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Abstract—This paper considers the problem of unsupervised
detection in IoT uplink communication over fading channels with
multiple antennas at the access point (AP). Instead of requiring
long training sequences and coordination between the sensor
nodes for training or power control, this work proposes using
a simple transmission scheme consisting of repetition coding
followed by random interleaving together with a signal alignment
strategy at the AP. The key innovation is that pseudo-random
(de-)interleaving is used here to simultaneously align the signal of
interest, misalign (scramble) the interfering signals, and provide
physical layer security. The combination allows reliable detection
of the signal of interest at the AP via canonical correlation
analysis, even under low-power / high interference conditions.
The end-to-end approach provides rigorous recovery guarantees,
allows for secure communication between the sensor nodes and
the AP, and is computationally cheap. Simulations demonstrate
the efficacy of the proposed approach compared to widely used
multiplexing methods.

Index Terms—IoT, low-power communication, physical layer
security, multiple-input-multiple-output (MIMO), uplink, Canon-
ical correlation analysis (CCA).

I. INTRODUCTION

For over 20 years, we have witnessed growing interest
in wireless sensor networks (WSNs) [1], a trend which has
recently reached new hights with the emergence of cheap
low-power Internet of Things (IoT) devices that can function
as ubiquitous sensor nodes. The growing popularity of IoT
networks is driven by the wide variety of applications that
range from environmental and factory monitoring, to military
surveillance, health care, and home automation. In these di-
verse application domains, a number of low-cost IoT nodes are
deployed over a particular region with the goal of collecting
information and sending it, in analog or digital form, to an
access point (AP) for further processing [2].

The tremendous increase in the number of wirelessly-
connected sensors has motivated the use of multiple receive
antennas at the AP [3], thereby enabling bandwidth-efficient
transmission schemes that allow multiple sensors to transmit
simultaneously over the same time-frequency resource block.
In this context, a key question is how to reliably decode low-
power sensor transmissions at the AP. Existing works [3]–[8]
assume that accurate channel state information (CSI) between
the sensors and the AP is available. This requires long training
sequence transmission and some degree of coordination be-
tween the IoT nodes for synchronization and/or power control,
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which are beyond the capabilities of low-cost low-power IoT
devices.

The goal of this paper is to propose a low-complexity
approach that enables reliable detection of low-power IoT
transmissions at the AP, without any coordination between
the IoT nodes – while also providing a certain level of
physical layer security. The paper shows that this is possible
using a simple transmission protocol that allows seamless and
secure communication between the IoT nodes and the AP. The
key idea is as follows: each IoT node merely transmits its
signal twice followed by scrambling the two signal blocks
using a pseudo-random permutation code, determined by the
node’s identification code. Under the assumption that different
sensors have different permutation patterns, de-interleaving
the received signal at the AP and utilizing the repetition
structure allows forming one de-interleaved matrix pair for
each IoT transmitter in which the given transmitter’s signal
is aligned (common between the two matrix views), and all
interfering IoT signals are misaligned across the two views.
Applying canonical correlation analysis (CCA) on each pair
separately, this paper shows that the aligned signal can be
reliably decoded at low SNR, in an unsupervised manner,
without any other constraints on the transmitted waveforms.
The approach even works for analog modulation.

In addition to superior communication performance, the use
of pseudo-random scrambling means that if an eavesdropper
does not know a device’s pseudo-random generator, it is very
difficult (if not practically impossible) to align the two signal
views, as the number of possible permutations is combina-
torial and practically intractable even for moderate interleaver
depths. The proposed approach is theoretically backed by iden-
tifiability proof and performance analysis established earlier
by the authors [9] in the context of another application. The
key innovation here is the judicious use of scrambling and
descrambling to align the signal of interest at the receiver
and misalign the interfering signals, thereby reducing the
decoding complexity dramatically, as well as providing a level
of physical layer security at the same time. Numerical results
reveal the superior performance of the proposed approach in
reliably decoding the sensor signals, analog and/or digital,
relative to the state-of-the-art approaches.

CCA is a powerful and widely-used data analysis tool that
has previously found many applications in signal processing
and wireless communications, including equalization [10],



blind source separation [11], [12], multi-view learning [13]–
[15], and more recently cell-edge user detection [9]. From
the computational perspective, CCA is practically appealing
as the CCA problem admits a simple algebraic solution via
eigendecomposition.

The rest of the paper is organized as follows. Section II
describes the system model and defines the problem. The
proposed transmission protocol is presented in Section III,
while Section IV presents the proposed detector. Simulation
results are provided in Section V, and conclusions are drawn
in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a wireless sensor network comprising K single-
antenna IoT sensors and an AP equipped with M antennas,
as shown in Fig. 1. The k-th sensor transmits its data,
{sk[n]}Nn=1, at the n-th time index to the AP, where without
loss of generality we assume E[|sk[n]|2] = 1, ∀n ∈ [N ] :=
{1, · · · , N} and k ∈ [K] = {1, · · · ,K}. Let hk =

√
αkzk

be the vector representing the fading channel between the k-
th sensor and the AP. The entries of zk represents the small
scale fading coefficients, and are assumed to be independent
and identically distributed (i.i.d) Gaussian random variables
with zero mean and variance 1/M , i.e., E[‖zk‖22] = 1. The
term αk accounts for the large scale fading coefficient (path-
loss) between the k-th sensor and the AP. Towards this end,
the discrete time baseband-equivalent model of the received
signal at the AP, y ∈ CM , from all K sensors is given by

y[n] =
K∑

k=1

βhksk[n] + w[n], (1)

where sk[n] ∈ C is the k-th IoT node observations received
at the AP at the n-th instant, and β stands for the transmit
power term which is assumed to be fixed across all sensors.
The term w[n] represents the additive noise vector with i.i.d
elements drawn from Gaussian distribution with zero mean
and variance σ2.

Assuming that the AP collects the sensors data over N
snapshots, the received signal in (1) can be expressed in more
compact form as

Y =
K∑

k=1

βhksTk + W, (2)

The main goal is to reliably decode the data of the K
sensors {sk}Kk=1, given the received measurements {y[n]}Nn=1

at the AP. Prior works [3], [6]–[8] rely on the assumption that
accurate channel state information (CSI) is available at the
AP which limits their use in practical situations. We will next
show that, via a simple transmission strategy employed at the
sensors together with an unsupervised detection method used
at the AP, the sensors’ signals can be reliably decoded even
at low SNR without any CSI.

Fig. 1: System Model

III. PROPOSED TRANSMISSION STRATEGY

In this section, we will propose a simple transmission
strategy for the sensors so that their signals can be decoded
at the AP. The transmission scheme consists of two steps;
repetition followed by interleaving. First, the k-th sensor forms
two blocks by simply sending its signal xk ∈ CN/2 twice at
very low power. Upon forming the two back-to-back blocks,
i.e., [xT ,xT ], the k-th sensor pseudo-randomly permutes the
N symbols (samples for analog transmission). The transmitted
signal, sk, from the k-th sensor after repetition and interleaving
can be written as

sk = Πk

[
xk

xk

]
, ∀k ∈ [K], (3)

where Πk ∈ RN×N is a pseudo-random sensor-specific
permutation matrix. We assume that different sensor nodes
have different permutation matrices. Given that there are N !
possible permutation matrices, even with modest N , e.g.,
N = 128, there is a huge number of permutation matrices,
making de-interleaving close to impossible unless one knows
the true permutation matrix of the sensor of interest. The
permutation matrix of the k-th sensor can be generated using
its unique ID, which is assumed to be known at the AP,
∀k ∈ [K].

Remark 1. At a first glance, the proposed repetition scheme
can be viewed as spreading each sensor signal with spreading
gain equal to two. However, dealing with this situation as
if it were CDMA will not work as well as our approach
because of the very limited spreading gain and the sensitivity
of CDMA to near-far power imbalance – inevitable in the
absence of coordinated power control due to the fading-
induced variations in the received signal power of the different
IoT nodes at the AP. Near-far power imbalance significantly
impacts CDMA performance [16] as we will also verify in the
experiments.

Upon plugging (3) in (2), the received signal at the AP can
be written in more compact form as

Y = HST + W, (4)

where W ∈ CM×N is the noise term, H = [h1, · · · ,hK ] ∈
CM×K holds in its columns the channel vectors of the K



sensors (the transmit power terms have been absorbed in the
channel vectors for simplicity), and the matrix S ∈ CN×K

has in its columns the corresponding sensor signals (after
repetition and permutation), i.e.,

S =

[
Π1

[
x1

x1

]
, . . . ,ΠK

[
xK

xK

]]
, (5)

It is worth-noting that the repetition structure in the pro-
posed transmission protocol can be utilized for synchroniza-
tion purposes at the AP. In particular, we can use the proposed
algorithms in [9], [17], with some modifications, to find the
start time of the different sensors signals. However, due to
space limitations, we will leave the asynchronous setup for
the journal version of this work. We will next present a low
complexity method that can reliably decode the sensor signals
{sk}Kk=1, at low SNR, in an unsupervised manner.

IV. PROPOSED DETECTOR

In order to reliably decode the low-power sensor signals at
the AP, we use canonical correlation analysis (CCA). In its
simplest form, CCA is a statistical learning tool that aims at
finding two linear combinations of random vectors y1 ∈ CM1

and y2 ∈ CM2 such that the resulting pair of scalar random
variables is maximally correlated [18], [19]. Assuming that
we are given N realizations of the random vectors y1 and y2,
i.e., Y` = [y`[1], · · · ,y`[N ]] ∈ CM1×N for ` = 1, 2, the CCA
problem can be posed as [19],

min
q1,q2

‖YH
1 q1 −YH

2 q2‖22 (6a)

s.t. qH
` Y`Y

H
` q` = 1, ` = 1, 2, (6b)

The above problem is referred to as the distance minimization
formulation of CCA. It seeks to find two canonical vectors
q1 ∈ CM1 and q2 ∈ CM2 , such that Euclidean distance
between the resulting vector realizations is minimized. An
equivalent formulation of (6), in the two views case, is to
look for a shared low-dimensional representation g ∈ CN of
the two data views Y1 and Y2. This can be written as

min
g,q1,q2

2∑
`=1

‖YH
` q` − g‖22, (7a)

s.t. ‖g‖22 = 1, (7b)

which is called the maximum variance (MAXVAR) formu-
lation of CCA [20]. From the computational point of view,
problem (7) admits a relatively simple algebraic solution. In
particular, the optimal solution (q?

1,q
?
2,g

?) of (7) can be
obtained via eigendecomposition of a matrix that involves
three correlation matrices and two small matrix inversions.

We recently discovered a new interpretation of CCA from an
algebraic point of view [21]. That is, given two multi-antenna
signals with strong components that are different across the
two views, and a weak shared (common) component, CCA
will recover the common component regardless how strong the
individual components are. We also established a performance
analysis which shows that reliable detection of the common
signal via CCA is possible at low SNR/SINR [9].

Building upon these insights, it is not difficult to see that
de-interleaving the received signal at the AP using one of the
matrices {Πk}Kk=1, will produce two signal views that share
only one common component corresponding to the signal of
that particular sensor. All other sensors will be randomly
permuted, and thus will not align with the two-fold signal
blocks. To see this, let us multiply each row of (2) by the
permutation matrix associated with the i-th sensor, Πi, to
obtain

Y(i) = H

[
ΠT

i Π1

[
x1

x1

]
, · · · ,

[
xi

xi

]
, · · · ,ΠT

i ΠK

[
xK

xK

]]T
+ W(i), (8)

where W(i) := WΠi and ΠT
i Πi = I, ∀i ∈ [K]. Define

Πij := ΠT
i Πj as the resulting permutation matrix, and

[x
(1)T
i ,x

(2)T
i ]T = Πij [x

T
i ,x

T
i ]

T , where i, j ∈ [K] and i 6= j.
Then, it follows that by constructing the two signal views
Y

(i)
1 := Y(:, 1 : N/2) and Y

(i)
2 := Y(:, 1 +N/2 : N)1, ∀i ∈

[K], we obtain

Y
(i)
1 = H

[
x
(1)T
1 , · · · ,xT

i , · · · ,x
(1)T
K

]T
+ W

(i)
1 , (9)

Y
(i)
2 = H

[
x
(2)T
1 , · · · ,xT

i , · · · ,x
(2)T
K

]T
+ W

(i)
2 , (10)

where W
(i)
` is the resulting noise after partitioning W(i), for

` = 1, 2. From (9) and (10), it is obvious that the two signal
blocks share a unique common component, namely the span of
si that conveys the i-th IoT node transmission. Upon defining
the matrix B

(i)
` = [x

(1)T
1 , · · · ,xT

i , · · · ,x
(1)T
K ] ∈ CN/2×K ,

∀i ∈ [K] and ` = 1, 2, we have the following result.

Theorem 1. In the noiseless case, if the matrices B
(i)
` ∈

CN/2×K , for ` ∈ {1, 2}, and H ∈ CM×K are full column
rank, then the optimal solution g? of problem (7) is given by
g? = γsi, where γ ∈ C, γ 6= 0 is the scaling ambiguity.

Proof. The proof follows from Theorem 1 in [21].

Note that satisfying the full rank condition on the matrix
B

(i)
` requires half the packet length to be greater than the

number of sensors and the transmitted sequences to be linearly
independent, for i = 1, 2. Both conditions can be easily satis-
fied with modest N since the different sensors’ transmissions
are independent. Further, to satisfy the full rank condition on
the channel matrix H, we need the number of antennas to
be greater than the number of IoT sensors and the channel
vectors of the different IoT sensors to be linearly independent.
The latter will be satisfied with probability one if the channel
vectors are drawn from a jointly continuous distribution.

It is worth pointing out that the random permutation step in
the proposed transmission protocol possesses several appealing
features. First, it provides secure communication between
all the sensor nodes and the AP, since it is impossible to

1MATLAB notation is used here, where Y
(i)
1 := Y(:, 1 : N/2) contains

all the rows of Y and a subset of columns (from the first one to the N
2

column).
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Fig. 2: CCDF of the MSE, M = 32, K = 20, analog signals
for all sensors. Average MSE for CCA and PARAFAC is 0.1
and 1, respectively.

decode the sensor data without knowing {Πk}Kk=1. Second,
it significantly reduces the receiver complexity as opposed to
the case with multi-dimensional common subspace [9] because
the latter requires an additional stage to unravel the common
signals form the resulting mixture, where depending on the
adopted modulation and coding scheme, different methods
can be employed to recover the original signals. However,
these methods are complex to implement in practice, especially
for higher-order QAM signals (and do not work for multiple
analog signals). Finally, it does not impose any assumptions
on the structure of the transmitted waveform of any node –
waveforms can be different across all nodes.

V. EXPERIMENTAL RESULTS

To assess the performance of the proposed CCA approach,
we have simulated a dense uplink scenario in a wireless sensor
network with 20 IoT sensor nodes and an AP equipped with
M = 32 antennas. The sensor nodes are randomly dropped
from 10 to 60 meters from the AP. We set the carrier frequency
to 28 GHz, the transmission power to 0.5 mWatt, the thermal
noise to −174 dBm/Hz, the bandwidth to 10 MHz, and the
packet size to 512 symbols. We assume a rich scattering
environment where the entries of the channel vectors are
independent and identically distributed (i.i.d) random variables
drawn from a complex Gaussian distribution with zero mean
and variance 1/

√
M . Also, a free-space path-loss model is

used to model the path loss between the sensors and the AP.
The average received SNR of the sensors ranges from 4

dB to 20 dB, according to their distances from the AP. In
our transmission protocol, after block repetition, the resulting
signal block is randomly interleaved using a unique seed
for each sensor. We conducted 104 Monte-Carlo simulations,
each time changing the sensor locations, transmitted signals,
channel vectors, and noise.
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Fig. 3: CCDF of the SER, M = 32 K = 32, QPSK signals
for all sensors. Average SER for CCA and MMSE is 0.019
and 0.074, respectively.

To benchmark the proposed method’s performance, we use
parallel factor analysis (PARAFAC), a tensor-based method
that can handle the same problem if instead of simple packet
repetition we spread each user’s packets with two random
chips (spreading gain = 2) [22]. We then normalize to the same
average transmission power for a fair comparison to CCA
with random interleaving. PARAFAC offers identifiability
guarantees [22] – however, unlike CCA, PARAFAC is sensitive
to near-far effects. To resolve the scaling ambiguity that is
inherent to both CCA and PARAFAC, we assume that the first
symbol of all the sensors’ transmissions is known at the AP.
Further, for digitally modulated signals, we implemented two
widely-used multiuser detection methods, namely zero-forcing
(ZF) and minimum mean squared error (MMSE). In particular,
instead of repetition, we dedicated half of the packet length
for pilots transmission to estimate the channel of each sensor,
and the other half for payload data. This results in the same
transmission rate for all methods.

In the first experiment, we assume that the transmitted
signals from the sensors are real analog with each sample
drawn from Gaussian distribution with zero mean and unit
variance. Fig. 2 shows the complementary cumulative dis-
tribution function (CCDF) of the mean square error (MSE)
obtained using CCA, and the MSE obtained using parallel
factor analysis (PARAFAC). Fig. 2 demonstrates the remark-
able performance of CCA over the tensor-based method. In
particular, CCA can achieve an average MSE of roughly
10−1 which is approximately one order of magnitude lower
than what is achieved by PARAFAC. CCA also has much
lower complexity compared to PARAFAC – the latter also
requires an extra stage to resolve the permutation ambiguity.
More interestingly, at the low SNR region (5-percentile of the
CCDF), 95% of the nodes can achieve less than 0.45 MSE
using CCA as opposed to 8.5 for PARAFAC, so more than an



order of magnitude improvement and the gap becomes even
wider as the SNR decreases (the tails of the CCDF). This
reflects how well our approach works at low SNR ranges.

We carried out another experiment with QPSK modulation
for all sensors, with a full load scenario where the number of
antennas is equal to the number of sensors, i.e., M = K = 32.
Further, the packet size is set to 1024; each block has 512
symbols for CCA while for MMSE and ZF, we use 512 pilots
for channel estimation. Fig. 3 demonstrates the superiority of
the proposed approach relative to ZF, MMSE and PARAFAC.
The CCDF curves shows that CCA attains an average of 0.019
SER which is way better than MMSE and ZF that achieve
0.074 and 0.5, respectively. Also note that both ZF and MMSE
require channel estimation, and hence they are more complex
to implement compared to CCA. Further, one can see from
the CCDF curves in Fig. 3 that CCA can achieve less than
0.01 in 40% of the instances (total number of points 320000),
while MMSE can achieve the same SER in only 20% of the
instances.

VI. CONCLUSIONS

This paper has considered the problem of unsupervised
detection in a wireless sensor network where low-power IoT
sensors are transmitting observations to a multi-antenna AP.
The proposed framework enables low-power and secure sensor
communication with the AP, without need for any channel
state information between the sensors and the AP. The pro-
posed solution employs repetition coding followed by random
scrambling: each sensor sends its signal twice at low power
then randomly permutes the two-block signal using a a pseudo-
random code. De-interleaving the received signal at the AP
using one of the sensors’ codes and folding the two signal
blocks followed by applying CCA on the two constructed
views, we have showed that even analog modulated sensor
signals can be reliably estimated even at low SNR. The end-
to-end proposed method is computationally cheap, mitigates
the AP receiver complexity compared to other methods, and
does not pose any structure on the transmitted waveforms from
the sensors. Simulations have demonstrated the superiority of
the proposed approach relative to the state-of-the-art methods.
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