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Calculating the spectral function of two-dimensional systems is arguably one of the most pressing challenges

in modern computational condensed matter physics. While efficient techniques are available in lower dimensions,

two-dimensional systems present insurmountable hurdles, ranging from the sign problem in quantum Monte

Carlo methods to the entanglement area law in tensor-network-based methods. We hereby present a variational

approach based on a Chebyshev expansion of the spectral function and a neural network representation for the

wave functions. The Chebyshev moments are obtained by recursively applying the Hamiltonian and projecting on

the space of variational states using a modified natural gradient descent method. We compare this approach with a

modified approximation of the spectral function which uses a Krylov subspace constructed from the “Chebyshev

wave functions.” We present results for the one-dimensional and two-dimensional Heisenberg model on the

square lattice and compare them with those obtained by other methods in the literature.

DOI: 10.1103/PhysRevB.104.205130

I. INTRODUCTION

The knowledge of the excitation spectrum of a quantum
many-body system provides valuable information that can
be directly compared with experiments. While much effort
is dedicated to the calculation of ground-state wave func-
tions, their energies do not have much experimental relevance
since they cannot be measured. Experiments such as pho-
toemission or inelastic neutron scattering spectroscopies, for
instance, measure energy differences between excited and
ground states, yielding a spectral function, or density of states.
In addition, the integrated weight also yields the equal time
correlations in the ground state, which can also indicate the
existence of order or lack thereof, or the presence of quasipar-
ticle excitations that could be used as fingerprints to identify
quantum phases. Unfortunately, the numerical evaluation of
dynamical correlation functions in strongly correlated systems
is a very difficult undertaking, and the development of tech-
niques that can be applied beyond one dimension is possibly
one of the pressing challenges in computational condensed
matter physics.

Since the advent of high-temperature superconductivity,
progress has been marked by ingenuity to overcome the com-
putational limitations of the time. The first techniques to
emerge were based on exact diagonalization [1], which is
limited to small clusters, and different variants of the quantum
Monte Carlo method, which suffers from the sign problem
and requires uncontrolled analytic continuations [2–9]. Soon
after the invention of the density matrix renormalization group
(DMRG) [10–14], several approaches to extract dynamical
properties were proposed, which can be generically referred
to as dynamical DMRG [15–20], or DDMRG. The time-
dependent density matrix renormalization group and recent
variations using Chebyshev expansions have been important
developments, giving access to accurate spectra for very
large one-dimensional (1D) systems [21–28] and quasi-2D
cylinders [29,30] with moderate computational resources. An

alternative approach consists of proposing variational forms
for the excited states, which can be represented with ma-
trix product states (MPSs) [31–34] or other variational wave
functions that can be easily extended to higher dimensions
and are free from the sign problem [35–39]. The variational
Monte Carlo (VMC) approach relies on a variational ansatz
for the ground state inspired by some physical insight (typ-
ically of the form of a Gutzwiller projected wave function)
and can provide a few hundred discrete poles by diagonalizing
a Hamiltonian matrix projected onto a subspace of single
magnon excitations.

In this paper, we bring together some of these ideas trans-
lated in the context of recent advances in quantum machine
learning. Attempts in this direction have already demon-
strated very promising results: In Ref. [39], the concepts
behind correction-vector dynamical DMRG were general-
ized to arbitrary variational wave functions and applied to
the Heisenberg model using restricted Boltzmann machines
(RBMs) [40–43]. RBMs are a type of artificial neural net-
work widely used in machine learning that inspired Carleo
and Troyer [40] to propose a variational wave function for
a spin- 1

2
system of N sites. The visible layer corresponds to

the spin configurations �σ z = (σ z
1 , σ z

2 , . . . , σ z
N ). Then the co-

efficients of the wave function are given as ψ (�σ z, �a, �b,W ) =
e
∑N

i=1 aiσ
z
i

∏M
j=1 2 cosh (θ j ), where θ j = b j + ∑N

i=1 Wi jσ
z
i . The

weights Wi j and the biases A and b in this expression are
free parameters that are used to variationally minimize the
energy E = 〈ψ |Hψ〉/〈ψ |ψ〉. This procedure is carried out
using the Monte Carlo method to sample over all possible
spin configurations. The remarkable aspect of this type of
wave function is that they can encode a great deal of in-
formation in a relatively small set of variational parameters,
without making any assumptions about the physics of the
problem [44].

The main goal of this paper is to variationally approximate
the zero-temperature Green’s function for a quantum many-
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body system:

Gi j (z) = 〈ψ |Â†
j

1

z − Ĥ
Âi|ψ〉,

where Ai and A j are some local operators of interest, E0

is the ground-state energy, and z = ω + E0 + iη. The spec-
tral function is thus obtained as Ai j (ω) = − 1

π
Gi j (z). The

correction-vector DMRG method recasts this calculation as
a complex system of equations for each frequency ω. In
Ref. [39], the solution to this system of equations was en-
coded in the form of an RBM. The optimization is carried
out by means of a natural gradient descent approach based on
quantum geometry concepts that allows one to solve a large
system of equations stochastically with RBMs, or any other
variational wave function.

We here explore a different avenue by expanding the spec-
tral function in terms of Chebyshev polynomials. In Ref. [26]
it was shown that this approach, combined with DMRG,
can yield very accurate results with a fraction of the effort
compared with other methods. In fact, it comes with several
advantages over other methods, such as that (i) it provides
uniform resolution over the entire relevant frequency range
with a relatively small number of Chebyshev moments and
(ii) the information to calculate each moment is encoded in
an RBM that can be stored for later use or systematically
improved if needed.

In addition, we propose two alternative ideas to improve on
the basic algorithm. The main observation that we make is that
variational wave functions in general can have limited ability
to accurately represent arbitrary many-body states, translating
into systematic errors in the calculated quantities. This can be
due to either the mathematical structure of the variational state
or numerical errors in their optimization. Therefore we use a
new set of basis states, constructed as linear combinations of
RBM wave functions, that allows us to explore regions of the
Hilbert space outside of the RBM manifold. This approach
yields new, “corrected” results that considerably improve the
accuracy of the expansion. Finally, the Hamiltonian, projected
on this new basis, can be tridiagonalized to produce yet an-
other estimate of the spectral function in terms of a continued
fraction. The latter can be directly compared with other meth-
ods, such as dynamical DMRG.

The paper is organized as follows: In Sec. II we introduce
the basic ideas behind the Chebyshev representation of the
spectral function; in Sec. III we discuss the implementation
using RBMs and the details of the variational optimization.
Results can be improved by taking advantage of error cor-
rection measures described in Sec. IV. Section V covers an
alternative approach using a representation of the spectral
function in terms of a Krylov expansion of the basis. Results
for both the one-dimensional and two-dimensional Heisen-
berg model on the square lattice are presented in Sec. VI.
We finally close with a summary and discussion of possible
strategies to improve the accuracy of the calculation.

II. CHEBYSHEV EXPANSION

In this section we briefly describe the expansion of the
spectral function Ai j (ω) in terms of Chebyshev moments. We
refer the reader to Ref. [26] for a more detailed discussion.

An important aspect of Chebyshev polynomials is they are
defined in the interval [−1, 1]. Hence we rescale the frequen-
cies and the Hamiltonian such that the range of the expansion
encompasses the region with the bulk of the spectral weight.
If our problem has nonzero spectral weight in the interval
0 � ω � WA, we define ω′ = ω/a − W ′ with a = W∗/2W ′,
and H ′ = (H − E0)/a − W ′. In these expressions, W∗ > WA is
an effective bandwidth larger than WA, and W ′ is the rescaled
bandwidth, which we chose, for safety reasons, to be slightly
smaller than 1 (W ′ = 1 − 0.0125 in the following). In a nut-
shell, the spectral function can now be written as

Ai j (ω) = 2W ′/W∗

π
√

1 − ω′2

[
g0μ0 + 2

N−1∑

n=1

gnμnTn(ω′)

]
, (1)

where Tn(x) is the nth Chebyshev polynomial of the first kind,
the coefficients gn are damping factors that affect the broad-
ening, and μn are the corresponding Chebyshev moments:

μn = 〈ψ |Â†
jTn(Ĥ ′)Âi|ψ〉. (2)

Luckily, one can exploit the definition of the Chebyshev poly-
nomials and their recursion relation to recast the moments as

μn = 〈ψ |Â†
j |tn〉, |tn〉 = Tn(Ĥ ′)Âi|ψ〉, (3)

with

Tn+1(x) = 2xTn(x) − Tn−1(x),

T0(x) = 1, T1(x) = x. (4)

Hence, given an initial wave function |t0〉 = Âi|ψ〉, we
iteratively solve for a sequence of “Chebyshev wave
functions” |t1〉, |t2〉, . . . such that |tn〉 = Tn(Ĥ ′)|t0〉. In the
following section, we describe how to carry out this task
using a variational representation of |tn〉.

III. VARIATIONAL OPTIMIZATION

Let |φ〉 be the target wave function for a holomorphic
variational wave function |ψ (α)〉 with variational parame-
ters {α1, α2, . . . , αM} ∈ C

M that need to be optimized to
make |ψ (α)〉 as equal to |φ〉 as possible up to an over-
all constant. This is done by minimizing the Fubini-Study
metric—essentially the angle—between the two wave func-
tions, which is given by

γ (ψ, φ) = arccos

√
〈ψ |φ〉〈φ|ψ〉
〈ψ |ψ〉〈φ|φ〉 .

Taking the gradient of γ 2 with respect to |ψ〉 gives

|δψ〉 = δγ · γ (ψ, φ) cot [γ (ψ, φ)]

[ 〈ψ |ψ〉
〈ψ |φ〉 |φ〉 − |ψ〉

]
,

which is a differential rotation by an angle δγ · γ towards
|φ〉 (with a change in the overall phase to match |ψ〉). As
with rotations in real space, 〈ψ |δψ〉 = 0 and 〈δψ |δψ〉 =
(δγ · γ )2〈ψ |ψ〉.

The procedure to update the variational coefficients α using
natural gradient descent is described in detail in Ref. [39],
and we hereby summarize it. The updates �α correspond to
projecting |δψ〉 onto the manifold of possible variational wave
functions of the proposed form (in our case, an RBM). To
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calculate �α, one must solve the following linear system of
equations:

M∑

k′=1

Skk′�αk′ = 〈∂kψ |δψ〉
〈ψ |ψ〉 − 〈∂kψ |ψ〉

〈ψ |ψ〉
〈ψ |δψ〉
〈ψ |ψ〉 ,

where |∂kψ〉 = ∂
∂αk

|ψ〉 and S is given by

Skk′ = 〈∂kψ |∂k′ψ〉
〈ψ |ψ〉 − 〈∂kψ |ψ〉

〈ψ |ψ〉
〈ψ |∂k′ψ〉
〈ψ |ψ〉 .

To estimate the the overlap between wave functions in the
definition of S and in the linear system defined above, we
use the VMC approach. The states |s〉 are sampled according
P(s) = |ψs|2/〈ψ |ψ〉, where ψs ≡ 〈s|ψ〉. Using these sampled
states, we define estimators such as the log-derivative Ok (s) =
∂ψs

∂αk
/ψs and the ratio R(s) = φs/ψs that are used to calculate

the following relevant quantities:

Skk′ = 〈Ok (s)∗Ok′ (s)〉 − 〈Ok (s)〉∗〈Ok′ (s)〉,

γ (ψ, φ) = arccos

√
|〈R(s)〉|2
〈|R(s)|2〉 ,

〈∂kψ |δψ〉
〈ψ |ψ〉 = δγ γ (ψ, φ) cot [γ (ψ, φ)]

×
[ 〈Ok (s)∗R(s)〉

〈R(s)〉 − 〈Ok (s)∗〉
]
. (5)

Notice that when |ψ〉 ∝ |φ〉, the variance of R(s) goes to
0. As a consequence, the variance of the estimators above (ex-
cept S) also goes to zero. Once the parameters have converged,
the normalization constant β can be calculated as

β = 〈ψ |φ〉
〈ψ |ψ〉 = 〈R(s)〉.

This optimization algorithm is applied to every step of
the Chebyshev recursion: Each wave function in sequence is
approximated by a non-normalized variational wave function
|t̃n〉 and corresponding normalization constant βn. The wave
functions are solved iteratively using the Chebyshev recur-
rence relation and are projected onto an RBM form such that
the corresponding target wave functions are |t1〉 = β0H ′|t̃0〉
and |tn〉 = 2βn−1H ′|t̃n−1〉 − βn−2|t̃n−2〉 for n � 2, where β0 =
1 and |t̃0〉 = |t0〉. These wave functions can be easily stored,
since the number of variational coefficients is O(N2). This
allows the calculation to proceed in three steps: First, the wave
functions |tn〉 are obtained; second, the Chebyshev moments
are calculated by sampling over the wave functions to obtain
the overlaps, and, finally, the spectral function can be recon-
structed.

IV. CHEBYSHEV MOMENT CORRECTION

In the absence of errors, only the overlap of the Chebyshev
vectors with |t0〉 is needed to obtain the Chebyshev moments.
Due to numerical errors, limitations in the expressivity of
the RBM wave function, and the fact that each successive
Chebyshev wave function is obtained recursively, the varia-
tional Chebyshev wave functions will become a less accurate
approximation, amplifying the error for the higher moments.
However, we can obtain better estimates for the Chebyshev

TABLE I. Workflow describing the procedure to calculate the

corrected Chebyshev moments.

Chebyshev moment correction

1 Obtain |tn〉 variationally using Chebyshev recursion

2 Calculate overlaps σnm = 〈tn|tm〉 and matrix elements

Hnm = 〈tn|H |tm〉
3 Define projector P = ∑

nm(σ−1)nm|tn〉〈tm|
4 Project H → HP = P†HP

5 Recalculate moments in the new basis using HP, Eqs. (6)–(8)

wave functions by generating a new orthogonal basis from
the original Chebyshev wave functions. The orthogonalization
requires calculating the overlap matrix between the RBM
states, as we describe below. The new basis will be spanned
by states that are linear combinations of RBMs, and are no
longer RBMs. Once we have obtained the new basis, we
recalculate the matrix elements of the Hamiltonian and use
the new representation to obtain the corrected moments. Thus
the resulting error no longer depends on the accuracy of the
individual wave functions: Even if the individual RBM wave
functions drift from their target Chebyshev wave function, the
new basis will correct for these errors.

The procedure to recalculate the Chebyshev moments is
as follows (Table I): The projector onto the space spanned by
the RBMs is given by P̂ = ∑

mn(σ−1)mn|tm〉〈tn|, σnm = 〈tn|tm〉,
and Hnm = 〈tn|Ĥ |tm〉. Let us project the Hamiltonian onto this
basis as ĤP = P̂Ĥ P̂. Then, the recalculated Chebyshev wave
functions are obtained as

|t ′
n〉 = Tn(ĤP )|t ′

0〉 =
∑

m

cmn|tm〉,

with |t ′
0〉 = |t0〉 and thus c0n = δ0n. The coefficients cmn can

be obtained from the Chebyshev recursion relations, which
results in the following system of equations:

∑

l

σmlcl1 =
∑

l

Hml cl0, (6)

∑

l

σml cl,n+1 =
∑

l

2Hml cln − σml cl,n−1. (7)

Finally, the moments are obtained as

μn =
∑

ml

c∗
m0σml cln. (8)

V. CONTINUED FRACTION

In the previous section we obtained a representation of the
Hamiltonian in an orthogonal basis, ĤP. We can then generate
a Lanczos recursion to cast the Hamiltonian matrix in tri-
diagonal form. The Lanczos wave functions |v0〉, . . . , |vN−1〉
are obtained from the projected Hamiltonian [1] ĤP with
|v0〉 = |t0〉:

|v1〉 = ĤP|v0〉 − 〈v0|ĤP|v0〉
〈v0|v0〉

|v0〉,

‖vn+1〉 = ĤP|vn〉 − an|vn〉 − b2
n|vn−1〉, (9)
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with

an = 〈vn|ĤP|vn〉
〈vn|vn〉

, b2
n = 〈vn|vn〉

〈vn−1|vn−1〉
. (10)

Finally, to obtain the spectral function from HP, we use a
continued-fraction expansion of the spectral function pro-
jected onto this subspace [1,15,19]:

Ai j (ω) = − 1

π
Im

[ 〈ψ |Â jÂi|ψ〉

z − a0 − b2
1

z − a1 − b2
2

z − a2 − · · ·

]
,

(11)
with z = ω + E0 + iη, where η is a small number (we take
η = 0.1 in our calculations) that introduces an artificial broad-
ening of the poles. This approach resembles the one proposed
by Hallberg in Ref. [15] to calculate dynamical properties
using DMRG, where the variational manifold is spanned by
wave functions of the form of matrix product states instead
of RBMs. This approach is simpler than the correction-vector
method presented in Refs. [16,17,39] but, as we shall see
below, may lose accuracy at high energies [19].

VI. RESULTS

For demonstration and benchmarking we focus on the spin-
1
2

Heisenberg model in one and two dimensions on the square
lattice:

Ĥ = J
∑

〈i j〉
�Si · �S j, (12)

where �S = (Ŝx, Ŝy, Ŝz ) are spin operators and the sum runs
over pairs of nearest-neighbor sites on the lattice. We con-
sider periodic boundary conditions and chose J as our unit
of energy. We are interested in the longitudinal spin structure
factor, defined as

Sz(k, ω) = − 1

πN
Im

∑

n

eik·rn〈ψ |Ŝz
0

1

z − Ĥ
Ŝz

n|ψ〉,

where we have used translational invariance. In our calcu-
lations, unless otherwise stated, we consider W ′ = 1 − ǫ/4
with ǫ = 0.05; W∗ = 10W ′. In addition, we use the so-called
“Jackson damping” in Eq. (1):

gn =
(N − n + 1) cos πn

N+1
+ sin πn

N+1
cot π

N+1

N + 1
,

where N is the number of moments used. We also implement
spatial symmetries to improve the accuracy of our results, as
described in Appendix A.

In Fig. 1 we show the evolution of the longitudinal struc-
ture factor of a 1D spin chain of length L = 32 for a choice
of momentum k = π/2 as a function of the number of Cheby-
shev moments N . Unless otherwise stated, in all calculations
we used L hidden variables. We clearly observe that the
spectrum develops oscillations reproducing the well-resolved
high-energy features in the finite system. These oscillations
become more pronounced when increasing n over the range of
energies corresponding to the spinon continuum. This shows
that one can obtain very reasonable results over the entire

FIG. 1. Evolution of the spin dynamic structure factor of a

Heisenberg chain with the number of Chebyshev moments using

RBM wave functions for L = 32 at momentum k = π/2.

FIG. 2. (a)–(d) Spin dynamic structure factor for a Heisenberg

chain obtained using N = 100 RBM wave functions, compared with

DMRG results using a Chebyshev expansion for L = 32 and various

values of momenta k.
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FIG. 3. (a)–(d) Spin dynamic structure factor for a Heisenberg

chain obtained with a continued-fraction approach in the basis of

N = 100 Chebyshev RBM wave functions, compared with dynam-

ical (correction vector) DMRG, for L = 32 and various values of

momenta k. An artificial broadening η = 0.1 is introduced.

frequency domain with moderate effort using a small number
of wave functions, or Chebyshev iterations.

In Fig. 2 we compare results with N = 100 with those
obtained using the same approach but with DMRG as a solver
(i.e., using matrix product states as a variational ansatz). The
agreement over the entire range of momenta and frequencies
is remarkable. Notice that there is no straightforward way to
quantify the error, except by comparing with such accurate
calculations using other methods (DMRG in this case). We
discuss the possible sources of the discrepancies in the dis-
cussion, Sec. VII.

Figure 3 shows the same spectra but using the continued-
fraction approach, compared with dynamical DMRG. We note
that while the positions of the peaks are the same, the profiles
are different from those in Fig. 2 because the spectrum in
this case is described by a superposition of Lorentzians. For
all practical purposes, both techniques reproduce the same
data. This is more dramatically illustrated in Fig. 4, where
we compare all approaches as a function of momentum and
frequency in color density maps. It is fair to say that they are
practically indistinguishable.

While results in 1D serve as a benchmark and illustrate
the accuracy of the approach, we aim at making this method
also applicable in higher dimensions, where one can access
richer physics, such as quantum spin liquids [45]. In this
case, we focus on a 6 × 6 square lattice, where our variational

FIG. 4. Color density plots depicting the spin dynamic structure

factor for a Heisenberg chain with L = 32 as a function of momen-

tum and frequency, obtained by the four methods used in this paper:

(a) Chebyshev moments with RBM wave functions, (b) Chebyshev

moments using DMRG, (c) continued (Cont.) fraction using the

Chebyshev RBM basis, and (d) dynamical DMRG. We use N = 100

Chebyshev moments.

results can be contrasted directly to exact diagonalization (see
Appendix B). In Figs. 5 and 6 we display a comparison for
several values of momenta on the two-dimensional Brillouin
zone using both a Chebyshev expansion and a continued-
fraction approach, respectively. We also include results with
2L hidden variables, showing very small differences indicat-
ing that the error is dominated by the Chebyshev truncation
(the number of moments), as shown in Fig. 1. We find that
while the first peak is very accurately described, the high-
energy features with smaller spectral weight are partially lost,
as also observed in the original dynamical DMRG using con-
tinued fractions [15].

VII. SUMMARY AND CONCLUSIONS

We have presented a highly efficient approach to calcu-
late spectral functions of strongly correlated systems using
a Chebyshev expansion of the Green’s function and a vari-
ational representation of the many-body states in the form
of restricted Boltzmann machines. Unlike a previous method
introduced in the literature by the authors [39], these calcu-
lations are numerically inexpensive and yield very accurate
results in 1D. We have also described remedial measures to
improve the accuracy of the results, such as using spatial
symmetries and correcting for the limited “expressivity” of
the neural network. As mentioned earlier, the method provides
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FIG. 5. (a)–(d) Spin dynamic structure factor for the Heisenberg

model on a Lx × Ly = 6 × 6 square lattice using a Chebyshev expan-

sion and exact diagonalization (ED). The curves with legends RBM

and RBM2 correspond to a hidden layer with L and 2L variables,

respectively.

uniform resolution over the entire relevant frequency range
with a relatively small number of Chebyshev moments, and
the information to calculate each moment is encoded in an
RBM that can be stored for postprocessing.

In order to understand the sources of error, we start by
recalling that (i) our calculations rely on a particular form of
the variational wave function, meaning that the results will
depend on the representation power of an RBM determined
primarily by the number of hidden variables [46]; (ii) the
optimization of the wave function depends on our ability to
accurately minimize our loss function with respect to the
variational parameters (this loss function may have a complex
landscape with local minima); and, in addition, (iii) we need
to consider the errors introduced by the stochastic sampling of
all the different quantities. Due to the recursive nature of the
calculation, since every wave function depends on the previ-
ous ones, any errors are propagated down the sequence. We
have shown that these errors can be mitigated by recalculating
the moments in a Chebyshev basis that has support outside the
space of single RBMs.

These ideas are general, as demonstrated by both prior
studies using matrix product states and in this paper using
RBMs. The main challenge moving forward is to scale these
methods to larger systems, which will be primarily determined
by our ability to train larger networks, or variational wave
functions, with a growing number of free parameters.

FIG. 6. (a)–(d) Spin dynamic structure factor for the Heisenberg

model on a Lx × Ly = 6 × 6 square lattice using both continued frac-

tion with RBM Chebyshev wave functions and exact diagonalization.

The curves with legends RBM and RBM2 correspond to a hidden

layer with L and 2L variables, respectively.

It is also worth noting that one can take existing mo-
ments and approximate higher moments using extrapolation
techniques [27,47]. This can help push calculations to larger
system sizes by reducing the total number of moments re-
quired.

We finally point out that the overall technique, including
the error correction approach we used to improve the Cheby-
shev wave functions, is generic and can be implemented with
any variational form of wave function.
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APPENDIX A: IMPLEMENTING SYMMETRIES

The RBM wave functions are optimized to approximate
|tn00〉 = Tn(Ĥ )Sz

00|ψgs〉 for the nth Chebyshev polynomial Tn

and approximate ground state |ψgs〉. To obtain the Chebyshev
wave functions for momentum k = (k1, k2), we make use of
the translational symmetry of the problem by assuming that
the ground state has zero momentum (translations do not
result in a change in overall phase). Here, we use T̂m1m2

to rep-
resent the translation operator on the square lattice with a shift
of (m1, m2), while Tn(Ĥ ) denotes the Chebyshev polynomials
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of the Hamiltonian. Using this notation, we can write

|̃tnk1k2
〉 = 1

L
Tn(Ĥ )

L−1∑

m1,m2=0

e−i 2π
L

(k1m1+k2m2 )T̂m1m2
Ŝz

00T̂−m1−m2
|ψgs〉

= LP̂
(T )
k1k2

|tn00〉.
In this equation, one can see that we are acting with the pro-
jection operator onto the momentum sector with momentum
quantum numbers given by integers k1, k2 defined as

P
(T )
k1k2

= 1

L2

L−1∑

m1,m2=0

e−i 2π
L

(k1m1+k2m2 )T̂m1m2
.

Thus each momentum wave function can represented in terms
of linear combinations of translations of a single RBM opti-
mized for the local Sz

00 operator. Additionally, since P̂
(T )
k1k2

is a
projector, the resulting state will have the correct momentum,
and all the error from different momentum sectors will be
projected out. In the same vein, rotational symmetry can be
enforced by applying the following projector of rotations and
translations.

P̂(R) = 1
4
(1 + T̂10R̂ + T̂11R̂2 + T̂01R̂3).

This projector is an average of each rotation followed by the
translation which takes the Sz operator back to the origin or,
equivalently, rotations about the origin. In the exact calcu-
lation for the Chebyshev wave functions, the application of
P̂(R) should leave the |tn00〉 unchanged. However, the RBM
representation will not necessarily have rotational symmetry;
therefore the projector will correct any errors related to an
absence of rotational symmetry. After including the rotation
projector we find

∣∣̃tnk1k2

〉
= LP̂

(T )
k1k2

P̂(R)|tn00〉.
All that is needed to calculate the Chebyshev moments is

the overlap:

μnk1k2
=

〈̃
t0k1k2

∣∣̃tnk1k2

〉

〈ψgs|ψgs〉
.

However, due to the recursive process of obtaining the Cheby-
shev wave functions, the error will propagate down the
sequence of wave functions. As mentioned in the main text,
we can correct some of this error by constructing new Cheby-
shev wave functions as linear combinations of the original
RBM wave functions. This error correction requires us to
calculate the following quantities:

G
(k1k2 )
nn′ =

〈̃
tnk1k2

∣∣̃tn′k1k2

〉

〈ψgs|ψgs〉
,

H
(k1k2 )
nn′ =

〈̃
tnk1k2

∣∣H
∣∣̃tn′k1k2

〉

〈ψgs|ψgs〉
.

These matrices are calculated by sampling over spin configu-

ration states |s〉 probability P(s) = 〈ψgs|s〉〈s|ψgs〉
〈ψgs|ψgs〉 . Then, for each

translation (m1, m2) and rotation mr of s, we obtain

Bnm1m2mr
(s) = 〈s|T̂m1m2

R̂mr |tn00〉
〈s|ψgs〉

.

From these values, the ratio B̃nk1k2
(s) = 〈s|̃tnk1k2

〉/〈s|ψgs〉 can
be obtained by Fourier-transforming B.

B̃nk1k2
(s) = 1

L

L−1∑

m1,m2=0

e−i 2π
L

(k1m1+k2m2 ) 1

4

[
Bn,m1,m2,0(s)

+ Bn,m1+1,m2,1(s) + Bn,m1+1,m2+1,2(s)

+ Bn,m1,m2+1,3(s)
]
.

Finally, the average gives G
(k1k2 )
nn′ = 〈B̃nk1k2

(s)∗B̃n′k1k2
(s)〉. A

similar procedure is followed to obtain H
(k1k2 )
nn′ .

APPENDIX B: EXACT CALCULATION

FOR 2D HEISENBERG MODEL

In order to calculate the spectral function for a 6 × 6 lattice
with periodic boundary conditions, we implement the trans-
lational and point-group symmetries to block-diagonalize
the Hamiltonian using the QUSPIN exact diagonalization
library [48,49]. Any local operator Ai explicitly breaks transla-
tional invariance, so instead we work with linear combinations
of the local operators:

Âk1,k2
= 1

L

L−1∑

n1,n2=0

e−i 2π
L

(k1n1+k2n2 )Ân1,n2
. (B1)

The resulting operators have a well-defined quantum num-
ber for the momentum or point-group symmetries; therefore,
when applying this operator to the ground state, the resulting
state lives in the sector with the momentum given by the
operator

|A(k1, k2)〉 = Âk1,k2
|ψgs〉. (B2)

With this state calculated we can calculate the Chebyshev mo-
ments as well as solve for the exact spectral function by using
an iterative linear solver on the following linear equation:

(z − Ĥ )|A(k1, k2)〉 = |B(k1, k2, z)〉, (B3)

which can then be used to calculate the spectral function
defined in momentum space:

Gk1,k2
(z) = 1

π
〈ψgs|Â†

k1,k2

1

z − Ĥ
Âk1,k2

|ψgs〉

= 1

π
〈A(k1, k2)|B(k1, k2, z)〉. (B4)
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