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We use the density matrix renormalization group method to study a one-dimensional chain with Peierls

electron-phonon coupling, which describes the modulation of the electron hopping by lattice distortions. We

demonstrate that this system is stable against phase separation in the dilute density limit. We only find phase

separation numerically for large couplings for which the linear approximation for the electron-phonon coupling

becomes invalid; this behavior can be stabilized in a narrow sliver of the physical parameter space if the

dispersion of the phonons is carefully tuned. These results indicate that in the dilute electron density limit,

Peierls bipolaron liquids are generically stable, unlike in other models of electron-phonon coupling. We show

that this behavior extends to finite carrier concentrations of up to quarter filling. This stability of low-density,

light-mass bipolaron liquids in the Peierls model opens a path to high-Tc superconductivity based on a bipolaronic

mechanism, in higher dimensions.

DOI: 10.1103/PhysRevB.104.L201109

Introduction. A primary goal in condensed matter physics

targets the discovery and understanding of unusual phases

of matter that arise from strong correlations. Correlated

electron-lattice systems manifest in fascinating ways in many

experimentally relevant situations, such as polaronic phenom-

ena in the dilute electron density limit [1–5], and charge

order and superconductivity at finite electron concentrations

[6–8]. In particular, the search for alternative microscopic

mechanisms for high-Tc superconductivity has stimulated a

renewed interest in the study of bipolarons—bound states

of two polarons, where a polaron is an electron dressed by

a cloud of phonons—in the presence of different forms of

electron-lattice coupling.

Recent work [4] has in fact demonstrated that the Peierls

electron-phonon coupling [9–11], which describes the mod-

ulation of the electron hopping due to lattice distortions,

gives rise to strongly bound but light-mass bipolarons.

As a result, these should remain phase coherent up to

high temperatures, opening a possible route to phonon-

mediated high-Tc superconductivity whose fingerprints may

have already been observed experimentally in the material

Ba1−xKxBiO3 [12,13]. A possible hindrance to this scenario

are competing instabilities that could favor a different or-

der. For example, for the more studied generalized Holstein

[14,15] and Fröhlich [16,17] models in which the lattice

distortion modulates the electron’s on-site energy, phase sep-

aration sets in at fairly weak electron-phonon couplings for

low carrier concentrations [18–20]. This is because bipolarons

*These two authors contributed equally.
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‡js5530@columbia.edu

in these models become increasingly heavy at stronger cou-

plings [21–23] and experience a phonon-mediated long-range

electron-electron attraction. The latter favors clustering of

bipolarons in order to minimize the total energy, thus inducing

phase separation. This phenomenon presents a major obstacle

to bipolaronic superconductivity (at any temperature) in these

models. In contrast, as stated earlier, the Peierls coupling

favors light bipolarons even at very large couplings because

it mediates effective pair-hopping interactions that enhance

the kinetic energy of bipolarons [4]. As such, it is unclear

whether phase separation occurs in the Peierls model at finite

electronic densities. In this regime, the lack of controllable

analytical approaches calls for the use of unbiased numerical

techniques.

In this Letter, we use the density matrix renormalization

group (DMRG) method [24] to show that in one dimension

(1D), a dilute liquid of bipolarons is stable against phase

separation up to strong Peierls electron-phonon couplings.

Phase separation occurs only when lattice distortions are so

large such that the linear approximation breaks down and the

model becomes unphysical. Refinements such as the inclusion

of a finite phonon dispersion may render phase separation

possible for sufficiently large couplings, but also pushes the

critical coupling to larger values. We illustrate this main re-

sult in Fig. 1 where we contrast the stability of a liquid of

Peierls bipolarons with the behavior of a generalized extended

Holstein model in which phase separation sets in at very low

couplings. We also confirm that this phenomenology extends

to finite electron concentrations up to quarter filling (see

Fig. 4).

Instability of polarons or bipolarons to phase separation

operates more effectively in lower dimensions. Therefore,

given our results in 1D, we expect the stability of a liquid of
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FIG. 1. Main panel: Phase diagram of the 1D Peierls model

contrasted against that of the extended Holstein (EH) model in the

dilute electron density limit. The latter represents a lattice model that

mimics the physics of the Fröhlich coupling, see Ref. [18], for which

λ = g2/(2�t ). The phase boundary defined by λc(�) separates a

stable liquid of bipolarons from phase separation. For the Peierls

model, the bipolaron liquid is stable for λ < λc (orange region),

becomes unstable to phase separation for λc < λ < λs (grey region),

and the latter quickly gives way to an unphysical regime for λ > λs

(white region), see text for details. For the EH model, the dashed

line labels critical values λc(�) separating a stable liquid of bipo-

larons for λ < λc (red-orange region) from the phase separation for

λ > λc (all regions above). In clear contrast to the EH model, in the

Peierls model the bipolaron liquid is stable up to much larger λ, with

λc → ∞ as � → ∞. These DMRG results are for a system with

L = 32 sites, N = 6 electrons and using a finite dispersion parameter

δ = 0.02. Inset: Staggered displacement amplitude D, defined in

Eq. (1), as a function of λ for different values of � in the Peierls

model. The horizontal dashed line at 1/2 defines the limit beyond

which phonon displacements become unphysical.

Peierls bipolarons to extend to higher dimensions. This, cou-

pled with the arguments of Ref. [4] showing that the Peierls

model realizes light-mass bipolarons, further supports the pos-

sibility of high-Tc superconductivity based on a bipolaronic

mechanism in physically relevant dimensions [25,26].

Model. We consider the one-dimensional Peierls model of

electron-phonon coupling [9–11,27,28]

H = He + Hph + Ve−ph.

Here

He = −t
∑

i,σ

c
†
i,σ ci+1,σ + H.c.

describes nearest-neighbor hopping of electrons of spin σ ∈
{↑,↓} in a single electronic band with creation operator c

†
i,σ

at site i ∈ {1, .., L}, and number operator n̂i =
∑

σ n̂i,σ . The

Peierls electron-phonon coupling describes the modulation of

the hopping integral due to lattice distortions in the linear

approximation:

Ve−ph = g
∑

i,σ

(c†
i,σ ci+1,σ + H.c.)(b†

i + bi − b
†
i+1 − bi+1).

Phonons belong to an optical Einstein mode of frequency �

(we set h̄ = 1) with

Hph = �
∑

i

b
†
i bi + δ

�

4

∑

i

(b†
i + bi − b

†
i+1 − bi+1)2.

Here, a phonon is described by a boson creation operator b
†
i at

site i ∈ {1, .., L}. The δ term gives a dispersion to the optical

phonons (we set the lattice spacing a = 1 and oscillator mass

M = 1): �q = �
√

1 + 4δ sin2(q/2) shows hardening at the

zone boundary q = ±π if δ �= 0. We characterize the strength

of Peierls electron-phonon coupling via the dimensionless

coupling λ = 2g2/(�t ).

Methods. We study N � 16 electrons in the zero mag-

netization sector Sz
Tot = 0 of the Peierls model on chains of

lengths L � 48. We use DMRG to compute the ground state,

utilizing up to nphmax
+ 1 = 20 phonon states to represent the

local phonon Hilbert space. In the literature, DMRG has been

often used to study one dimensional correlated Hamiltoni-

ans with Holstein electron-phonon coupling, seldomly with

Peierls electron-phonon coupling [29–43]. Our numerical re-

sults were converged with respect to the bond dimension m. A

maximum m = 600 provides convergence with a truncation

error smaller than 5 × 10−7 for open boundary conditions

(OBC) and 5 × 10−6 for periodic boundary conditions (PBC),

see the Supplemental Materials for more information [44].

Note that unlike in quantum Monte Carlo approaches,

where an explicit cutoff on the amplitude of the lattice distor-

tions is introduced to avoid unphysical changes in the sign of

the hopping term [45,46] or a restricted interval of interaction

strengths is explored, in DMRG simulations one may use the

δ phonon term as a Lagrange multiplier that energetically

penalizes unphysical changes in the sign of the hopping, i.e.,

as a physical constraint on the length of the bonds.

Dilute electron density limit. Previous work showed that

Peierls bipolarons are stable against dissociation into single

polarons for all λ, unless an extremely large Hubbard repul-

sion is present (a possibility ignored in this paper) [4]. We

first analyze the stability of a dilute liquid of these Peierls

bipolarons. We use DMRG to find the ground-state (GS) en-

ergies EN for N = 1, 2, 4, 6 electrons on a chain with L = 32

sites shown in Fig. 2. We define �2 = 2E1 − E2,�4 = 2E2 −
E4,�6 = E2 + E4 − E6 and study their dependence on λ in

Fig. 2(a). In the thermodynamic limit, all �N � 0: �N = 0

indicates that smaller complexes, each composed of fewer

than N particles, are energetically favorable (e.g., �4 = 0

means that the N = 4 GS consists of two bipolarons), while

�N > 0 implies that bound state of the N carriers is more

stable. Figure 2(a) shows that �2 > 0 for all λ, confirming

that the N = 2 GS always corresponds to a bipolaron, in

agreement with [4]. Both �4 and �6 only become positive

above roughly the same λc � 0.8, showing the tendency of all

carriers present in the system to coalesce if λ � λc. [We note

that negative �2,�4 values for λ < λc are due to finite-size

effects, see the inset of Fig. 2(a).] (Additional analysis based

on Maxwell construction is presented in the Supplemental

Material [44]). Note that below λc we find E2N = NE2, and

E2 agrees with the single bipolaron energy of Ref. [4]. This

confirms that this dilute bipolaron liquid is formed of es-

sentially isolated bipolarons whose properties follow from
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FIG. 2. (a) Main panel: Energies �2 = 2E1 − E2, �4 = 2E2 −
E4, �6 = E2 + E4 − E6 against λ for � = 2t , where EN is the GS

energy for N electrons on a chain of infinite length. For λ > λc ≈
0.8, �4 > 0 and �6 > 0 signal that the N = 4, 6 carriers bind, in-

dicating phase separation (see text for more details). Inset: Scaling

of �4 with system size L proves that for λ < λc ≈ 0.8, �4 → 0 as

L → ∞. The scaling was performed using data up to L = 64 (not

shown) and assuming �4(L) = a0 + a2

L2 + a4

L4 for λ < λc ≈ 0.8 and

�4(L) = a0 + a2

L
for λ > λc ≈ 0.8. (b) �4 as a function of λ for

various values of the phonon frequency �, at δ = 0.02. (c) �4 as

a function of λ for various values of δ of the phonon dispersion, at

� = 2t .

Ref. [4]; in other words they continue to be of light-mass and

strongly bound in the dilute liquid phase.

Figure 2(b) shows the evolution of λc with �, which we

use to identify the location of the phase boundary between the

bipolaron liquid and phase separation in the phase diagram of

Fig. 1. Figure 2(c) shows that λc drifts to larger values with

increasing δ, indicating that the instability of bipolarons to

clumping (phase separation) is unlikely in realistic systems

(see Supplemental Material [44] for an extended discussion).

This drift occurs due to a competition before the onset of

phase separation between the δ term, which disfavors dimer-

ization, and the electron-phonon interaction, which drives

dimerization at large couplings. Special combinations of δ

and λ render phase separation possible within the domain of

physicality of the model, as we discuss next.

In the linear approximation, t (xi − x j ) ≈ t − g
√

2�(xi −
x j ), where xi ≡

√

1
2�

(b†
i + bi ). This approximation is only

valid for small distortions 〈xi − x j〉 ≪ t/g
√

2�. As we show
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FIG. 3. GS expectation values of the average occupation number

〈n̂i〉 [(a),(c)], lattice distortion 〈bi + b†
i 〉 [(b),(d)]. The results were

obtained for a chain with L = 48 and OBC and with N = 6 elec-

trons (ρ = 0.125) and at phonon frequency � = 2t . Panels (a) and

(b) show results for various λ for dispersionless phonons δ = 0.

Panels (c) and (d) show results for various δ at strong coupling

λ = 1 corresponding to the unphysical regime. Inset of (d) shows

the staggered displacement amplitude [Eq. (1)] as a function of

δ; the horizontal red dashed line at 1/2 sets the limit of physicality

for the phonon displacements.

next, we always find evidence for lattice dimerization at the

onset of phase separation: 〈xi〉 ∼ (−1)i〈x〉. Thus, here the

model remains physical iff |〈b†
i + bi〉| ≪ t

2g
= 1

2

√

2t
�λ

. We de-

fine the staggered dimerization amplitude

D =
1

S

S
∑

j=1

|〈b†
j + b j〉|, (1)

computed over the typical size S ≡ S(ρ,�, λ) of the dimer-

ized region characterized by finite displacements (width at

half-maximum of the displacement profile) as a proxy for the

viability of the linear model: results are physical only when

D

√

�λ
2t

< 1
2
. The inset of Fig. 1 shows that this quantity is

very small at small λ, but increases very sharply at larger

λ. D

√

�λ
2t

crosses the physicality limit of 1/2 (gray dots in

inset) marking the limits in the phase diagram (gray dots in

main figure) beyond which the model become definitively

unphysical due to the breakdown of the linear approximation.

This means phase separation exists only within a narrow sliver

of the phase diagram whose width would be further reduced if

a more stringent criterion D

√

�λ
2t

≪ 1
2

is used. Unraveling the

physics at very large electron-phonon couplings requires in-

clusion of nonlinear corrections to the coupling in the model,

which is beyond the scope of this work.

Figure 3 presents evidence that coalescing of bipolarons

at λ > λc represents a signature of true phase separation.

Figures 3(a)–3(c) show the average electron density 〈n̂i〉 as

a function of position i for a chain with OBC and L = 48

L201109-3
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FIG. 4. Main panel: Phase diagram of the 1D Peierls model as

a function of the carrier filling ρ = N/L (ρ = 0.5 corresponds to

quarter filling) and λ from DMRG for a system with L = 32 sites

and � = 2t . Inset (a): Staggered displacement amplitude [Eq. (1)] as

a function of λ for various ρ. The horizontal dashed line at 1/2 sets

the limit of physicality for the phonon displacements. Inset (b): Size

of the dimerized region in the phase separated phase as a function

of ρ.

sites and N = 6 electrons (nominal density ρ = 0.125) and

� = 2t . In the δ = 0 limit, depicted in Fig. 3(a), we observe

for λ < λc a density profile with N/2 peaks characteristic of a

liquid of bipolarons; as λ grows and crosses λc, the electrons

clump into an electron-rich region forming a Gaussian-like

droplet with a maximum density n = 0.5, surrounded by

electron-free regions, a behavior characteristic of phase sep-

aration [47]. We emphasize that due to the use of OBC,

the electron-rich, phase-separated region is centered at L/2.

Simulations with PBC (see Supplemental Material [44]) give

identical results at strong coupling, but with the center of the

electron-rich region not pinned to a specific site. Figure 3(c)

establishes that even at strong coupling, e.g., λ = 1, a suf-

ficiently large δ melts the electron-rich region re-instating

the bipolaronic liquid phase. Figures 3(b)–3(d) demonstrates

that the lattice indeed dimerizes: (−1)i〈bi + b
†
i 〉 > 0 in the

core of the electron-rich region; for λ > λc. In particular,

Fig. 3(b) shows that for λ = 1 > λc the phonon displace-

ment amplitude within the electron-rich region far exceeds

the physically allowed limit D
√

�λ/2t = 1/2. Figure 3(d)

shows that δ can be fine tuned so that an electron-rich region

is accompanied by lattice dimerization within the stability

limits of the model. We have also verified (not shown) that

double occupancy in the core of the electron-rich region is

very small 〈n̂i↑n̂i↓〉 ≃ 0.125, which implies that a moderate

repulsive Hubbard U will not affect these results significantly,

see, e.g., [48].

Small but finite electron concentrations. Having established

the stability of bipolarons in the extremely dilute limit, we

also confirm the stability of the bipolaron liquid for finite

densities ρ = 0.125 − 0.5. We construct the phase diagram

as a function of ρ in Fig. 4 for δ = 0.04. We find, as before, a

robust bipolaronic liquid that is stable up to very large values

of λ, almost everywhere the linear approximation is valid. The

critical value λc above which phase separation is energetically

favorable decreases with electronic filling. In the Supplemen-

tal Material [44], we determine the critical δ at strong coupling

λ = 1 such that the dimerized phonon displacement amplitude

falls within the physical limit, finding that δc increases nearly

linearly from the dilute density limit up to quarter filling.

These results conclusively demonstrate the robustness of the

bipolaron liquid phase in the Peierls model beyond the ex-

tremely dilute density limit. This is particularly relevant for

commensurate densities such as quarter filling ρ = 0.5, where

instabilities to orders other than phase separation might have

been anticipated.

Conclusions. We have numerically studied a model with

linear Peierls electron-phonon coupling on a 1D chain, and

proved that a dilute bipolaron liquid is stable against phase

separation up to large couplings λ < λc. For λ > λc we

present evidence for a new type of phase separation, with

several interesting properties including lattice dimerization

within the electron-rich region surrounded by electron poor,

undimerized regions. The region of validity of the linear ap-

proximation terminates close to λc, so that whether phase

separation occurs in the model upon inclusion of higher-order,

nonlinear couplings, remains an open question. Furthermore,

we have confirmed the stability of bipolaron liquids in most

of the physical parameter space for small carrier densi-

ties extending up to quarter filling. In contrast, in more

studied models of electron-phonon coupling like in the ex-

tended Holstein model, phase separation sets in at a much

smaller λc. These results reinforce the possibility of bipo-

laronic high-temperature superconductivity in models with

Peierls-like coupling at low carrier densities, a scenario be-

lieved to be impossible for other forms of electron-phonon

coupling [49].
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