN with decompositions of the form (9), where
dim(

⋂N
n=1 range (Cn)) ≥ 1 is permitted. The full column rank

property of the matrices {[A,Cn]} and {Sn} in (9) imply that

range(Xn1
) ∩ range(Xn2

)

= range([A,Cn1
]) ∩ range([A,Cn2

])

= range(A) + (range(Cn1
) ∩ range(Cn2

)) ,

1 ≤ n1 < n2 ≤ N,

where the last equality follows from (11). More generally, we
have that

Y :=
N⋂
n=1

range(Xn)

= range(A)⊕

(
N⋂
n=1

range(Cn)

)
= range(A)⊕ C, (16)

where C :=
⋂N
n=1 range (Cn). Thus, relation (11) implies that

range(A) ⊆ Y and that dim(Y ) ≥ R. (17)

Observe that dim(Y ) = R implies that Y = range(A). As a
result, the study of the identifiability of range(A) reduces to
the study of dim(Y ). To put it differently,

dim(Y ) = R⇔ Y = range(A). (18)

Note that (18) means that dim(C) = 0, which in turn means
that (9) corresponds to a generative GCCA model. From (15)
we also know that this means that range(A) is identifiable
via the N views X1, . . . ,XN . Thus, if the dimension of the
subspace spanned by a basis for Y is R-dimensional, then
range(A) can be uniquely determined from Y via GCCA.

What remains to be answered is how to determine the
dimension of Y . Consider a nonzero vector z ∈ CI . Let
the columns of Un ∈ CI×(R+Ln) form a basis for range(Xn).
We know that z ∈ Y if and only if there exist nonzero vectors
qqq1 ∈ CR+L1 , . . . , qqqN ∈ CR+LN such that

z = U1qqq1 = · · · = UNqqqN . (19)

Define qqq = [qqqT1 , . . . , qqq
T
N ]T ∈ C(NR+

∑N
n=1 Ln). Then a vector

qqq with property (19) can be obtained by solving the system of
homogenous linear equations[

0I×αn1
,Un1

,0I×βn1,n2
,−Un2

,0I×ωn2

]
qqq = 0I , (20)

for 1 ≤ n1 < n2 ≤ N , where
αn1

= (n1 − 1)R+
∑n1−1
i=1 Li,

βn1,n2 = (n2 − n1 − 1)R+
∑n2−1
i=n1+1 Li,

ωn2
= (N − n2)R+

∑N
i=n2+1 Li.

We can now conclude that if the subspace

Z(N) :=
⋂

1≤n1<n2≤N

ker([0,Un1
,0,−Un2

,0]) (21)

=
⋂

1≤n1<n2≤N

ker([0,A,Cn1 ,0,−A,−Cn2 ,0]) (22)

is R-dimensional, i.e., there exist only R linearly independent
vectors qqq1, . . . , qqqR in the range of Z(N), then Y is also R-
dimensional and Y = range(A). Note that the dimensions of
the zero matrices in (22) are as in (20), but the subscripts have
been omitted due to space limitations.

Therefore the dimension of Y can be expressed in terms of
the factor matrices A, {Cn}Nn=1. For example, when N = 3,
the dimension of Y is equal to the dimension of the kernel
of the following matrix (the same reasoning holds true when
N > 3):  A C1 −A −C2 0 0

A C1 0 0 −A −C3

0 0 A C2 −A −C3

 . (23)

IV. IDENTIFIABILITY CONDITIONS FOR GCCA

The goal of GCCA is to find the subspace range(A),
observing X1, . . . ,XN . We consider the exact case where
Xn admits the factorization (9). As far as identifiability is
concerned, [16] studied the two-view CCA (N = 2) and
proved that if the matrices [A,C1,C2], S1 and S2 have full
column rank, then range (A) can be obtained via CCA, as
reviewed in Section IV-A. In Section IV-B we move a step
forward and provide an identifiability condition for the general
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case of GCCA (N ≥ 2). More precisely, using the proposed
range subspace intersection approach for GCCA, we present
an identifiability condition that does not require any of the
matrices in the set {[A,Cn1

,Cn2
]} to have full column rank.

A. Review of CCA identifiability conditions

Without loss of generality, we assume that X1 and X2 in
(5a)–(5b) admit factorizations{

X1 = ABT
1 + C1D

T
1 ∈ CI×J1 ,

X2 = ABT
2 + C2D

T
2 ∈ CI×J2 ,

(24)

where A ∈ CI×R, Bn ∈ CJn×R, Cn ∈ CI×Ln and Dn ∈
CJn×Ln . Note that (24) is a special case of (9) with N = 2. The
question is now when does the CCA solution yield range(A).
Theorem IV.1 below answers this question.

Theorem IV.1. [16] Consider the two-view factorization of
X1 and X2 given by (24). If

[B1,D1] ∈ CJ1×(R+L1) has full column rank,

[B2,D2] ∈ CJ2×(R+L2) has full column rank,

[A,C1,C2] ∈ CI×(R+L1+L2) has full column rank,

(25)

then the common subspace range(A) is identifiable via (24)
and the CCA solution (5a)–(5b) has the property range(A) =
range(X1Φ1) = range(X2Φ2).

Note that condition (25) does not require that
ΦH
n XH

n XnΦn = IR. It is important to note that
if condition (25) is not satisfied, then in general we
have range(A) 6= range(X1Φ1) = range(X2Φ2), even
if relations (5a)–(5b) are satisfied, and consequently
range(A) cannot be obtained via CCA. (This happens when
dim(

⋂2
n=1 range(Cn)) ≥ 1.) A nice property of condition

(25) is that it is easy to check and it is generically2 satisfied if

J1 ≥ R+ L1, J2 ≥ R+ L2 and I ≥ R+ L1 + L2. (26)

However, a drawback of condition (25) is that it is limited to
the two-view case (N = 2), i.e., in the multi-view case it does
not exploit all N ≥ 2 observation matrices X1, . . . ,XN . For
this reason, we consider GCCA, so that all N ≥ 2 observation
matrices X1, . . . ,XN are taken into account.

B. GCCA identifiability conditions

We start our identifiability analysis for GCCA by providing
a short proof that explains that if range(A) can be obtained
via a two-view CCA based method, then range(A) can also
be obtained by a multi-view GCCA based method.

Proposition IV.2. Consider the multi-view factorization of
X1, . . . ,XN given by (9). If condition (25) is satisfied for some
pair (Xn1

,Xn2
), where 1 ≤ n1 < n2 ≤ N , then dim (Y ) =

R, Y = range(A) and the GCCA solution (8a)–(8b) has the
property range(A) = range(XnΦn), ∀n ∈ {1, . . . , N}.

2We say that factor matrices A,B1,B2,C1,C2,D1,D2 in (24) are
generic when their entries can be assumed to have been drawn from an
absolutely continuous joint probability distribution.

Proof. Condition (25) implies that range(A) = range(X1) ∩
range(X2) and that dim(Y ) ≤ R. Consequently, from (17), we
conclude that if range(A) = range(X1)∩range(X2), then Y =
∩Nn=1range(Xn) = range(X1) ∩ range(X2) = range(A).

Hence, in terms of identifiability, a multi-view GCCA method
cannot do worse than a two-view CCA method. In this section
we explain that by taking all views X1, . . . ,XN into account,
the identifiability condition for a multi-view GCCA method
is in fact more relaxed than the identifiability condition for
a two-view CCA method, i.e., even if condition (25) is not
satisfied, range(A) can still be obtained via a GCCA method.

It is important to note that even if there exist matrices {Φn}
such that relations (8a)–(8b) are satisfied, it does not necessarily
mean that range(A) = range(XnΦn). (This happens when
dim(

⋂N
n=1 range(Cn)) ≥ 1.) We will now develop conditions

that ensure that the following implication is satisfied

x ∈ ∩Nn=1range(Xn)⇒ x ∈ range(A), (27)

so that the common subspace range(A) can be obtained via
GCCA, observing Xn, n ∈ {1, . . . , N}.

Since range(A) ⊆ Y , the minimal dimension of the subspace
Y given by (16) is R. This also means that if the subspace
Z(N) given by (22) is R-dimensional, then C = {0}.3 This
fact leads to the common subspace identifiability condition
presented in Theorem IV.3 below.

Theorem IV.3. Consider the multi-view factorization of
X1, . . . ,XN given by (9). If{

Z(N) is R-dimensional,

S1, . . . ,SN have full column rank,
(28)

then dim (Y ) = R, Y = range(A) and the GCCA solution
(8a)–(8b) has the property range(A) = range(XnΦn), ∀n ∈
{1, . . . , N}.

Proof. The result follows immediately from relations (11), (16),
(21) and (22).

In Theorem IV.3 we exploited the fact that relation (16) tells
us that if dim(Y ) = R, then C = {0}. In words, common
subspace identifiability means that the noise terms C1, . . . ,CN

have been “cancelled out” by subspace intersection. Using rela-
tion (22), Theorem IV.3 expresses the identifiability condition
in terms of the observed data. This is useful when we want
to check how well a GCCA model fits to the data and when
we want to develop algorithms for GCCA. (In Section VI we
develop an algorithm for GCCA based on a constructive use
of Theorem IV.3.) On the other hand, if the factor matrices
A,C1, . . . ,CN in (9) are given, then checking the dimension
of Z(N) in (28) can be cumbersome and it is not obvious how it
is related to the factor matrices A,C1, . . . ,CN in (9). In order
to obtain a simpler condition for the recovery of range(A) via

3Recall that the dimension of a direct sum is the sum of the dimensions
of its summands. This fact also explains that if Y is R-dimensional, then
C = {0}.
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X1, . . . ,XN , that is expressed in terms of A,C1, . . . ,CN ,
the following identity will be used [31]:

dim

(
N⋂
n=1

range(Xn)

)

=
N∑
n=1

rank(Xn)− rank(ΓΓΓ(X1, . . . ,XN )), (29)

where the matrix ΓΓΓ(X1, . . . ,XN ) is defined as follows

ΓΓΓ(X1, . . . ,XN ) =

 X1 −X2

...
. . .

X1 −XN

 ,
in which X1, . . . ,XN are matrices of conformable sizes.
Theorem IV.4 below is a simplified version of the common
subspace identifiability condition in Theorem IV.3. It makes
use of the matrix ΓΓΓ(N) ∈ C(N−1)I×((N−1)R+

∑N
n=1 Ln) given

by

ΓΓΓ(N) = [1N−1 ⊗C1,−Blkdiag([A,C2], · · · , [A,CN ])]

=

 C1 −A −C2

...
. . . . . .

C1 −A −CN

 , (30)

where 1N−1 = [1, . . . , 1]T ∈ CN−1 is an all-ones vector and
Blkdiag([A,C2], · · · , [A,CN ]) is a block-diagonal matrix that
holds the matrices [A,C2], . . . , [A,CN ] on its block-diagonal.

Theorem IV.4. Consider the multi-view factorization of
X1, . . . ,XN given by (9). If{

ΓΓΓ(N) has full column rank,

S1, . . . ,SN have full column rank,
(31)

then dim (Y ) = R, Y = range(A) and the GCCA solution
(8a)–(8b) has the property range(A) = range(XnΦn), ∀n ∈
{1, . . . , N}.

Proof. Relation (29) together with the full column rank
assumptions on S1, . . . ,SN imply that

dim

(
N⋂
n=1

range(Xn)

)
=

N∑
n=1

rank(Xn)− rank(ΓΓΓ(X1, . . . ,XN )) =

N∑
n=1

rank([A,Cn])− rank(ΓΓΓ([A,C1], . . . , [A,CN ])). (32)

The full column rank property of the matrices
[A,C1], . . . , [A,CN ] in turn implies that relation (32)

simplifies to

dim

(
N⋂
n=1

range(Xn)

)
=

NR+
N∑
n=1

Ln − rank(ΓΓΓ([A,C1], . . . , [A,CN ]))

NR+
N∑
n=1

Ln − rank
(
ΓΓΓ(N)

)
, (33)

where the matrix ΓΓΓ(N) is given by (30). From (33) it is clear that
if ΓΓΓ(N) has full column rank, then dim

(⋂N
n=1 range(Xn)

)
=

R and
⋂N
n=1 range(Xn) = range(A).

Note that if ΓΓΓ(N) has full column rank, then I(N − 1) ≥
R(N − 1) +L1 + · · ·+LN or equivalently the row dimension
(I) satisfies the inequality

I ≥ R+

⌈
L1 + · · ·+ LN

N − 1

⌉
. (34)

The necessary condition for S1, . . . ,SN to have full column
rank is:

I ≥ R+ max
1≤n≤N

Ln = R+ LN , (35)

where convention (13) was used. Interestingly, the inequalities
(34) and (35), which are necessary for Theorem IV.4, are
also sufficient when A, Cn and Sn, n ∈ {1, . . . , N} are
generic, i.e., the entries of the involved factor matrices can be
assumed to have been drawn from an absolutely continuous
joint probability distribution. The generic version of Theorems
IV.3 and IV.4 is presented as Theorem IV.5 below.

Theorem IV.5. Consider the multi-view factorization of
X1 . . . ,XN given by (9). IfR+

⌈
1

N − 1

N∑
n=1

Ln

⌉
≤ I,

R+ Ln ≤ Jn, ∀n ∈ {1, . . . , N}.
(36)

then generically dim (Y ) = R, Y = range(A) and the
GCCA solution (8a)–(8b) has the property range(A) =
range(XnΦn), ∀n ∈ {1, . . . , N}.

Proof. See Appendix B.

Note that in order for the GCCA model (9) to be well-
defined, the inequality (12) also has to be satisfied. Theorem
IV.5 provides us with an easy way to check identifiability for
the special case where the factor matrices of the GCCA model
(9) are generic. The latter can be used to quickly assess whether
the common subspace range(A) can be recovered.

V. DISCUSSION

In this section we discuss the effect of processing more views
(i.e., N > 2) using GCCA compared to the more commonly
used CCA model in which N = 2. First we note that when N =
2, condition (31) boils down to the standard two-view CCA
identifiability condition (25). However, when N > 2 condition
(31) yields relaxed identifiability, as we will demonstrate next.
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A. GCCA can relax the bound on I

Consider the case where A,Cn,Sn, n ∈ {1, . . . , N} are
generic and R = Ln = 100, n ∈ {1, . . . , N}. Then condition
(26) for two-view CCA requires I ≥ R + L1 + L2 = 300,
in order to recover range (A). When N = 3, however, the
condition in (36) is relaxed to I ≥ R+ 1

2 (L1 +L2 +L3) = 250.
Furthermore, in the latter case none of the matrices [A,C1,C2],
[A,C1,C3] and [A,C2,C3] are required to have full column
rank, which is necessary in the two-view case. The identifiabil-
ity condition for GCCA can be further relaxed by increasing
N . In the previous example, when N = 5 the condition in (36)
reduces to I ≥ 225 and as N → ∞ to I ≥ R + Ln = 200,
which is also a necessary condition to identify range (A).

B. GCCA can identify higher dimensional common subspaces

Note that multi-view GCCA allows that dim(range(A) ∩
range(C1) ∩ range(C2)) > 0, which is not permitted in the
two-view CCA case. Consequently, GCCA can identify higher
dimensional common subspaces, range(A).

As an example, let I = 200, N = 5, and Ln = 100,
1 ≤ n ≤ 5. The condition (26) for two-view CCA requires
that R ≤ I − L1 − L2 = 0, which means that it is impossible
to identify range(A). On the hand, the GCCA identifiability
condition (36) only requires that R ≤ I − 1

N−1 (
∑5
n=1 Ln) =

75.

C. GCCA can handle “leaky” noise subspaces

Another important difference between two-view and multi-
view CCA is that when N = 2, range (C1)∩range (C2) = {0}
is a necessary identifiability condition. On the contrary, for
N > 2 it is possible that range (Cm) ∩ range (Cn) 6= {0}
for some m 6= n, i.e., some views are allowed to share
common subspaces not included in range (A). In words,
GCCA allow for “leaky” noise subspaces with property
dim(range (Cm) ∩ range (Cn)) > 0 for some m 6= n, as long
as C = dim(∩Nn=1range (Cn)) = 0.

As an example, let I = 200, N = 5, and Ln = 140,
1 ≤ n ≤ 5. The condition (26) for two-view CCA requires that
R ≤ I − L1 − L2 = −80, which means that it is impossible
to identify range(A). On the hand, the GCCA identifiability
condition (36) only requires that R ≤ I − 1

N−1 (
∑5
n=1 Ln) =

25. Note that for generic C1 and C2, we have dim(range(C1)∩
range(C2)) = 80.

D. Asymptotic results

To further elaborate on the identifiability properties of CCA
(N = 2) and GCCA (N > 2), consider the case where R is
fixed. Condition (36) implies that

N∑
n=1

Ln ≤ (N − 1)(I −R) (37)

is necessary for condition (31) to be satisfied. If additionally
L := L1 = · · · = LN , then (37) reduces to

L ≤ N − 1

N
(I −R), (38)

which yields the following relation, when N = 2:

L ≤ 1

2
(I −R). (39)

Furthermore, when N →∞, then (38) reduces to

L ≤ I −R. (40)

Comparing (39) with (40), we conclude that in the balanced
case where L := L1 = · · · = LN , GCCA can at most relax
the CCA bound on L by a factor I−R

1
2 (I−R)

= 2.
Let us now consider the balanced case (L := L1 = · · · =

LN ) where L is fixed, while R is varying. Relation (39) implies
that CCA with N = 2 views is able to recover the common
subspace range (A) only if

R ≤ I − 2L. (41)

In other words, L < I
2 is a necessary recovery condition for

CCA. On the contrary, employing more views (N > 2), allows
GCCA to recover the common subspace range (A), even if
L ≥ I

2 . For instance, if I = 200, N = 5 and L = 100, then
it can be verified that condition (36) is satisfied as a long as
R ≤ 75, regardless of the fact that L = I

2 . Furthermore, as
N →∞ we get from (40) that

R ≤ I − L (42)

is necessary to satisfy condition (31) in Theorem IV.4. Compar-
ing (41) with (42), we conclude that when L := L1 = · · · =
LN and L < I

2 , GCCA can at most relax the bound on R by
a factor I−L

I−2L . Moreover, when L ≥ I
2 , GCCA can still ensure

the recovery of range (A) while this is never possible when
N = 2.

VI. ALGORITHMIC FRAMEWORK

A. Subspace intersection algorithms for CCA and GCCA
Formulas for computing a basis for the intersection of

subspaces have been proposed in the literature. We mention
that in [32] it was shown that

Y =
N⋂
n=1

range(Xn) = ker

(
N∑
n=1

P⊥Xn

)
, (43)

where P⊥Xn
∈ CI×I denotes the orthogonal projector onto

the orthogonal complement of range(Xn). In the exact case,
where there exist R maximally correlated components between
X1, . . . ,XN , a basis for Y can be obtained by solving

N∑
n=1

P⊥Xn
A = 0, s.t. AHA = IR, (44)

where the matrix whose columns form an orthonormal basis
for Y is denoted by A. It corresponds to matrix A in (9)
and it can for instance be obtained via the singular value
decomposition (SVD) of

∑N
n=1 P⊥Xn

, i.e., the columns of A
correspond to the R right singular vectors associated with the
R smallest singular values of

∑N
n=1 P⊥Xn

. In the inexact case,
where there do not exist R maximally correlated components
between X1, . . . ,XN , a basis for Y can be estimated via

min
AHA=IR

∥∥∥∥∥
N∑
n=1

P⊥Xn
A

∥∥∥∥∥
2

F

≥ 0. (45)
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Note that the lower bound in (45) can only be attained
when range(A) ⊆ ker(

∑N
n=1 P⊥Xn

). 4 Matrix A can for in-
stance be obtained via the SVD of

∑N
n1=1

∑N
n2=1 P⊥Xn1

P⊥Xn2
,

i.e., the columns of A correspond to the R right singular
vectors associated with the R smallest singular values of∑N

n1=1

∑N
n2=1 P⊥Xn1

P⊥Xn2
. However, when I is large, even

computing
∑N
n=1 P⊥Xn

, can be computationally challenging at
O(I2(N+

∑N
n=1(R+Ln))). Furthermore, storing

∑N
n=1 P⊥Xn

can also be prohibitive, especially when I is large.5 In
this section we develop a different algebraic range subspace
intersection method to tackle the GCCA problem which can
handle large values of I .

We will now present an alternative algorithm for computing
a basis for the common subspace range(A) associated with
the factor matrix in (9) and the matrices Φ1, . . . ,ΦN in the
GCCA model (8). Since the algorithm is not directly based
on (45), it does not require the construction of the projectors
P⊥Xn

. The algorithm follows the previous analysis and can be
viewed as a constructive interpretation of Theorem IV.3. It can
be described in 3 steps:
step 1: Compute Un ∈ CI×(R+Ln) and Vn ∈ CJn×(R+Ln)

whose columns form an orthonormal basis for range (Xn) and
range

(
XT
n

)
, n ∈ {1, . . . , N} respectively. In practice, the

matrices X1, . . .XN are often perturbed by additive noise.
For this reason, we use the SVD to compute Un and Vn.
step 2: Using the SVD, we compute an orthonormal basis for
Z(N) in (22) and retrieve the matrices ΦΦΦn, n = 1, . . . , N . To
do that we first construct matrix Θ ∈ C(N

2 )I×(NR+
∑N

n=1 Ln)

(see (23) for an example when N = 3) and compute a basis
for its null space via the SVD, represented by matrix Q =
[QT

1 , . . . ,Q
T
N ]T , with Qn ∈ C(R+Ln)×R. The columns of Q

correspond to the R right singular vectors associated with
the R smallest singular vectors of Θ. Note that in the exact
case the columns of Q form an orthonormal basis for Z(N).
Since, in the ideal case, A = UnQn = XnΦΦΦn, the matrices
ΦΦΦn, n = 1, . . . , N can now be obtained as ΦΦΦn = X†nUnQn =
VnΣ−1

n UH
n UnQn = VnΣ−1

n Qn, where X†n denotes the left-
inverse of Xn and Σn ∈ C(R+Ln)×(R+Ln) is the diagonal
matrix with the singular values of Xn on its diagonal.
step 3: In the exact case we have range(A) = range(UnQn)
when condition (28) in Theorem IV.3 is satisfied. In the inexact
case, a more robust estimate of range(A) can be obtained via
the matrix G = [U1Q1, . . . ,UNQN ]. In short, let the columns
of A correspond to the R left singular vectors of G associated
with the R largest singular values of G, then (in the exact case)
the columns of A form an orthonormal basis for the common
subspace. The detailed steps can be found in Algorithm 1.
Note that in Algorithm 1 we use two versions of SVD. To

4Let G ∈ CN×N denote the Grammian matrix with entries gij =
vec(P⊥Xi

)Hvec(P⊥Xj
), where vec(P⊥Xi

) denotes the vectorized version of

P⊥Xi
. Then ‖

∑N
n=1 P

⊥
Xn

a‖2F = 0 for some nonzero a ∈ CN if and
only if the determinant of G is equal to zero, which means that the vectors
vec(P⊥X1

), . . . , vec(P⊥XN
) are linearly dependent.

5Define Q = II − 1
N

∑N
n=1 PXn . Then PY = II −Q†Q is a projector

onto Y , where Q† denotes the Moore-Penrose pseudoinverse of Q; see [32]
for a proof. Hence, as an alternative to (45), A could also be determined via
the SVD of PY . However, this approach also requires the construction of the
(I × I) matrix PY .

Algorithm 1: RAnge subspaCe INtersection
for Gcca (RACING)

1: Input: {Xn, Ln}Nn=1, R.
2: Output: A, {ΦΦΦn}Nn=1.
3: step 1:
4: for n = 1 to N do
5: UnΣnV

T
n ← svdt (Xn, R+ Ln) ;

6: end for
7: step 2:
8: Θ = [·];
9: for n1 = 1 to N − 1 do

10: for n2 = n1 + 1 to N do
11: k = (n1 − 1)R+

∑n1−1
n=1 Ln, l = (n2 − n1 − 1)R+∑n2−1

n=n1+1 Ln, m = (N − n2)R+
∑N
n2+1 Ln;

12: Θn1n2
= [0I×k,Un1

,0I×l,−Un2
,0I×m];

13: Θ←
[

Θ
Θn1n2

]
;

14: end for
15: end for
16: UθΣθV

T
θ ← svd (Θ) ;

17: Q = [QT
1 , . . . ,Q

T
N ]T = Vθ(:, end−R+ 1 : end);

18: step 3:
19: G = [·];
20: for n = 1 to N do
21: G← [G,UnQn];
22: ΦΦΦn = VnΣ−1

n Qn;
23: end for
24: UΣV T ← svdt (G, R) ;
25: A = U ;

be specific, svd computes the ‘thin’ SVD, whereas svdt(·, r)
computes the truncated SVD corresponding to the r largest
singular values.

In terms of computational complexity and memory require-
ments, the main bottleneck of the proposed algorithm lies in
computing the SVD in line 5 and 16. The column dimension
(Jn) of each view X(n) is usually large which makes the
SVD computation very intensive. Traditional algorithms require
O(IJn min(I, Jn)) flops to compute the SVD of line 5 and
O(N(N − 1)I(NR +

∑N
1 Ln)2) flops to compute the SVD

of line 16 and computation is prohibitive when big and high
dimensional data are involved. To overcome this issue, we
propose to employ Lanczos-type iterative algorithms [33] (e.g.,
Matlab’s routine svds) to compute the truncated SVD in line 5.
The complexity then is depending on the number of principal
components R + Ln, therefore setting Ln to be relatively
small compared to the dimensions (R + Ln � I) markedly
reduces the computational complexity, especially for sparse
data. The reason is that these Lanzos-type approaches involve
multiplications of Xn with a (Jn×R+Ln) matrix. When Xn is
sparse this multiplication can be carried out significantly faster
compared to the case of Xn being dense. In practice, noise
makes Xn full rank (I = R+Ln). However, Xn still typically
admits a good low-rank approximation Xn ≈ [A,Cn]STn ,
where I > R+Ln. We say that the R+Ln represents the useful
signal rank, i.e., the dimension of the signal subspace, which
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is small enough for every n ∈ {1, . . . , N}. Small values of Ln
also reduce the computations required in line 16 significantly.
For example, choosing R + Ln to be in the order of 500
will allow the proposed algorithm to work for very large and
high-dimensional data.

We mention that a relaxed SUMCOR-type algorithm has
also been proposed in [34], [35] that is similar to Algorithm 1.
However, there are notable differences that we will now point
out. First, the starting points of the derivations are very different.
While Algorithm 1 follows immediately from the proposed
subspace intersection interpretation of GCCA, the approach
in [34], [35] is based on a relaxation of the SUMCOR cost
function (6). Second, an important difference is that Algorithm
1 and the SUMCOR/SUMCOR-type methods fit different
models. The former method looks for a “common subspace”
range(A) while the latter methods look for individual subspaces
range(X1ΦΦΦ1), . . . , range(XNΦΦΦN ). Third, a difference is that
in Step 3 in Algorithm 1 SVDs are used to obtain more robust
estimates of A and {ΦΦΦn} while this is not the case in [34], [35].
In particular, we are interested in A while in [34], [35], just as
in SUMCOR, the focus is on the computation of {ΦΦΦn}. Fourth,
define U(N) = [U1, . . . ,UN ] ∈ CI×(NR+

∑N
n=1 Ln). Then in

[34], [35] matrices {ΦΦΦn} are computed via the right singular
vectors of U(N). In Algorithm 1, {ΦΦΦn} are computed via the
right singular vectors of ΘΘΘ. Note that this leads to a different
weighting of the data. More precisely, the approach in [34], [35]
corresponds to computing a basis for the kernel of U(N)HU(N)

with block matrices UH
mUn while the approach in Algorithm 1

corresponds to computing a basis for the kernel of ΘΘΘHΘΘΘ with
on-diagonal blocks (N − 1)UH

mUm and off-diagonal blocks
−UH

mUn.
In the next sections we compare the popular MAXVAR

method for GCCA computation with the proposed subspace
intersection based approach.

B. Comparison between MAXVAR and subspace intersection.
The GCCA method MAXVAR aims to find range(A) by

minimizing the cost function

min
ΦΦΦ1,...,ΦΦΦN ,A

N∑
n=1

‖XnΦΦΦn −A‖2F , s.t. AHA = IR. (46)

Let the columns of Un ∈ CI×(R+Ln) form a columnwise
orthonormal basis for range(Xn). Then range(A) can be
obtained via

min
V1,...,VN ,A

N∑
n=1

‖UnVn −A‖2F , s.t. AHA = IR, (47)

where Vn ∈ C(R+Ln)×R is an unknown full column rank
matrix. However, it is not evident when range(A) is correctly
computed via the cost function (47). We will now explain
that in the exact case, where Xn admits the decomposition
(9), MAXVAR correctly computes range(A) via subspace
intersection when dim(Y ) = R. The minimizer of (47)
corresponds to the maximizer of

max
AHA=IR

N∑
n=1

∥∥UH
n A

∥∥2

F
= max

AHA=IR

N∑
n=1

‖PXn
A‖2F (48)

with Vn = UH
n A and where PXn

denotes the orthogonal
projector onto the subspace spanned by the columns of Xn.
The orthogonal decomposition theorem tells us the maximizer
of (48) corresponds to the minimizer of

min
AHA=IR

N∑
n=1

∥∥P⊥Xn
A
∥∥2

F
≥ 0, (49)

where P⊥Xn
denotes the orthogonal projector onto the orthogo-

nal complement of the subspace spanned by the columns of
Xn. Note that the lower bound in (49) can only be attained
when range(A) ⊆ ker(

∑N
n=1 P⊥Xn

). (This fact follows from
inequality (45) and inequality (50) below.) In the exact case
it means that we are looking for a columnwise orthonormal
matrix A that satisfies relation (44), where we exploited that
range(A) ⊆ ker(

∑N
n=1 P⊥Xn

) = Y , in which the latter equality
is due to (43). This means that if dim(Y ) = R, then the lower
bound in (49) is attained if and only if the columns of A form
a basis for Y . It is now evident that in the exact case, the
MAXVAR solution corresponds to a basis for the intersecting
subspace Y , i.e., Y = range(A).

We note in passing that efficient implementations of the
MAXVAR method have been proposed (e.g., [9], [35]).
Briefly, the solution to the MAXVAR problem (48) can
be obtained via the eigenvalue decomposition (EVD) of∑N
n=1 UnUH

n . However, since
∑N
n=1 UnUH

n = U(N)U(N)H ,
where U(N) = [U1, . . . ,UN ] ∈ CI×(NR+

∑N
n=1 Ln), and

rank(U(N)U(N)H) = rank(U(N)), the solution to the MAX-
VAR problem (48) can be computed more efficiently via
the SVD of U(N), without first computing the orthogonal
projectors {UnUH

n }. More precisely, if dim(range(A)) = R,
then the R left singular vectors of U(N) associated with the
R largest singular values of U(N) form a basis for Y .

We will now argue that in the inexact case, MAXVAR and
the proposed subspace intersection approach for GCCA can
lead to different but related solutions. From (45) and (49) we
observe that the difference between MAXVAR and subspace
intersection is that the former method aims to minimize the term∑N
n=1

∥∥P⊥Xn
A
∥∥2

F
while the latter method aims to minimize

the term ‖
∑N
n=1 P⊥Xn

A‖2F . The triangle inequality tells us
that

N∑
n=1

∥∥P⊥Xn
A
∥∥2

F
≥

∥∥∥∥∥
N∑
n=1

P⊥Xn
A

∥∥∥∥∥
2

F

. (50)

Hence, from (50) we observe that in the inexact case, the
MAXVAR solution can be interpreted as an approximate
solution to the subspace intersection problem in which cross
terms of the form trace(AHP⊥Xm

P⊥Xn
A) with m 6= n in

‖
∑N
n=1 P⊥Xn

A‖2F are ignored.
To summarize, using the identity in (43) we argued that in

the exact case MAXVAR is performing subspace intersection.
Consequently, the link between subspace intersection and
GCCA presented in Section III tells us that if the identifiability
condition (31) in Theorem IV.4 is satisfied, then in the exact
case MAXVAR correctly computes range(A). In the inexact
case, inequality (50) tells us that MAXVAR can be interpreted
as an approximate method for subspace intersection.
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VII. EXPERIMENTS

In this section we demonstrate the performance of the
proposed algorithmic framework and showcase its effectiveness
in synthetic- and real-data experiments. All simulations are
implemented in Matlab and are executed on a Linux server
comprising 32 cores at 2GHz and 128GB RAM.

A. Synthetic-Data Experiments

First we test the proposed framework using experiments with
synthetically generated data. The multiple views are generated
according to equation (9). We assume that the views share a
common latent factor A ∈ CI×R with entries randomly and
independently drawn from a zero-mean unit-variance Gaussian
distribution. The individual matrices Cn ∈ CI×Ln and Sn ∈
CKn×(R+Ln) are also generated with entries independently
drawn from a zero-mean unit-variance Gaussian distribution
and for simplicity we set Ln = L and Kn = K = L+R for
every n ∈ {1, . . . , N}.

We test the algorithm in a noisy setup. To be more specific,
Xn, n = 1, . . . , N are generated according to the model
in (9), as previously described. However, instead of Xn we
observe Yn, n = 1, . . . , N which are generated as: Yn =
Xn + Wn, n ∈ {1, . . . , N}, where Wn is an additive white
Gaussian noise term. Note that if condition (31) in Theorem
IV.4 is satisfied, then the proposed algorithm is guaranteed to
find range(A) in the exact case.

For baselines we use the exact solution of MAXVAR formula-
tion, computed via eigenvalue decomposition and CSR, which
solves the SUMCOR formulation, using a change of variables
and a block coordinate descent (BCD) approach [10]. CSR
is an iterative algorithm and is initialized randomly. We also
include comparisons with CSR initialized with RACING which
we refer to as RACING-CSR. To evaluate the performance, we
measure the angle between the generated common subspace
and the estimated one as defined in [36], [37], i.e.,

angle(A, Â) = sin−1
(
‖PA − PÂ‖2

)
, (51)

where ‖ ‖2 denotes the Euclidean norm, PA is the orthogonal
projector onto the subspace spanned by the columns of A and
PÂ is the orthogonal projector onto the subspace spanned by
the columns of Â.

We consider N = 6 different views, that share a common
subspace of dimension R = 50. Two scenarios are generated
as follows. In the first each view consists of I = 2000 rows,
and L = 1000 that leads to K = 1050 columns for each
view, whereas in the second I = 2000, L = 500 that leads
to K = 550 columns for each view. We test the algorithmic
performance for different levels of signal-to-noise-ratio (SNR),
which is defined as:

SNR = 20 log

∑N
n=1‖Xn‖F∑N
n=1‖Wn‖F

.

Fig. 1(a) shows the performance of the proposed RACING
along the baselines for different levels of SNR in the first
scenario. Note that each algorithm is implemented to utilize
either all 6 views to identify the common space, or the first
2 views, denoted by the subscript next to the name of the
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(a) First scenario, L = 1000.
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(b) Second scenario, L = 500.

Fig. 1: Angle between true and recovered subspace.

algorithm. We observe that the proposed algorithm is able
to identify the common subspace for a wide range of SNRs,
when 6 views are utilized. On the contrary all algorithms
fail to identify the correct subspace, when only 2 views are
employed. Note that the identifiability condition in (36) yields
50 + N

N−11000 ≤ 2000, which is satisfied for N = 6 but fails
when N = 2.

In the second scenario we reduce the dimension of the
columnspace of each view to K = 550. In this case the
identifiability condition in (36) yields 50 + N

N−1500 ≤ 2000,
which is satisfied for both N = 6 and N = 2. The results
are illustrated in Fig. 1(b). We observe that although the
identifiability condition in (36) is satisfied in both cases where
2 and 6 views are utilized, the algorithms perform better in
the 6-view implementation. From both experiments we can
also deduce that the proposed RACING works similarly to the
MAXVAR solution and significantly outperforms CSR. This
is a notable, considering that both MAXVAR and CSR are
optimization approaches and are expected to perform better in
the presence of noise. Note that RACING-CSR was omitted
from Fig. 1 because it yielded the same performance as CSR.

Next we test the performance of the proposed approach
and the baselines in the case where the signal rank (R+ Ln)
of the views is smaller than the dimensions, i.e., R + Ln <
min{I,Kn}. This way we generate views that have full rank,
but the signal part Xn has low rank. This is very often the
case in practice, since although real data are typically full
rank due to noise and measurement errors, the useful signal
rank is often lower, and the remaining components are mostly
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(a) First scenario with low-rank signal part.
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(b) Second scenario with low-rank signal part.

Fig. 2: Angle between true and recovered subspace.

noise. To this end, we generate A, Cn as before in scenario
1 and 2 (I = 2000, Ln = L = 1000, R = 50 and I =
2000, Ln = L = 500, R = 50 respectively), but this time we
allow Xn to have low rank by letting Sn to be ‘tall matrices’,
i.e., Sn ∈ CK×(R+L), with K = 1900. We add noise as
before, so the views are technically full rank, but when the
noise is small they are ‘approximately low-rank’ – i.e., they
can be well-approximated by low-rank matrices. The results
are presented in Fig. 2.

It is clear from Fig. 2 that views with low-rank signal part do
not affect the performance of the proposed RACING. However,
MAXVAR and SUMCOR (CSR) formulations fail to identify the
common subspace. This can be explained from the fact that
the MAXVAR and SUMCOR analysis and algorithm assume that
the views are effectively full rank as mentioned earlier. On the
contrary, the proposed RACING allows prescribing the useful
signal rank of each view. Furthermore, there is clear benefit
when initializing CSR with RACING rather than randomly,
which suggests that our proposed RACING can work as a great
initialization for iterative approaches.

We also test the performance of the proposed approach
and the baselines in the presence of outliers. To this end we
generate the matrix views Yn = Xn + Wn, n = 1, . . . , N as
before, but this time Wn is a sparse matrix with sparsity level
in the order of 10−3 and non-zeros drawn from a Gaussian
distribution. We again consider full column rank and low rank
views Xn and assess the performance for L = 500, 1000. The
results for different levels of SNR are presented in Figs. 3 and
4.
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(a) First scenario, L = 1000.
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(b) Second scenario, L = 500.

Fig. 3: Angle between true and recovered subspace in the
presence of outliers.
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(a) First scenario, L = 1000.
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Fig. 4: Angle between true and recovered subspace in the
presence of outliers.
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Similar conclusions can be derived with the previous
experiments. Our proposed RACING works the best in all
experiments. When all the Xn have full column rank MAXVAR
works similarly to RACING and CSR achieves worse but
acceptable performance. When Xn’s have low rank, MAXVAR
is not working and CSR needs to be initialized by RACING to
perform well. We also observe that employing more views is
beneficial even in the case where the identifiability condition
is satisfied for both 6 and 2 views. In particular when L = 500
and the SNR is small there is a clear benefit of using 6 views
rather than 2 views of the data.

B. Cross Language Information Retrieval

Finally, we test the proposed approach on the task of cross
language information retrieval (CLIR). CLIR is a natural
language processing application, where given a set of sentences
along with their translations in multiple languages the goal
is to learn a low-dimensional subspace where the sentences
and their translations are maximally correlated. Then, new
high-dimensional sentences are mapped to the associated lower
dimensional space in order to retrieve their translation from a
database of possible choices. CLIR is essential to fast query
and search across languages, which also benefits machine
translation systems [38]–[40].
Data: The dataset employed is the Europarl parallel corpus [41].
It contains a collection of sentences translated in 21 European
languages: Romanic (French, Italian, Spanish, Portuguese, Ro-
manian), Germanic (English, Dutch, German, Danish, Swedish),
Slavik (Bulgarian, Czech, Polish, Slovak, Slovene), Finni-Ugric
(Finnish, Hungarian, Estonian), Baltic (Latvian, Lithuanian),
and Greek. In the experiments we focus on the Germanic
languages, i.e., English, Dutch, German, Danish and Swedish.
Each sentence is represented by J = 267, 752 feature vector
of ‘bag of words’ composed with inner-product preserving
hashing [42], [43]. In particular, we use 219 hash slots as in
[43] and remove features that are empty in all views. Then
a set of sentences in a specific language can be represented
as a matrix view, Xn ∈ RI×Jn , where I is the total number
of sentences and J1, . . . , JN = J corresponds to the feature
dimension of each sentence, which is described above.
Procedure: The objective of CLIR is to align sentences
with their translations. In order to do that we apply GCCA
on a set of I = 153, 403 training sentences, learn their
common low-dimensional subspace A along with the matrices
ΦΦΦn n = 1, . . . , N that map the sentences to the common
subspace. The idea is that sentences and their translations in
different languages have a common low-dimensional represen-
tation, which is not-language specific and capture the semantic
meaning of the sentence. In other words, GCCA enforces
sentences to be maximally correlated with their translations
and less correlated with other sentences. In the training phase
in addition to learning low-dimensional representations of
the sentences in the common subspace, we also learn the
mapping from the high-dimensional to the common low-
dimensional space. This mapping is represented by matrices
ΦΦΦn n = 1, . . . , N . These matrices are then used to map a
testing set of It = 38, 351 sentences and their translations to

the common low-dimensional space (Subscript ‘t’ denotes
the testing set). Note that the testing sentences and their
translations are not aligned. The mapping is performed by
multiplying each sentence in the n−th language with ΦΦΦn. This
mapping provides a low-dimensional representation of each
testing sentence in every language. Since GCCA was employed
to learn these mappings we expect the query sentences to be
maximally correlated with their translations in the testing set.
The CLIR task is completed by matching the query sentences
with their translations, according to their Euclidean distance
in the low-dimensional subspace. For example, suppose we
are interested in performing a CLIR task between sentences in
Dutch and Danish. In the training phase we learn ΦΦΦDutch and
ΦΦΦDanish. Then we embed each testing sentence in Dutch and
Danish using ΦΦΦDutch and ΦΦΦDanish. For each testing sentence
in Dutch (or Danish) we find the closest embedded sentence
in Danish (or Dutch) according to the Euclidean distance in
the embedding space. In simple words, the training phase
learns how to embed high dimensional sentences from different
languages and the testing phase aligns the embedded sentences
with their translations.

We consider two scenarios. In the first one, training and
testing are performed using only N = 2 languages, i.e., Dutch
and Danish. In the second scenario, the training phase takes
into account all Germanic languages (Dutch, Danish, English,
German, Swedish) to learn ΦΦΦn, n = 1, . . . , N .
Evaluation: The baseline algorithms used for comparison are
MVLSA [9], which is an approximate eigen-based solver for
the MAXVAR criterion in large-scale settings and PDD-GCCA
[11], which is a primal-dual algorithm that tackles the SUM-
COR formulation for sparse large-scale data. We initialize
PDD-GCCA, with RACING and ran for 25 iterations (total
number of 5 inner and 5 outer iterations). Note that, RACING
and MVLSA are primarily focused on learning the common
subspace A and the solution for ΦΦΦn, n = 1, . . . , N is sub-
optimal due to the low-rank assumption. Since CLIR is mainly
concerned with effectively learning ΦΦΦn, n = 1, . . . , N , we
add one more step in RACING and MVLSA which resulted
in improved performance for both algorithms. In particular,
after learning the common subspace A, ΦΦΦn, n = 1, . . . , N are
computed by solving:

min
{ΦΦΦn}Nn=1

N∑
n=1

‖XnΦΦΦn −A‖2F . (52)

The solution of (52) is efficiently obtained via 20 conjugate
gradient iterations [44].

To assess the performance of the competing algorithms we
measure the average recall@k for k ∈ {10, 20, 50} and the
average area under ROC curve (AUC). Recall is defined as the
number of relevant sentences among the retrieved k divided
by the number of total relevant sentences. Since there is only
one relevant sentence (the translation) recall@k is equal to 1
if the translation is ranked among the top k sentences and
0 otherwise. As a result the average recall@k indicates the
probability of the correct translation to be ranked among the
top k hits. The ROC curve plots the true positive rate, which is
the recall, against the false positive rate, which is defined as the
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number of non-relevant sentences among the retrieved divided
by the total number of nonrelevant sentences. Then the AUC
is defined as AUC = 1− pos−1

It−1 , where pos is the position at
which the correct translation is ranked. Therefore, the average
AUC is a ranking metric indicative for the position of the
correct translation. Detailed description of the two metrics can
be found in [45, Chapter 8].
Results: Tables II and III show the performance of the
competing algorithms for the two scenarios of CLIR. Mean
and standard deviation are reported over 10 randomly drawn
80− 20 splits for training and testing. The dimension of the
subspace where each sentence is mapped varies from R = 1
to R = 50 with Ln +R = 300 for all views.

One can see that the CLIR task significantly benefits from
incorporating multiple languages, which is also justified from
our theoretical analysis. To be more precise, all metrics show
performance improvement when all Germanic languages are
employed. For example RACING achieves an improvement
of approximately 7− 9% in recall@k and 1% in AUC, when
all Germanic languages are used during training and R = 50.
Furthermore, we observe that PDD −GCCA initialized by
RACING outperforms the other two methods, whereas RACING
works better than MVLSA for R = 1, 5, 10, 20 and comparably
for R = 50. We also observe that there is a trade-off between
the dimension of the embedding and the number of sentences
one should retrieve in order to find the correct translation. On
the one hand very low dimensional embeddings (small values
of R) are desirable to reduce the complexity of computing
similarity between sentences. On the other hand, larger values
of R, result in better retrieval performance, i.e., the correct
translation ranks higher.

VIII. CONCLUSION

In this paper we studied GCCA from a linear algebraic per-
spective. In particular, we showed that GCCA can be interpreted
as subspace intersection and provided identifiability conditions
for recovering the common subspace between the views, which
are relaxed compared to the standard two-view CCA. We also
developed a range subspace intersection algorithm to perform
GCCA, which can also handle large and high-dimensional
datasets. Numerical experiments demonstrated the effectiveness
of the proposed approach in the context of multi-view learning.

APPENDIX A
PROOF OF EQUATION (11)

In order to prove equation (11) we first need to prove that
the following properties hold without loss of generality:

Property 1: A, C1, . . . ,CN have full column rank.
Without loss of generality we can assume that the matrices
A ∈ CI×R,C1 ∈ CI×L1 , . . . ,CN ∈ CI×LN in (9) all have
full column rank. Indeed, if the columns of A are linearly
dependent, then A can replaced by any subset of its columns
that form a basis for range(A) and the matrix Sn can be
adjusted accordingly, without changing Xn. (Similarly for
C1, . . . ,CN ).

Property 2: [A,C1], . . . , [A,CN ] have full column rank.
First, note that the column dimension (R + Ln) of [A,Cn]
should not exceed its row dimension I , i.e., I ≥ R + Ln.
Indeed, if I < R + Ln, then R + Ln − I columns of C(n)

can be written as linear combinations of the other I columns
in [A,Cn]. Therefore these R + Ln − I columns of Cn

could be discarded, while accordingly adjusting matrix S(n),
without changing Xn. Furthermore, we can w.l.o.g. assume
that range(A) ∩ range(Cn) = {0}, n ∈ {1, . . . , N}, i.e., we
assume w.l.o.g. that (cn)q /∈ range(A), q ∈ {1, . . . , Ln},
n ∈ {1, . . . , N}, where (cn)q denotes the q-th column of Cn.
Indeed, if (cn)t = Aβββ for some βββ ∈ CR, then

Xn =
R∑
r=1

ar(sn)Tr +

Ln∑
q=1

(cn)q(sn)Tr =

R∑
r=1

ar((sn)Tr + βr(sn)TR+t) +

Ln∑
q=1
q 6=t

(cn)q(sn)Tr , (53)

where (sn)r denotes the r-th column of Sn. In other words, if
(cn)q ∈ range(A), then we can simply consider a factorization
of Xn, as in (53), that only involves a smaller I-by-(Ln − 1)
matrix Cn. Now since range(A) ∩ range(Cn) = {0}, n ∈
{1, . . . , N} and A, Cn have full column rank, we conclude
that w.l.o.g. [A,Cn] has full column rank.

Relation (11) now follows naturally from Property 2. i.e.,
the fact that matrix [A,Cn] has full column rank and that the
subspaces range(A) and range(Cn) are complementary.

APPENDIX B
PROOF OF THEOREM IV.5

Using Lemma B.1 below we show that when condition
(36) is satisfied, then S1 . . . ,SN and ΓΓΓ(N) generically have
full column rank, implying generic uniqueness of the GCCA
factorization of X1, . . . ,XN .

Lemma B.1. [46] Let f : Cn → C be an analytic function.
If there exists an element x ∈ Cn such that f (x) 6= 0, then
the set {x | f (x) = 0 } is of Lebesgue measure zero.

Recall that an m × n matrix has full column rank n if it
has a non-vanishing n× n minor. Since a minor is an analytic
function, if it is nonzero at one point (one constructive example)
then it is nonzero generically (at almost every point except for
a set of measure zero). Lemma B.1 can now be used to verify
whether the matrices in (31) generically have full column rank
when condition (36) is satisfied.

Lemma B.2. If Kn ≥ R + Ln for all n ∈ {1, . . . , N}, then
S1 ∈ CK1×(R+L1), . . . ,SN ∈ CK1×(R+LN ) generically have
full column rank.

Proof. This is an immediate consequence of Lemma B.1, e.g.,
use Sn = [IKne

(Kn)
1 , . . . , IKne

(Kn)
R+Ln

] as the generic example,
where e

(Kn)
k ∈ CKn denotes a unit vector with unit entry at

position k.

Lemma B.3. If I ≥ R +
⌈
L1+···+LN

N−1

⌉
, then ΓΓΓ(N) given by

(30) generically has full column rank.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSP.2021.3061218

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



14

TABLE II: Average AUC and recall@k for the Dutch-Danish CLIR using Dutch and Danish views in training.

metric Danish-Dutch
Algorithm R=1 R=5 R=10 R=20 R=50

PDD-GCCA
avg. AUC 0.8650± 0.0013 0.9687± 0.0019 0.9807± 0.0004 0.9816± 0.0004 0.9823± 0.0004

avg. recall@1 0.0013±0.0005 0.0790±0.0051 0.2997±0.0071 0.4729±0.0032 0.5886±0.0026
avg. recall@10 0.0066±0.0005 0.2367±0.0111 0.5280±0.0082 0.6597±0.0030 0.7372±0.0024
avg. recall@20 0.0104±0.0008 0.2980±0.0131 0.5871±0.0073 0.7022±0.0029 0.7687±0.0023
avg. recall@50 0.0210±0.0008 0.3966±0.0149 0.6666±0.0069 0.7587±0.0027 0.8099±0.0022

time (sec) 447 ±11 533±17.5 635±10 940±16 1862±60

RACING
avg. AUC 0.8553±0.0013 0.9580±0.0018 0.9717±0.0005 0.9708±0.0007 0.9711±0.0004

avg. recall@1 0.0004±0.0003 0.0596±0.0027 0.2383±0.0040 0.3617±0.0031 0.4481±0.0026
avg. recall@10 0.0037 ±0.0008 0.1963±0.0052 0.4556±0.0029 0.5554±0.0034 0.6219±0.0024
avg. recall@20 0.0072 ±0.0012 0.2552±0.0052 0.5161±0.0034 0.6038±0.0027 0.6610±0.0019
avg. recall@50 0.0155 ±0.0013 0.3525±0.0055 0.5988±0.0032 0.6695±0.0030 0.7156±0.0020

time (sec) 426 ±11 420±17 423±9 440±15 481±13

MVLSA
avg. AUC 0.7421 ±0.0021 0.9450±0.0016 0.9699±0.0005 0.9706±0.0006 0.9712±0.0004

avg. recall@1 0.0016±0.0005 0.0396±0.0021 0.1982±0.0023 0.3327±0.0034 0.4462±0.0022
avg. recall@10 0.0075±0.0007 0.1431±0.0031 0.4047±0.0023 0.5306±0.0021 0.6210±0.0025
avg. recall@20 0.0114±0.0004 0.1889±0.0038 0.4648±0.0026 0.5811±0.0023 0.6609±0.0019
avg. recall@50 0.0195±0.0010 0.2677±0.0050 0.5482±0.0028 0.6483±0.0027 0.7141±0.0020

time (sec) 434 ±15 464±13 468±19 474±16 530±55

TABLE III: Average AUC and recall@k for the Dutch-Danish CLIR using all 5 Germanic views in training.

metric 5 Germanic languages
Algorithm R=1 R=5 R=10 R=20 R=50

PDD-GCCA
avg. AUC 0.8817±0.0016 0.9768±0.0003 0.9848±0.0001 0.9852±0.0002 0.9856±0.0004

avg. recall@1 0.0023±0.0002 0.1105±0.0038 0.3725±0.0028 0.5472±0.0025 0.6671±0.0009
avg. recall@10 0.0102±0.0009 0.3051±0.0060 0.6036±0.0021 0.7228±0.0021 0.7965±0.0009
avg. recall@20 0.0152±0.0010 0.3735±0.0063 0.6593±0.0020 0.7606±0.0028 0.8230±0.0010
avg. recall@50 0.0281±0.0009 0.4777±0.0065 0.7324±0.0017 0.8102±0.0026 0.8576±0.0011

time (sec) 1238±35 494±47 1754±33 2487±29 4777±43

RACING
avg. AUC 0.8740±0.0005 0.9675±0.0006 0.9773±0.0001 0.9776±0.0004 0.9818±0.0002

avg. recall@1 0.0005±0.0001 0.0878±0.0027 0.3015±0.0022 0.4292±0.0006 0.5399±0.0013
avg. recall@10 0.0046±0.0002 0.2684±0.0072 0.5295±0.0019 0.6227±0.0012 0.7017±0.0011
avg. recall@20 0.0086±0.0004 0.3373±0.0071 0.5880±0.0016 0.6685±0.0012 0.7378±0.008
avg. recall@50 0.0176±0.0005 0.4435±0.0077 0.6661±0.0014 0.7288±0.0015 0.7856±0.0010

time (sec) 1184±34 1210±44 1218±32 1232±31 1345±31

MVLSA
avg. AUC 0.7903±0.0013 0.9645±0.0006 0.9755±0.0002 0.9773±0.0003 0.9820±0.0001

avg. recall@1 0.0008±0.0001 0.0754±0.0032 0.2462±0.0020 0.3977±0.0018 0.5392±0.0011
avg. recall@10 0.0037±0.0003 0.2381±0.0053 0.4639±0.0014 0.5982±0.0004 0.7026±0.0006
avg. recall@20 0.0062±0.0003 0.3011±0.0050 0.5244±0.0010 0.6466±0.0008 0.7384±0.0004
avg. recall@50 0.0130±0.0004 0.3988±0.0051 0.6080±0.0007 0.7106±0.0007 0.7851±0.0007

time (sec) 1107±37 1186±55 1141±57 1181±41 1259±35

Proof. Based on Lemma B.1, the overall idea is to find a
single set {A,C1, . . . ,CN} such that the matrix ΓΓΓ(N) has full
column rank. Let us consider the extreme case where

I = R+
L1 + · · ·+ LN

N − 1
. (54)

Cases where I > R+(L1 + · · ·+LN )/(N −1) will follow by
adding rows to the matrices A,C1, . . . ,CN constructed for
the extremes case, these added rows will simply add rows to
ΓΓΓ(N). In more detail, since we want to show that ΓΓΓ(N) has full
column rank, we can w.l.o.g. limit the rows of A,C1, . . . ,CN

to those needed for exact equality, and then set the remaining
rows arbitrarily, because they will not affect the rank of ΓΓΓ(N)

in our construction.
Observe that ΓΓΓ(N) can be seen as a matrix obtained by

stacking N − 1 blocks of the form[
C1 0I×(

∑
1<m<n Lm+R) −A −Cn 0I×(

∑
m>n Lm+R)

]
∈ CI×(R(N−1)+

∑N
n=1 Ln). (55)

We will select the columns of A,C1, . . . ,CN to be unit vectors,
e.g., al = e

(R)
σ(l), where e

(R)
σ(l) ∈ CR denotes a unit vector with

unit entry at position σ(l) ∈ {1, . . . , R} and zero elsewhere.
We first fix the first I columns of

[C1 −A −Cn] ∈ CI×(L1+R+Ln), 2 ≤ n ≤ N

as follows[
C1 −A −Cne

(Ln)
1 . . . −Cne

(Ln)
I−L1−R

]
= II×I ,

2 ≤ n ≤ N. (56)

The next step is to select the remaining columns
Cne

(Ln)
I−L1−R+1, . . . ,Cne

(Ln)
Ln

, which will be referred to as the
free vectors in the construction of ΓΓΓ(N). Due to inequality (35),
each block [C1 −A −Cn], and consequently also each block
of the form (55) in ΓΓΓ(N), can at most contain L1 free vectors.
In more detail, since I ≥ max1≤n≤N R+ Ln = R+ LN and
L1 ≤ · · · ≤ LN , the column dimension (L1 + R + Ln) of
[C1 −A −Cn] can at most be L1 elements larger than its row
dimension (I). This property is important in our construction,
and for that reason we repeat it below as a statement

[C1 −A −Cn] contains at most L1 free vectors. (57)
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Due to the construction (56), the n-th block [C1 −A −Cn],
and consequently also each block of the form (55) in ΓΓΓ(N),
contains

R+L1 +Ln− I = R+L1 +Ln−

(
R+

∑N
n=1 Ln
N − 1

)
(58)

free vectors, where we recall from (54) that we assume that
I = R+ (L1 + · · ·LN )/(N − 1), which is the extreme case.
From (56) and (58) we can conclude that the total number of
free vectors in the construction of ΓΓΓ(N) is equal to

N∑
n=2

(R+ L1 + Ln − I) =

(R+ L1)(N − 1) +
N∑
n=2

Ln −

(
R+

∑N
n=1 Ln
N − 1

)
(N − 1)

= L1(N − 2). (59)

We will now select the L1(N −2) free vectors in C2, . . . ,CN

in a way so that the matrix ΓΓΓ(N) has full column rank. Property
(57) enables to further restrict Cn to the following:

Cn =

−

 0L1×(I−L1−R) C
(n)
free

0R×(I−L1−R) 0R×(Ln−I+L1+R)

I(I−L1−R)×(I−L1−R) 0(I−L1−R)×(Ln−I+L1+R)

 ,
2 ≤ n ≤ N, (60)

where

C
(n)
free = IL1×(Ln−I+L1+R)ΠΠΠ

(n) ∈ CL1×(Ln−I+L1+R),

2 ≤ n ≤ N, (61)

in which ΠΠΠ(n) ∈ C(Ln−I+L1+R)×(Ln−I+L1+R) is a column
permutation matrix that still needs to be determined, and

IL1×(Ln−I+L1+R) =
[
IL1×L1

e
(L1)
1 , . . . , IL1×L1

e
(L1)
(Ln−I+L1+R)

]
=

[
I(Ln−I+L1+R)×(Ln−I+L1+R)

0(Ln−I+R)×(Ln−I+L1+R)

]
corresponds to the first (Ln − I + L1 + R) columns of the
identity matrix IL1×L1

. (Note that Cn has at most L1 free
vectors.) Define J(N) ∈ CL1×L1(N−2) as follows

J(N) = 1TN−2 ⊗ IL1×L1
= [IL1×L1

, . . . , IL1×L1
] , (62)

where 1N−2 = [1, . . . , 1]T ∈ C(N−2) is an all-ones vector. We
will now select C

(2)
free, . . . ,C

(N)
free as follows:[

C
(2)
free, . . . ,C

(N)
free

]
= J(N), (63)

where relation (59) was exploited, i.e.,
∑N
n=2(Ln − I + L1 +

R) = L1(N−2). Except for the first L1 columns, the columns
of ΓΓΓ(N) consists of distinct unit vectors. Note that each column
of ΓΓΓ(N) contains at least one unit entry. The construction of
C

(2)
free, . . . ,C

(N)
free allows us to “eliminate” up to L1(N − 2)

nonzero entries in 1N−1 ⊗C1 in ΓΓΓ(N). More formally, there
exists a nonsingular matrix F such that all rows in ΓΓΓ(N) that
contains two unit entries (one in a row of 1N−1⊗C1 and one
in the corresponding row of Blkdiag([A,C2], · · · , [A,CN ])

that involves C
(n)
free for some n ∈ {2, . . . , N}) are reduced

to row-vectors with only one unit entry, in which the prior
additional unit entry 1N−1 ⊗C1 has been deleted. Note that
since this transform will at most “eliminate” up to L1(N − 2)
nonzero entries in 1N−1 ⊗C1 in ΓΓΓ(N), the first L1 columns
of the latter matrix will still contain L1 unit vector after this
elimination step. Let J = R(N − 1) + L1 + · · ·+ LN , which
is the column dimension of ΓΓΓ(N). Then this also means that
there exists a row permutation matrix Prow and a column
permutation matrix Pcolumn such that the top (J×J) submatrix
of ProwΓΓΓ(N)FPcolumn corresponds to the (J×J) identity matrix.
Since Prow, F and Pcolumn are nonsingular, ΓΓΓ(N) has full
column rank.

Theorem IV.4 together with Lemmas B.2 and B.3 now
implies that the GCCA factorization of X1, . . . ,XN is generi-
cally unique. This proves the assertion that condition (36) in
Theorem IV.5 generically guarantees the uniqueness of the
GCCA factorization of X1, . . . ,XN .
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