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Abstract

We study the nature of the excitations of an antiferromagnetic (AFM) Heisenberg chain

with staggered long range interactions using the time-dependent density matrix renor-

malization group method and by means of a multi-spinon approximation. The chain

undergoes true symmetry breaking and develops long range order, transitioning from a

gapless spin liquid to a gapless ordered AFM phase. The spin dynamic structure factor

shows that the emergence of Néel order can be associated to the formation of bound

states of spinons that become coherent magnons. The quasiparticle band leaks out from

the two-spinon continuum that is pushed up to higher energies. Our physical picture is

also supported by an analysis of the behavior of the excitations in real-time.
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1 Introduction

Heisenberg antiferromagnets (AFM) provide a testbed for spin-wave theory [1, 2]. However,
it is well known that the spin-wave approximation is not a good starting point to describe
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Figure 1: (a) Phase diagram of the Heisenberg chain with long range staggered in-
teractions reproduced from Ref. [24], as a function of the coefficient λ and exponent
α; (b) confining potential as a function of α for λ = 1.

the dynamics of spin chains. Instead, their spectrum is determined by propagating domain
walls (spinons), which are the natural basis of excitations in one spatial dimension [3–6].
The fractionalization of excitations is an exotic many-body phenomenon that has mobilized
both experimentalists and theorists for decades and has been observed in 1D spin chains and
ladders [7–18].

Spin-chains are not well ordered antiferromagnets: their correlations decay algebraically
and they do not develop true long-range order. Higher dimensional magnets may develop long-
range order and, in such a case, excitations are gapless magnons with well-defined Goldstone
modes. Spinons, or fractionalized excitations, are not only a feature of 1D spin chains but are
also expected to emerge in 2D spin liquids – states that do not break continuous symmetries –
as postulated by the theory of deconfined quantum criticality [19–21]. To reconcile these two
pictures we interpret magnons (which carry spin 1) as bound states of spinons (that carry spin
1/2). Notice , however, that in 1D and even in 2D spin liquids [22], it is possible to have bound
states of spinons without long range order. In such a case, these excitations are referred to as
“triplons” (the simplest example is a triplet excitation on top of a dimerized gapped valence
bond solid) [23].

On the 2D square lattice, a prototypical antiferromagnet, the spin wave dispersion agrees
with numerical results with high accuracy in the entire Brillouin zone, with the only devia-
tions along the (π, 0) − (π/2,π/2) path [25, 26]. Along this segment, the spin-wave theory
dispersion is essentially flat, while numerical results indicate a dip. Recent experiments are in
excellent agreement with numerics [27–29] which have prompted the speculation of physics
beyond magnons. In particular, in recent low- temperature polarized neutron scattering exper-
iments [29] , the broad and spin-isotropic continuum in Sz(k,ω) at q = (π, 0) was interpreted

2



SciPost Phys. 10, 110 (2021)

as a sign of deconfinement of spinons in a region of momentum space. Recent numerical
Monte Carlo results show, however, that magnons are still present and, even though their
spectral weight may become very small, they never vanishes [30].

Similarly, neutron scattering experiments on the 2D triangular antiferromagnet
Ba3CoSb2O9 [31, 32] indicate that the spectrum consists not only of low energy magnon
branches, but also high energy continua with a separation of the order of the exchange in-
teraction J . The disagreement with expectations from spin-wave theory stimulated further
theoretical work [33, 34] that pointed at deconfined spinons being the culprits of the high-
energy features, with magnons consisting of bound states of spinons.

The above considerations beg the questions: how do gapless spinons evolve into gapless
magnons and singularities in the spectrum into coherent Goldstone modes as we transition
from a gapless spin liquid into a gapless antiferromagnet with long range order? [35, 36]
In order to address these issues we resort to one dimensional spin-1/2 chains with staggered
SU(2)-symmetric long-range interactions that allow us to realize actual spontaneous symmetry
breaking and true antiferromagnetic order: The general problem can be formulated by means
of the following Hamiltonian:

H = J
∑

i

~Si · ~Si+1 −λJ
∑

|i− j|>1

(−1)i− j

|i − j|α
~Si · ~S j . (1)

The long range nature of the interactions artificially increases the dimensionality of the prob-
lem and circumvents the restrictions imposed by the Mermin-Wagner theorem. At the same
time, they introduce volume-law entanglement, making the calculations more challenging.
However, the staggered phase enhances antiferromagnetism and avoids frustration, also mak-
ing it amenable to quantum Monte Carlo calculations [24,37,38].

The phase diagram of the extended Heisenberg chain as a function of the coupling λ and
exponent α was obtained by Laflorencie et al in Ref. [24] using quantum Monte Carlo, who
found a critical line separating Néel ordered and disordered phases with dynamic critical expo-
nent z < 1 (see Fig.1(a)). This indicates that the system generally does not admit a description
in terms of conformal field theory (which is not surprising), which should be manifested in
the finite-size scaling of the spin gap and the curvature of the dispersion (which is sublinear),
as well as the behavior of the entanglement entropy. Therefore, the chain undergoes a transi-
tion from a gapless ordered phase with strong AFM correlations, to a gapless disordered one
with fractionalized excitations. The two regimes are characterized by an order parameter, the
staggered magnetization m = Sz(k = π), and by the nature of the excitations that should be
reflected in the spectrum, given by its dynamic spin structure factor Sz(k,ω).

In this work, we focus on the particular case of λ = 1. In this limit, the Hamiltonian
becomes:

H = −J
∑

i 6= j

(−1)i− j

|i − j|α
~Si · ~S j . (2)

The manuscript is organized as follows: in section 2 we discuss the spectral function ob-
tained by means of the time-dependent density matrix renormalization group method (tDMRG)
[39–42]. In section 3, we describe a multi-spinon analytical approach and analyze the results
from the point of view of confined spinon excitations. We provide an intuitive picture of the
nature of the excitations by studying their behavior in real time in section 4 and we finally
conclude with a summary and discussion.
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Figure 2: Momentum resolved dynamic structure factor Sz(k,ω) of the Heisenberg
chain with long range interactions, λ = 1, and different values of α across the phase
transition.

2 Spin dynamics

In the disordered phase of the model Eq.(2), excitations are described in terms of deconfined
spinons. Assuming a spinon dispersion ε(k), the two-spinon continuum is constructed by all
possible energies ε2(k) = ε(k1)+ε(k2), with k = k1+k2. For the conventional nearest-neighbor
Heisenberg chain, the resulting spectrum is bounded from below by the des Cloizeaux-Pearson
dispersion πJ/2| sin k| [43], and the upper boundary of the continuum is πJ | sin (k/2)| [44].
Therefore, it will be characterized by singularities and will not realize coherent quasiparticles,
that in the spectrum would appear as δ-like peaks, accompanied by incoherent background
at high energies (that can correspond to spinons or a two-magnon continuum). Magnons are
associated to symmetry breaking and the emergence of gapless Goldstone modes after some
gapped mode condenses. However, it is possible to transition from a gapless phase without
long range order (a gapless spin liquid) to an ordered one with a well defined order parameter.
In this case, it is expected that the gapless deconfined excitations of the spin liquid will form
bound states in the ordered phase. For this to happen, an attractive confining potential should
be strong enough to overcome the kinetic energy of the free spinons. This is precisely what
occurs in our model.

In the conventional 1D Heisenberg model, flipping a spin would create two domain walls.

4



SciPost Phys. 10, 110 (2021)

Figure 3: Spin dynamic structure factor across k = π/2 cuts for λ = 1 and different
values of α. The emergence of a sharp isolated peak leaking out of the continuum is
clearly observed as α decreases and long range order is developed. The curves are
shifted for clarity. Negative values are artifacts of the Fourier transform, as described
in the text. The finite width of the peaks is determined by the maximum simulation
time.

The energy cost of such excitation does not scale with the separation between the particles.
However, in the case of long range staggered interactions, all spins interact with each other
and the local disturbance is felt by the bulk of the chain. Separating the domain walls costs an
extensive amount of energy, as depicted in Fig. 1(b), where we show the confining potential
for different values of α and λ = 1, defined as the energy cost of moving two domain walls a
distance r ≥ 1 apart:

V (r) = E(r)− E(1) , (3)

where E(r) is calculated in the Ising limit as:

E(r) =
∑

i 6= j

(−1)i− j+1
〈0, r|Sz

i
Sz

j
|0, r〉

|i − j|α , (4)

and the state |i, j〉 represents two spinons at positions i, j (e.g. as in Fig. 4(c)).
We are interested in determining signatures of confinement in the excitation spectrum of

the model. In order to obtain the spin dynamic structure factor we used the time-dependent
DMRG method (tDMRG) [39–42] following the prescription detailed in the original work Ref.
[39]. The idea consists of calculating the two-time spin-spin correlator:

〈Sz
r (t)S

z
0(0)〉= 〈ψ0|eiH tSz

r e−iH tSz
0|ψ0〉 , (5)

where Sz
0 here is defined at the center of the chain, and r is the distance from center. Fourier

transforming to momentum space and frequency, we reconstruct the momentum resolved
spectral function. The Fourier transform is carried out over a finite time range (in our case
tmax = 20), which requires the use of a windowing technique to attenuate artificial ringing
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Figure 4: Possible configurations allowed in the variational Villain-like approach used
in this work: a) Ising ground state; b) two confined spinons created after flipping one
spin; c) two deconfined spinons; d) two confined spinons, one separate spinon and
one anti-spinon; e) three spinons and one anti-spinon.

(satellite oscillations associated to the natural frequencies that lead to artifacts, such as nega-
tive values). The spectrum will exhibit an artificial broadening that is inversely proportional
to the width of our time window. In addition, good resolution at high frequencies can be
improved by using a small time-step, while a long time-window is necessary to improve res-
olution at low frequencies. In order to time-evolve the wave function, we use a time-step
targeting procedure with a Krylov expansion of the time-evolution operator [45] and a time
step δt = 0.05 (time is measured in units of J−1 and J is our unit of energy).

We study chains of length L = 48 using 400 DMRG states that guarantees that the trunca-
tion error remains smaller than 10−6 over the time window. Results for the dynamic structure
factor are displayed in Fig.2 for λ = 1 and different values of α across the phase transition.
The spectrum is bounded from below by a sharp peak, which for large α > 2.2 corresponds to
the edge of the two spinon continuum. For smaller α, as we cross over to the ordered phase,
the peak splits out from the continuum, that moves to higher energies. This can be seen more
clearly in Fig.3, where we show cuts along the k = π/2 direction. The splitting of the peak
and the shifting of the continuum to higher energies are signatures of the formation of bound
states, which become coherent quasi-particles in the symmetry broken phase.

3 Two-spinon bound states

In order to develop intuition on the nature of the excitations and the confining mechanism,
we study a related toy problem that will serve as a close approximation to the present situa-
tion. We will follow Villain [46] and assume that the ground state of the system has uni-axial
symmetry (the Ising limit), and consider the dynamics of mobile domain walls. This is done
by considering the motion of the spinons by means of spin flips, ignoring the action of these
terms on pairs of spins that do not involve domain walls. The procedure was clearly outlined
in Ref. [47] but, in our case, we need to consider the long-range nature of the interactions
(a similar procedure was carried out for the ferromagnetic case in Refs. [48–51]). We firstly
define the space spanned by all the possible configurations with two spinons in an antifer-
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Figure 5: Two-spinon spectra for λ = 1 and different values of α obtained by using
Villain’s approach for L = 60, as described in the text.

romagnetic background |i, j〉, where i, j are the positions of the domain walls, illustrated by
Fig.4(a), (b) and (c). We then exploit translational symmetry and define wave functions in a
sector with momentum k = 2πn/L (n= 0, · · · L − 1):

|Ψ(k, r)〉= 1p
L

L−1∑

d=0

eikd Td |0, r〉 , (6)

where the translation operator acts as Td |i, j〉= |i+d, j+d〉 (periodic boundary conditions en-
force position to be defined mod (L)). The Hamiltonian matrix elements are easily calculated
and each momentum sector is diagonalized independently.

Results for the two spinon excitation spectrum for chains of length L = 60 are shown in
Fig.5 for λ = 1 and several values of α. We plot the energy of the two spinon state E(k). For
small α we see several bound states leaking out of the two spinon continuum. As α increases
above the expected value for the transition in the isotropic case αc ≃ 2.2, the continuum tends
to collapse and merge with the two-spinon bound states. This scenario agrees qualitatively
with the observed behavior in the SU(2) symmetric case. For small α, the two spinon contin-
uum is pushed to higher energies, and is clearly separated from the “magnon” band.

So far, our approach has ignored other possibilities that can be realized through long range
spin flips. In fact, it is easy to convince oneself that two-spinon configurations can only prop-
agate via nearest-neighbor spin-flips. In order to account for the long-range off-diagonal pro-
cesses we have to consider states with three spinons and one anti-spinon, as illustrated in
Fig.4(d) and (e). As a matter of fact, long range spin flips can create a proliferation of spinons
and anti-spinons throughout the chain, but this is prevented by energetic considerations. For
this reason and due to the fast growth of the number of possible configurations (scaling as
∼ L3), we only preserve those with one anti-spinon, and even so we can solve for sizes up to
L = 36. The spectrum is now modified as seen in Fig.6, but the low energy features remain
qualitatively similar. However, we see a continuum of high energy states corresponding to the
new sector that gets mixed with the two-spinon continuum. A significant difference that we
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Figure 6: Spectra for λ = 1 and different values of α obtained by using Villain’s
approach for L = 36, including the sector with three spinons and one anti-spinon.

observe between these results and those in Fig.5 is that the number of bands leaking out of
the continuum is suppressed. It is reasonable to expect that as more spinon and anti-spinon
states are included, more states will appear at low energies. The fact that only one band fi-
nally survives would indicate that higher energy bound states (magnons) tend to decay into
the continuum of multi-spinon excitations. Clearly, the low-energy physics is well described as
consisting of bound states of spinons but, as we shall see, accounting for the additional spin
fluctuations becomes important when it comes to understanding the real-time evolution of the
system.

4 Real-time evolution

It is natural to ask whether the spinon confinement can be identified in a numerical “time-
of-flight” experiment, in which a spinon is created at the center of a chain by the application
of the S+ operator, and left to evolve under the action of the Hamiltonian. Results obtained
with tDMRG as shown in Fig.7 where we plot the correlations 〈N↑(r, t)N↑(r + 1, t)〉, where
N↑ = (2Sz + 1). Notice that bound states are not necessarily localized in nearest neighbors,
but actually are extended objects that have a characteristic size [37] that gets smaller with
decreasing α. However, to a certain extent, these correlations can help us develop intuition
and, for this purpose, we shall refer to them as the “spinon density”. Without long-range
interactions, spinons propagate ballistically [52, 53] and this is seen in Fig.7 as a “lightcone”
with a velocity determined by the maximum slope of the spinon dispersion v = π/2. As
the value of alpha decreases, spinons become more and more confined and, consequently,
“heavier” (or slower), since bound states of spinons move coherently through second-order
processes by means of two consecutive spin flips. However, a side effect of the long-range
interactions is that spinons can “hop” longer distances. As a consequence, the originally sharp
edges of the lightcone become more diffuse and, moreover, they acquire an apparent curvature
that gives the misleading impression of an underlying “accelleration”. As it turns out, this

8



SciPost Phys. 10, 110 (2021)

Figure 7: Domain wall expansion for λ = 1 and different values of α, obtained with
tDMRG for a chain with L = 48 spins. Results for the nearest neighbor case are also
included. We show the “spinons density”: 〈N↑(r, t)N↑(r + 1, t)〉. Color density is in a
log scale.

illusion is due to the superposition of two characteristic velocities, as we discuss next.
Our first attempt to explain the observed behavior is to use the Villain approximation with

two spinons, presented in Fig.8. As we mentioned earlier, the long range interactions in this
case enter only as a diagonal contribution, since long range spin flips produce a proliferation
of spinons that take us outside of the two-spinon sector. However, we can already identify
very interesting features as we change the exponent from basically α→∞ (nearest neighbor
interactions, only), to α = 1.8. In the former case, we see a coherent ballistic propagation of
the spinons with a well defined characteristic velocity, as expected, since the problem is equiv-
alent to two non-interacting particles. For α = 2.2 we identify two coexisting lightcones: a
fainter one preserves the same slope as the free deconfined spinons, while the second one, with
larger weight, describes coherent particles moving with roughly half the spinon velocity. It only
makes sense to attribute these features to a bound state of spinons, a “magnon”. As we reduce
α even further, the free spinon lightcone loses weight, which is transferred to the magnons. For
α= 1.8 we can clearly identify a single magnon lightcone, as free spinons move to higher ener-
gies. In order to support these observations we also calculate 〈N↑(r, t)N↑(r+1, t)N↑(r+2, t)〉,
or “magnon density”, in Fig.9. In the nearest-neighbor limit we only see a very faint feature
that loses weight as time evolves: the original flipped spin creates a state like the one depicted
in Fig.4(b), but it is short lived and breaks into two spinons. As α decreases, the magnon
lightcone becomes more and more coherent and correlates exactly with the features observed
in Fig.8.

Having determined the coexistence of deconfined spinons and magnons in the lightcone,
it rests to explain the apparent curvature in the DMRG results. For this, we need to extend
our treatment by considering the possibility of three spinons and one anti-spinon to account
for the long-range spin flips. The results for the spinon and magnon densities are presented in
Fig.10 and Fig.11, respectively. We basically observe a “fan” or excitations covering the region
between the magnon and free spinon wavefronts. Moreover, attempting to identify a charac-
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Figure 8: Spinon density 〈N↑(r, t)N↑(r + 1, t)〉 for λ = 1 and different values of α,
obtained using Villain’s two-spinon approximation. Results for the nearest neighbor
case are also included. Color density is in a log scale.

teristic velocity is an ill-defined problem, since spins are allowed to hop to all distances. This
is also reflected in the magnon dispersion no longer having a linear dispersion, as previously
observed.

Figure 9: Same as Fig.8 but for the “magnon density” 〈N↑(r, t)N↑(r+1, t)N↑(r+2, t)〉.

10



SciPost Phys. 10, 110 (2021)

Figure 10: Spinon density 〈N↑(r, t)N↑(r + 1, t)〉 for λ = 1 and different values of α,
obtained using Villain’s approximation including three spinons and one anti-spinon.

Figure 11: Magnon density 〈N↑(r, t)N↑(r + 1, t)N↑(r + 2, t)〉 for λ = 1 and different
values of α, obtained using Villain’s approximation including three spinons and one
anti-spinon.

5 Summary and conclusions

We have analyzed the spectrum and studied the nature of the excitations of a Heisenberg
chain with staggered long range interactions. The unfrustrated long-range nature of the ex-
change effectively increases the dimensionality of the system and the chain is able to undergo
true symmetry breaking and develop long range order. For weakly decaying interactions, our
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Figure 12: Von Neumann entanglement entropy calculated for a chain with L = 96
sites across the quantum critical point.

tDMRG calculations show that the emergence of Néel order can be associated to the formation
of bound states of spinons that become coherent quasiparticles (magnons). At the same time,
the two-spinon continuum is pushed to higher energies. This is supported by two-spinon and
three-spinon approximations that reproduce the main features and explain the formation of
bound states due to a confining potential that grows logarithmicaly. The observed behavior
bears very close resemblance to the one found in actual neutron experiments in higher di-
mensional materials. The apparent super-ballistic behavior observed in the time-dependent
correlations can be identified with spinons “leaking out” of the lightcone, as observed in the
quantum Ising model [54, 55] and the ferromagnetic Heisenberg model with power-law in-
teractions [50,56,57]. Our calculations within the generalized Villain approximation support
similar conclusions, in agreement with the results in those models: the sublinearity of the
dispersion is associated to multiple quasi-particles propagating at different velocities [58–63].
Interestingly, while the magnon dispersion is linear in two dimensions, a rather similar effect
occurs in which the momentum dependence of the group velocity gives rise to wavepackets
propagating ballistically but with different velocities in different directions [64].

Funding information The authors acknowledge support from the National Science Founda-
tion under grant No. DMR-1807814.

A Ground-state calculations

Since the computational cost of DMRG is associated with the entanglement area law, it is
expected that the all-to-all interactions will make the calculations considerably more challeng-
ing. As seen in Fig.12, the Von Neumann entanglement entropy grows and practically doubles
in the narrow window across the transition from disordered to Néel. This occurs as a smooth
crossover, and the entanglement entropy and its derivatives vary continuously across the quan-
tum critical point. We also studied the behavior of the entanglement spectrum (not shown),
and found that the structure of the “tower of states” changes from singlet-triplet-triplet in the
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disordered phase to singlet-triplet-quintuplet in the symmetry broken one. Notice that, even
though the system remains critical throughout the entire range of parameters, the problem
cannot be described in terms of a conformal field theory and, therefore, analytical predictions
are not possible. However, the larger entanglement in the Néel phase reflects the fact that
the long-range interactions effectively increase the dimensionality of the problem, and the
area law becomes a volume law. Curiously, reliable results with a truncation error of 10−6 are
achievable with 600-800 DMRG basis states.
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