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Abstract—Given a mixture of co-channel user signals subject
to frequency-selective multipath, sensed through an array of co-
located antennas, how can we recover the user signals? This
is a difficult problem, especially when some of the user signals
are much weaker than others, and we know little about the
transmitted signal properties. The setup is relevant in a number
of settings, including non-cooperative communications, signal
intelligence, passive radar using illuminators of opportunity, and
convolutive speech and audio separation. This paper considers
the problem of unsupervised signal recovery in unknown mul-
tipath and (possibly strong) multiuser interference. Leveraging
the fact that multiple independently faded copies of each signal
are received through distinct paths at different times, this
paper shows that relative path delays and the user signals
can be identified via canonical correlation analysis (CCA).
CCA is a powerful statistical learning tool that can efficiently
estimate a common subspace even in the presence of noise and
strong co-channel interference. The proposed approach provides
rigorous recovery guarantees, can tolerate strong co-channel
interference and low signal-to-noise ratio, and is computationally
tractable for practical implementation. Simulations reveal that
the proposed approach achieves much better performance than
independent component analysis, which is the only baseline that
works under similar assumptions in this setting.

I. INTRODUCTION

Given a mixture of co-channel user signals subject to
frequency-selective multipath, sensed through an array of
co-located antennas, how can we recover the user signals?
The setup is relevant in a number of settings, including
non-coherent communication [1], cognitive radio (overlay)
networks [2], non-cooperative / adversarial communications
and signal intelligence, passive radar using illuminators of
opportunity [3], and convolutive speech and audio separa-
tion [4].

In wireless communications, multipath refers to the re-
ception of multiple independently faded and delayed copies
of the original transmitted signal [5]. On one hand, multi-
path components introduce inter-symbol interference which
together with the co-channel interference that arises from
multiple users represent two major obstacles that can severely
degrade the detection performance [5]. On the other hand, if
the different paths can be coherently combined, multipath can
lead to significant diversity gain and/or multiplexing gain [6],
[7]. In this paper, we show that multipath can be exploited in
an entirely new way: it can be used to directly recover each
of the unknown signals, by looking for multichannel data
shifts that exhibit high canonical correlation – they contain
a common subspace after alignment, which would otherwise
be absent without such alignment because the emitted user

signals are white, and thus are uncorrelated with their own
shifts.

Most work in multiuser signal detection assumes accurate
knowledge of the user channels or essential propagation
parameters, such as path delays and Doppler shifts [1],
[8]. These approaches rely on user cooperation and training
symbols / pilots to estimate the channels of interest. These
are supervised approaches that are widely used in cellular
and other commercial systems, but they are not applicable in
the non-cooperative / unsupervised settings considered herein.
So-called blind convolutive signal separation techniques are
in principle applicable in our context, but require that the
emitted signals have certain known structural properties [9]–
[11]. In a wireless communication setting (and certain other
contexts, such as speech signal separation) [12], [13], a
natural assumption is statistical independence of the signals
corresponding to the different users, leading to independent
component analysis (ICA)-based algorithms [14], [15]. One
common shortcoming in all the methods considered in the
aforementioned works, including ICA, is that they require
high signal-to-noise ratio (> 25 − 30 dB) in order to pro-
vide reasonably good performance. This motivates us to ask
whether there exists a low-complexity approach for the given
problem that can reliably detect source signals under the
following circumstances 1) low SNR, 2) no knowledge about
the channel 3) strong and unknown co-channel interference?
This is the central question that this paper seeks to address.

Exploiting the fact that multiple copies of the same infor-
mation bearing signal are received through different paths,
and thus multiple copies of the same signal arrive at different
times, this paper shows that reliable source signal recovery
is possible via canonical correlation analysis (CCA) [16] –
a statistical learning tool that aims at estimating a common
subspace via eigendecomposition. Under the assumption that
different users have distinct relative delay profiles, we first
develop a low-complexity CCA-based algorithm that can
identify the relative delay between the received paths of each
user. Then, we exploit such delays to construct K matrix
pairs – one pair for each co-channel user in the system. The
common component in each pair corresponds to the transmit-
ted signal of a specific user whose relative delay is used to
construct that pair. We apply CCA K times to recover the
common signal included in each pair. An identifiability proof
of the common signal recovery via CCA has been established
by the authors in [17]. Judicious experiments demonstrate the
efficacy of the proposed approach in recovering the original
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transmitted user signals even at low SNR and strong co-
channel interference. In particular, our CCA-based approach
attains an order of magnitude reduction in the bit error rate
(BER) compared to ICA under realistic conditions. Finally,
the paper includes a brief discussion on why the proposed
method can recover signals received at low SNR.

While CCA has previously found numerous signal pro-
cessing applications including direction-of-arrival (DoA) es-
timation [18], equalization [19], blind source separation [20],
and multi-view learning [21], it has never been used for
our purpose (blind recovery of weak signals under strong
interference) or in a way that is reminiscent of how we
bring it into play, to the best of our knowledge. In addition,
previous applications of CCA did not lay down any claims
regarding identifiability guarantees and performance analysis
in the presence of noise, as we do.

II. DATA MODEL

We consider a non-cooperative wireless communication
scenario here, which is appropriate for signal intelligence
and cognitive overlay scenarios, but our signal model is quite
generic – it can be applied to convolutive speech separation,
for example. Also, since we use binary communication sig-
nals in the simulations, we use BER as performance measure,
but our approach can work with higher-order modulations and
even analog signals.

Consider K single-antenna users transmitting in a specular
multipath environment. The signals are received by a base
station (BS) equipped with M antennas. The n-th sample
of the transmitted signal of the k-th user, sk(n), is received
over Lk distinct paths, for n ∈ [N ] := {1, · · · , N} and k ∈
[K] := {1, · · · ,K}. Considering K asynchronous users, the
M -dimensional received baseband signal at the BS is given
by

x(n) =
K∑
k=1

Lk∑
`=1

αk`sk(n− τk`)a(θk`) +w(n) (1)

where τk` ∈ [0, 1, · · · , τk,max] is the (relative) delay- ex-
pressed in sample bins- of the `-th path associated with the
k-th user, τk,max is the delay spread of the k-th user channel,
αk` = βk`e

jφk` is the complex path gain, θk` is the angle of
arrival at the receiver, and w(n) ∈ CM contains independent
identically distributed (i.i.d) entries with each element drawn
from a complex Gaussian distribution with zero mean and
variance σ2. The term a(θ) models the array response to a
path from a direction of arrival θ. It is assumed that the array
response and all the channel parameters are not known at the
receiver.

Assume that the receiver collects T samples of the data
and forms X = [x(1), · · · ,x(T )] ∈ CM×T , with T such
that the channel varies negligibly over the collected samples.
Throughout this paper, we have the following assumptions

• The number of observed samples T is greater than N +
L∗, where

L∗ = max
k

τk,max (2)

• All the relative delays between paths of different users
are assumed to be distinct. That is,

{τki − τkj}Lk
i,j=1 6= {τk′i′ − τk′j′}

L′
k

i′j′ (3)

∀ k, k′ ∈ [K] and k 6= k′.

Remark 1. If the number of dominant paths is small, then the
second assumption will be satisfied with very high probability.
In this case, our approach does not have any restriction on the
entries of the transmitted signals of the users (see Theorem
1). However, if it happens that the condition in (3) is violated,
then our approach will identify the range space of the signals
that share the same relative delay, and thus an extra stage
will be required to identify the signals from the given mixture
provided that they belong to finite alphabet [17].

In what follows, we will propose a low-complexity
learning-based method that can blindly recover the k-th user
signal sk = [sk(1), · · · , sk(N)] ∈ RN , with ‖sk‖2 = 1 for
k ∈ [K], without any knowledge of the users channels.

III. SIGNAL DETECTION VIA CCA

Let us first transform the received signal X to the real
domain by forming the matrix X = [Xr;Xi] ∈ R2M×T ,
where Xr = IRe{X} and Xi = IIm{X} are the real and
imaginary parts of the received signal X. Assuming that the
sequence length N is known at the receiver, the main goal is
to recover the signals {sk}Kk=1 given X.

In a recent work [17], we showed that if two signal
matrices contain one shared (common) component and mul-
tiple individual components at each one, then CCA can
efficiently extract the common component possibly with a
sign flip regardless how strong the individual components are.
Building upon [17], we will present a novel two-stage CCA
based technique that can identify the transmitted signal and
the relative delay between the received paths of each user.
Note that, we assume here for simplicity of treatment that
the number of dominant paths is equal to two for all users,
i.e., Lk = 2 ∀k, however, the general case of Lk > 2 will be
included in the journal version.

A. Relative Delay Identification

Given the data matrix X, we construct the following two
matrices

X
(m1)
1 := [x(m1), · · · ,x(N +m1 − 1)] (4)

X
(m2)
2 := [x(m2), · · · ,x(N +m2 − 1)] (5)

where X` ∈ R2M×N and x(t) ∈ R2M denotes the t-th
column of the matrix X, for t = 1, · · · , T . Upon fixing m1

and varying m2 over a window of size T −N , we solve the
following problem at each value of m2,

min
q1,q2

‖XT
1 q1 −XT

2 q2‖2F (6a)

s.t. qT` X`X
T
` q` = 1, ` = 1, 2 (6b)

where we dropped the dependence of X1 and X2 on m1 and
m2, respectively, for notational convenience. Problem (6) is
known as the distance minimization formulation of the two



view CCA [22]. It aims at minimizing the distance between
two linear transformations of the data in each view [16]. In
other words, it finds two canonical vectors q1 ∈ R2M and
q2 ∈ R2M , such that the correlation between the projections
of X1 and X2 onto these directions is maximized. It has
been shown that (6) admits a simple algebraic solution via
eigendecomposition [22].

Exploiting the fact that the k-th user transmitted signal is
uncorrelated over the time, and hence, two replicas of the
same user signal shifted by even one symbol are already
uncorrelated, its signal cannot be extracted via canonical
correlation analysis as long as X1 and X2 are misaligned.
In other words, the correlation coefficient measured at each
shift m2 will not attain its peak unless we hit the correct
delay between the two paths of each user. Furthermore, since
different users are assumed to have different relative delays,
we will get K distinct peaks; each of which corresponds to
finding a direction where the linear projections of X1 and X2

are maximally correlated.
Let ρ(m2) denote denotes the correlation coefficient asso-

ciated with the optimal canonical pair (q1,q2) resulting from
solving (6) for m2 = 1, · · · , T −N . Assume that the receiver
stores the value of ρ for all iterations. After solving (6) T−N
times, we pick the K largest correlation coefficients and the
corresponding m2 values. This procedure is summarized in
Algorithm 1.

Remark 2. The value of m1 is chosen such that X
(m1)
1

contains a sufficient number of samples received according
to (1). This is guaranteed with a very high probability as long
as T − (N + L∗) � (N + L∗). One possible choice is to
set m1 = T/2−N/2 so that one can assure the existence of
enough samples from all users in X1.

Algorithm 1 Delay Locking Via CCA

Input: X ∈ R2M×T

Initialization: m2 := 1
while m2 ≤ T −N do

Compute ρ after solving (6) using X
(m1)
1 and X

(m2)
2

from (4)-(5)
Store (m2, ρ) in a stack
Set m2 := m2 + 1

end
Selection: pick the K m2 values corresponding to the highest
K correlation coefficients ρ.

The receiver now can identify the relative delay, τ∗k =
|m2 −m1|, ∀ k ∈ [K], using the stored values of m2. Solv-
ing (6) is equivalent to solving for a principal eigenvector [22]
which can be cheaply computed via the power method.

B. Signal Recovery Via CCA

We will now discuss how the user signals can be identified
given the relative delays between the paths of all users. Let
us consider the computed relative delay τ∗k of the k-th user,

then by setting m1 = 1 and m2 = m1 + τ∗k , the matrix Xk`

can be written as

Xk` = hk`s
T
k +

K∑
j 6=k

hj`s
T
j` +Wk` (7)

where hi` ∈ R2M is the i-th user channel vector in the real
domain, for i ∈ [K], and ` = 1, 2 is the path number. We
can write (7) in a more compact form as

Xk` = hk`s
T
k +Hk`S

T
k` +Wk` (8)

where Sk` ∈ RN×(K−1) contains the K − 1 source signals
associated with the `-th path (view) when the k-th user is
synchronized, and Hk` ∈ R2M×(K−1) holds on its columns
the respective channel vectors. Note that by the assumption
in (3), we can not have more than one synchronized user.

Remark 3. Note that setting m1 = 1 assumes that the first
path of the k-th user arrives at the first sample in the sequence
X which is not true in general. However, from the practical
point of view, each user has its own identification sequence
as a preamble, so once we know the correct relative delay,
we can simply find the sample index at which the first path
arrives via correlation with the identification sequence of the
k-th user.

To see how can we utilize CCA to identify the signal sk
from Xk1 and Xk2, ∀ k ∈ [K], we will use an equivalent
formulation to that of (6) in the sense that both of them yield
the same optimal solution q∗` in the two view (path) case.
That is,

min
g,q1,q2

2∑
`=1

‖XT
k`q` − g‖2F (9a)

s.t. ‖g‖22 = 1 (9b)

The above problem is known as the MAX-VAR formulation
of the CCA [22]. It seeks to find a direction g ∈ RT that
is maximally correlated after the linear projections of Xk1

and Xk2 on q1 and q2, respectively. The following theorem,
which is a slight modification of the results of [17], states the
conditions for identifying the transmitted signal sk, ∀k.

Theorem 1. Free from noise, if matrix Bk :=
[sk,Sk1,Sk2] ∈ RN×(2K−1) is full column rank, and
Zk` = [hk`,Hk`] ∈ R2M×K is full column rank for
` ∈ {1, 2}, then the optimal solution g? of problem (9) is
given by g? = γsk, where γ = ±1.

Proof. The proof is provided in Theorem 1 in [17].

Remark 4. The assumption that different users have distinct
relative delays allows us to identify one user at each time.
This removes the restriction we have in Theorem 1 in [17] of
having the transmitted sequences belong to finite alphabet.

We outline all the steps needed to recover all user signals
in Algorithm 2. The overall complexity of Algorithm 2
depends on the cost required for solving Algorithm 1 and
problem (9). Since problem (9) can be optimally solved
using a power iteration, it follows that the overall approach
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Fig. 1: Relative delay versus correlation coefficient, with K =
4, M = 6

Algorithm 2 Signal Detection Via CCA

Input: X ∈ R2M×T

Initialization: k := 1
while k ≤ K do

Compute τk via Algorithm 1
Construct Xk1 and Xk2 using τk as in (7)
Solve problem (9) by using Xk1 and Xk2 as an input

end

requires using the power method K(T −N + 1) times. This
renders our approach computationally tractable for practical
implementation.
C. Noisy Case

In [23], we have carried out a performance analysis that
shows how CCA can identify signals in the presence of noise
and even if the signals are received at low SNR. Although the
analysis was performed for an entirely different application,
the result can be easily mapped to the problem considered
here. In a nutshell, under some assumptions, we managed to
relate the correlation coefficient associated with the optimal
canonical pair to the relative SNR of each user at different
views (different paths here). In the ideal case, if there exists
a common component, then the correlation coefficient will
be equal to one. On the other hand, when the noise is
present, the correlation coefficient will be affected due to the
addition of different noise at different views. By mapping our
result in [17] to the problem considered here, the correlation
coefficient between Xk1q1 and Xk2q2 when the k-th user
signal is synchronized is given by

ρk =
γk1γk2

(γk1 + 1)(γk2 + 1)
(10)

where γk` is the received SNR of the `-th path of the k-
th user, for ` = 1, 2. Note that the higher the correlation
coefficient, the higher the probability we can identify the
common signal. Equation (10) shows that as long as the path
powers are few dBs above the noise, one can get a reasonable
value for the correlation coefficient. For example, γk1 = 5dB
and γk2 = 8dB will lead to a ρk ≈ 0.7. This reflects how
the proposed approach can identify the user signals even if
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Fig. 2: BER vs. SNR of the first path, with K = 4 and M = 6

they are received at low SNR. Furthermore, our approach can
detect the user signals no matter how far the received SNR
of the two paths from each other. For example, γk1 = 15dB
and γk2 = 5dB will lead to a ρk ≈ 0.75.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of our proposed method, we
consider a scenario with four single-antenna users trans-
mitting binary signals of length N = 1000 to a single
receiver equipped with M = 6 antennas. The arrival time,
τ1k, of the first path of the k-th user follows a uniform
distribution, i.e., τ1k ∼ U [1, 2, · · · , 20] while the arrival
time, τ2k, of the second path of the same user was selected
as τ2 ∼ U [30, 31, · · · , 60]. In the simulation, we enforced
the relative delay τk = τ2k − τ1k to be different for all
k ∈ [K]. Additive white Gaussian noise is added with
variance σ2 so that the SNR is P1/σ

2, where P1 is the first
path received power. Note that we assumed that P1 is fixed
for all users while the second path received power was set to
P2k(dBm) = P1(dBm) − Pdk(dB), where Pdk ∼ U [2, 4] in
dB. We assume that the receiver collects T = 1100 samples.
All results were averaged over 500 channel realizations.

In order to benchmark the performance of our proposed
method, we used the so-called independent component anal-
ysis (ICA) [14] – a well-known blind source separation
technique that can extract independent source signals from a
given mixture. We have directly used the fastICA MATLAB
codes written by the author of [14].

In a preliminary experiment, we first tested Algorithm 1 to
see how the relative delays of all users can be identified. We
fixed the SNR of the first path, i.e., SNR1, for all users to 6dB
while the SNR of the second path is different across different
users according to the relation mentioned before. Figure 1
depicts how Algorithm 1 can efficiently identify the relative
delay for all users. Obviously, when all the user signals are
misaligned, the correlation coefficient is very low compared to
the case when any of the users signals is aligned. Furthermore,
the assumption that all relative delays are distinct allows us to
see distinct peaks for the correlation coefficient. Recall that
our approach can also deal with identical relative delays using
finite alphabet [17].
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M = 2K.

We now consider another experiment where we vary the
SNR of the first path from zero to 10dB and at each value
we compute the average BER for the proposed method and
ICA. In figure 2, we observe that our proposed CCA-based
approach considerably outperforms the ICA one in terms of
BER, where an order of magnitude improvement in BER was
observed at SNR1 = 10dB.

Finally, we simulated another experiment by varying the
number of users, K, from 2 to 10 and at each value of K we
set the number of antennas M = 2K, i.e., at K = 2 we use 4
antennas while at K = 10 we use 20 antennas. Furthermore,
we fixed the SNR of the first path to SNR = 8dB. Figure 3
shows how our approach can efficiently work under strong in-
terference. It is obvious that the BER achieved by our method
is approximately the same for different number of users while
the BER attained by ICA degrades by approximately order
of magnitude at K = 2 compared to K = 10. It is worth
pointing that the slight decrease in the BER obtained by the
proposed method is due to the fact that we double the number
of antennas at each value of K which in turn leads to more
reduction in the noise after using CCA [23]. In addition, the
result in Figure 3 suggests that the proposed approach can
handle dense massive MIMO uplink scenarios.

V. CONCLUSIONS

This work has studied the problem of unsupervised signal
detection in a multipath environment. We first developed
a low-complexity CCA-based algorithm that can efficiently
identify the relative delays between the user paths. Then,
we exploited CCA to recover the users transmitted signals
using the relative delay. Furthermore, we provided a brief
discussion that shows how our approach can still work even
if the user signals are received at low SNR. This in fact
opens new opportunities for more aggressive frequency reuse
and secondary spectrum usage. Simulations revealed that
our unsupervised CCA method achieves more than an order
of magnitude improvement in the BER compared to other
unsupervised signal separation techniques. In particular, we
showed how our approach can efficiently decode different
user signals in the presence of noise and strong co-channel
interference.

REFERENCES

[1] M. L. Malloy and A. M. Sayeed, “Revisiting non-coherent detection in
doubly selective multipath,” IEEE Transactions on Signal Processing,
vol. 61, no. 17, pp. 4330–4340, 2013.

[2] M. Duan, Z. Zeng, and C. Guo, “Spectrum sensing based on EDCAF
of signal in multipath-doppler channel,” in IEEE 80th Vehicular Tech-
nology Conference (VTC), Canada, Sept. 2014, pp. 1–5.

[3] D. K. Tan, H. Sun, Y. Lu, M. Lesturgie, and H. L. Chan, “Passive
radar using global system for mobile communication signal: theory,
implementation and measurements,” IEEE Proceedings-Radar, Sonar
and Navigation, vol. 152, no. 3, pp. 116–123, 2005.

[4] D. Nion, K. N. Mokios, N. D. Sidiropoulos, and A. Potamianos,
“Batch and adaptive parafac-based blind separation of convolutive
speech mixtures,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 18, no. 6, pp. 1193–1207, 2009.

[5] J. G. Proakis and M. Salehi, Digital Communications. McGraw-hill
New York, 2001, vol. 4.

[6] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A funda-
mental tradeoff in multiple-antenna channels,” IEEE Transactions on
Information Theory, vol. 49, no. 5, pp. 1073–1096, 2003.

[7] W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “Compressed
channel sensing: A new approach to estimating sparse multipath
channels,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1058–1076,
2010.

[8] S. Kumar, U. Pandey, A. Bajpai, and R. K. Singh, “MIMO signal
detection in multipath environment,” in IEEE UP Section Conference
on Electrical Computer and Electronics (UPCON), India, Dec. 2015,
pp. 1–5.

[9] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE
Transactions on Signal Processing, vol. 45, no. 2, pp. 434–444, 1997.

[10] X. Li and H. H. Fan, “Direct blind multiuser detection for CDMA in
multipath without channel estimation,” IEEE Transactions on Signal
Processing, vol. 49, no. 1, pp. 63–73, 2001.

[11] G. A. Fabrizio and A. Farina, “Exploiting multipath for blind source
separation with sensor arrays,” in IEEE Int. Conf. on Acous., Speech
and Sig. Proc. (ICASSP), Czech Republic, May 2011, pp. 2536–2539.

[12] I. Lee, T. Kim, and T.-W. Lee, “Fast fixed-point independent vector
analysis algorithms for convolutive blind source separation,” Signal
Processing, vol. 87, no. 8, pp. 1859–1871, 2007.

[13] S. C. Douglas, M. Gupta, H. Sawada, and S. Makino, “Spatio–temporal
fastica algorithms for the blind separation of convolutive mixtures,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 15, no. 5, pp. 1511–1520, 2007.

[14] A. Hyvärinen and E. Oja, “Independent component analysis: Algo-
rithms and Applications,” Neural Networks, vol. 13, no. 4-5, pp. 411–
430, 2000.

[15] ——, “A fast fixed-point algorithm for independent component analy-
sis,” Neural computation, vol. 9, no. 7, pp. 1483–1492, 1997.

[16] H. Hotelling, “Relations between two sets of variates,” Biometrika,
vol. 28, no. 3/4, pp. 321–377, 1936.

[17] M. S. Ibrahim and N. Sidiropoulos, “Cell-edge interferometry: Reliable
detection of unknown cell-edge users via canonical correlation analy-
sis,” in IEEE Int. Conf. on Sig. Proc. Adv. in Wir. Comm. (SPAWC),
France, July 2019, pp. 1–5.

[18] Q. Wu and K. M. Wong, “Un-music and un-cle: An application of
generalized correlation analysis to the estimation of the direction of
arrival of signals in unknown correlated noise,” IEEE Transactions on
Signal Processing, vol. 42, no. 9, pp. 2331–2343, 1994.

[19] A. Dogandzic and A. Nehorai, “Finite-length MIMO equalization
using canonical correlation analysis,” IEEE Transactions on Signal
Processing, vol. 50, no. 4, pp. 984–989, 2002.

[20] Y.-O. Li, T. Adali, W. Wang, and V. D. Calhoun, “Joint blind source
separation by multiset canonical correlation analysis,” IEEE Transac-
tions on Signal Processing, vol. 57, no. 10, pp. 3918–3929, 2009.

[21] X. Fu, K. Huang, E. Papalexais, H. A. Song, P. P. Talukdar, C. Falout-
sos, N. Sidiropoulos, and T. Mitchell, “Efficient and distributed gen-
eralized canonical correlation analysis for big multiview data,” IEEE
Transactions on Knowledge and Data Engineering, pp. 1–1, 2018.

[22] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical corre-
lation analysis: An overview with application to learning methods,”
Neural Computation, vol. 16, no. 12, pp. 2639–2664, 2004.

[23] M. S. Ibrahim and N. Sidiropoulos, “Reliable detection of unknown
cell-edge users via canonical correlation analysis,” arXiv preprint, 2019.


