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Abstract—Generalized Canonical Correlation  Analysis
(GCCA) is an important tool that finds numerous applications
in data mining, machine learning, and artificial intelligence. It
aims at finding ‘common’ random variables that are strongly
correlated across multiple feature representations (views) of the
same set of entities. CCA and to a lesser extent GCCA have
been studied from the statistical and algorithmic points of view,
but not as much from the standpoint of linear algebra. This
paper offers a fresh algebraic perspective on GCCA based on a
(bi-)linear generative model that naturally captures its essence.
It is shown that from a linear algebra point of view, GCCA
is tantamount to subspace intersection; and conditions under
which the common subspace of the different views is identifiable
are provided. A novel GCCA algorithm is proposed based on
subspace intersection, which scales up to handle large GCCA
tasks. Synthetic as well as real data experiments are provided
to showcase the effectiveness of the proposed approach.

Index Terms—Canonical Correlation Analysis, Generalized
Canonical Correlation Analysis, Subspace Intersection, Multi-
view Learning, Identifiability, Algebraic Algorithm, Common
Subspace Analysis.

I. INTRODUCTION

ANONICAL Correlation Analysis (CCA) is a classical

statistical tool for two-set / two-view factor analysis
[1], [2]. It aims at extracting a common latent structure of
a set of entities observed in two different feature domains,
which are usually referred as the ‘views’ of the entities. For
example, an English document and its French translation is
an entity represented in two different language-views. CCA
can be naturally extended to the multi-view case, where more
than two views are available for processing. Then it is referred
as generalized CCA (GCCA) or multi-view CCA (MCCA)
[3]. CCA/GCCA can also be considered as an extension of
principal component analysis (PCA) to the case where multiple
views of the data are available. On one hand PCA seeks for a
feature representation that maximizes the variance explained,
thus keeping the strong / principal feature components. On
the other hand, CCA/GCCA extracts the common components
between the views and ideally ignores even strong components
that are not present in all the views.

(G)CCA is a powerful set of tools with diverse applications
in machine learning [4]-[7], data mining [8]-[11], signal
processing [12]-[16], biomedical engineering [17]-[21], health
care data analytics [22], and genetics [23], [24], among others.
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In the two view case, CCA can be optimally solved via
generalized eigenvalue decomposition [2]. Furthermore, several
algorithms exist that solve the CCA problem when big and high
dimensional datasets are involved, and eigenvalue solutions are
computationally prohibitive, e.g., [25], [26]. The multi-view
scenario, on the other hand, is more complicated. There exist
a number of different GCCA formulations, e.g., SUMCOR,
MAXVAR, SUQUAR, etc; see [3], [27], and the majority of
them are not solvable in polynomial time. SUMCOR and
MAXVAR are the most popular formulations and various
algorithms have been developed for them, e.g., [9]-[11], [14],
[22].

Although CCA and GCCA are well-known and broadly-used
tools with a long history, there still exist intriguing questions
and open challenges related to (G)CCA theory and practice.
First, our understanding of CCA/GCCA from an algebraic
perspective is limited. The majority of the literature focuses
on the statistical interpretation of CCA, e.g., [1], [3], [28],
where each view is considered as a set of random vector
realizations, and/or on algorithmic aspects. Interpreting (G)CCA
from an algebraic viewpoint is important, since in practice the
matrix views involved in (G)CCA do not necessarily follow a
statistical model. Second, identifiability of CCA/GCCA, i.e.,
conditions under which the common latent components can be
recovered, has only been partially studied. An identifiability
condition for CCA was derived in [16], but only for the two
view case. Also, identifiability of CCA was established in
a statistical sense in [29], albeit under stringent statistical
assumptions. Finally, there is limited analysis regarding the
effect of multiple views compared to just using two views.
Despite the rapid developments in data acquisition and cross-
platform data availability, which enable leveraging multiple
views of a given set of entities, researchers often work with
just two views due to the more complicated nature of GCCA.

A. Organization and contributions of the paper

In this work we give answers to the above research
questions. First, we show that from an algebraic point of view,
GCCA amounts to subspace intersection, i.e., it computes the
intersection of the subspaces of the given matrix views. Next,
we provide both deterministic and generic conditions under
which the common subspace between the views is identifiable.
Our conditions show that having access to more views which
share a common subspace benefits the identifiability of that
subspace. Finally, we propose a simple and effective subspace
intersection algorithm for GCCA which works for any number
of views greater than or equal to two. The algorithm is algebraic
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and it exploits knowledge of the desired rank (useful signal
rank, i.e., the dimension of the dominant information-bearing
‘signal subspace’) of the matrix views. We also develop a large-
scale approximation algorithm which works for big and high-
dimensional data, both dense and sparse. Extensive simulations
with synthetically generated and real datasets showcase the
effectiveness of our proposed framework. The contributions of
the paper can be summarized as follows:

« A subspace intersection interpretation of CCA and GCCA.

o Deterministic and generic identifiability conditions for

GCCA.
e Subspace intersection based algorithms for CCA and
GCCA.

The rest of the introduction will present the notation used
throughout the paper. In Section II we review CCA and
GCCA and present a generative model for GCCA. As our first
contribution, in Section III we present a subspace intersection
interpretation of CCA and GCCA. As our second contribution,
in Section IV we present new identifiability conditions for
GCCA. Based on the obtained identifiability conditions for
GCCA, in Section V we discuss the benefits of processing
more than two views. As our third contribution, in Section
VI we present an algebraic framework for GCCA that is
scalable to high-dimensional data. In Section VII we report
numerical experiments, based on both synthetic and real data,
that corroborate the benefits of processing more than two views.
Section VIII summarizes our findings and concludes the paper.

B. Notation

The notation used throughout the paper is summarized in
Table L.

TABLE I: Overview of notation.

a % scalar
a =  vector
A 2 matrix
A 2 subspace
ar =  r-th column of matrix A
AT 2 transpose of matrix A
AH £ conjugate-transpose of matrix A
|All £ Frobenius norm of matrix A
trace(A) £  trace of matrix A
rank(A) £  rank of matrix A
range (A) £  range of matrix A
ker(A) 2  kernel of matrix A
® % Kronecker product of two matrices
@ £  direct sum of two subspaces
dim(A) £  dimension of subspace A
(ZL) £ binomial coefficient, i.e., (7:11) = #Ln)'

II. GENERALIZED CANONICAL CORRELATION ANALYSIS

In Sections II-A and II-B we first review CCA and GCCA.
Next, in Section II-C we present a generative model for GCCA
that enables us to study GCCA using tools from linear algebra.

A. Review of CCA

In CCA we consider a pair of zero-mean random vectors
x; € C’t and x, € C’2. The goal of the simplest version
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of CCA is to find linear combinations ¢’z and ¢4 x5 that
are maximally correlated, i.e., we seek two nonzero vectors
¢1 € C’ and ¢y € C’2 that maximize the absolute value of
the cosine angle, also known as the canonical correlation:

¢'Elz1x5 |¢2
N A S

where E[ | denotes expectation and —1 < p(¢1,¢2) < 1. We
say that ¢z, and ¢4 x are coherent when p(¢1,d) = +1.
In practice, only realizations of the random vectors x; and
o are observed. Let the rows of the matrices X; € CI*/1
and X, € C'*72 correspond to realizations of the random
vectors x; and x9, respectively. The empirical version of the
correlation measure (1) is given by

p(o1,02) =

)

. HxHX
O SR S T—Y
Vo X X116l X3 X0y
Observe that, from the Cauchy-Schwartz inequality,

(@1, ¢2) = £1 means that X;1¢; « Xo¢s and consequently
range(X1¢1) = range(Xa¢2). A pair of components
(X1¢1,X2¢2) is said to be coherent if X1¢1 X X2¢2.
Assume that we are interested in the R components
(X111, Xa21), ..., (X1¢1r, Xopor) with the largest
canonical correlation values, where ¢, € C’' and ¢, € C’2.
The extension of (2) to the case of multiple components yields
the CCA formulation [2], [5], [30]:

max trace (‘I>fX1HX2<I>2) (3a)
2

1,

where ®,, = [@dn1,...,Pnr] € C/*F has full column rank
and Ip is the R x R identity matrix. Hence, CCA aims to
extract the R principal canonical correlation components from
the two matrix “views” X; and Xs. The trace maximiza-
tion formulation (3) of CCA is equivalent to the following
minimization problem

: . o
@I?,lgg ||X1‘I’1 — XQ(I)QHF = q)l'11171£2 [)(17 —Xg] |: (I); :| B
(4a)
st. ®IXIX, ®, = I, ne{l,2}. (4b)

From (4a) it can be verified that the number of coherent
canonical correlation components is equal to the dimension of
ker([X1, —X3]). Thus, in the case where R components have
maximal correlation, we have range(X;®,) = range(X2®,).
Therefore in the ideal case where the two views share a common
subspace of dimension R, the optimal CCA solution gives:

X119, = Xo®2
st. ®EXIX @, =1, ne{l2).

(5a)
(5b)

Note that the quadratic constraints (3b), (4b) and (5b) simply
say that the columns of X;®; and X,®, must form column-
wise orthonormal bases for the obtained subspaces. However,
nonorthogonal bases can be used and this constraint is strictly
speaking not necessary for CCA.
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B. Review of GCCA

Several extensions of CCA to the case of multiple views
N > 2 have been proposed; see [3], [27] for details. When
N > 2 matrix “views” X; € CI*71 .. Xy € C™*'~ are
considered, then the problem of finding canonical correlation
components is referred to as GCCA. SUMCOR [3], [27] is a
popular formulation for GCCA, which is an extension of the
trace maximization formulation (3) to the multiview case:

H H
o > trace (B XV X,,®,,), (6a)
1<ni;<nas<N
st. ®UXHEX @, =1g, ne{l,...,N}, (6b)

where ®,, = [n1,...,0,r] € C»*E . nc{1,...,N}. Note
that an N-tuple of components (X1¢1,,..., Xn@nr), With
&nr € C/n, m € {1,..., N}, is now said to be coherent if
X bny, X Xpybn,, Yn1,n9 € {1,...,N}. Similar to (4),
the maximizer of (6) corresponds to the minimizer of

min H[Xn17 —X,) { i”l ] . (7a)
Pq,..., PN 1<n,<ma<N ng F
st. ®IXHEX, @, =1, nec{l,...,N}. (7b)

Assume that there exists R coherent canonical correlation
components (Xi1¢1,,..., Xn@nr), 7 € {1,..., R} that can
be extracted from the N matrix “views” X7,..., Xy, so that

range(X1®,) = --- = range(Xy®y). Then, similar to (5),
the solution to (7) will in the ideal case satisfy:

X’I’L1¢’ﬂ,1 = XTLQ¢’I’L27 nl # n2 (8a)

st. @I X" X, ®, =Ip, ne{l,...,N}.  (8b)

Similar to CCA, the quadratic constraints (8b) simply say that
the columns of X,,®,, must form a columnwise orthonormal
basis, which is strictly speaking not necessary for GCCA.

It is important to note that other extensions of CCA to the
multiview GCCA case have been proposed. We mention the
MAXVAR formulation [3], [27], which will be reviewed in
Section VI-B. In the next section we will propose a generative
model for GCCA.

C. A generative model for GCCA

a) Definition of generative model for GCCA: Assume
that relation (8a) is satisfied and that N)\_ range(X,,) = R,
then there only exist R linearly independent and maximally
correlated components. Let the columns of A € C'* form a
basis for the subspace spanned by the R coherent canonical
correlation components, i.e., range(A) = range(X,,®,), Vn €
{1,...,N}. Then there always exist matrices B,, € C/»*£
C,, € C'*In and D,, € C/»*Ln such that

X, = ABT + C,DY
=[A,C,JS] eC™" ne{l,....N}, (9

where S, = [B,,D,] € C/»*(+Ln) and rank(X,) =
R+ L, Note that since NY_;range(X,,) = R, we may assume,
without loss of generality (w.l.o.g.), that N)_ range(C,,) =
{0}. Note also that when dim(N)_;range(C,)) > 0 is

permitted, then (9) can more generally be interpreted as
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a coupled low-rank factorization. Thus, the difference be-
tween the discussed generative GCCA model and a cou-
pled low-rank factorization model is that the former model

requires that dim(N%_,range(C,)) = 0. To summarize,
when dim(NY_;range(C,)) = 0, then (9) is referred to

as a generative GCCA model for Xi,...,Xy and when
dim(N)_range(C,,)) > 0, then (9) is referred to as a coupled
low-rank factorization of X1, ..., X . Note that the generative
GCCA model (9) does not prevent that R = 0.

Our first observation is that since A in (9) is a shared factor
matrix, we can w.l.o.g. assume that the matrices {[A, C,]} in
(9) have full column rank (see Appendix A for a detailed proof)
and that range(X,,) = range([A,C,]), Vn € {1,...,N}.
The latter implies that w.l.o.g. we can also assume that the
matrices {S,,} in (9) have full column rank. Hence, w.l.o.g.
we can always assume that the matrices X, ..., Xy admit
the factorization in (9), where R denotes the dimension of
the common subspace N)_,range(X,,), which is equal to
the number of coherent canonical components, and R + L,,
denotes the dimension of the individual subspace range(X,),
n € {1,...,N}. We also note in passing that w.l.0.g. it can
be assumed that J,, = R+ L, i.e., if J, > R+ L, then X,
of size (I x J,,) can be replaced by a compressed version of
size (I x (R+ Ly)).

To summarize, GCCA with R coherent canonical correlation
components can w.l.0.g. be interpreted as the problem of finding
the common subspace range(A) of X,..., Xy which can
be factored as in (9), where the factor matrices

[A,C,] and S,, = [B,,D,] have full column rank. (10)

We briefly mention that in the non-ideal case where there do
not exist R coherent canonical correlation components, then
A in (9) can be chosen to be the columnwise orthonormal
matrix that minimizes || 27]:]:1 Px Al|%, where Px denotes
the orthogonal projector onto the orthogonal complement of
range(X,,). This is related to the MAXVAR formulation of
GCCA, as will be explained in Section VI.

It is important to note that the factorization (9) together with
the full column rank properties of {[A, C,]} and {S,} allow
us to assume, w.l.o.g. that !

range(X,,) = range(A) @ range(C,,), ne {l,...,N},
Y
which implies that
R<I— max L,. (12)

1<n<N

Note that equation (11) is a key point of our approach and
follows naturally from the fact that matrix [A, C),] has full
column rank and that the subspaces range(A) and range(C,,)
are complementary (see Appendix A for details). We also make
use of the convention

Ly <Ly <---<Ln. (13)

Recall that if U and V are subspaces of the vector space W, then
W=U® Vifandonly if UNV = {0} and W = U + V. Equivalently,
W = U @ V if and only if for any w € W there exists a unique vector
w € U and a unique vector v € V such that w = u + v.
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b) Definition of identifiability of range(A): Consider
a set of N views Xi,..., Xy. Assume that there exist R
coherent canonical correlation components. Let the columns
of A € C'*E form a basis for the span of the R coherent
canonical correlation components. Note that range(A) can only
be identified from X7, ..
Thus,

range(A) is identifiable < dim(N)_,range(X,,)) = R.

(14)
As an example, assume that we want to extract two coherent
canonical correlation components from the two views X;
and X5. Let the model parameters of the coupled low-rank
factorization (9) be I =3, R=2, N =2and L, = Ly = 1.
Since dim(range(X;) N range(Xz)) = 3 > 2, the two
coherent canonical correlation components of interest cannot
be identified from the two views X; and X5.

Observe that (14) expresses the identifiability of range(A),
with dim(range(A)) = R, in terms of X,..., Xy. We
can also express it in terms of the factor matrices A and
C4,...,Cy in the model (9). More precisely, let the columns
of range(A) in (9) form a basis for the span of the R
coherent canonical correlation components. Then identifiability
of range(A) means that the views Xi,..., Xy admit the
decompositions (9) with property N2_,range(C,,) = {0}. This
formulation of identifiability of range(A) will be important in
the next sections and for that reason we state it again below

range(A) is identifiable < dim(N?_ range(C,)) = 0.
(15)

III. A SUBSPACE INTERSECTION APPROACH FOR CCA AND
GCCA

In this section we provide a range subspace intersection
approach for finding range(A) via the observed matrices
Xi,...,Xn with decompositions of the form (9), where
dim(ﬂf:,:1 range (C},)) > 1 is permitted. The full column rank
property of the matrices {[A, C,]} and {S,} in (9) imply that

range(X,,, ) Nrange(X,,)
= range([4, C,,,]) Nrange([A, C,,])
= range(A) + (range(C,,,) Nrange(C,,)),
1<ni3 <ng <N,

where the last equality follows from (11). More generally, we
have that

N
Y = ﬂ range(X,,)
n=1

N
= range(A) ® <ﬂ range(Cn)>
n=1
=range(A) © C, (16)
where C' := ﬂgil range (C),). Thus, relation (11) implies that

range(A) C Y and that dim(Y") > R. (17)

., X if dim(NY_;range(X,,)) = R.
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Observe that dim(Y') = R implies that Y = range(A). As a
result, the study of the identifiability of range(A) reduces to
the study of dim(Y"). To put it differently,

dim(Y) = R < Y =range(A). (18)

Note that (18) means that dim(C') = 0, which in turn means
that (9) corresponds to a generative GCCA model. From (15)
we also know that this means that range(A) is identifiable
via the NV views X1,..., Xy. Thus, if the dimension of the
subspace spanned by a basis for Y is R-dimensional, then
range(A) can be uniquely determined from Y via GCCA.
What remains to be answered is how to determine the
dimension of Y. Consider a nonzero vector z € C!. Let
the columns of U,, € C*(F+Ln) form a basis for range(X,).
We know that z € Y if and only if there exist nonzero vectors

q1 € CHHL  qn € CEHEN guch that
z=Uiq1 =---=Ungn. (19)
Define ¢ = [¢7,...,q¢%]7 € CVE+Y_1Ln) Then a vector

q with property (19) can be obtained by solving the system of
homogenous linear equations

[07xan, s Uny s 01%8,, 0y s —Unyy O1xw,, | @ =01, (20)

for 1 <ny < ng <N, where
o, = (m —= DR+ L,
na—1
B"lh"z = (Tlg —n - 1)]]34_ Ziinri-l Li,
Wny = (N =mo)R+ 37", 1 Li.
We can now conclude that if the subspace

ZWN) = ﬂ
1<ni<n,<N
= (1] ker([0,A,C,,,0,-A,~C,,.0)

1<n;<na <N

ker([()?UnUO)_UnzaO]) (21)

(22)

is R-dimensional, i.e., there exist only R linearly independent

vectors qi,...,qp in the range of Z(Y), then Y is also R-
dimensional and Y = range(A). Note that the dimensions of
the zero matrices in (22) are as in (20), but the subscripts have
been omitted due to space limitations.

Therefore the dimension of Y can be expressed in terms of
the factor matrices A, {C,,}»_,. For example, when N = 3,
the dimension of Y is equal to the dimension of the kernel
of the following matrix (the same reasoning holds true when
N > 3):

A C, -A -C, O 0
A C, 0 0 —-A —Cj (23)
0 0 A C; —-A —Cj

IV. IDENTIFIABILITY CONDITIONS FOR GCCA

The goal of GCCA is to find the subspace range(A),
observing X;,..., X . We consider the exact case where
X, admits the factorization (9). As far as identifiability is
concerned, [16] studied the two-view CCA (N = 2) and
proved that if the matrices [A, Cy, C3], Sy and S5 have full
column rank, then range (A) can be obtained via CCA, as
reviewed in Section IV-A. In Section IV-B we move a step
forward and provide an identifiability condition for the general
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case of GCCA (N > 2). More precisely, using the proposed
range subspace intersection approach for GCCA, we present
an identifiability condition that does not require any of the
matrices in the set {[A, C,,,, Cy,]} to have full column rank.

A. Review of CCA identifiability conditions

Without loss of generality, we assume that X; and X5 in
(5a)—(5b) admit factorizations

(24)

X = ABF{ + ClD{ S CIXJ17
X, = ABY + C,DT € €%z,

where A € CI*E, B, € C/»*E, C, € C'*L» and D,, €
C/»*In_ Note that (24) is a special case of (9) with N = 2. The
question is now when does the CCA solution yield range(A).
Theorem IV.1 below answers this question.

Theorem IV.1. [16] Consider the two-view factorization of
X1 and X, given by (24). If

[By,D;] € C/ *(B+L1) has full column rank,

[B2, Do) € CT2X(B+L2) pas full column rank,

[A, C1, Cy] € CTX(B+LatLa) pas full column rank,

(25)

then the common subspace range(A) is identifiable via (24)
and the CCA solution (5a)—(5b) has the property range(A) =
range(X1®1) = range( X2 P»).

Note that condition (25) does not require that
@foanbn = Ip. It is important to note that
if condition (25) is not satisfied, then in general we
have range(A) # range(X;®;) = range(X.®,), even
if relations (5a)—-(5b) are satisfied, and consequently
range(A) cannot be obtained via CCA. (This happens when
dim(ﬂi:1 range(C,)) > 1.) A nice property of condition
(25) is that it is easy to check and it is generically” satisfied if

Jo>R+Ly, Job,>R+ Ly, and I > R+ L1+ L. (26)

However, a drawback of condition (25) is that it is limited to
the two-view case (N = 2), i.e., in the multi-view case it does
not exploit all NV > 2 observation matrices X1, ..., Xy. For
this reason, we consider GCCA, so that all N > 2 observation
matrices X1, ..., Xy are taken into account.

B. GCCA identifiability conditions

We start our identifiability analysis for GCCA by providing
a short proof that explains that if range(A) can be obtained
via a two-view CCA based method, then range(A) can also
be obtained by a multi-view GCCA based method.

Proposition IV.2. Consider the multi-view factorization of
X1,..., XN given by (9). If condition (25) is satisfied for some
pair (X, , Xn,), where 1 < ny < ng < N, then dim(Y) =
R, Y = range(A) and the GCCA solution (8a)—(8b) has the
property range(A) = range(X,,®,), Yn € {1,...,N}.

2We say that factor matrices A,B1,B2,C1,Cso,D1,D2 in (24) are
generic when their entries can be assumed to have been drawn from an
absolutely continuous joint probability distribution.
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Proof. Condition (25) implies that range(A) = range(X;) N
range(X2) and that dim(Y") < R. Consequently, from (17), we
conclude that if range(A) = range(X;)Nrange(X3), then Y =
NN_ range(X,,) = range(X;) Nrange(Xy) = range(A). O

Hence, in terms of identifiability, a multi-view GCCA method
cannot do worse than a two-view CCA method. In this section
we explain that by taking all views X1, ..., Xy into account,
the identifiability condition for a multi-view GCCA method
is in fact more relaxed than the identifiability condition for
a two-view CCA method, i.e., even if condition (25) is not
satisfied, range(A) can still be obtained via a GCCA method.

It is important to note that even if there exist matrices {®,,}
such that relations (8a)—(8b) are satisfied, it does not necessarily
mean that range(A) = range(X,,®,,). (This happens when
dirn(r]nN=1 range(C),)) > 1.) We will now develop conditions
that ensure that the following implication is satisfied

x € N)_ range(X,,) = x € range(A),

27)
so that the common subspace range(A) can be obtained via
GCCA, observing X,,, n € {1,...,N}.

Since range(A) C Y, the minimal dimension of the subspace
Y given by (16) is R. This also means that if the subspace
ZWN) given by (22) is R-dimensional, then C' = {0}.> This
fact leads to the common subspace identifiability condition
presented in Theorem IV.3 below.

Theorem IV.3. Consider the multi-view factorization of
Xi,..., XN given by 9). If

(28)

S1,..., 8N have full column rank,

{Z(N) is R-dimensional,
then dim(Y) = R, Y = range(A) and the GCCA solution
(8a)—(8b) has the property range(A) = range( X, ®,), Vn €
{1,...,N}.

Proof. The result follows immediately from relations (11), (16),
(21) and (22). O

In Theorem IV.3 we exploited the fact that relation (16) tells
us that if dim(Y) = R, then C = {0}. In words, common
subspace identifiability means that the noise terms Cq,...,Cy
have been “cancelled out” by subspace intersection. Using rela-
tion (22), Theorem IV.3 expresses the identifiability condition
in terms of the observed data. This is useful when we want
to check how well a GCCA model fits to the data and when
we want to develop algorithms for GCCA. (In Section VI we
develop an algorithm for GCCA based on a constructive use
of Theorem IV.3.) On the other hand, if the factor matrices
A, Cq,...,Cy in (9) are given, then checking the dimension
of Z(N) in (28) can be cumbersome and it is not obvious how it
is related to the factor matrices A, C, ..., Cy in (9). In order
to obtain a simpler condition for the recovery of range(A) via

3Recall that the dimension of a direct sum is the sum of the dimensions
of its summands. This fact also explains that if Y is R-dimensional, then

C = {o}.
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Xi,...,Xn, that is expressed in terms of A,C1,...,Chy,
the following identity will be used [31]:
N
dim <ﬂ range(X,J)
n=1
N
= Z rank(X,,) — rank(I'(X1,..., Xn)), (29)

where the matrix I'( X7, ..., X ) is defined as follows

X1 —Xo
F(Xl,...7XN): ,
X1 - XN
in which Xy,..., Xy are matrices of conformable sizes.

Theorem IV.4 below is a simplified version of the common

subspace identifiability condition in Theorem IV.3. It makes
N

use of the matrix TV) e CN=DIx((N=DE+32,_; Ln) gjyven

by

™) = [1y_; ® Cy, —Blkdiag([A, Cy], - , [A, Cy])]
C, -A —C
| . , (30)
Ci —A —Cy

where 1y_1 = [1,...,1]7 € CNV~! is an all-ones vector and
Blkdiag([A, Cs],- - ,[A, Cy]) is a block-diagonal matrix that
holds the matrices [A, Cs],...,[A, Cy] on its block-diagonal.

Theorem 1V.4. Consider the multi-view factorization of
X1,..., XN given by 9). If

€2y

Si,..

'™ has full column rank,
. SN have full column rank,

then dim(Y) = R, Y = range(A) and the GCCA solution
(82)—(8b) has the property range(A) = range( X, ®,,), Vn €
{1,...,N}.

Proof. Relation (29) together with the full column rank
assumptions on Si,..., Sy imply that

dim (ﬂ range(Xn)> =

n=1

N
Zrank(Xn) —rank(I'(X+,..., Xn)) =

N
> rank([A, Cy]) — rank(T'([A, C1, ..., [A, CN])). (32)
n=1
The full column rank property of the matrices
[A,C4],...,]A,Cy] in turn implies that relation (32)
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6
simplifies to
N
dim (ﬂ range(Xn)> =
n=1
N
NR+> L, —rank(T([A,C1],...,[A, Cx]))
n=1
N
NR+ " Ly — rank (T}, (33)
n=1

where the matrix TV) is given by (30). From (33) it is clear that
if V) has full column rank, then dim (07]2;1 range(Xn)) =

R and ﬂfj:l range(X,,) = range(A). O

Note that if T™) has full column rank, then I(N — 1) >
R(N —1)4 Ly +---+ Ly or equivalently the row dimension
(I) satisfies the inequality

(34)

P
I>R+ [M—‘

N-1
The necessary condition for Sy, ..
rank is:

., SN to have full column

I>R+ max L,=R+ Ly, 35)
1<n<N

where convention (13) was used. Interestingly, the inequalities
(34) and (35), which are necessary for Theorem IV.4, are
also sufficient when A, C,, and S,, n € {1,...,N} are
generic, i.e., the entries of the involved factor matrices can be
assumed to have been drawn from an absolutely continuous
joint probability distribution. The generic version of Theorems
IV.3 and IV4 is presented as Theorem IV.5 below.

Theorem 1IV.5. Consider the multi-view factorization of
X1...,Xn given by 9). If

1 N
<
R+ {N%;an <1,

R+ L, <J, Vne{l,...,N}.

then generically dim(Y) = R, Y = range(A) and the
GCCA solution (8a)—(8b) has the property range(A) =
range( X, ®,), Vn € {1,...,N}.

Proof. See Appendix B. O

Note that in order for the GCCA model (9) to be well-
defined, the inequality (12) also has to be satisfied. Theorem
IV.5 provides us with an easy way to check identifiability for
the special case where the factor matrices of the GCCA model
(9) are generic. The latter can be used to quickly assess whether
the common subspace range(A) can be recovered.

(36)

V. DISCUSSION

In this section we discuss the effect of processing more views
(i.e., N > 2) using GCCA compared to the more commonly
used CCA model in which N = 2. First we note that when N =
2, condition (31) boils down to the standard two-view CCA
identifiability condition (25). However, when N > 2 condition
(31) yields relaxed identifiability, as we will demonstrate next.
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A. GCCA can relax the bound on I

Consider the case where A,C,,,S,, n € {1,...,N} are
generic and R = L,, = 100, n € {1,..., N}. Then condition
(26) for two-view CCA requires I > R + L1 + Lo = 300,
in order to recover range (A). When N = 3, however, the
condition in (36) is relaxed to I > R+ %(Ll + Lo+ L3) = 250.
Furthermore, in the latter case none of the matrices [A, C1, Cs),
[A, Cq,Cs] and [A, Cs, Cs] are required to have full column
rank, which is necessary in the two-view case. The identifiabil-
ity condition for GCCA can be further relaxed by increasing
N. In the previous example, when /N = 5 the condition in (36)
reduces to I > 225 and as N —+ o to I > R+ L, = 200,
which is also a necessary condition to identify range (A).

B. GCCA can identify higher dimensional common subspaces

Note that multi-view GCCA allows that dim(range(A) N
range(C1) Nrange(Cs)) > 0, which is not permitted in the
two-view CCA case. Consequently, GCCA can identify higher
dimensional common subspaces, range(A).

As an example, let I = 200, N = 5, and L,, = 100,
1 < n < 5. The condition (26) for two-view CCA requires
that R < I — L; — Ly = 0, which means that it is impossible
to identify range(A). On the hand, the GCCA identifiability
condition (36) only requires that R < I — ﬁ(Zszl L,) =
75.

C. GCCA can handle “leaky” noise subspaces

Another important difference between two-view and multi-
view CCA is that when N = 2, range (C;)Nrange (Cs) = {0}
is a necessary identifiability condition. On the contrary, for
N > 2 it is possible that range (C,,) N range (C,,) # {0}
for some m # n, i.e., some views are allowed to share
common subspaces not included in range (A). In words,
GCCA allow for “leaky” noise subspaces with property
dim(range (Cm) Nrange (C),)) > 0 for some m # n, as long
as C = dim(N)_;range (C,)) = 0.

As an example, let I = 200, N = 5, and L,, = 140,
1 < n < 5. The condition (26) for two-view CCA requires that
R <I—- Ly — Ly =—80, which means that it is impossible
to identify range(A). On the hand, the GCCA identifiability
condition (36) only requires that R < [ — W(Zi:l L,) =
25. Note that for generic C; and Cs, we have dim(range(C;)N
range(Cs)) = 80.

D. Asymptotic results

To further elaborate on the identifiability properties of CCA
(N = 2) and GCCA (N > 2), consider the case where R is
fixed. Condition (36) implies that

jg:_L <(

is necessary for condition (31) to be satisfied. If additionally
L:=L;=---= Ly, then (37) reduces to

N -1

1)(I - R) 37)

L<
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which yields the following relation, when N = 2:

L< 2(1 R). (39)
Furthermore, when N — oo, then (38) reduces to
L<I-R. (40)

Comparing (39) with (40), we conclude that in the balanced
case where L .= Ly = --- = Ly, GCCA can at most relax
the CCA bound on L by a factor 1 = 2.

Let us now consider the balanced case L=Li=---=
L) where L is fixed, while R is varying. Relation (39) implies
that CCA with N = 2 views is able to recover the common
subspace range (A) only if

R<TI—-2L.

(41)

In other words, L < é is a necessary recovery condition for
CCA. On the contrary, employing more views (N > 2), allows
GCCA to recover the common subspace range (A), even if
L> é For instance, if I = 200, N = 5 and L = 100, then
it can be verified that condition (36) is satisfied as a long as
R < 75, regardless of the fact that L = é Furthermore, as
N — oo we get from (40) that

R<I-L (42)

is necessary to satisfy condition (31) in Theorem IV.4. Compar-
ing (41) with (42), we conclude that when L .= L; =--- =
Ly and L < L GCCA can at most relax the bound on R by
a factor = L Moreover, when L > I , GCCA can still ensure
the recovery of range (A) while thls is never possible when
N =2

VI. ALGORITHMIC FRAMEWORK
A. Subspace intersection algorithms for CCA and GCCA

Formulas for computing a basis for the intersection of
subspaces have been proposed in the literature. We mention
that in [32] it was shown that

Y = ﬂ range(X,) = ker (Z Pl ) , 43)
n=1

where P% € C'*! denotes the orthogonal projector onto

the orthogonal complement of range(X,,). In the exact case,

where there exist R maximally correlated components between

Xi,...,Xn, a basis for Y can be obtained by solving

N
Z Px A=0, st

n=1

ATA =15, (44)
where the matrix whose columns form an orthonormal basis
for YV is denoted by A. It corresponds to matrix A in (9)
and it can for instance be obtalned via the singular value
decomposition (SVD) of E P§n, i.e., the columns of A
correspond to the R right smgular vectors associated with the
R smallest singular values of Zﬁlzl Pﬂ-(n. In the inexact case,
where there do not exist R maximally correlated components

between X1,..., Xy, a basis for Y can be estimated via
N 2
: 1
min Py Al >0. 45
anin X_j xA| = (45)
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Note that the lower bound in (45) can only be attained
when range(A) C ker(zxyz1 P% ). * Matrix A can for in-
stance be obtained via the SVD of Zgl:l 2272:1 Px. PJ;(nZ ,
i.e., the columns of A correspond to the R right singular
vectors associated with the R smallest singular values of
Zﬁfl:l 27];’2:1 Pﬁ-(nl Pﬁ(w. However, when [ is large, even
computing Zgil PJXH, can be computationally challenging at
O(I2(N+XY_ (R+L,))). Furthermore, storing 3", Px.
can also be prohibitive, especially when I is large.’ In
this section we develop a different algebraic range subspace
intersection method to tackle the GCCA problem which can
handle large values of I.

We will now present an alternative algorithm for computing
a basis for the common subspace range(A) associated with
the factor matrix in (9) and the matrices ®4,..., ®y in the
GCCA model (8). Since the algorithm is not directly based
on (45), it does not require the construction of the projectors
P‘%{n. The algorithm follows the previous analysis and can be
viewed as a constructive interpretation of Theorem IV.3. It can
be described in 3 steps:
step 1: Compute U, € CI*(E+Ln) and V,, € C/nx(F+Lln)
whose columns form an orthonormal basis for range (X,,) and
range (X'), n € {1,..., N} respectively. In practice, the
matrices X1,... Xy are often perturbed by additive noise.
For this reason, we use the SVD to compute U,, and V,.
step 2: Using the SVD, we compute an orthonormal basis for
ZW) in (22) and retrieve the matrices ®,,, n=1,...,N. To
do that we first construct matrix @ € C(2)/x(VE+30, Ln)
(see (23) for an example when N = 3) and compute a basis
for its null space via the SVD, represented by matrix Q =
QT,...,Q%]", with Q,, € CH+Ln)*E The columns of Q
correspond to the R right singular vectors associated with
the R smallest singular vectors of ®. Note that in the exact
case the columns of Q form an orthonormal basis for Z(N).
Since, in the ideal case, A = U, Q,, = X,,®,,, the matrices
®,, n=1,..., N can now be obtained as ®,, = X;fLUnQn =
V.2 '\UlU,Q, = V,2;'Q,., where X denotes the left-
inverse of X,, and X, € CF+Ln)x(E+Ln) g the diagonal
matrix with the singular values of X, on its diagonal.
step 3: In the exact case we have range(A) = range(U,,Q,,)
when condition (28) in Theorem IV.3 is satisfied. In the inexact
case, a more robust estimate of range(A) can be obtained via
the matrix G = [U1Q1, ..., UnQ ). In short, let the columns
of A correspond to the R left singular vectors of G associated
with the R largest singular values of G, then (in the exact case)
the columns of A form an orthonormal basis for the common
subspace. The detailed steps can be found in Algorithm 1.
Note that in Algorithm 1 we use two versions of SVD. To

‘Let G € CNXN denote the Grammian matrix with entries gij =
Vec(P)L(i VH vec(P}L(j ), where veC(P)L(i) denotes the vectorized version of

P% . Then || 30, Px a3 = 0 for some nonzero a € CN if and
onlyl if the determinant of G is equal to zero, which means that the vectors
Vec(P)L(1 )yeens vec(PJXN) are linearly dependent.

SDefine Q = Iy — % Zﬁ;l Px,.Then Py = I;— Q' Q is a projector
onto Y, where QT denotes the Moore-Penrose pseudoinverse of Q; see [32]
for a proof. Hence, as an alternative to (45), A could also be determined via
the SVD of Py . However, this approach also requires the construction of the
(I x I) matrix Py.
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Algorithm 1: RAnge subspaCe INtersection
for Gcca (RACING)

1: Input: {X,,, L.} ,, R.
2: Output: A, {®,}N_,.
3: step 1:
4 forn=1to N do
5o Un3n V] < svde (X, R+ L) ;
6: end for
7: step 2:
g O = H,
9: forny =1to N —1do
10: for no =n;+1to N do
1: k=(m— DR+ Y05 Lo, 1= (n2 —m — )R+
S i Lns m = (N = na)R+ 30 Ly
12: ®n1n2 = [lekvUnl’OIXl’_U’W’lem};
13: ® © )
(")nlng ’
14:  end for
15: end for
16: ngg‘/eT < svd (6) ;
7: Q=[Q.....Q" = Vi(,end ~ R+ 1: end);
18: step 3:
19: G = []7

20: for n =1 to N do

2. G+ [G,U,Q,];

22: (I)n = ‘/nzﬁlQn;

23: end for

24: USVT + svd; (G, R);
25: A=U;

be specific, svd computes the ‘thin’ SVD, whereas svd.(-,7)
computes the truncated SVD corresponding to the r largest
singular values.

In terms of computational complexity and memory require-
ments, the main bottleneck of the proposed algorithm lies in
computing the SVD in line 5 and 16. The column dimension
(J,) of each view X KORT usually large which makes the
SVD computation very intensive. Traditional algorithms require
O(1J, min(1, J,)) flops to compute the SVD of line 5 and
O(N(N —1)I(NR + fo L,)?) flops to compute the SVD
of line 16 and computation is prohibitive when big and high
dimensional data are involved. To overcome this issue, we
propose to employ Lanczos-type iterative algorithms [33] (e.g.,
Matlab’s routine svds) to compute the truncated SVD in line 5.
The complexity then is depending on the number of principal
components R + L,, therefore setting L,, to be relatively
small compared to the dimensions (R + L,, < I) markedly
reduces the computational complexity, especially for sparse
data. The reason is that these Lanzos-type approaches involve
multiplications of X,, with a (J,, x R+L,,) matrix. When X, is
sparse this multiplication can be carried out significantly faster
compared to the case of X,, being dense. In practice, noise
makes X,, full rank (I = R+ L,,). However, X,, still typically
admits a good low-rank approximation X,, ~ [A,C,]ST,
where I > R+ L,,. We say that the R+ L,, represents the useful
signal rank, i.e., the dimension of the signal subspace, which
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is small enough for every n € {1,..., N}. Small values of L,

also reduce the computations required in line 16 significantly.

For example, choosing R + L,, to be in the order of 500
will allow the proposed algorithm to work for very large and
high-dimensional data.

We mention that a relaxed SUMCOR-type algorithm has

also been proposed in [34], [35] that is similar to Algorithm 1.

However, there are notable differences that we will now point

out. First, the starting points of the derivations are very different.

While Algorithm 1 follows immediately from the proposed
subspace intersection interpretation of GCCA, the approach
in [34], [35] is based on a relaxation of the SUMCOR cost
function (6). Second, an important difference is that Algorithm
1 and the SUMCOR/SUMCOR-type methods fit different

models. The former method looks for a “common subspace”

range(A) while the latter methods look for individual subspaces
range(X1®),...,range(X y® ). Third, a difference is that
in Step 3 in Algorithm 1 SVDs are used to obtain more robust

estimates of A and {®,,} while this is not the case in [34], [35].

In particular, we are interested in A while in [34], [35], just as
in SUMCOR, the focus is on the computation of {®,}. Fourth,
define UM) = [Uy,..., Uy] € CIX(NR+XL, Lu) Then in
[34], [35] matrices {®,,} are computed via the right singular
vectors of UMW), In Algorithm 1, {®,,} are computed via the
right singular vectors of ©. Note that this leads to a different
weighting of the data. More precisely, the approach in [34], [35]
corresponds to computing a basis for the kernel of UN)H U (XV)
with block matrices U2 U,, while the approach in Algorithm 1
corresponds to computing a basis for the kernel of 70 with
on-diagonal blocks (N — 1)UZU,, and off-diagonal blocks
-Uly,.

In the next sections we compare the popular MAXVAR
method for GCCA computation with the proposed subspace
intersection based approach.

B. Comparison between MAXVAR and subspace intersection.

The GCCA method MAXVAR aims to find range(A) by
minimizing the cost function

ZHX@

Let the columns of U,, € C/*(E+Lln) form a columnwise
orthonormal basis for range(X,). Then range(A) can be
obtained via

—Al%, st ATA =1n (46)

.....

N
. B 9 Ha _
Vl,.I»I.l,l\?N,A ; HUnVn A||F7 st. AYA IR7 a7

where V,, € CEHL)XE s an unknown full column rank
matrix. However, it is not evident when range(A) is correctly
computed via the cost function (47). We will now explain
that in the exact case, where X,, admits the decomposition
(9), MAXVAR correctly computes range(A) via subspace

intersection when dim(Y) = R. The minimizer of (47)
corresponds to the maximizer of
N
max HUEAH? = max ZHPXnAHF (48)

AHTA=Ip
n=1
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with V,, = UZ A and where Px, denotes the orthogonal
projector onto the subspace spanned by the columns of X,,.
The orthogonal decomposition theorem tells us the maximizer
of (48) corresponds to the minimizer of

(49)

min
AHA=IR

Z HPX AHF 20,
where PJ- denotes the orthogonal projector onto the orthogo-
nal complement of the subspace spanned by the columns of
X,,. Note that the lower bound in (49) can only be attained
when range(A) C ker(Z::[:1 Px% ). (This fact follows from
inequality (45) and inequality (50) below.) In the exact case
it means that we are looking for a columnwise orthonormal
matrix A that satisfies relation (44), where we exploited that
range(A) C ker(ZfL1 Px ) =Y, in which the latter equality
is due to (43). This means that if dim(Y) = R, then the lower
bound in (49) is attained if and only if the columns of A form
a basis for Y. It is now evident that in the exact case, the
MAXVAR solution corresponds to a basis for the intersecting
subspace Y, i.e., Y = range(A).

We note in passing that efficient implementations of the
MAXVAR method have been proposed (e.g., [9], [35]).
Briefly, the solution to the MAXVAR problem (48) can
be obtalned via the eigenvalue decomposmon (EVD) of
Z” . U,,UZ However, since Z" .U, U = U(N)U(N)H
where U(N) = [Uy,...,Uy] € CI* NR+Zn 1Ln) | and
rank(UMUMHY) = rank(UWM)), the solution to the MAX-
VAR problem (48) can be computed more efficiently via
the SVD of UW), without first computing the orthogonal
projectors {U,, UX}. More precisely, if dim(range(A)) = R,
then the R left singular vectors of UN) associated with the
R largest singular values of UN) form a basis for Y.

We will now argue that in the inexact case, MAXVAR and
the proposed subspace intersection approach for GCCA can
lead to different but related solutions. From (45) and (49) we
observe that the difference between MAXVAR and subspace
intersection is that the former method aims to minimize the term
25:1 ||P)L(AH2 while the latter method aims to minimize

the term || 25:1
that

Px Al|%. The triangle inequality tells us

2
(50)

N
> [1Px, Al ZPX
n=1
Hence, from (50) we observe that in the inexact case, the
MAXVAR solution can be interpreted as an approximate
solution to the subspace intersection problem in which cross
terms of the form trace(A"Px Px A) with m # n in
IS Px A% are ignored.

To summanze using the identity in (43) we argued that in
the exact case MAXVAR is performing subspace intersection.
Consequently, the link between subspace intersection and
GCCA presented in Section III tells us that if the identifiability
condition (31) in Theorem IV.4 is satisfied, then in the exact
case MAXVAR correctly computes range(A). In the inexact
case, inequality (50) tells us that MAXVAR can be interpreted
as an approximate method for subspace intersection.
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VII. EXPERIMENTS

In this section we demonstrate the performance of the
proposed algorithmic framework and showcase its effectiveness
in synthetic- and real-data experiments. All simulations are
implemented in Matlab and are executed on a Linux server
comprising 32 cores at 2GHz and 128GB RAM.

A. Synthetic-Data Experiments

First we test the proposed framework using experiments with
synthetically generated data. The multiple views are generated
according to equation (9). We assume that the views share a
common latent factor A € C'* with entries randomly and
independently drawn from a zero-mean unit-variance Gaussian
distribution. The individual matrices C,, € C'*L» and S,, €
CHKnx(E+Ln) are also generated with entries independently
drawn from a zero-mean unit-variance Gaussian distribution
and for simplicity we set L,, = L and K,, = K = L + R for
every n € {1,...,N}.

We test the algorithm in a noisy setup. To be more specific,

X,, n =1,...,N are generated according to the model
in (9), as previously described. However, instead of X,, we
observe Y,,, n = 1,..., N which are generated as: Y,, =

X, +W,, ne{l,...,N}, where W,, is an additive white
Gaussian noise term. Note that if condition (31) in Theorem
IV.4 is satisfied, then the proposed algorithm is guaranteed to
find range(A) in the exact case.

For baselines we use the exact solution of MAXVAR formula-
tion, computed via eigenvalue decomposition and CSR, which
solves the SUMCOR formulation, using a change of variables
and a block coordinate descent (BCD) approach [10]. CSR
is an iterative algorithm and is initialized randomly. We also
include comparisons with CSR initialized with RACING which
we refer to as RACING-CSR. To evaluate the performance, we
measure the angle between the generated common subspace
and the estimated one as defined in [36], [37], i.e.,

angle(A,A\) =sin~! (||PA — PAHZ) ) (51)

where || ||2 denotes the Euclidean norm, P4 is the orthogonal
projector onto the subspace spanned by the columns of A and
Py is the orthoggnal projector onto the subspace spanned by
the columns of A.

We consider N = 6 different views, that share a common
subspace of dimension R = 50. Two scenarios are generated
as follows. In the first each view consists of I = 2000 rows,
and L = 1000 that leads to K = 1050 columns for each
view, whereas in the second I = 2000, L = 500 that leads
to K = 550 columns for each view. We test the algorithmic
performance for different levels of signal-to-noise-ratio (SNR),
which is defined as:

N
2 =1 Xnllr
n :
2n=1Whllr

Fig. 1(a) shows the performance of the proposed RACING
along the baselines for different levels of SNR in the first
scenario. Note that each algorithm is implemented to utilize
either all 6 views to identify the common space, or the first
2 views, denoted by the subscript next to the name of the

SNR =20log
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Fig. 1: Angle between true and recovered subspace.

algorithm. We observe that the proposed algorithm is able
to identify the common subspace for a wide range of SNRs,
when 6 views are utilized. On the contrary all algorithms
fail to identify the correct subspace, when only 2 views are
employed. Note that the identifiability condition in (36) yields
50 + %1000 < 2000, which is satisfied for N = 6 but fails
when N = 2.

In the second scenario we reduce the dimension of the
columnspace of each view to K = 550. In this case the
identifiability condition in (36) yields 50 + %500 < 2000,
which is satisfied for both N = 6 and N = 2. The results
are illustrated in Fig. 1(b). We observe that although the
identifiability condition in (36) is satisfied in both cases where
2 and 6 views are utilized, the algorithms perform better in
the 6-view implementation. From both experiments we can
also deduce that the proposed RACING works similarly to the
MAXVAR solution and significantly outperforms CSR. This
is a notable, considering that both MAXVAR and CSR are
optimization approaches and are expected to perform better in
the presence of noise. Note that RACING-CSR was omitted
from Fig. 1 because it yielded the same performance as CSR.

Next we test the performance of the proposed approach
and the baselines in the case where the signal rank (R + L)
of the views is smaller than the dimensions, i.e., R+ L,, <
min{/, K, }. This way we generate views that have full rank,
but the signal part X,, has low rank. This is very often the
case in practice, since although real data are typically full
rank due to noise and measurement errors, the useful signal
rank is often lower, and the remaining components are mostly
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(b) Second scenario with low-rank signal part.

Fig. 2: Angle between true and recovered subspace.

noise. To this end, we generate A, C,, as before in scenario
1 and 2 (I = 2000, L, = L = 1000, R = 50 and I =
2000, L, = L =500, R = 50 respectively), but this time we
allow X, to have low rank by letting S,, to be ‘tall matrices’,
ie., S, € CEXB+L) with K = 1900. We add noise as
before, so the views are technically full rank, but when the
noise is small they are ‘approximately low-rank’ — i.e., they
can be well-approximated by low-rank matrices. The results
are presented in Fig. 2.

It is clear from Fig. 2 that views with low-rank signal part do
not affect the performance of the proposed RACING. However,
MAXVAR and SUMCOR (CSR) formulations fail to identify the
common subspace. This can be explained from the fact that
the MAXVAR and SUMCOR analysis and algorithm assume that
the views are effectively full rank as mentioned earlier. On the
contrary, the proposed RACING allows prescribing the useful
signal rank of each view. Furthermore, there is clear benefit
when initializing CSR with RACING rather than randomly,
which suggests that our proposed RACING can work as a great
initialization for iterative approaches.

We also test the performance of the proposed approach
and the baselines in the presence of outliers. To this end we
generate the matrix views Y, =X, +W,, n=1,...,N as
before, but this time W,, is a sparse matrix with sparsity level
in the order of 10~2 and non-zeros drawn from a Gaussian
distribution. We again consider full column rank and low rank
views X,, and assess the performance for L = 500, 1000. The
results for different levels of SNR are presented in Figs. 3 and
4.
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Fig. 3: Angle between true and recovered subspace in the
presence of outliers.
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Fig. 4: Angle between true and recovered subspace in the
presence of outliers.
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Similar conclusions can be derived with the previous
experiments. Our proposed RACING works the best in all
experiments. When all the X,, have full column rank MAXVAR
works similarly to RACING and CSR achieves worse but
acceptable performance. When X,,’s have low rank, MAXVAR
is not working and CSR needs to be initialized by RACING to
perform well. We also observe that employing more views is
beneficial even in the case where the identifiability condition
is satisfied for both 6 and 2 views. In particular when L = 500
and the SNR is small there is a clear benefit of using 6 views
rather than 2 views of the data.

B. Cross Language Information Retrieval

Finally, we test the proposed approach on the task of cross
language information retrieval (CLIR). CLIR is a natural
language processing application, where given a set of sentences
along with their translations in multiple languages the goal
is to learn a low-dimensional subspace where the sentences
and their translations are maximally correlated. Then, new
high-dimensional sentences are mapped to the associated lower
dimensional space in order to retrieve their translation from a
database of possible choices. CLIR is essential to fast query
and search across languages, which also benefits machine
translation systems [38]-[40].

Data: The dataset employed is the Europarl parallel corpus [41].
It contains a collection of sentences translated in 21 European
languages: Romanic (French, Italian, Spanish, Portuguese, Ro-
manian), Germanic (English, Dutch, German, Danish, Swedish),
Slavik (Bulgarian, Czech, Polish, Slovak, Slovene), Finni-Ugric
(Finnish, Hungarian, Estonian), Baltic (Latvian, Lithuanian),
and Greek. In the experiments we focus on the Germanic
languages, i.e., English, Dutch, German, Danish and Swedish.
Each sentence is represented by J = 267,752 feature vector
of ‘bag of words’ composed with inner-product preserving
hashing [42], [43]. In particular, we use 2'° hash slots as in
[43] and remove features that are empty in all views. Then
a set of sentences in a specific language can be represented
as a matrix view, X,, € R’*/» where I is the total number
of sentences and Ji,...,Jy = J corresponds to the feature
dimension of each sentence, which is described above.

Procedure: The objective of CLIR is to align sentences
with their translations. In order to do that we apply GCCA
on a set of I = 153,403 training sentences, learn their
common low-dimensional subspace A along with the matrices
®, n = 1,...,N that map the sentences to the common
subspace. The idea is that sentences and their translations in
different languages have a common low-dimensional represen-
tation, which is not-language specific and capture the semantic
meaning of the sentence. In other words, GCCA enforces
sentences to be maximally correlated with their translations
and less correlated with other sentences. In the training phase
in addition to learning low-dimensional representations of
the sentences in the common subspace, we also learn the
mapping from the high-dimensional to the common low-
dimensional space. This mapping is represented by matrices
®, n =1,...,N. These matrices are then used to map a
testing set of I; = 38,351 sentences and their translations to
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the common low-dimensional space (Subscript ‘¢’ denotes
the testing set). Note that the testing sentences and their
translations are not aligned. The mapping is performed by
multiplying each sentence in the n—th language with ®,,. This
mapping provides a low-dimensional representation of each
testing sentence in every language. Since GCCA was employed
to learn these mappings we expect the query sentences to be
maximally correlated with their translations in the testing set.
The CLIR task is completed by matching the query sentences
with their translations, according to their Euclidean distance
in the low-dimensional subspace. For example, suppose we
are interested in performing a CLIR task between sentences in
Dutch and Danish. In the training phase we learn ® ., and
® pHonish- Then we embed each testing sentence in Dutch and
Danish using ® p¢cn, and ® pgpish. For each testing sentence
in Dutch (or Danish) we find the closest embedded sentence
in Danish (or Dutch) according to the Euclidean distance in
the embedding space. In simple words, the training phase
learns how to embed high dimensional sentences from different
languages and the testing phase aligns the embedded sentences
with their translations.

We consider two scenarios. In the first one, training and
testing are performed using only N = 2 languages, i.e., Dutch
and Danish. In the second scenario, the training phase takes
into account all Germanic languages (Dutch, Danish, English,
German, Swedish) to learn ®,,, n=1,..., N.

Evaluation: The baseline algorithms used for comparison are
MVLSA [9], which is an approximate eigen-based solver for
the MAXVAR criterion in large-scale settings and PDD-GCCA
[11], which is a primal-dual algorithm that tackles the SUM-
COR formulation for sparse large-scale data. We initialize
PDD-GCCA, with RACING and ran for 25 iterations (total
number of 5 inner and 5 outer iterations). Note that, RACING
and MVLSA are primarily focused on learning the common

subspace A and the solution for ®,, n = 1,..., N is sub-
optimal due to the low-rank assumption. Since CLIR is mainly
concerned with effectively learning ®,,, n = 1,..., N, we

add one more step in RACING and MVLSA which resulted
in improved performance for both algorithms. In particular,
after learning the common subspace A, ®,,, n=1,..., N are
computed by solving:

N
min Y[ X.®, — A3 (52)

{@n i

nin=1 pn—=1

The solution of (52) is efficiently obtained via 20 conjugate
gradient iterations [44].

To assess the performance of the competing algorithms we
measure the average recall@k for k € {10,20,50} and the
average area under ROC curve (AUC). Recall is defined as the
number of relevant sentences among the retrieved k divided
by the number of total relevant sentences. Since there is only
one relevant sentence (the translation) recall@k is equal to 1
if the translation is ranked among the top %k sentences and
0 otherwise. As a result the average recall@k indicates the
probability of the correct translation to be ranked among the
top k hits. The ROC curve plots the true positive rate, which is
the recall, against the false positive rate, which is defined as the
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number of non-relevant sentences among the retrieved divided
by the total number of nonrelevant sentences. Then the AUC
is defined as AUC =1 — p‘? L where pos is the position at
which the correct translation is ranked Therefore, the average
AUC is a ranking metric indicative for the position of the
correct translation. Detailed description of the two metrics can
be found in [45, Chapter §].

Results: Tables II and III show the performance of the
competing algorithms for the two scenarios of CLIR. Mean
and standard deviation are reported over 10 randomly drawn
80 — 20 splits for training and testing. The dimension of the
subspace where each sentence is mapped varies from R =1
to R = 50 with L,, + R = 300 for all views.

One can see that the CLIR task significantly benefits from
incorporating multiple languages, which is also justified from
our theoretical analysis. To be more precise, all metrics show
performance improvement when all Germanic languages are
employed. For example RACING achieves an improvement
of approximately 7 — 9% in recall@k and 1% in AUC, when
all Germanic languages are used during training and R = 50.
Furthermore, we observe that PDD — GCC A initialized by
RACING outperforms the other two methods, whereas RACING
works better than MVLSA for R = 1,5, 10,20 and comparably
for R = 50. We also observe that there is a trade-off between
the dimension of the embedding and the number of sentences
one should retrieve in order to find the correct translation. On
the one hand very low dimensional embeddings (small values
of R) are desirable to reduce the complexity of computing
similarity between sentences. On the other hand, larger values
of R, result in better retrieval performance, i.e., the correct
translation ranks higher.

VIII. CONCLUSION

In this paper we studied GCCA from a linear algebraic per-
spective. In particular, we showed that GCCA can be interpreted
as subspace intersection and provided identifiability conditions
for recovering the common subspace between the views, which
are relaxed compared to the standard two-view CCA. We also
developed a range subspace intersection algorithm to perform
GCCA, which can also handle large and high-dimensional
datasets. Numerical experiments demonstrated the effectiveness
of the proposed approach in the context of multi-view learning.

APPENDIX A
PROOF OF EQUATION (11)

In order to prove equation (11) we first need to prove that
the following properties hold without loss of generality:

Property 1: A, Ci,...,Cyx have full column rank.
Without loss of generality we can assume that the matrices
A e CIxXE cy e CI*ly . Cyn € CI*EnN in (9) all have
full column rank. Indeed, if the columns of A are linearly
dependent, then A can replaced by any subset of its columns
that form a basis for range(A) and the matrix S, can be
adjusted accordingly, without changing X,,. (Similarly for
Ci,...,Chn).
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Property 2: [A,C4],...,[A,Cy]| have full column rank.
First, note that the column dimension (R + L,) of [A, C,},]
should not exceed its row dimension I, i.e., I > R + L,.
Indeed, if I < R+ L, then R+ L,, — I columns of C(™
can be written as linear combinations of the other I columns
n [A,C,]. Therefore these R + L, — I columns of C,
could be discarded, while accordingly adjusting matrix S,
without changing X,,. Furthermore, we can w.l.o.g. assume
that range(A) Nrange(C,,) = {0}, n € {1,...,N}, ie, we
assume w.lo.g. that (c,); ¢ range(A), ¢ € {1,...,L,},
ne€{l,...,N}, where (c,), denotes the g-th column of C,,.
Indeed, if (c,); = AB for some B € C*, then

R Ly,
X, = Zar(sn)z + Z(Cn)q(sn)z =

R L,
Z ar((sn)z + 57‘(371)%%) + Z(cn)q(sn)zv

r=1 q=1
qFt

(53)

where (s,,), denotes the r-th column of S,,. In other words, if
(cn)q € range(A), then we can simply consider a factorization
of X, as in (53), that only involves a smaller I-by-(L,, — 1)
matrix C,,. Now since range(A) Nrange(C,,) = {0} n €
{1,...,N} and A, C,, have full column rank, we conclude
that w.l.o.g. [A, C},] has full column rank.

Relation (11) now follows naturally from Property 2. i.e.,
the fact that matrix [A, C,,] has full column rank and that the
subspaces range(A) and range(C,,) are complementary.

APPENDIX B
PROOF OF THEOREM IV.5

Using Lemma B.1 below we show that when condition
(36) is satisfied, then S;...,Sy and ro generically have
full column rank, implying generic uniqueness of the GCCA
factorization of Xq,..., X y.

Lemma B.1. [46] Let f : C" — C be an analytic function.
If there exists an element x € C™ such that f (x) # 0, then
the set {x | f (x) =0} is of Lebesgue measure zero.

Recall that an m x n matrix has full column rank n if it
has a non-vanishing n X n minor. Since a minor is an analytic
function, if it is nonzero at one point (one constructive example)
then it is nonzero generically (at almost every point except for
a set of measure zero). Lemma B.1 can now be used to verify
whether the matrices in (31) generically have full column rank
when condition (36) is satisfied.

Lemma B.2. If K,, > R+ L, forall n € {1,...,N}, then
S, € CHx(B+Ly) Sy € CKX(BHLN) geperically have
full column rank.

Proof. This is an immediate conse(guence of Lemma B.1, e.g.,
(Kn)

use S, = [Ix,e; *,..., Ik, e! Rz, as the generic example,
where e(K ") e CKn denotes a umt Vector with unit entry at
position k O

Lemma B.3. If I > R + M1 then TWN) given by
(30) generically has full column rank.
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TABLE II: Average AUC and recall@k for the Dutch-Danish CLIR using Dutch and Danish views in training.

. Danish-Dutch
Algorithm metric R=1 R=5 R=10 R=20 R=50
avg. AUC__ | 0.8650 £ 0.0013 | 0.9687 £ 0.0010 | 0.9807 £ 0.0004 | 0.9816 £ 0.0004 | 0.9823 £ 0.0004
PDD-GCCA | avg. recall@l | 0.0013E0.0005 | 0.0790E0.0051 | 0.2097LX0.0071 | 0.4729E0.0032 | 0.5886£0.0026
avg. recall@10 | 0.0066X0.0005 | 0.2367E0.0111 | 0.5280L0.0082 | 0.6597X0.0030 | 0.73720.0024
avg. recall@20 | 0.0104X0.0008 | 0.2980X0.0131 | 0.5871L0.0073 | 0.7022XF0.0020 | 0.7687£0.0023
avg. recall@50 | 0.0210E0.0008 | 0.3966X0.0149 | 0.6666L0.0069 | 0.7587E0.0027 | 0.8099L0.0022
time (sec) 447 £11 FRRES A 635E10 940E16 186260
avg. AUC 0.855310.0013 0.0580£0.0018 0.9717+0.0005 0.9708£0.0007 0.9711£0.0004
RACING | avg. recall@l | 0.0004=E0.0003 0.0596E0.0027 0.2383E0.0040 03617E0.0031 0.448TE0.0026
avg. recall@10 | 0.0037 £0.0008 | 0.1963£0.0052 0.4556F0.0029 0.5554E0.0034 0.6219F0.0024
avg. recall@20 | 0.0072 £0.0012 | 0.255220.0052 0.5161£0.0034 0.6038£0.0027 0.6610£0.0019
avg. recall@50 | 0.0155 £0.0013 | 0.3525£0.0055 0.5988£0.0032 0.6695£0.0030 0.715620.0020
time (seC) 426 £11 20£17 2359 A40E15 K ES K
avg. AUC 0.7421 £0.0021 0.0450£0.0016 0.969910.0005 0.970610.0006 0.971210.0004
MVLSA [ avg. recall@l | 0.0016£0.0005 0.0396£0.0021 0.198220.0023 0.3327£0.0034 0.4462E0.0022
avg. recall@10 | 0.0075£0.0007 0.143120.0031 0.4047%0.0023 0.5306E0.0021 0.6210£0.0025
avg. recall@20 | 0.0114£0.0004 0.18890.0038 0.4648E0.0026 0581100023 0.6609E0.0019
avg. recall@50 | 0.0195£0.0010 0.2677E0.0050 0.5482F0.0028 0.6483F0.0027 0.7141E0.0020
time (sec) 134 15 364E13 468E19 F74ET6 530£55

TABLE III: Average AUC and recall@k for the Dutch-Danish CLIR using all 5 Germanic views in training.

metric 5 Germanic languages
Algorithm R=1 R=5 R=10 R=20 R=50
avg. AUC 0.8817+0.0016 | 0.9768-+0.0003 0.9848+0.0001 0.9852+0.0002 | 0.9856+0.0004
PDD-GCCA avg. recall@1 0.0023+0.0002 | 0.1105+0.0038 0.3725+0.0028 | 0.5472+0.0025 0.6671+0.0009
avg. recall@I0 | 0.0102+0.0009 | 0.3051+0.0060 | 0.6036+0.0021 0.7228+0.0021 0.7965+0.0009
avg. recall@20 | 0.0152+0.0010 | 0.3735+0.0063 0.6593+0.0020 | 0.7606+:0.0028 0.8230+0.0010
avg. recall@50 | 0.0281+0.0009 | 0.4777+0.0065 0.7324+0.0017 | 0.8102+0.0026 | 0.8576+0.0011
time (sec) 1238435 494447 1754433 24874129 4777143
avg. AUC 0.874040.0005 0.967540.0006 0.977340.0001 0.977640.0004 0.981840.0002
RACING avg. recall@1 0.000540.0001 0.087840.0027 0.301540.0022 0.429240.0006 0.539940.0013
avg. recall@10 0.004640.0002 0.268440.0072 0.529540.0019 0.622740.0012 0.7017£0.0011
avg. recall@20 0.008640.0004 0.337340.0071 0.588040.0016 0.668540.0012 0.737840.008
avg. recall@50 0.017640.0005 0.443540.0077 0.6661£0.0014 0.7288+0.0015 0.7856+0.0010
time (sec) 1184+34 1210+44 1218+32 1232+31 1345+31
avg. AUC 0.7903+0.0013 0.964540.0006 0.975540.0002 0.977340.0003 0.982040.0001
MVLSA avg. recall@1 0.0008+0.0001 0.075440.0032 0.2462+0.0020 0.397740.0018 0.539240.0011
avg. recall@10 0.003740.0003 0.238140.0053 0.4639+0.0014 0.598240.0004 0.7026+0.0006
avg. recall@20 0.0062+0.0003 0.301140.0050 0.524440.0010 0.646610.0008 0.738440.0004
avg. recall@50 0.013040.0004 0.398840.0051 0.6080+0.0007 0.710610.0007 0.7851£0.0007
time (sec) 11074137 1186+55 11414+57 1181+41 1259435
Proof. Based on Lemma B.1, the overall idea is to find a unit entry at position o(l) € {1,..., R} and zero elsewhere.

single set {A,C1,...,Cy} such that the matrix I'™) has full
column rank. Let us consider the extreme case where

Li+--+Ly
N-1

Cases where I > R+ (L1 +---+Ly)/(IN —1) will follow by
adding rows to the matrices A, Cq,...,Cy constructed for
the extremes case, these added rows will simply add rows to
T'™), In more detail, since we want to show that T™¥) has full
column rank, we can w.l.0.g. limit the rows of A, Cy,...,Cy
to those needed for exact equality, and then set the remaining
rows arbitrarily, because they will not affect the rank of T'(")
in our construction.

Observe that T'™) can be seen as a matrix obtained by
stacking N — 1 blocks of the form

I=R+ (54)

[Cl 0]X(Zl<m<n, Lm+R) — A - Cn OIX(E”">”’ Lm+R)i|
€ CIX(RIN=D+XN_, Ln). (55)

We will select the columns of A, Cy, ..., Cy to be unit vectors,
R)

e.g.,a = efj’l)), where eg(l) € CE denotes a unit vector with

We first fix the first I columns of

[Ci, —A —C,]eCIXEaFltln) 9 <p < N
as follows
€1 —A —Cuel™ .~ Cuel) ] =i,
2<n<N. (56)
The (Lne)xt step is to select the remaining columns

CneI_Ll_RH, ceey Cne(LI;fl), which will be referred to as the
free vectors in the construction of I'™). Due to inequality (35),
each block [C; — A — C,,], and consequently also each block
of the form (55) in ™), can at most contain L free vectors.
In more detail, since / > max;<p<ny R+ L, = R+ Ly and
L; < ... < Ly, the column dimension (L; + R + L,) of
[C1 —A —C,] can at most be L; elements larger than its row
dimension (). This property is important in our construction,
and for that reason we repeat it below as a statement

[C; — A — C,)] contains at most L; free vectors. (57)
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Due to the construction (56), the n-th block [C; — A — C,],
and consequently also each block of the form (55) in T'V),
contains

St Ln

R+Ii+L,—I=R+IL+L, —
+ L1+ + L+ N1

R+ (58)
free vectors, where we recall from (54) that we assume that
I=R+(L1+ - Ly)/(N —1), which is the extreme case.
From (56) and (58) we can conclude that the total number of

free vectors in the construction of I'™) is equal to

N
SR+ L+ Ly,—1)=
n=2
N N
(R+L)(N=1)+ Y Ly — R+% (N—1)
n=2
= Li(N —2). 59

We will now select the L, (N — 2) free vectors in Ca,...,Cy
in a way so that the matrix I'™) has full column rank. Property
(57) enables to further restrict C,, to the following:

C, =

0L, x(I-L1—R) ci)

ORx(1-L,—R) ORx(Ln—I+L1+R) ;
Lr—r,-Byx(1-1.-R) O —Li—R)x(L.—I+L1+R)

2<n<N, (60)
where
CEZ;Z =11, (L, 1404 )" € ClXEn =Tl

2<n<N, 61)

in which II(™ ¢ CUn—I+LitR)x(Ln—=I+L1+R) s 3 column
permutation matrix that still needs to be determined, and

_ (L1)
I x(Ln—1+L1+R) = [IleLlel !

|

corresponds to the first (L, — I + Ly + R) columns of the
identity matrix I7,«r,. (Note that C,, has at most L; free
vectors.) Define JV) e CL1xE1(N=2) a5 follows

KL, — 1411+ R)x (Lo —I+L1+R) ]
O(L, —I+R)x(Ln—I+L1+R)

I =17 5@, wr, = [Moixrys-- > Iooxr,),  (62)
where 15 5 = [1,...,1]7 € CV=2) is an all-ones vector. We
will now select Cgel, ey CgreNe) as follows:

2 N
[Clak ol =3, (63)

where relation (59) was exploited, i.e., Zi\;z(Ln —I+L;+
R) = L1(N —2). Except for the first L; columns, the columns
of T'™™) consists of distinct unit vectors. Note that each column
of T™) contains at least one unit entry. The construction of
Cgfe)e, . .70&? allows us to “eliminate” up to Li(N — 2)
nonzero entries in 1xy_; ® C; in I'™). More formally, there
exists a nonsingular matrix F such that all rows in ") that
contains two unit entries (one in a row of 1y_1 ® C; and one

in the corresponding row of Blkdiag([A, Cs], - ,[A,Cn])

(L1)
""’ILlXLle(Ln—I—l-Ll—&-R)
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that involves Cg;g for some n € {2,...,N}) are reduced

to row-vectors with only one unit entry, in which the prior
additional unit entry 15_7 ® C; has been deleted. Note that
since this transform will at most “eliminate” up to L; (N — 2)
nonzero entries in 1y_1 ® C; in T™), the first L; columns
of the latter matrix will still contain L; unit vector after this
elimination step. Let J = R(N — 1) + Ly + --- + Ly, which
is the column dimension of I'Y). Then this also means that
there exists a row permutation matrix Py, and a column
permutation matrix Pcojumn such that the top (J x J) submatrix
of Pow ' V) FPo1umn corresponds to the (.J x.J) identity matrix.
Since Pow, F and P.oymn are nonsingular, '™ has full
column rank. O

Theorem IV.4 together with Lemmas B.2 and B.3 now
implies that the GCCA factorization of X, ..., Xy is generi-
cally unique. This proves the assertion that condition (36) in
Theorem IV.5 generically guarantees the uniqueness of the
GCCA factorization of X1,..., Xxy.
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