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Abstract—Improving the uplink quality of service for users
located around the boundaries between cells is a key challenge
in cellular systems. Existing approaches relying on power control
throttle the rates of cell-center users, while multi-user detection
requires accurate channel estimates for the cell-edge users, which
is another challenge due to their low received signal-to-noise
ratio (SNR). Utilizing the fact that cell-edge user signals are
weak but common (received at roughly equal power) at different
base stations (BSs), this paper establishes a connection between
cell-edge user detection and generalized canonical correlation
analysis (GCCA). It puts forth a GCCA-based method that
leverages selective BS cooperation to recover the cell-edge user
signal subspace even at low SNR. The cell-edge user signals can
then be extracted from the resulting mixture via algebraic signal
processing techniques. The paper includes theoretical analysis
showing why GCCA recovers the correct subspace containing
the cell-edge user signals under mild conditions. The proposed
method can also identify the number of cell-edge users in
the system, i.e., the common subspace dimension. Simulations
reveal significant performance improvement relative to various
multiuser detection techniques. Cell-edge detection performance
is further studied as a function of how many / which BSs are
selected, and it is shown that using the closest three BS is always
the best choice.

Index Terms—Generalized canonical correlation analysis
(GCCA), multi-user detection, cellular networks, cell-edge
users, uplink detection, base station cooperation, identifiability,
multiple-input-multiple-output (MIMO).

I. INTRODUCTION

PROVIDING high data rates to users located at the
boundaries between cellular coverage areas constitutes a

major concern in the current 4G system [1] and the emerging
5G networks [2]. Even with advanced technologies such
as multiple-input-multiple-output (MIMO) and orthogonal
frequency division multiplexing (OFDM) [3], [4] in place,
nomadic users who are close to the cell edge are still prone
to suffer from significant performance degradation [5], [6].

Owing to the fact that the received signal power exhibits an
inverse relationship with the propagation distance, cell-edge
user terminals experience high path-loss that eventually results
in a severe performance degradation [7]. This effect becomes
more pronounced when mobile systems operate at higher radio
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frequency, as expected in the future [8], thereby rendering
the cell-edge user detection problem even more difficult. A
variety of techniques, ranging from multi-user detection [9],
user scheduling [10], power control [11], cooperative com-
munication [6], [12], and interference mitigation [13]–[15]
have been proposed as possible candidates for tackling this
problem.

Though optimal, the maximum likelihood detector
(MLD) [9], [16] requires solving an NP–hard combinatorial
problem with computational complexity that grows
exponentially with the number of users, thereby precluding its
use in practical multi-antenna systems. The so-called sphere
decoder [17] (SD) is a near-optimal detector that can attain
the MLD performance with lower complexity. However,
it has been proven that its average complexity remains
exponential [18]. In the low to moderate signal-to-noise
ratio (SNR) regime, semi-definite relaxation (SDR) based
methods [19], [20] can yield performance comparable to SD
in polynomial time; yet their complexity remains unaffordable
in terms of practical implementation at present [21].

Whereas equalization-based detectors such as zero-forcing
(ZF) and minimum mean square error (MMSE) [22] exhibit
substantially lower complexity compared to MLD, SD and
SDR, their bit error rate (BER) performance often suffers se-
vere degradation, especially at low SNR. The performance of
both ZF and MMSE detectors can be further enhanced [23] by
using successive interference cancellation (SIC), or decision
feedback (DF) [24], [25], which rely on iteratively eliminating
the strong (cell-center) user signals once they are decoded.
While one can also resort to joint detection using base station
cooperation [26], this often degrades the performance because
of near-far effects and the inaccurate channel estimates of cell-
edge users.

A major issue with all of the aforementioned detectors
is that their performance is dependent on the availability of
accurate channel state information of all users. This may be
possible for users that are close to their serving base station
(cell-center), and hence, reliable detection of such users can
be guaranteed. On the other hand, owing to high path-loss,
the signals of cell-edge (weak) users are received at low
SNR, which degrades the quality of their channel estimates.
This together with inter- and intra-cell interference have a
deleterious impact on the BER performance of the cell-edge
users [14].

Power control [11] and/or scheduling algorithms [10], [27]
have proven to be successful in significantly improving the
quality of service (QoS) of cell-edge users. This, however,
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comes at the expense of throttling the cell-center user rates,
and consequently the overall system throughput [11], [27],
[28]. Moreover, the frequent mobility-induced hand-off of
cell-edge users renders their detection task even more chal-
lenging [29].

The shortcomings of the prevailing approaches motivate the
following question: Does there exist a low-complexity method
that can provide reliable detection of the cell-edge users with-
out knowing their channels or sacrificing the performance of
cell-center users by resorting to power control and scheduling
techniques?

This paper provides an affirmative answer to this question
– by proposing an unsupervised learning-based method that
leverages selective base station cooperation to recover cell-
edge users signals at low SNR subject to strong inter- and
intra- cell interference. Relying on fact that cell-edge users
are located at approximately equal distances from different
base stations, and hence their received signals are weak but
common (meaning: they are received at low but roughly equal
power at different base stations), this paper shows that reliable
detection is possible via (generalized) canonical correlation
analysis (G)CCA [30] under mild conditions.

While base station cooperation [31] has been considered
before for several tasks such as coordinated power con-
trol [32], coordinated scheduling [33], and inter-cell interfer-
ence mitigation [34], [35], cooperation here is utilized for
a completely different purpose: as a means for cell-edge
user detection, via GCCA. This work adds to the growing
list of applications of (G)CCA in several areas in signal
processing and wireless communications, ranging from array
processing [36], direction-of-arrival (DoA) estimation [37],
radar anti-jamming [38], blind source separation [39]–[42],
speech processing [43], multi-view learning [43], [44], and
more recently in cell-edge user detection using two BSs [45].
Efficient algorithms have been recently developed for handling
large scale GCCA [46]–[48].

Our contributions in this paper are as follows:
• We extend our previous work [45], which proposed using

classical two-view CCA to detect cell-edge user signals
in a cellular network with two cells, to the more general
setting. That is, we consider a scenario with L cells
/ views (L > 2) which involves GCCA [49], [50] as
opposed to CCA for L = 2. We propose a two-stage
approach that uses cooperation to jointly detect cell-edge
users signals without prior knowledge of their channel
state information. In particular, we first consider the so-
called MAXVAR formulation of GCCA [49], and show
that it yields the range space of the cell-edge user signals.
We present identifiability conditions under which the
common subspace can be recovered. While identifiability
conditions for the common subspace of two views have
been obtained in [45], the conditions we provide here
for the general case are more relaxed. Upon identifying
the subspace comprising the cell-edge users signals via
GCCA, we utilize the (R)ACMA [51] algorithm, which
exploits the finite alphabet constraint of the user transmit-
ted signals to retrieve the original cell-edge user signals
from the resulting mixture. Fortunately, both MAXVAR

GCCA and RACMA admit relatively simple algebraic
solution via eigenvalue decomposition. This renders our
approach computationally favorable in practice, because
the proposed method for solving the cell-edge problem
is tantamount to solving two eigenvalue decomposition
problems.

• We present an elegant theoretical analysis which shows
that GCCA can reliably estimate the common subspace
in the presence of thermal noise and cross interference
from users in adjacent cells, under realistic assumptions
on the SNR of the different users.

• We provide an elegant GGCA strategy that can be used
to classify users as cell-edge or cell-center, thereby deter-
mining the correct dimension of the common subspace.

• To showcase the effectiveness of our proposed method
for cell-edge user detection, we provide a comprehensive
suite of simulations that employs a realistic path-loss
model from the 3GPP 38.901 standard. Experiments
reveal that our approach attains a considerable improve-
ment in the BER at low SNR under realistic levels of
inter-cell interference and dense scenarios with a large
number of cell-center users. We compare our proposed
method with our previous CCA-based one and different
multi-user detection techniques including ZF-SIC and
MMSE-SIC which assume perfect knowledge of the
cell-center user channels. We show that the proposed
GCCA method achieves significant reduction in the BER
compared to all baselines. Moreover, our simulations
show that using GCCA with the three closest BSs always
yields the best detection performance for the cell-edge
users. That is, not only does using the three closest BSs
always improves the results of using the two closest BSs;
but also that using more than the three closest BSs never
helps – neither of which was obvious a priori.

A. Paper Organization

The outline of this paper is as follows. After briefly review-
ing (G)CCA in Section II, Section III defines the problem
statement and highlights the major limitations of the prior
cell-edge user detection methods. The proposed detector and
the main results are presented in Section IV. Then, numerical
simulations are provided in Section V. Conclusions are drawn
in Section VI. Long proofs and derivations are relegated to
the Appendix.

B. Notation

In this work, we use upper and lower case bold letters
to denote matrices and column vectors, respectively. For
any general matrix N, we use NT , NH , N−1, N† and
Tr(N) to denote the transpose, the conjugate-transpose, the
inverse (when it exists), the pseudo-inverse, and the trace
of N, respectively. N(:,m) denotes the m-th column of N
(MATLAB notation). Furthermore, Re{N} and Im{N} extract
the real part and the imaginary part of N, respectively. Scalars
are represented in the normal face, while calligraphic letters
are used to denote sets. ‖.‖2 and ‖.‖F denote the `2-norm
and the Frobenius norm, respectively. Finally, IN and 0N×M
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denote the N×N identity matrix and the N×M zero matrix,
respectively.

II. PRELIMINARIES

Consider L data sets {Y` ∈ CM`×N}L`=1, where y
(n)
` :=

Y`(:, n) is an M`-dimensional feature vector that defines the
`-th view of the n-th sample, ∀n ∈ N := {1, · · · , N} and
∀` ∈ L := {1, · · · , L}. Without loss of generality, assume that
all per-view data vectors {y(n)

` }Nn=1 are zero-mean, otherwise
the sample mean can be subtracted as a pre-processing step.
While single-view analysis techniques, i.e., L = 1, like
principal component analysis [52] aim at extracting strong
components from the given data matrix, multi-view analysis
tools such as coupled matrix factorization (CMF) or canonical
correlation analysis (CCA), seek to jointly analyze different
views of the data. The main difference between CMF and
(G)CCA lies in the optimization criterion: whereas CMF uses
a data fitting (usually: least squares) criterion, (G)CCA is
based on a “differential” criterion that forces it to zoom in
only on what is common between the different views. If one
of the views includes a very strong component that is absent
from the other view(s), a least squares CMF formulation
can still be obliged to represent that component. (G)CCA,
on the other hand, owing to its use of a differential (bal-
ancing) criterion, can ignore principal components no matter
how strong they are, as long as they are not common. For
instance, the two-view CCA, i.e., L = 2, looks for two low-
dimensional subspaces Q1 ∈ CM1×Kc and Q2 ∈ CM2×Kc

with Kc � min{N,M`}, such that the distance between
the linear projections of the received signals Y1 and Y2

onto these subspaces is minimized. From an optimization
perspective, the distance-minimization formulation of the two-
view CCA can be expressed as [53]

min
Q1,Q2

‖YH
1 Q1 −YH

2 Q2‖2F (1a)

s.t. QH
` Y`Y

H
` Q` = I, ∀ ` = {1, 2} (1b)

The columns of Q` are called the canonical components of
the `-th view. Problem (1) can be optimally solved via gen-
eralized eigenvalue decomposition [40], [54]. To generalize
problem (1) to consider the case of multiple views (L ≥ 3),
it is natural to adopt a pair-wise matching criterion [49]. That
is, we consider the optimization problem

min
{Q`}L`=1

L−1∑
`=1

L∑
`′>`

‖YH
` Q` −YH

`′Q`′‖2F (2a)

s.t. QH
` Y`Y

H
` Q` = I, ∀ (`, `′) ∈ L. (2b)

Problem (2) is referred to as the sum-of-correlations (SUM-
COR) generalized CCA [49]. Although SUMCOR is known
to be NP–hard in its general form [55], [56], several efficient
and scalable algorithms have been developed to obtain high-
quality approximate solutions [48], [55], [56].

Instead of minimizing the distance between the
reduced-dimension views, another formulation seeks a
low-dimensional common latent representation, namely

G ∈ CN×Kc , of the different views. This leads to the so-
called maximum-variance (MAXVAR) GCCA formulation,
which is given by

min
{Q`}L`=1,G

L∑
`=1

‖YH
` Q` −G‖2F (3a)

s.t. GHG = I. (3b)

Although both SUMCOR and MAXVAR aim at finding
highly-correlated reduced-dimension views, and their solu-
tions can be shown to coincide in the special case of L = 2
(CCA), they are generally different for L > 2 (GCCA). While
problem (3) introduces an additional NKc variables compared
to SUMCOR, it replaces the multiple constraints in (2) with a
single orthonormality constraint on the matrix G. Fortunately,
the MAXVAR GCCA formulation admits algebraic solution
via eigenvalue decomposition. To see this, one can fix G
and solve (3) with respect to Q`’s. Then, upon assuming
that the matrices {Y`}L`=1 are full row rank, it follows that
Q∗` = (Y`Y

H
` )−1Y`G. Substituting back Q∗` in (3) and

expanding the cost function in (3a), one can recast (3) as

max
G∈CN×Kc

Re{Tr(GHAG)} (4a)

s.t. GHG = I. (4b)

where A is defined as A :=
∑L
`=1 YH

` (Y`Y
H
` )−1Y`. It can

be easily seen that (4) is nothing but an eigenvalue problem
with the optimal solution G? being the first Kc principal
eigenvectors of the matrix A [57].

In what follows, we will focus on the MAXVAR formula-
tion to show how GCCA relates to the problem of cell-edge
user detection in multi-cell, multi-user MIMO systems. Here,
we adopted the MAXVAR formulation over the SUMCOR
one as (i) it can be optimally solved using eigendecomposition
whereas SUMCOR is an NP-Hard problem when the number
of views (i.e., base stations in our context) exceeds two, (ii) is
computationally cheaper compared to SUMCOR, and hence,
it is practically preferable, and (iii) does not suffer from
initialization and tuning parameters issues as SUMCOR does.
Therefore, we see that considering MAXVAR will eventually
lead to an overall much simpler approach that can solve the
cell-edge detection problem.

III. SYSTEM MODEL

Consider an uplink transmission scenario in a cellular
network with L regular hexagonal cells – each cell has a
base station (BS) located at its center, as shown in Fig. 1.
The `-th BS is equipped with M` antennas, and serves K`

single-antenna users. Let Ke` denote the number of cell-
edge users served by the `-th BS, with Ke` < K`, ∀ ` ∈
L := {1, · · · , L}. The uplink channel vector representing
the small-scale fading between the k-th user located in the
j-th cell and the `-th BS is given by z`kj ∈ CM` . The
entries of z`kj are independent identically distributed (i.i.d.)
complex Gaussian random variables with zero mean and
variance 1/M`. This corresponds to a favorable propagation
medium with rich scattering. The coefficient that accounts for
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Fig. 1: System model

the signal attenuation due to distance (path-loss) between the
`-th BS and the k-th user in the j-th cell is given by α`kj ∈ R.
Accordingly, the overall uplink channel vector is given by

h`kj =
√
α`kjz`kj , (5)

Throughout this work, we assume that the channel vectors are
not known a priori at the BSs.

A. Uplink Transmission

The considered users in the system are assumed to be
allocated the same time-frequency resource. Also, assume that
all user transmissions are heard at all BSs, thereby introducing
both intra- and inter-cell interference at each BS. Also, all
user transmissions are assumed to be synchronized at the BSs
(this assumption can be lifted; see below and in [58]). Define
xkj ∈ CN as the vector transmitted by the k-th user in the
j-th cell. The received signal, Y` ∈ CM`×N , at the `-th BS
is given by

Y` =
L∑
j=1

Kj∑
k=1

√
pkjh`kjx

T
kj + N`, (6)

where h`kj is the uplink channel response vector as defined
in (5), pkj is the transmitted signal power of the k-th user in
the j-th cell. The term N` ∈ CM`×N contains i.i.d. entries
with zero mean and variance σ2/N , i.e., E[N`N

H
` ] = σ2I.

Throughout this work, we assume that neither scheduling
algorithms nor power control is employed. In other words,
all users are always active, and all users are assigned the
same transmission power, i.e., pkj = p, ∀ k, j. Scheduling
and power control algorithms can still be employed on top
of the proposed framework for additional traffic shaping and
other system considerations.

In this paper, we assume that all BSs are connected to a
remote radio head (RRH) via backhaul links which can be
either microwave links or high speed optical fiber cables [31].
Each BS forwards its received signal to the RRH. Although
base station cooperation has been considered in several earlier
papers [32]–[35], it is adopted here for an entirely different

purpose. That is, we exploit the joint processing of the BS
signals at the RRH to provide reliable detection of cell-
edge users whose signals are received at low SNR without
knowledge of any of the user channels. One key challenge
for all the BS cooperation techniques in the literature is time
synchronization [31] of the received signal at the RRH. Even
though all prior works assumed perfect synchronization at the
RRH [6], we recently developed a low-complexity CCA-based
algorithm that can handle (lack of) synchronization for two
BSs [58], and can be easily modified to deal with the multi-
cell case.

B. Prior Art: Limitations and Challenges

We now provide a brief discussion of the limitations of the
prior art used to detect cell-edge user signals. To this end, it
is convenient to write (6) as

Y` = H`p`X
T
p`

+ H`e`X
T
e`

+
L∑
j 6=`

H`jX
T
j + N`, (7)

where we collect the transmitted signals of the cell-center
users and the cell-edge users served by the `-th BS in
the matrices Xp` ∈ RN×(K`−Ke`

) and Xe` ∈ RN×Ke` ,
respectively, and the transmitted signals by the users served
by the j-th BS in Xj ∈ RN×Kj . Further, the matrices H`p` ∈
CM`×(K`−Ke`

), H`e` ∈ CM`×Ke` and H`j ∈ CM`×Kj hold
on their columns the respective channel vectors. Note that we
absorbed the transmitted signal power p of each user in its
channel vectors.

The goal is to recover the cell-edge user signals, Xe` , from
the received signal Y`. The traditional approach to recover
Xe` is to first estimate all user channels via transmitting
orthogonal pilots, and then employ the ZF or MMSE detector
to decode cell-edge user signals using their estimated channel.
This approach usually fails to provide reasonable performance
due to the effect of intra-cell interference (transmissions of
strong cell-center users), the effect of inter-cell interference
(transmissions from users in other cells) and noise. The signals
of cell-edge users are consequently received at very low signal
to interference plus noise ratio (SINR), which causes high
uncertainty in their channel estimates, which in turn seriously
degrades their detection performance. One workaround is to
use ZF or MMSE followed by successive interference can-
cellation to decode and subtract the cell-center user signals,
thereby mitigating / eliminating the intra-cell interference
effect. While this approach can slightly improve the detection
performance, the inter-cell interference and channel estimation
errors still cause severe performance degradation.

Another potential solution that mitigates the inter-cell in-
terference effect [59], and can indeed enhance the detection
of such users, is to use power control and/or scheduling
algorithms together with BS cooperation techniques [60].
However, this comes at the expense of throttling the transmis-
sion of cell center users, and hence, it also severely degrades
the overall system throughput.

In the forthcoming section, we will present a two-stage
learning-based approach that leverages BS cooperation to
reliably identify cell-edge user signals without knowing their
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channels, and without resorting to either power control or
scheduling.

IV. PROPOSED DETECTOR AND IDENTIFIABILITY
ANALYSIS

The cell-edge users are located far but at roughly equal
distances from different BSs. In other words, if we use the
distance-power relationship, their received signals are weak
but common to multiple BSs, i.e., their signals are received
at relatively equal power at different BSs. We will show how
GCCA can efficiently recover the cell-edge users’ signal range
space at low SNR, even if they are buried under strong intra-
and inter-cell interference. Notice that, owing to the broadcast
nature of the wireless medium, all user transmissions are
(over)heard, albeit weakly, at all BSs. Hence all user signals
are, in principle, common. However, we use the phrases
“common” for cell-edge users versus “private” for cell-center
users to reflect the power (im)balance of different users. That
is, cell-center users signals are received at very high SNR,
e.g., [20, 30] dB, at their serving BS, and very low SNR, eg.
[−10,−30] dB at non-serving BSs. On the other hand, cell-
edge user signals are received at low but roughly equal SNR,
e.g., [3, 5] dB at multiple BSs.

From the geometry of the hexagonal cells shown in Fig. 1,
one can argue that a user can be common to two or three
BSs, i.e., it can be located at relatively equal distance from
two or three BSs. For example, a user located on the left
corner of the common edge between the top and bottom cells
in Fig. 1 is common to the BSs in these two cells and the one
on the left. Based on this fact, we will design a detector that
can recover cell-edge user transmitted signals from the signal
received at three BSs. The case of more than three will also
be considered in the simulations section.

Remark 1. It is worth pointing out that we have only
considered the uniformally hexagonal cells architecture and
the roughly-equidistant assumption of cell-edge users for the
ease of exposition. We only need the relative delays of the
different users to be the same at each of the L=3 BSs (so that
the associated views contain the same cell-edge subspace)
and the received SNRs for the cell-edge users to be at least
a few dB above the noise floor. The latter typically holds
even when shadowing is considered. Being approximately
equidistant from the 3 BSs is one reasonable way to motivate
these assumptions, but it is not the only one (e.g., small
cells and per-subcarrier processing). Furthermore, while with
shadowing coefficients the received SNR at the different views
will not be balanced, our approach does not necessarily
require the received SNR to be fully balanced at the different
views, as we will see in the simulations.

We will first consider the noiseless case to find the identifia-
bility conditions required to recover the cell-edge user signals.
Identifiability is very important as it provides sufficient con-
ditions under which the recovery of the cell-edge user signals
via (G)CCA is guaranteed under ideal (noiseless) conditions.
Whereas we have derived identifiability conditions in the case
of two BSs [45], it turns out that the conditions for three

BSs are more relaxed (details will be provided in the next
subsection).

A. Noiseless Case

Let Kc =
∑L
j=1Kej denote the total number of cell-edge

users. Assume that all cell-edge users are located around
the intersection point of the three hexagonal cells. Thus
equation (7), with L = 3, can be rewritten as

Y` = H`p`X
T
p`

+ H`cX
T
c +

L∑
j 6=`

H`pjX
T
pj + N`, (8)

where the subscripts ‘p`‘ and ‘c‘ stand for private to the `-
th BS and common to all base stations, respectively. The
matrices Xc ∈ RN×Kc and Xpj ∈ RN×(Kj−Kej

) hold the
transmitted signals of the cell-edge users and cell-center users
in the j-th cell, respectively. Accordingly, H`c ∈ CM`×Kc

and H`pj ∈ CM`×(Kj−Kej
) hold on their columns the

corresponding channel vectors. Further, we define E` :=∑L
j 6=` H`pjX

T
jpj

+ N` to denote the summation of inter-
cell interference and noise at the `-th BS. Thus, (8) can be
rewritten as

Y` = H`p`X
T
p`

+ H`cX
T
c + E`, (9)

Our goal now is to recover the cell-edge user signals Xc

given {Y`}Ll=1. We will start by showing how the solu-
tion of the MAXVAR GCCA formulation (3) is related to
the column space of the cell-edge user signals, and then
we will explain how the original signals can be recovered
from the given solution. Upon defining the matrix V(L) ∈

C
(L−1)N×((L−1)Kc+

L∑̀
=1

(K−Ke`
))

as follows,

V(L) =


Xp1 −Xc Xp2

...
. . . . . .

Xp1 −Xc XpL

 ,
we have the following result.

Theorem 1. In the case where E` = 0, if the matrix
W` := [H`c,H`p` ] ∈ CM`×(Kc+K`−Ke`

) and the matrix

V(L) ∈ C
(L−1)N×((L−1)Kc+

L∑̀
=1

(K−Ke`
))

are full column
rank, then the optimal solution G? of problem (3) is given
by G? = XcF, where F is a Kc ×Kc non-singular matrix.

Proof. See [61] which offers a comprehensive identifiability
analysis of GCCA for general L.

Remark 2. The full column rank condition on W` requires
that: i) the number of antennas at each base station is greater
than or equal to the number of users assigned to that base
station, plus any cell-edge users associated with the other two
base stations; and ii) the channel vectors of different users to
be linearly independent. The first requirement is supported
by massive MIMO technology that aims at equipping the
base station with hundreds of antennas [62]. Further, because
the user channel vectors can be assumed to be drawn from
an absolutely continuous distribution (see (5)), the latter
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condition is satisfied with probability one. The full column
rank condition on V is related to the number of samples N
required to guarantee recovery. For L = 3, we need: i) the
number of samples to be at least equal to the total number
of cell-edge users plus one half the total number of cell-
center users served by the three BSs; and ii) the transmitted
sequences of different users to be linearly independent. For
finite alphabets, the two conditions are satisfied with very
high probability for modest N , as the user transmissions are
statistically independent. In addition, it can be easily seen
that the requirement on the number of samples N becomes
less restrictive for L > 2 compared to the earlier results for
the two-view case in [45].

Theorem 1 asserts that in an ideal scenario where the
effect of inter-cell interference and thermal noise is negligible
compared to the intra-cell interference, GCCA successfully
recovers the subspace spanned by the cell-edge users signals,
under mild conditions. We point out that such a scenario can
arise in practice, especially if all cell-center users are close
to their serving BS. An interpretation of the statement of
Theorem 1 is that if there exist several spatio-temporal signal
views that contain very strong but different components (in
our case here arising from the transmissions of each group of
cell-center users) and very weak but common components (in
our case here the received cell-edge user signals), then GCCA
recovers the common components range space irrespective of
the power of the individual components.

However, in practical deployment scenarios we cannot
guarantee the above idealized assumptions. One of the main
contributions of this paper is that it offers an analysis of
GCCA performance in a realistic scenario with inter-cell
interference and noise. This is coming up next.

B. Noisy Case

We now provide analysis showing how cell-edge users
signals can be identified when E` 6= 0. In particular, we
show that the signal subspace recovered by identifying the Kc

principal eigenvectors of A is indeed containing the cell-edge
user transmitted messages. As shown earlier, this is equivalent
to solving the MAXVAR GCCA problem.

Upon defining Ks =
∑L
`=1K`, let us write (8) in a more

compact form as

Y` = H`X
T + N`, (10)

where H` = [H`c,H`p1 , · · · ,H`pL ] ∈ CM`×Ks , and X =
[Xc,Xp1 , · · · ,XpL ] ∈ CN×Ks. Further, we can use (5) to
factor H` = Z`P

1/2
` , where the columns of Z` are the

channel vectors representing small scale fading between the
k-th user and the `-th BS, for k ∈ Ks := {1, · · · ,Ks}.
Accordingly, each entry of the diagonal matrix P` represents
the corresponding received signal power that incorporates the
transmitted power and the path-loss between each user and
the `-th BS. Thus, (10) can be equivalently written as

Y` = Z`P
1/2
` XT + N`, (11)

Assumption 1 (AS1). Assume that the matrices Z` and C :=
X/
√
N are approximately orthonormal, i.e., ZH` Z` ≈ IM`

for
all ` ∈ L and CHC ≈ IKs .

Remark 3. Recall that the matrices Z` contain i.i.d entries
with zero mean and variance 1/M`, and hence, the approx-
imate orthonormality assumption on Z` requires the number
of base station antennas to be greater than the total number
of users assigned to all base stations, and large enough
for the sample average (inner product of different columns)
to be close to the ensemble average (0). This requirement
on the number of antennas is supported by massive MIMO
technology that aims at equipping base stations with hundreds
of antennas. On the other hand, the approximate orthonor-
mality of C requires the sequence length to be greater than
the total number of users and the columns of C to be
linearly independent. For finite alphabets, the latter condition
is satisfied with very high probability for modest N .

Let γk` denote the received SNR of the k-th user at the
`-th BS. Then, we define rk` as

rk` :=
γk`

γk` + 1
,

for all k ∈ Ks and ` ∈ L. For any user k, the multi-view
correlation measure ηk is defined as ηk :=

∑L
`=1 rk`. We

will make use of the following assumption on the cell-edge
users.

Assumption 2 (AS2). For any cell-edge user i and cell-center
user j, ηi > ηj .

Remark 4. Empirically, the relation between the average
received power Pr and the distance is determined by the
expression Pr ∝ d−λ where d and λ denote the distance
and the path loss exponent, respectively. The noise power at
the receiver is given by σ2. Then, the value of rk` as function
of the distance between the user and the BS (dk`) is given by

rk` =
(dk`)

−λ

(dk`)−λ + σ2/c
, (12)

where c is constant that depends on the communication
medium and the antenna characteristics. This function exhibits
a sharp phase transition which means that the ratio rj` for
cell-center users at other cells is almost zero if they are
dropped up to certain distance from their serving BS such
that their received SNR at their non-serving BSs is a few dBs
below zero, while all the ratios ri` for cell-edge users at their
adjacent BSs is close to one if their received SNR at those
BSs is a few dBs above zero.

Our main result is the following:

Proposition 1. In the presence of inter-cell interference
and additive noise, under assumptions (AS1) and (AS2), the
optimal solution G? of problem (3) is given by G? u XcP
where P is any Kc ×Kc non-singular matrix.

Proof. The proof is relegated to the Appendix.

We have thus showed that MAXVAR GCCA identifies the
range space of the cell-edge users signals, under realistic
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conditions. We will next show how the original signals Xc

can be unraveled from their range space, by exploiting their
constellation/modulation structure.

C. ACMA Stage

Given the subspace G∗, the problem of recovering the user
signals Xc can then be posed as

min
Xc,F

‖G? −XcF‖2F (13a)

s.t. Xc(i, j) ∈ Ω, (13b)

where Xc(i, j) represents the (i, j)-th entry of the matrix Xc,
for i = 1, · · · , N and j = 1, · · · ,Ks. Although problem (13)
is known to be NP-Hard even if F is known, the Analytical
Constant Modulus Algorithm (ACMA) developed by van der
Veen [63] provides a good algebraic solution which comes
with certain identifiability guarantees. In particular, ACMA
transforms (13) to a generalized eigenvalue problem. While
the obtained solution is subject to both phase and permutation
ambiguities, both of them can be resolved in practice by
simply matching the preamble of each estimated signal with
the identification sequence that is known a priori at the
serving BS.

It is worth emphasizing that the proposed end-to-end de-
tector of the cell-edge user signals only requires solving
two generalized eigenvalue problems. Therefore, the overall
computational complexity of our proposed method is domi-
nated by the complexity of solving two generalized eigenvalue
problems. This renders our approach favorable for practical
implementation.

We also point out that our proposed method works for any
modulation scheme and even for analog signals. It is obvious
that GCCA (first stage) can identify the common subspace ir-
respective of the modulation of the cell-edge user signals. The
second stage exploits knowledge of the modulation to unravel
the constituent signals from their range space. ACMA [63], for
instance, deals with constant modulus communication signals
such as higher-order PSK, QPSK or even analog phase or
frequency-modulated signals. For binary signals (BPSK), the
so-called real ACMA (RACMA) [51] can be used to recover
the user signals. Furthermore, algorithms such as SIC-ILS [64]
or the approach in [61] can be utilized for higher-order QAM –
SIC-ILS can also exploit Forward Error Control (FEC) codes
to further improve the decoding accuracy.

Throughout this work, we assume that the cell-edge users
employ BPSK, QPSK, and 8PSK modulation, and hence, as
we will see in the simulations, we use either RACMA [51]
to recover the BPSK signals or ACMA [63] for QPSK and
8PSK modulation. Recall that the received signals of the cell-
edge users are naturally weak, hence these users will typically
employ low-order modulation.

D. Choosing the common subspace dimension

Recall that in our analysis in the Appendix, in order to
differentiate between cell-center users and cell-edge users,
we assumed that cell-center users are dropped up to certain
distance from their serving BS (see Remark 3). However, if

all users are randomly dropped throughout the cells, then
it is not obvious how to differentiate if a user has to be
treated as a cell-center or a cell-edge user. In other words,
how to determine the common subspace dimension if the
cell-center users are fully scattered within their cell. Note
that underestimating the common subspace dimension can
naturally lead to a performance degradation as we will see
in the simulation section. To overcome such an issue, we
propose a GCCA-based algorithm that can accurately estimate
the number of cell-edge users (common subspace dimension),
and hence, we can classify whether a user is cell-center or
cell-edge.

Exploiting the fact that a component that is common to
three views should also be common to each pair of the three
views, the common subspace dimension can be accurately
estimated via checking the mean of correlation coefficients
computed from the canonical components of each pair. Recall
that Kc ≤ min{2M`, N}, where Kc is the number of
canonical pairs that can be extracted using GCCA. Upon
solving problem (3) and obtaining the solutions {Q?

`}3`=1, we
define the i-th correlation coefficient between views j and `
as [61],

ρ
(i)
`j = Re{QH

` (:, i)Y`Y
H
j Qj(:, i)} (14)

∀`, j ∈ L and j > ` and i ∈ {1, · · · ,Kc}. Afterwards, we
compute the i-th average correlation coefficient as ρ

(i)
avg =

1
3 (ρ

(i)
12 + ρ

(i)
13 + ρ

(i)
23 ), Then, we decide that the i-th canonical

components (Q1(:, i),Q2(:, i),Q3(:, i)) extract a common
signal if ρ(i)avg is greater than a certain threshold – a reasonable
choice of ρth is 0.5.

It is worth emphasizing that the proposed GCCA approach
requires solving a generalized eigenvalue problem which
naturally yields min{M`, T} canonical vectors. Once these
vectors are obtained, we use our proposed method to estimate
the exact number of relevant canonical vectors, i.e., number
of cell-edge users Kc, which will be later used to recover the
common subspace from the data matrices {Y`}3`=1.

V. EXPERIMENTAL RESULTS

In this section, we use realistic numerical simulations to
assess the performance of the proposed GCCA approach. We
consider a scenario with L = 4 hexagonal cells, each of radius
R = 600 meters. The locations of cell-center users served by
each BS are drawn uniformly at random within a distance
less than d = 0.4R from their serving BS, unless stated
otherwise. Cell-edge users, on the other hand, are located
around the edges between base stations at distance between
0.95R and 1.05R. Fig. 2 shows one simulated scenario where
cell-center users and cell-edge users are colored in red and
green triangles, respectively. The transmitted power of all
users was set to 25 dBm while the transmitted sequence length
N was fixed to 800. We assume BPSK modulation for all the
users, unless stated otherwise. All results were averaged over
500 Monte Carlo trials. Additive white Gaussian noise was
used with variance σ2 so that the SNR is Pe/σ2, where Pe
is the average received power of cell-edge users. In fact, this
enables us to evaluate SNR values required for cell-edge users
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Fig. 2: Snapshot from the simulated scenario.

to achieve a specific BER. The uplink channel between the
k-th user in the j-th cell and the `-th BS is modeled as

hH`kj =

√
1

M

Np∑
n=1

√
α
(n)
`kjar(φ

(n)
k )H , (15)

where Np is the number of paths between the `-th BS and
the k-th user in cell j, ∀{`, j} ∈ L and k ∈ [Ks]. To compute
the path gain, α(n)

`kj , we use the path-loss model of the urban
macro (UMa) scenario from Table 7.4.1 − 1 in the 3GPP
38.901 standard, with the carrier frequency set to 2 GHz,
∀n, `, j, k. Furthermore, all cell-center users are allowed to
possibly have a line of sight (LOS) component to their serving
BS according to the LOS probability expression for the UMa
scenario in Table 7.4.2 − 1 in the 3GPP 38.901 standard;
however, all cell-edge users have only non-LOS components.
The term ar(.) is the array response vector at the BS, and
φ
(n)
k ∼ U [−π, π] denotes the azimuth angle of arrival of the
n-th path associated with the k-th user. Assuming the BS is
equipped with a uniform linear array with omni-directional
antenna elements stretched over the vertical direction, then

ar(φ) = [1, eikd cos(φ), · · · , eikd(M−1) cos(φ)]T , (16)

where i =
√
−1, k = 2π/λ, λ is the carrier wavelength and

d = λ/2 is the spacing between antenna elements.
To assess the efficacy of our approach, we implement the

following approaches and use them as performance baselines.
• MMSE / ZF with channel estimation: the channels

of all users are estimated via transmitting sequences of
orthogonal pilots with length of 250 each. Then, both
the MMSE and ZF detectors are employed to decode the
cell-edge user signals using their estimated channels.

• MMSE / ZF SIC (R)ACMA with channel estimation:
the channels of the cell-center users associated with each
BS are estimated first. Then, we use both the ZF-SIC and
MMSE-SIC detectors to decode, and then subtract the re-
encoded signals of the cell-center users at their serving
BS. Afterwards, we apply (R)ACMA [51], [63] on the
residual signal to recover the cell-edge user signals. To

-R -R/2 0 R/2 R
x-location
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R

CCA (Best two BSs)
GCCA (3 left BSs)
GCCA (3 right BSs)
GCCA (4 BSs)
ZF-SIC (Best BS)

Fig. 3: BER vs. cell-edge user location: GCCA using 3 closest
BSs is always better.

guarantee fairness, since we assume BS cooperation, we
feed (R)ACMA with the residual signals from all BSs
simultaneously.

• MMSE / ZF SIC (R)ACMA Perfect: similar to the
previous baseline but with perfect knowledge of the cell-
center user channels at their serving BS.

• CCA (R)ACMA combined: we use CCA to recover the
range space of the cell-edge users from the nearest two
BSs [45]. Then, we apply (R)ACMA to recover the cell-
edge user signals from the resulting subspace.

In the first experiment, we consider a setup with M` = 12
antennas and K` = 8 single transmit antenna users, ∀ ` ∈
L. Considering the scenario shown in Fig. 2, we varied the
x-location of one cell-edge user on the black edge between
BS1 and BS2 from x = −R to x = R, while the locations
of all other users are kept fixed during the experiment. At
each value of x, we report the BER of the proposed GCCA
approach using the three closest BSs, GCCA using all BSs,
CCA using the closest two BSs and ZF-SIC RACMA with
perfect cell-center users channels using the best BS. Note that
when the user is located at x = −R/2, its received SNR
is approximately equal to 3dB at BSs 1,2 and 3, according
to our adopted path-loss model. As the user’s location shifts
towards the center (x = 0) of the black edge, its received
SNR increases (as path-loss decreases) at BSs 1, 2, and 4
while it decreases at BS 3. When this user passes the center
of the edge, the received SNR decreases again at BSs 1 and 2.
On the other hand, when the user’s location changes towards
the very left corner of the black edge (x = −R), its received
SNR automatically increases at BS 3, while it decreases at
BSs 1, 2, 4.

As Fig. 3 depicts, when the user is located at x = −R/2
(the user is at relatively equal distance from three BSs),
the proposed GCCA using the three left BSs (1, 2, and 3)
attains the minimum BER compared to GCCA using all BSs,
CCA using the two closest BSs and ZF-SIC using the best
BS. Similarly, when the user is located at x = R/2, the
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Fig. 4: Snapshot from the three BSs simulated scenario.

joint detection using the three BSs 1, 2, and 4 gives the
best performance. When the user is close to x = ±R/2,
GCCA using the three nearest BSs attains more than order
of magnitude reduction in the BER relative to CCA RACMA
and much more relative to ZF-SIC RACMA.

On the other hand, as the location of the user moves towards
the center of the cell-edge (x = 0), the detection performance
of CCA using the two BSs 1, 2 improves gradually until it
reaches its best at the origin (minimum path-loss and max-
imum received SNR), and then it decreases again as shown
in Fig. 3. This happens as the received SNR of the user’s
signal at BS 1 and BS 2 becomes higher, and considerable
discrepancy becomes evident between the received SNR at
BSs 1 and 2 and at BS 3. Note that GCCA using the best
three BSs always yields the minimum BER when the user’s
location is in the interval [−R/2,R/2].

When the cell-edge user location becomes close to either
BS 3 or BS 4, i.e., x ≈ ±R, Fig. 3 shows that using ZF-
SIC RACMA at the nearest BS achieves the best detection
performance among all other methods that use joint detection.
This can be attributed to the fact that this user is no longer
a “common” user - there is a large discrepancy among the
received SNR at BS 3 (very high) and at BSs 1, 2, and 4
(very low), and hence, the power imbalance severely affects
the detection performance of the (G)CCA based approaches.
This observation suggests that depending on the user’s type
(center or edge), one should use either the closest BS or the
three nearest BSs to detect the user. In other words, if a user
is relatively close to any BS, then this user’s signal received
power is high at this BS and very weak at all other BSs, and
hence, it makes sense to decode this user’s signal from the
nearest BS. However, if a user is close to the edge between
cells, then this user is common to multiple BSs and jointly
detecting such a user from the three closest BSs using GCCA
yields the best detection performance.

More interestingly, it turns out that adding more BSs
does not always improve the performance. For instance, at
x = ±R/2, while GCCA using four BSs attains a comparable
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MMSE with channel estimation
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Fig. 5: BER vs. SNR of cell-edge users.

performance relative to GCCA with the three nearest BSs,
the latter is considerably better as the user moves towards the
center x = 0. This is because at x = 0, the received SNR is
very low at both BS 3 and BS 4 compared to BS 1 and BS 2,
and consequently, both views 3 and 4 act as two “noisy” views
that naturally degrade the signal recovery of the cell-edge user.
Therefore, one can conclude that from the geometry of the
hexagonal cells, adding more BSs and feeding their received
signals to GCCA to recover the common subspace will further
degrade the detection performance of cell-edge users as any
additional BS (view) will lead to an additional noisy view
that severely affects the cell-edge user’s signal recovery. In
other words, the more views (L > 3) GCCA uses, the more
difficult it becomes to reveal common information from all
views simultaneously. Therefore, using the observation that
using GCCA with the three closest BSs always yields the
minimum BER for cell-edge users, and to further show the
effectiveness of our approach under different settings, we will
only consider the three BSs scenario, shown in Fig. 4, for all
subsequent experiments.

We now consider another experiment where we vary the
transmitted power of the two cell-edge users from 20 dBm
to 25 dBm which corresponds to approximately 0 dB to 5
dB SNR according to the adopted path-loss model, while
the transmitted power of all-center users is fixed to 25 dBm.
Drawing different cell-center user locations for each Monte-
Carlo realization, we compute the average BER among the
two cell-edge users as a function of their transmitted power.
Fig. 5 shows how GCCA provides significant improvement in
the BER compared to all other methods. In particular, GCCA
achieves an order of magnitude reduction in the BER com-
pared to MMSE-SIC followed by RACMA (the second best
method) which jointly detects the cell-edge user signals using
the residual signals from the three BSs. Notice that, MMSE-
SIC assumes perfect ‘oracle’ knowledge of the channels of
cell-center users at their serving BS. This assumption becomes
less realistic when “cell-center” users are fully scattered
throughout the cell. Although this gives a big advantage to
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Fig. 6: BER vs. SNR of cell-edge users, d denotes the distance
at which cell-center users are randomly dropped up to.

the MMSE-SIC approach, GCCA still provides considerably
better detection performance of cell-edge users. Furthermore,
one can easily see how the channel estimation errors severely
degrade the detection performance of cell-edge users.

Additionally, we simulate a more realistic scenario where
cell-center users are almost fully scattered in their cell. In
particular, cell-center users are dropped up to d = 0.7R from
their serving BS, thereby cell-edge users are experiencing
more aggressive inter-cell interference compared to the case
where d = 0.4R. Note that the MMSE-SIC RACMA is
implemented using estimates of the cell-center users’ channels
instead of assuming perfect knowledge of their channels
because that is hard to attain even approximately when cell-
center users are fully scattered. Fig. 6 depicts the inter-cell
interference effect on the detection performance achieved by
different methods. It is obvious that the MMSE-SIC RACMA
completely fails at d = 0.7R compared to d = 0.4R. On the
other hand, both GCCA and CCA have a slight degradation
in their performance, which in turn reflects the efficacy of
both methods that principally rely on recovering the subspace
of the “equipowered” users. Note that GCCA with three BSs
still attains an outstanding detection performance compared
to the other methods under this realistic scenario.

We carry out another experiment in a more dense scenario
where K` = 16 and M` = 30. Further, cell-center users are
dropped up to d = 0.8R. We report the BER of cell-edge
users versus the SNR. Although the results in Fig. 7 show
that the detection performance of all methods significantly
degrades compared to the one in the previous experiment
where K` = 8, our proposed approach still can attain
acceptable performance by achieving 1e − 3 BER at 5dB.
Notice that doubling the number of users and allowing them
to be more scattered naturally leads to greater corruption in
the estimated common subspace, and hence, the degradation
in the detection performance obtained by the proposed method
is expected.

Adding more BSs with K users each might be expected
to severely affect the performance which is true in general.
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Fig. 7: BER vs. SNR of cell-edge users for different number
of users.
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Fig. 8: Average correlation coefficient of all possible extracted
components via GCCA.

However since, in principle, our approach recovers the sub-
space containing the “equipowered” user signals, adding more
users in the far cells (not served by the three closest BSs)
can slightly affect the cell-edge detection performance as we
observed from our simulations. For instance, looking at Fig. 2,
increasing the number of users served by BS 4 does not
affect the BER obtained when the cell-edge user is located
at x = −R/2 if GCCA is used with BSs 1, 2 and 3. However,
increasing the number of cell-center users can only degrade
the performance, as shown in Fig. 7, when these users are
served by any of the BSs used for detecting the cell-edge users
via GCCA. This can be attributed to the fact that there is a
chance that some users could be included in the common part,
and hence, underestimating the dimension of the common
subspace can degrade performance.

We now test the proposed algorithm used to detect the
number of cell edge users (i.e., the common subspace di-
mension). We consider a setup with M` = 12, K` = 8,
and SNR ≈ 3 dB. Note that since 2M` < N , we can
find up to 2M` canonical components. Fig. 8 shows the
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Fig. 9: SER vs. SNR of cell-edge users with QPSK modula-
tion.

average correlation coefficient computed at the i-th extracted
component, for i = 1, · · · , 24, for two different drop/scatter
patterns for the cell-center users. It is obvious that when
d = 0.4R, there is a significant gap between the average
correlation coefficient of the first two components and the
rest of the components. In particular, the average correlation
coefficient of the first two components is almost 0.8 while
all the rest are less than 0.3. Thus, one can decide that there
exist only two cell-edge users in this case. On the other hand,
at d = 0.7R, the value of the average correlation coefficient
slightly increases for some of the components. For example,
the average correlation coefficient of the third component now
jumps to 0.52 which means that there is one more user that can
be considered as common user. However, considering only the
first two components is enough to reliably recover the signals
of the two cell-edge users as shown in Fig. 6, where the
detection performance was sightly affected by increasing d
from 0.4R to 0.7R.

Finally, we evaluate the performance of the proposed
method under different modulation schemes. First, we assume
a QPSK transmission for all users in a scenario with K` = 8
users and two cell-edge users (Kc = 2). Further, cell-center
users are randomly located up to 0.7R from their serving BS.
We report the symbol error rate (SER) vs SNR of cell-edge
users for M` = M = 12, 24 antennas, ∀`. As Fig. 9 depicts,
GCCA followed by ACMA attains the lowest SER compared
to both MMSE with channel estimation and CCA with the two
closest BSs. It is also clear that, with M = 12, the detection
performance of all methods is worse for QPSK relative to
BPSK in Fig. 6, as expected. However, as we double the
number of antennas to M = 24, a significant improvement
can be achieved by our method, which attains approximately
10−3 SER at 5 dB SNR.

We also carried out another simulation with the previous
setup but with 8PSK modulation instead of QPSK, and with
Kc = 1. The numerical results in Fig. 10 demonstrate the
efficacy of our approach with higher-order modulation, in the
low SNR region. Note that the detection performance of all

0 1 2 3 4 5
SNR (dB)

10-1

100

SE
R

GCCA ACMA Combined (M = 12)
CCA ACMA Combined (M = 12)
MMSE with channel estimation (M = 12)
GCCA ACMA Combined (M = 24)
CCA ACMA Combined (M = 24)
MMSE with channel estimation (M = 24)

Fig. 10: SER vs. SNR of cell-edge users with 8PSK modula-
tion.

methods degrades significantly as we increase the modulation
order, which is expected given the SNR range considered.
However, for higher order modulation, coding schemes can
be employed on top of our proposed approach for improved
reliability.

VI. CONCLUSIONS

We studied the problem of cell-edge user signal detection
in the uplink of a multi-cell, multi-user MIMO system, with
the aim of designing a detector that can reliably demodulate
cell-edge user signals in the presence of strong intra-cell
interference from cell-center users, without resorting to power
control or/and scheduling algorithms that throttle the cell-
center user rates. We proposed a GCCA-based approach that
leverages selective base station cooperation to reliably identify
the common subspace containing cell-edge user signals at low
SNR, without even knowing their channels. Then, we used an
efficient analytical method ((R)ACMA) that guarantees the
identifiability of finite alphabet signals from well-conditioned
mixtures to separate the cell-edge user signals from the
resulting subspace. The proposed method is appealing for use
in dynamic environments because it (i) does not require any
knowledge of the channel state information of cell-edge users;
(ii) can automatically detect the number of common (cell-
edge) user signals regardless of associated channel variations
from one coherence interval to the next; (iii) can automati-
cally adjust to varying PSK modulation order (so cell-edge
users can even vary their modulation, depending on channel
conditions); and (iv) can efficiently deal with synchronization
issues.

We presented theoretical results to prove that under an
idealized scenario, the proposed GCCA-based approach re-
covers the subspace containing the cell-edge user signals.
Furthermore, we showed through an elegant analysis that
under realistic assumptions on the inter-cell interference and
the SNR of the cell-edge users, the common subspace recov-
ery is guaranteed via GCCA. Simulations using a realistic
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propagation and system model were carried out to show the
superiority of the proposed learning-based method over the
prevailing state-of-the-art methods. In particular, our proposed
approach attained an order of magnitude reduction in the BER
compared to other multi-user detection methods that assume
perfect knowledge of the channels of the cell-center users.
Furthermore, our experimental results evaluated the cell-edge
user detection performance as a function of the number of
cooperating BSs, and revealed that using the three closest BSs
is always optimal in this regard. This was not obvious a priori,
as intuition may have suggested that two or even more than
three BSs might be preferable in certain cases.

APPENDIX A
PROOF OF PROPOSITION 1

In this section, we will show that the principal Kc eigen-
vectors of the matrix
A =

∑L
`=1 YH

` (Y`Y
H
` )−1Y` is approximately the column

space of the cell-edge user signals. We first write the auto-
correlation matrix Y`Y

H
` as

Y`Y
H
` = Z`P`Z

H
` + σ2I, (17)

where we have exploited the facts that, at N > Ks,
XTX/N ≈ IKs

and E[N`N
H
` ] = σ2IN`

. Define the diagonal
matrix Γ` := P`/σ

2 ∈ RKs×Ks that contains the received
SNR of each user at the `-th BS, and U` := NH

` /σ ∈
CN×M` , and the matrix A` := YH

` (Y`Y
H
` )−1Y`. Then, by

direct substitution of (11) and (17) in the matrix A`, we obtain

A` = XΓ
1/2
` ZH` (Z`Γ`Z

H
` + I)−1Z`Γ

1/2
` XT

+ U`(Z`Γ`Z
H
` + I)−1UH

` + δ` + δH` ,
(18)

where δ` := U`(Z`Γ`Z
H
` +I)−1Z`Γ

1/2
` XT . By applying the

Woodbury matrix identity on the matrix C` := (Z`Γ`Z
H
` +

I)−1, we get

C` = (Z`Γ`Z
H
` + I)−1 (19a)

= I− Z`(Γ`
−1 + ZH` Z`)

−1ZH` (19b)

u I− Z`(Γ`
−1

+ I)−1ZH` (19c)

= I− Z`D`Z
H
` , (19d)

where D` u Γ`(Γ` + I)−1. It now follows that the first term
in (18) can be expressed as

T
(1)
` = XΓ

1/2
` ZH` C`Z`Γ

1/2
` XT (20a)

u XΓ
1/2
` (I−D`)Γ

1/2
` XT (20b)

= XD`X
T , (20c)

On the other hand, the second term in (18) can be written as

T
(2)
` = U`C`U

H
` (21a)

= U`U
H
` −U`Z`D`Z

H
` UH

` , (21b)

Given that U` contains i.i.d entries with zero mean and
variance 1/N while Z` contains i.i.d entries with zero mean
and variance 1/M`, both Z` and U` are uncorrelated, and
D` � IKs

(� interpreted element-wise), then it follows that

the summation in (21b) will be dominated by the matrix
U`U

H
` . Therefore, T

(2)
` can be approximately written as

T
(2)
` u U`U

H
` , (22)

Then, the expression δ` can written as

δ` = U`C`Z`Γ
1/2
` XT (23a)

u U`Z`(I−D`)Γ
1/2
` XT (23b)

= U`Z`(Γ` + I)−1Γ
1/2
` XT , (23c)

By summing (22) and (23c), we get

T
(2)
` + δ` = U`(U

H
` + Z`(Γ` + I)−1Γ

1/2
` XT ), (24)

where the summation on the right hand side of (24) is nothing
but adding two Gaussian matrices; one with variance σ2

1 =

1/N and the other with variance σ2
2 = 1

N
1
M`

∑Ks

i=1

√
γi`

(γi`+1)2 ,
where it can be easily seen that, even for modest M`, σ2

2 <<
σ2
1 . Therefore, the summation in (24) will be dominated by

T
(2)
` . Thus, combining (20) with (22), (18) can be written as

A` u XD`X
T + U`U

H
` , (25)

Recall that the optimal solution G∗ of (3) is the Kc principal
eigenvectors of the following matrix

A =
L∑
`=1

A` (26a)

= XDXT +
L∑
`=1

U`U
H
` , (26b)

where D :=
∑L
`=1 D` ∈ RKs×Ks . By defining

V = [X,U1, · · · ,UL] ∈ CN×(Ks+
∑L

`=1M`) and Σ :=
Diag(D, IM1 , · · · , IML

), (26) can be equivalently expressed
as

A = VΣVH , (27)

Since XTX ≈ IKs
and by definition UH

` U` ≈ IM`
∀`, then

VHV ≈ IKs+Ms
, it can be readily seen that the right hand

side of (27) is nothing but the eigendecomposition of the
matrix A. Recall that the i-th diagonal entry of the matrix
D is given by

D(i,i) =
L∑
`=1

ri`, (28)

From (AS2) and by assuming that the received signal power
of the k-th cell-edge user at the `-th BS is few dBs above the
noise floor, i.e., rk` > 0.5 ∀k = 1, · · · ,Kc and ` = 1, 2, 3,
the eigenspace of the Kc principal components of the matrix
A is given by

G∗ = XcP, (29)

where P is any Kc ×Kc non-singular matrix.
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