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Abstract—Functional magnetic resonance imaging (fMRI) is
one of the most widespread methods for studying the functionality
of the brain. Even at rest, the Blood Oxygen Level Dependent
(BOLD) signal reflects systematic fluctuations in the regional
brain activity that are attributed to the existence of resting-
state brain networks. In many studies, it is assumed that these
networks have a common spatially non-overlapping manifestation
across subjects, defining a common brain parcellation. In this
work, we propose an fMRI data generating model that captures
the existence of the common brain parcellation and present a
procedure for its estimation. At first, we employ generalized
Canonical Correlation Analysis (gCCA) – a well-known statistical
method, which can be used for the estimation of a common
linear subspace – and recover the subspace that is associated
with the common brain parcellation. Then, we obtain an estimate
of the common whole-brain parcellation map by solving a semi-
orthogonal nonnegative matrix factorization (s-ONMF) problem.
We test our theoretical results using both synthetic and real-world
fMRI data. Our experimental findings corroborate our theoreti-
cal results, rendering our approach a very competitive candidate
for multi-subject resting-state whole-brain parcellation.

Index Terms—fMRI, Resting-State, gCCA, MAX-VAR.

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) is
one of the most widespread methods for studying the

functionality of the brain. It provides a non-invasive way
to measure brain activity, by detecting local changes of the
Blood Oxygen Level Dependent (BOLD) signal in the brain,
over time. Even at rest, the BOLD signal reflects systematic
fluctuations in regional brain activity that are attributed to
the existence of resting-state brain networks. A wide range
of unsupervised multivariate statistical methods have been
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applied to fMRI data analysis. Their aim is to provide sta-
tistical inference on a whole-brain basis so as to describe
brain responses in terms of spatial and temporal patterns. The
most commonly used multivariate methods include Principal
Component Analysis (PCA) [1], [2], Independent Component
Analysis (ICA) [3]–[6], analysis via tensor factorization mod-
els [7]–[10], while an extensive overview of fMRI clustering
methods and the problem of data driven brain parcellation can
be found in [11].

Canonical correlation analysis (CCA) was proposed by
Hotelling in [12] and can be considered as a method for the
estimation of a linear subspace which is “common” to two
sets of random variables [13]. Generalization of CCA to more
than two random vectors is a well studied subject [14], [15].
In [16], five formulations of the generalized CCA (gCCA)
problem were proposed; all of them boil down to the classical
CCA when the number of random vectors is two [17].

A. Problem Definition and Related Work

We focus on multi-subject resting-state fMRI data analysis.
Our aim is to extract a data-driven and common, to all subjects,
brain parcellation into non-overlapping clusters, without any
prior information on the properties of the extracted clusters. In
[18], the authors use gCCA to separate common, across sub-
jects, temporal responses to common external stimulation. In
contrast, in [19], the assumption of a common spatial response
(or spatial map) to the common experimental excitation is
adopted while, in [6], under the same assumption, the authors
proposed the estimation, via gCCA, of a common spatial
subspace that is spanned from the common, across subjects,
spatial components, and use it as a preprocessing step before
considering the ICA method.

B. Our Contribution

We adopt the assumptions of [19] and [6], regarding the
common spatial maps. We compute, via gCCA, an orthonor-



mal basis for the subspace that is spanned by the common spa-
tial components. We solve a matrix factorization problem with
one factor being nonnegative and orthogonal, and compute a
common whole-brain parcellation. We compute representative
time-series for each cluster and subject, significantly reducing
the number of time-series of interest. Finally, we propose a
method for determining the number of clusters comprising the
brain parcellation. We test our theoretical results using both
synthetic and real-world fMRI data.

C. Notation

Scalars are denoted by small letters, vectors by small bold
letters, and matrices by capital bold letters, for example, x, x,
and X. R and RI×J denote the set of real numbers and the
set of (I × J) real matrices, respectively. Inequality X ≥ 0
means that matrix X has nonnegative elements and RI×J

+

denotes the set of (I × J) real matrices with nonnegative
elements. 1R denotes the R-dimensional vector of ones and
IR denotes the (R × R) identity matrix. ‖X‖2 and ‖X‖F
denote, respectively, the spectral and the Frobenius norm of
matrix X. The transpose and the pseudoinverse of matrix X
are denoted, respectively, by XT and X†. The linear space
spanned by the columns of matrix X is denoted by col(X).
The orthogonal projection onto a linear subspace S is denoted
by PS . Finally, we use the Matlab style expressions X(:, l)
and X(k, :), which denote, respectively, the l-th column and
the k-th row of matrix X.

D. Structure

In Section II, we present the data generating model. In
Section III, we present a gCCA-based approach for the es-
timation of the common spatial subspace. We also present a
method for the estimation of the dimension of the common
spatial subspace. In Section IV, we apply our approach to both
synthetic and real-world fMRI data. Finally, in Section V, we
conclude the paper.

II. DATA MODEL

Let {Xk}Kk=1 be a set of matrices, where Xk ∈ RN×M

denotes the fMRI data of the k-th subject, N denotes the
number of voxels, and M denotes the number of time points
(in general, N �M ). Let R be a positive integer smaller than
M . We adopt the model

Xk = AST
k + Ek, k = 1, . . . ,K, (1)

where:
1) A ∈ RN×R

+ with ATA = IR, whose columns are the
common, to all subjects, spatial components related with
the spontaneous fMRI activity;

2) Sk ∈ RM×R, whose columns are the temporal compo-
nents, which are associated with the spontaneous fMRI
activity and, in general, vary across subjects;

3) Ek ∈ RN×M denotes the “unmodeled fMRI signal”
of the k-th subject and can be considered as (strong)
additive noise. We assume that terms Ek are statistically
independent from each other.

Notice that the combination of nonnegativity and orthogonality
constraints on spatial factor A results in the restriction that
each row of A must have at most one nonzero element. Thus,
imposing these constraints on A, leads to a data-driven and
common, to all subjects, whole-brain parcellation into R non-
overlapping clusters. We propose model (1) based on both the
work in [3], [5], [6], [19] and the detailed examination of our
real-world data.

Our aim is to obtain an accurate estimate of the common
spatial term A, leading to a common, to all subjects, precise
parcellation of the brain into functionally related clusters.

III. METHODS

Our approach for the estimation of the common spatial
factor A and temporal factors {Sk}Kk=1 is as follows:

1) we use Xk, for k = 1, . . . ,K , and obtain an orthonormal
basis for an estimate of the common spatial subspace,
col(A), by solving a gCCA problem;

2) using the solution of the first stage, we obtain an
estimate of the common spatial factor A, by solving
a matrix factorization problem with one of the factors
being nonnegative and orthogonal;

3) using the estimate of factor A, we obtain estimates of
the factors {Sk}Kk=1.

A. Common Spatial Subspace Estimation via gCCA

We assume that the dimension, R, of the common spatial
subspace, col(A), is known; we shall say more on this
important topic later. In order to estimate an orthonormal
basis for the common spatial subspace, col(A), we consider
the MAXVAR formulation of the gCCA problem [14]. The
associated optimization problem is as follows

min
{Qk}Kk=1,G

K∑
k=1

‖XkQk −G‖2F subject to GTG = IR, (2)

where G ∈ RN×R and Qk ∈ RM×R, for k = 1, . . . ,K .
The solution of problem (2) can be computed as follows.

Given a matrix G, the optimal Qk is given by Qk(G) =
X†kG, for k = 1, . . . ,K . Substituting this expression into the
formulation of problem (2), we obtain the problem

max
G

Tr
(
GTMG

)
subject to GTG = IR, (3)

where M :=
∑K

k=1 XkX†k. The optimal solution of (3), Go,
is given by [20]

Go = UM (:, 1 : R) , (4)

where matrix UM emerges from the eigenvalue decomposition
of M, i.e. M = UMΛMUT

M . In the noiseless case, where
matrices Ek = 0, for k = 1, . . . ,K , the solution of problem
(2) results into Go such that

col(Go) = col(A). (5)

In the presence of noise, terms {Ek}Kk=1 are nonzero and,
thus, equality (5) is approximate.



B. Estimation of the common spatial factor A

After obtaining the estimate Go of an orthonormal basis of
the common spatial subspace, we can estimate the common
spatial factor A and temporal factors {Sk}Kk=1 by using
various approaches. First, notice that, in the absence of noise,
relation (5) is equivalent to Go = ABT , where B ∈ RR×R.
In the presence of noise, we may estimate A by solving the
semi-Orthogonal Nonnegative Matrix Factorization (s-ONMF)
problem [21]

min
A, B

∥∥Go −ABT
∥∥2
F
, subject to ATA = IR, A ≥ 0. (6)

This is an extensively-studied problem which can be attacked
in many ways. In our experiments, we use the Penalty Method.
That is, for an increasing sequence of positive penalty coeffi-
cients {ck}, we solve subproblems of the form [22]

min
A, B

∥∥Go −ABT
∥∥2
F
+ck trace

(
QATA

)
, subject to A ≥ 0,

where Q = 1R1T
R − IR. Given the optimal matrix, Ao, we

obtain estimates of factors {Sk}Kk=1 by solving least-squares
problems, i.e. So

k = XT
k Ao.

C. On the Dimension of the Common Spatial Subspace

In Subsection III-A, we assumed that the true dimension, R,
of the common spatial subspace, col(A), is known. Of course,
in general, the value of R is unknown, thus, we must estimate
it from the data. In the sequel, we provide a procedure which
gives us very useful information about the value of R.

Let the assumed dimension of the common spatial subspace
be R̂ = R and {K1,K2} be a random partition of the set of the
subjects {1, . . . ,K}. In the noiseless case, solving the problem
(2) twice, for k ∈ K1 and k ∈ K2, results into orthonormal
bases Go

1 and Go
2, with col(Go

1) = col(Go
2). If we start adding

noise and repeat the procedure, then we will obtain col(Go
1)

and col(Go
2) which will be “close” to each other. One way to

measure the distance between linear subspaces S1 and S2 is
to compute their gap, defined as [23, p. 93]

ρg,2 (S1,S2) := ‖PS1 −PS2‖2 . (7)

If R̂ = R and ‖Ek‖2 = O(ε), for k = 1, . . . ,K , where ε is a
small positive number, then we expect that∥∥Pcol(Go

1)
−Pcol(Go

2)

∥∥
2
= O(ε). (8)

If R̂ > R, then, by solving (2), besides the R-dimensional
common subspace, col(A), we shall try to model “common”
noise subspace. Since the noise terms Ek are independent
across subjects and N � M , we do not expect to find any
common noise subspace in the two data sets associated with
K1 and K2. Thus, in this case, we expect that∥∥Pcol(Go

1)
−Pcol(Go

2)

∥∥
2
≈ 1. (9)

Finally, if R̂ < R and the rank-one terms that constitute the
products AST

k are of almost “equal” strength, then we expect
that

O(ε) ≤
∥∥Pcol(Go

1)
−Pcol(Go

2)

∥∥
2
/ 1, (10)
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Fig. 1: Gap of col(Go
1) and col(Go

2) as a function of the
subspace dimension, for SNR = −5dB. Blue color: rank-
one terms of the products AST

k have (on average) the same
Frobenius norm (on average). Red color: rank-one terms have
(on average) different Frobenius norms. The true common
subspace dimension is R = 30.

because col(Go
1) and col(Go

2) will “randomly” capture R̂ out
of R dimensions of the common spatial subspace.

Thus, the gap between col(Go
1) and col(Go

2) provides
valuable information about the dimension of the common
subspace, col(A). Accurate expressions for the gap lie be-
yond the scope of this manuscript, require tools from matrix
perturbation theory, and pose stringent assumptions on the size
of the noise, which may not be fulfilled in our case. We shall
check the usefulness of our claims in Subsection IV.

IV. EXPERIMENTS

A. Synthetic Data

In this subsection, we test the effectiveness of our approach
using synthetic data. More specifically, we generate random
data according to the model

Xk = AST
k + βEk, (11)

where A is generated as follows: for each row i, we select
uniformly at random a column j, and we draw element Ai,j

from U [0, 1]. Then, we normalize the columns of A to meet
the orthonormality constraints ATA = IR. Matrices Ek and
columns of matrices Sk, Sk (:, r), for k = 1, . . . ,K and
r = 1, . . . , R, have i.i.d N (0, 1) and N

(
0, σ2

r

)
elements,

respectively, where σ2
r may vary across r, depending on

the scenario we consider. The Signal-to-Noise Ratio (SNR),
defined as

SNR :=

∑K
k=1

∥∥AST
k

∥∥2
F

β2
∑K

k=1 ‖Ek‖2F
, (12)

is determined by the scalar factor β. In our experiments, we
set N = 105, M = 100, K = 25, and R = 30.

In order to illustrate the usefulness of our dimension deter-
mination criterion, in Fig.1, we plot the gap between col(Go

1)
and col(Go

2) as a function of the common spatial subspace
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Fig. 2: Gap between col(A) and col(Go) versus SNR.

dimension, for SNR = −5dB. We consider two scenarios. In
the first, the rank-one terms that constitute the products AST

k

are of equal power (we set σ2
r = 1 for r = 1, . . . , R), while

in the second, they are of unequal power, with 0.5 ≤ σ2
r ≤ 1,

for r = 1, . . . , R. We observe that, in both cases, all values of
the common spatial subspace dimension that are larger than
the true value R = 30 lead to gaps that are practically equal
to 1. Thus, we are able to determine a critical value for the
common subspace dimension.

In Fig. 2, we plot the gap between col(A) and col(Go), as
a function of the SNR, for the true common spatial subspace
dimension, R = 30. We observe that, in both scenarios, we
attain accurate estimates for SNR higher than −5 dB.

B. Real World Data

In the sequel, we test our approach using real-world resting-
state fMRI data. The data was acquired during the period
2015-2016 from 31 healthy subjects and was recorded in the
MRI Unit, University Hospital of Heraklion. The hospital
review board approved the study and the procedure was
thoroughly explained to all patients and volunteers, who signed
informed consent before undergoing MRI.

Brain MRI examinations were performed on a clinical,
upgraded 1.5T Siemens Vision/Sonata scanner (Erlangen,
Germany), Gradient strength: 45mT/m, Gradient slew rate:
200mT/m/ms and a standard four-channel head array coil
(minimum voxel dimensions: 70µm × 70µm × 300µm).
Resting-state functional MRI (rs-fMRI) was derived from a
T2∗-weighted, fat-saturated 2D-FID-EPI sequence with repe-
tition time (TR) 3500ms, echo time (TE) 50ms, field of view
(FOV) 192 × 192 × 108 (x, y, z), and acquisition voxel size
3 × 3 × 3mm. Whole brain scans consist of 36 transverse
slices with 3.0-mm slice thickness and no interslice gap.
Each BOLD time–series consists of 150 dynamic volumes,
however, the first 5 volumes were discarded as is usual in fMRI
studies. The fMRI images were smoothed, normalized, and co-
registered to the MNI space. The time-series were detrended
(subtraction of the mean and the linear trend) prior to the
application of the gCCA method.
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Fig. 3: Common subspace dimension estimation using real-
world fMRI data.

In Fig. 3, we depict the results that emerged by the following
procedure. We consider 25 random partitions K1 and K2 of
the set of the subjects {1, . . . , 31}. For each partition and each
common subspace dimension, we estimate the orthonormal
bases Go

1 and Go
2 and compute their gap. We use the threshold

value 0.95, and set the gap values that are larger than the
threshold equal to 1, and those that are smaller than the thresh-
old equal to 0. For each dimension, we sum the thresholded
gap values we obtained from the 25 partitions and divide the
sum by 25. We call the resulting values as “Thresholded and
Normalized Gap Statistics.” The resulting plot indicates that a
good estimate is R = 27.

In Fig. 4, we depict the clusters computed by our approach,
for R = 27. In Fig. 5, we illustrate how the clusters change
when we increase the value of R from 26 to 27. At the top, we
plot the maximum correlation coefficient between each column
of A27 with the columns of A26; at the bottom, we depict the
corresponding pairing. We observe that most of the columns of
A27 are highly correlated with columns of A26. The smallest
correlation values at the top appear at positions 14 and 16;
looking at the bottom, we see that both these columns of
A27 are associated with column 18 of A26, meaning that the
respective cluster for R = 26 has been partitioned into two
clusters for R = 27.

An interesting future topic is the comparison of our method
with other methods, for example, [24].

V. CONCLUSION

We considered the problem of multi-subject resting-state
fMRI analysis. We derived a whole-brain parcellation map,
by applying gCCA and solving a semi-nonnegative orthogonal
matrix factorization problem. Our approach has been proven
effective with both synthetic and real-world data.
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Fig. 4: The gCCA-based whole-brain parcellation for R = 27.
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