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Abstract— Functional magnetic resonance imaging (fMRI)
is one of the most popular methods for studying the human
brain. Its purpose is to determine, based on the Blood
Oxygen Level Dependent (BOLD) signal, which brain areas
are activated when a specific task is performed. Various
unsupervised multivariate statistical methods are being
increasingly employed in fMRI data analysis. Their main
goal is to extract information from a dataset, often with no
prior knowledge of the experimental conditions. Generalized
canonical correlation analysis (gCCA) is a well known
statistical method that can be considered as a way to estimate
a linear subspace, which is “common” to multiple random
linear subspaces. We propose a new fMRI data generating
model which takes into consideration the existence of common
task-related and rest-related components. Moreover, we
estimate the common spatial task-related component via
a two-stage gCCA. We test our theoretical results using
real-world fMRI data. Our experimental findings corroborate
our theoretical results, rendering our approach a very good
candidate for multi-subject task-related fMRI processing.

Clinical relevance— This work provides a set of methods
for amplifying and recovering commonalities across subjects
that appear in data from multi-subject task-related fMRI
experiments.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is one of
the most popular methods for studying the human brain. It
provides a non-invasive way to measure brain activity, by
detecting local changes of Blood Oxygen Level Dependent
(BOLD) signal in the brain, over time. The purpose of task-
based fMRI data analysis is to determine, based on the
BOLD signal analysis, which brain areas are activated when
a specific task is performed. Hence, brain activation maps
related to specific tasks can be obtained. This procedure
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is very useful for understanding how the human brain is
functioning.

Spontaneous modulation of the BOLD signal, which can-
not be attributed to the experimental paradigm or any other
explicit input or output, is also present and is usually viewed
as “noise” in task-related studies [1], [2]. However, in addi-
tion to physiological and magnetic noise, background BOLD
signal reflects systematic fluctuations in regional brain activ-
ity. In particular, BOLD fluctuations are correlated between
functionally related brain regions, forming resting-state brain
networks. Moreover, this baseline activity continues during
task performance, showing a similar neuro-anatomical distri-
bution to that observed at rest [3–6], while there are studies
suggesting that measured neuronal responses represent an
approximately linear superposition of task-evoked neuronal
activity and ongoing spontaneous activity [3].

Canonical correlation analysis (CCA) is a well known
statistical method, developed by Hotelling in 1936 [7]. It can
be seen as a method for the computation of basis vectors for
two sets of random variables (i.e., two random vectors) such
that the correlation between the respective projections of the
random variables onto these basis vectors is maximized [8].
After considering the subspace that is spanned from such a
set of basis vectors, CCA can be also considered as a method
for the estimation of a linear subspace which is “common”
to these sets of variables [9].

Generalization of CCA to more than two random vectors
dates back to [10–14]. Kettenring proposed five different
formulations of the generalized CCA (gCCA) problem in
[15]; all of them are equivalent to the classical CCA when
the number of random vectors is two [16]. Among the
different formulations of gCCA, the MAX-VAR formulation
has attracted particular attention, since it enjoys a simple so-
lution via eigen-decomposition, while scalable and structure
promoting iterative algorithms for two of the gCCA formu-
lations, MAX-VAR and SUM-COR, have been proposed in
[17–19].

A. Problem Definition

We focus on the case where the task-related fMRI experi-
ment of a session consists of only one type of stimulus. Our
aim is to determine which brain areas are activated when
the stimulus is applied and construct the associated brain
activation maps.



B. Related Work

CCA and constrained CCA based methods has been ap-
plied to local voxel neighborhoods to obtain adaptive subject-
specific spatial filter kernels for noise reduction purposes
[20–23]. In [24], the authors used gCCA to separate different
temporal sources in fMRI data. They assumed that there are
some common temporal responses to external stimulation in
the subjects being studied, and showed that these may be
explored using gCCA. In contrast, in [25], the underlying
assumption is that there are multiple subjects that share an
unknown spatial response (or spatial map) to the common
experimental excitation but may show different temporal
responses to external stimulation. In addition, estimating
“common” subspaces from multiple datasets, via CCA and
gCCA based methods, has been considered in [9], [26].

C. Our Contribution

We adopt the assumptions of [25], with respect to the
common spatial maps, and assume the existence of one com-
mon temporal component, which is related to the common
experimental excitation. We propose a new data generating
model which takes into consideration both the common
task-related spatial component and the common rest-related
spatial components. We use gCCA and estimate the subspace
that is spanned by the common spatial components, both
task- and rest-related. Based on this estimate, we compute the
common task-related time component, using, again, gCCA.
Finally, we use the estimated common task-related time
component to derive an estimate of the associated common
task-related spatial component and construct the respective
activation map.

We test our theoretical results using real-world fMRI
data. We observe that our experimental findings corroborate
our theoretical results, rendering our approach a very good
candidate for multi-subject task-related fMRI processing.

D. Notation

Scalars are denoted by small letters, vectors by small bold
letters, and matrices by capital bold letters, for example, x,
x, X. Sets are denoted by blackboard bold capital letters,
for example, U. R denotes the sets of real numbers. RI×J

denotes the set of (I × J) real matrices. Inequality X ≥ 0
means that matrix X has nonnegative elements and RI×J

+

denotes the set of (I × J) real matrices with nonnegative
elements. ‖x‖2 denotes the Euclidean norm of vector x,
while ‖X‖2 and ‖X‖F denote, respectively, the spectral
and the Frobenius norm of matrix X. The transpose and
the pseudoinverse of matrix X are denoted, respectively, by
XT and X†. The linear space spanned by the columns of
matrix X is denoted by col(X). The orthogonal projection
onto a linear subspace S is denoted by PS . The element-
wise projection onto the nonnegative real numbers of vector
x is denoted by (x)+. Finally, we use the Matlab style
expressions X(:, l) and X(k, :), which denote, respectively,
the l-th column and the k-th row of matrix X.

II. DATA MODEL

Let {Xk}Kk=1 be a set of matrices, where Xk ∈ RN×M

denotes the data of the k-th subject, N denotes the number of
voxels, and M denotes the number of time points (note that,
in general, N � M ). Let R be a positive integer smaller
than M . For each matrix Xk, for k = 1, . . . ,K , we adopt
the model

Xk = λkasT + AST
k + Ek, (1)

where:
1) a ∈ RN

+ and s ∈ RM denote, respectively, the com-
mon, to all subjects, task-related spatial and temporal
component, and λk ∈ R+ denotes the intensity of the
common rank-one term for the k-th subject;

2) A ∈ RN×(R−1)
+ , whose columns are the common,

to all subjects, spatial components related with the
spontaneous fMRI activity;

3) Sk ∈ RM×(R−1), whose columns are the temporal
components, which are associated with the sponta-
neous fMRI activity and, in general, vary across sub-
jects. Moreover, we assume that

K⋂
k=1

col (Sk) = ∅, (2)

that is, there is no subspace that is common to all
col (Sk), for k ∈ {1, . . . ,K};

4) Ek ∈ RN×M denotes the “unmodelled fMRI signal”
of the k-th subject and can be considered as (strong)
additive noise. We assume that terms Ek are statisti-
cally independent from each other.

We propose model (1) based on both the existing literature
[1–6], [25], [27], [28] and the detailed examination of our
real-world data. Our aim is to obtain an accurate estimate
of the common spatial term a, which will lead to a precise
activation brain map and, by extension, to the localization of
the stimulated brain areas.

In order to use simpler notation, we define the matrix of
the common spatial components

W := [a A] ∈ RN×R
+ , (3)

and the matrices of the temporal components

Zk := [λks Sk] ∈ RM×R, for k = 1, . . . ,K. (4)

We further assume that matrices W and Zk, for k =
1, . . . ,K , are full-column rank. Using this notation, matrix
Xk, defined in (1), can be expressed as

Xk = WZT
k + Ek. (5)

III. METHODS

In this section, we describe our approach for the estimation
of the common spatial factor a, which consists of three
stages:

1) we use Xk, for k = 1, . . . ,K , and obtain an or-
thonormal basis for an estimate of the common spatial
subspace, col(W), by solving a gCCA problem;



2) using the solution of the first stage, we obtain an
estimate of the unique common time component s, by
solving a second gCCA problem;

3) using the estimate of s, we obtain an estimate of a.

A. Common Spatial Subspace Estimation via gCCA

We assume that the dimension, R, of the common spatial
subspace, col(W), is known. In order to estimate an or-
thonormal basis for the common spatial subspace, col(W),
we solve the following optimization problem, which arises
from the MAXVAR formulation of the gCCA [12]

min
{Qk}Kk=1,G

K∑
k=1

‖XkQk −G‖2F

s.t. GTG = IR,

(6)

where Qk ∈ RM×R, for k = 1, . . . ,K , and G ∈ RN×R.
The solution Qo

k, for k = 1, . . . ,K , and Go of problem
(6) can be computed as follows. For a fixed G, the optimal
Qk can be expressed as Qk(G) = X†kG, for k = 1, . . . ,K .
If we substitute this expression into problem (6), then the
problem becomes

max
GTG=IR

Tr

(
GT

(
K∑

k=1

XkX†k

)
G

)
. (7)

If we define

M :=
K∑

k=1

XkX†k, (8)

with eigenvalue decomposition given by

M = UMΛMUT
M , (9)

then an optimal solution Go is given by [18]

Go = UM (:, 1 : R) . (10)

If the fMRI data matrices Xk were noiseless, in the sense
that Ek = 0, for k = 1, . . . ,K , then the solution of problem
(6) would result to Go, such that (see (5))

col(Go) = col(W). (11)

Furthermore, in this case and for all k ∈ {1, . . . ,K},
matrices Qo

k and Zk would span the same subspace, namely

col(Qo
k) = col (Zk) . (12)

This holds because, if W = GoP, then

Qo
k = X†kGo =

(
ZT

k

)†
W†Go = ZkF,

where F :=
(
ZT

k Zk

)−1
P−1. The fact that Ek, for k =

1, . . . ,K , are nonzero makes (11) and (12) approximate and
not exact equalities.

In the sequel, we shall compute an estimate of s by
assuming that (12) is exact. We shall check the accuracy
of our arguments and the effectiveness of our approach in
the section with the experimental results.

B. Common Time Component Extraction

Based on assumption (2) and definition (4), we have that,
in the noiseless case,

K⋂
k=1

col (Zk) = col (s) , (13)

which, using (12), leads to

K⋂
k=1

col (Qo
k) = col (s) . (14)

We obtain an estimate of s by solving the following MAX-
VAR problem

min
{dk}Kk=1,g

K∑
k=1

‖Qo
kdk − g‖22

s.t.‖g‖2 = 1.

(15)

If we denote the optimal g in (15) by go, we have that

go = ± s

‖s‖2
. (16)

Since (12) defines a family of approximate equalities, equal-
ity (14) and, therefore, (16) are approximate.

C. Estimation of the common spatial component a

Having obtained the estimate go of the common temporal
component, s, we can estimate the common spatial com-
ponent, a, by using various approaches. In the sequel, we
present a simple approach. A more extensive treatment will
appear in [29].

First, we consider the problem

min
λ≥0

K∑
k=1

‖Xk − λkagoT ‖2F

s.t. a ∈ col (Go) .

(17)

Let Xo
k := Pcol(Go)Xk, for k = 1, . . . ,K , denote the data

matrices after projection onto the subspace spanned by the
columns of Go. The projection of the fMRI data onto the
common spatial subspace has a significant noise reduction
effect. Then, one can easily show that the optimization
problem (17) is equivalent to the problem

min
λ≥0

K∑
k=1

‖Xo
k − λkagoT ‖2F . (18)

Finally, if we add nonnegativity constraints on the elements
of a, we obtain the problem

min
a≥0,λ≥0

K∑
k=1

‖Xo
k − λkagoT ‖2F , (19)

whose solution (ao,λo) is an estimate of the common spatial
component a and the corresponding vector of intensities λ.



IV. EXPERIMENTS

In this section, we test our approach using real-world task-
related fMRI data. Specifically, we process four datasets,
recorded at the University of Crete General Hospital, from
a group of 25 healthy adults, performing four visual tasks
which were identical in either the precise kinematics of an
observed person-directed action or the target of an action
(executed toward a person or an inanimate object) with the
same kinematics. First, we quote some information regarding
the experiment design and the preprocessing pipeline that
was applied to the data and, then, we present the results
obtained by analyzing the data using our method.

A. Experiment design

The fMRI block design consists of four action observa-
tion conditions, each involving four “active” 35 sec blocks
alternating with four 35 sec baseline blocks. Indicative spec-
ifications are presented below. A video clip illustrating a
two-movement action sequence was presented 6 times within
each “active” block. The stimulus set-up was identical across
blocks and conditions, consisting of a fixed red spot at the
center of the display, presenting a female person sitting
behind a table. A white tea cup was positioned on the table
and a ceramic bowl 30 cm in diameter was located on a
smaller table right next to the person’s head.

The data employed in the main analyses reported here
were derived from the first of the four experimental con-
ditions, examining the effects of an action with the same
goal but different kinematics.1 More specifically, the “Fast
to cup – Slow to person” condition (or, briefly, condition (i))
consists of a rapid grasping movement toward the tea cup
(time duration equal to 1400ms and average velocity equal
to 0.36m/sec), followed by a much slower movement that
brings the cup to the person’s mouth (time duration equal to
4038 ms and average velocity equal to 0.12m/sec).

B. Image acquisition and pre-processing

For the BOLD-fMRI, a T2∗-weighted, fat-saturated 2D-
FID-EPI sequence was used with the following parameters:
repetition time (TR) 3500ms, echo time (TE) 50ms, field of
view (FOV) 192×192×108 (x, y, z), acquisition voxel size
3× 3× 3mm. Whole brain scans consisted of 36 transverse
slices with 3.0-mm slice thickness and no interslice gap. The
time-series recorded in each condition comprised 80 volumes
(time points), with 40 volumes recorded during observation
of repeated person-directed action (clip duration 5438ms)
and 40 volumes recorded during observation of repeated
presentation of the first frame of the video clip presented
continuously for 5438ms. In our analysis, we ignore the first
5 volumes of each time series, as is customary in fMRI stud-
ies. Additionally, high resolution anatomical images were
acquired sagittally, using a 3D magnetization-prepared rapid
acquisition gradient echo sequence (3D-MPRAGE) with the
following parameters: TR 9.8ms, TE 4.6ms, flip angle 8 deg,

1The results concerning the other three experimental conditions will be
presented in a more extensive document [29].
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Fig. 1. Estimated go for varying common spatial subspace dimensions,
from 10 to 40. The signal depicted with blue stars is the sexp.
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Fig. 2. Absolute correlation coefficient between sexp and go across
different common spatial subspace dimensions.

inversion time (TI) 922ms, FOV 180 × 230 (x, z), with
acquisition voxel size of 0.98×0.98 (x, z) and slice thickness
of 1mm.

Image preprocessing was performed in SPM8.2 Initially,
EPI scans were spatially realigned to the first image of the
first time-series using second-degree B-spline interpolation
algorithms and motion-corrected through rigid body trans-
formations (three translations and three rotations about each
axis). Next, images were spatially normalized to a common
brain space (MNI template) and smoothed using an isotropic
Gaussian filter (FWHM=8mm). At last, all voxel time series,
from all subjects, were centered (subtraction of the mean
value over time).

We note that the SPM platform is able to provide a
time response component, based on the activation onsets
and offsets, which is expected to appear in the activated
brain voxels. This response will be the same for all four
experimental conditions since, as we mentioned, the stimulus
layout, in all conditions, is the same. From now on, we
denote this response as sexp.

2Statistical Parametric Mapping software, SPM: Welcome
Department of Imaging Neuroscience, London, UK; available at:
http://www.fil.ion.ucl.ac.uk/spm/.
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Fig. 5. Map obtained using the conventional General Linear Model with a
priori knowledge of the timing of the experimental (video clip observation)
and reference blocks (static hand viewing) in SPM (at a standard threshold
of p < 0.001 uncorrected).

C. Results

Next, we present the results obtained from the data of
condition (i) using our approach. In Fig. 1, we plot the
estimated common temporal component, go, which emerged
for various common spatial subspace dimensions, R, as well
as the normalized, to unit 2-norm, expected response sexp. In
Fig. 2, we plot the absolute correlation coefficients between
sexp and go, for all possible values of R. In these figures,
we observe that

1) the estimated go, for different common spatial sub-
space dimensions, are very much alike. Thus, our
method is not sensitive to the exact value of R, which
is unknown, in general.

2) the estimated go are quite similar to the expected signal
sexp.

We conclude that our method effectively estimates the com-
mon temporal component, with no prior knowledge about
its shape.



In Figures 3 and 4, we depict, respectively, the spatial map
ao and the intensities λo that emerged from the solution of
(19). To assess the anatomic sensitivity and accuracy of our
method, in Fig. 5, we depict the contrast map obtained by the
conventional General Linear Model with a priori knowledge
of the timing of the experimental (video clip observation) and
reference blocks (static hand viewing) in SPM (at a standard
threshold of p < 0.001 uncorrected). The juxtaposition of
the two maps reveals that out method successfully captures
all clusters of activation voxels in key components of the
brain network putatively involved in evaluating the kinematic
characteristics and intentions of the observed actions of other
subjects, including the inferior frontal gyrus (IFG), ventral
Premotor Area (PMv), and primary somatosensory area (SI).

V. CONCLUSIONS
We proposed a two-stage gCCA method for single-task

multi-subject fMRI analysis. Our data model successfully
captures the basic features of the fMRI signal.

Due to space limitation, we did not elaborate on assump-
tion (2) and the estimation of the common subspace dimen-
sion, R. This will be done in a more extensive manuscript
[29], which will also include experiments with synthetic
data, more elaborate approaches for the estimation of the
common spatial component a, and the results from the other
experimental conditions.
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