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ABSTRACT

The spectrum underlay concept promises enhanced spectrum
utilization without disturbing legacy / licensed or scientific pri-
mary users, so long as their interference constraints can be
met. Existing underlay schemes assume that both the primary
signal to secondary interference plus noise ratio, and the sec-
ondary signal to primary interference plus noise ratio can be
high enough at the primary and secondary receiver, respec-
tively. Even if the cross-network channel state information is
available at the secondary users, these two conflicting require-
ments are hard to achieve simultaneously in practice. This
work proposes a practical data-driven approach that allows a
pair of secondary users to reliably communicate in underlay
mode while keeping the interference at the primary receiver
close to its noise floor. The secondary transmitter merely has
to transmit its signal twice, at very low power - above the
noise floor, but well below the primary’s interference. It is
shown here that reliable detection of the secondary signal is
possible via canonical correlation analysis (CCA). Theoretical
and experimental results reveal the remarkable detection per-
formance of the proposed CCA-based approach, which does
not require any cross-network coordination, or even channel
state information.

1. INTRODUCTION

Dynamic spectrum access techniques hold promise for signifi-
cantly improved spectrum utilization on-demand and by allow-
ing secondary unlicensed users to take advantage of ephemeral
transmission opportunities in space, time, or frequency [1, 2].
Among several dynamic spectrum access modalities [1], un-
derlay spectrum sharing is very appealing in terms of priori-
tization of licensed and scientific ‘legacy’ uses, spectrum uti-
lization efficiency, and practical feasibility – since it allows co-
existence without need for coordination between the two user
‘tiers’.

Although there is a plethora of work done on underlay
cognitive radio networks (CRN) in the literature [3–7], these
works assume that the signal to interference plus noise ratio
(SINR) at the secondary receiver is relatively high. In practice,
this is very hard to ensure while protecting the primary user(s)
– especially scientific instruments such as weather radar, or
radio-telescopes which are extremely sensitive. Furthermore,
all of these works are relying on assumptions that are hard to
meet – such as the availability of cross-channel knowledge at
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the secondary users. The authors of [3], however, have re-
cently proposed a nice semi-blind beamforming-based under-
lay spectrum sharing approach, which allows the secondary
users to access the spectrum while minimally affecting the
primary network performance, without requiring any channel
knowledge at the secondary network. However, the proposed
method in [3] requires i) the primary communication to be
bidirectional (which does not hold for legacy radio/TV broad-
cast, or scientific uses); ii) the flow direction of primary traf-
fic to be predictable; iii) effectively time-invariant channels
from/to the primary users; and iv) training pilots for design-
ing the beamformer at the secondary receiver. These are still
restrictive assumptions. In particular, the reverse transmission
of the primary user needs to be synchronized with the forward
of the secondary, and vice versa, so the secondary users need
to track which node is transmitting in the primary network.

Is it possible to design an underlay strategy that enables
reliable decoding at very low SINR and modest SNR at the
secondary receiver, without noticeable increase of the noise
floor at the primary receiver? Is it possible to do this seam-
lessly, without any coordination between the primary (legacy /
incumbent) and the secondary user?

This is the holy grail of secondary spectrum access and
seamless cohabitation, but is it a realistic objective? The an-
swer is, surprisingly, affirmative. This paper proposes a sec-
ondary transmission scheme that operates at very low power
yet allows reliable secondary communication without requir-
ing any channel knowledge or coordination with the primary
system. The proposed scheme is (in a way) reminiscent of
an information-theoretic multicast scheme that was proposed
years ago under the name carbon copy on dirty paper [8], fol-
lowing the classic dirty paper coding work of Costa [9]. How-
ever, the proposed scheme is also fundamentally different than
the one in [8], in that the latter assumes non-causal determin-
istic knowledge of the interference at the transmitter, whereas
the scheme proposed herein does not – it is fully blind, and for
this reason it is named blind carbon copy on dirty paper – the
analogy will be made clear soon.

In the proposed scheme, the secondary transmitter sends
its signal twice, each time at very low power. This allows
creating two “views” of the signal space that only share the
secondary signal – the interference from the primary system is
potentially very strong, but different in the two views. Invok-
ing canonical correlation analysis (CCA) on these two views,
a secondary receiver which employs two receive antennas can
reliably decode its intended signal, under very strong inter-



ference from the primary user. This is shown both theoreti-
cally and numerically. In particular, it is shown that the pro-
posed CCA method can reliably decode the secondary user
signal at very low SINR (e.g., -45 dB) at the secondary re-
ceiver. Furthermore, experimental results reveal that the pro-
posed CCA method approaches the detection performance of
the state-of-the-art methods operating in the interference-free
regime (where the primary users are idle).

CCA is a widely-used statistical learning tool that seeks to
find linear combinations of two random vectors such that the
resulting pair of random variables is maximally correlated [10].
In recent work [11], the authors came up with a new and broadly
useful algebraic interpretation of CCA as a method that can
identify a common (shared) subspace between two multivari-
ate signals. CCA has found many other applications in signal
processing and wireless communications, including direction-
of-arrival estimation [12], equalization [13], radar [14, 15],
blind source separation [16], and more recently cell-edge user
detection [11], and multi-view learning [17–19], to name a
few.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider an underlay cognitive radio network comprising one
secondary transmitter (STx) communicating with a secondary
receiver (SRx) equipped with Ns ≥ 2 antennas, in the pres-
ence of a primary transmitter (PTx) and primary receiver (PRx)
with Np ≥ 1 antennas, as shown in Fig. 1 (more than one PRx
can be accomodated). Let hs ∈ CNs , hps ∈ CNs , hsp ∈ CNp

and hp ∈ CNp be the channel response between the STx and
SRx, PTx and SRx, STx and PRx, and PTx and PRx, respec-
tively, defined as

hs =
√
σs gs, hps =

√
σps gps,

hp =
√
σp gp, hsp =

√
σsp gsp (1)

where gs, gps, gsp and gp are the respective small-scale fad-
ing vectors while the terms σs, σps, σsp and σp are the corre-
sponding large scale fading coefficients with values dependant
on the propagation distance and environment. Unlike prior
works [3–7] that rely on the assumptions that perfect knowl-
edge of the cross channels hps and/or hsp is available at the
secondary receiver and the secondary transmitter, respectively,
this paper assumes that the secondary users have no knowledge
about any channel state information in the network.

The goal of this work is to show that, without any co-
ordination between the secondary and primary systems, the
secondary user can reliably communicate without harmfully
affecting the primary user’s performance. To do so, we will
next present a simple spectrum sharing scheme together with
a data-driven (unsupervised learning-based) approach that al-
low i) the STx to transmit its signal at very low power so that
it does not affect the detection performance at the PRx, keep-
ing the resulting interference close to its noise floor, and ii)
the SRx to reliably decode its intended signal at significantly
low SINR as we will verify later. Note that we consider one
primary transceiver and one secondary transceiver for clar-
ity of exposition. Multiple primary and secondary users can
be accommodated, but require more space and more sophis-
ticated transmission and reception schemes. We therefore re-

Fig. 1: System Model

serve such scenarios for future publications.

3. SECONDARY TRANSMISSION SCHEME

In this section, we will present a simple practical scheme for
the secondary transmitter so that it can reliably communicate
with its receiver over the same channel occupied by the pri-
mary network, and without degrading the PRx performance.
Define s ∈ CN as the transmitted signal from the STx (our
proposed approach also works with analog signals). The sec-
ondary transmission scheme is described as follows.

The STx transmits the same sequence (denoted by s) twice
at very low power – so that it is received above the thermal
noise floor at the SRx, but far below what is required to be
directly decoded in the face of possibly overwhelming inter-
ference by the primary user. The repetition of the secondary
user sequence can happen at the symbol or block level; we
assume here block-repetition for simplicity of exposition. To-
wards this end, the discrete-time baseband-equivalent model
of the received signal, Y ∈ CNs×2N , at the secondary re-
ceiver is

Y =
√
αshsx

T
s +
√
αphpsx

T
p +W (2)

where xs = [sT , sT ]T ∈ C2N is the overall transmitted sig-
nal by the STx after repetition, xp ∈ C2N is the transmit-
ted signal by the PTx, and αs and αp denote the transmis-
sion power of the STx and the PTx, respectively. The term
W ∈ CNs×2N contains independent identically distributed el-
ements with each entry drawn from a complex Gaussian distri-
bution with zero mean and variance N0. We will next present
a low-complexity learning-based approach that will allow the
SRx to reliably decode its intended signal, s, even if the re-
ceived SINR is significantly low.

Remark 1. It is worth pointing out that if the primary user
signal is order(s) of magnitude stronger, then one can cancel
the primary interference by simply projecting the received sig-
nal on the minor left singular vector of the matrix Y, thereby
“revealing” the secondary transmission. This can only work
when the spatial channels of the two users are time-invariant.
In practice, the channel gains fluctuate over time, and even if
the average secondary signal to interference ratio is low (e.g.,
-40 dB), there are times when it becomes relatively high (e.g.,
-20 dB). These fluctuations quickly degrade the subspace esti-
mate, leading to complete failure to detect the secondary sig-
nal.



Remark 2. We point out that the proposed transmission scheme
can be interpreted as repetition coding, or equivalently, as
spreading the secondary user’s transmission with spreading
gain equal to 2 [20]. Treating this situation as CDMA or as an
error control problem will not work, because the primary user
dominates the received signal, and small spreading / coding
gains cannot make up for the large power difference between
the secondary and primary user.

4. SECONDARY SIGNAL DETECTION VIA CCA

By partitioning xT
p = [pT

1 p
T
2 ] in two blocks, and by exploiting

the repetition structure, the SRx can split Y and W into two
blocks, Y = [Y1 Y2], and W = [W1 W2], for which we
have

Y1 = Hs [s,p1]
T +W1 (3)

Y2 = Hs [s,p2]
T +W2 (4)

where Hs ∈ RNs×2 is the channel matrix holding in its columns
the channel vectors hs and hps. Furthermore, the transmit
power terms of both the STx and PTx have been absorbed in
the respective channel vectors, for brevity. Now, given the two
signal views in (3) and (4), CCA will be invoked to show that
reliable detection of the secondary signal, s, is possible even
at low SINR. To see how we can utilize CCA to identify the
secondary signal, s, from Y1 ∈ CNs×N and Y2 ∈ CNs×N ,
we will use the so-called maximum variance (MAX-VAR) for-
mulation of CCA [21]. That is,

min
g,q1,q2

2∑
`=1

‖YT
` q` − g‖2F (5a)

s.t. ‖g‖22 = 1 (5b)
The above problem seeks to find a direction g ∈ CN that is
maximally correlated after the linear projections of Y1 and
Y2 on q1 ∈ CNs and q2 ∈ CNs , respectively. An appealing
feature of CCA that adds to the simplicity of the overall ap-
proach and renders it favorable from the practical point of view
is its computational complexity. It has been shown in [22] that
problem (5) admits a simple algebraic solution via eigende-
composition, so solving (5) is tantamount to solving for the
principal eigenvector of a matrix involving the sample auto-
and cross-covariance matrices of two random vectors each of
size Ns × 1.

In a recent work [11], we have shown that given two multi-
antenna signal views that include one shared (common) com-
ponent and multiple individual (“private”, not shared) compo-
nents in each view, then CCA can efficiently extract the com-
mon component up to scaling ambiguity no matter how strong
the individual components are. One can see from (3) and (4)
that each block (view) is subject to strong interference by the
primary user, but the interference is different in the two blocks
– thus there is a unique common subspace, namely (the span
of) s that conveys the secondary transmission. Building upon
our theoretical findings in [11], we will next show that our
CCA interpretation applies, and under very mild conditions
will recover s up to scaling, even if p is several orders of mag-
nitude stronger than s.

The following theorem, which is a slight modification of
the results of [23], states the conditions for identifying the sec-
ondary transmitted signal s at the SRx.

Theorem 1. In the noiseless case, if the matrices X` := [s,p`] ∈
CN×2 and Hs ∈ CNs×2 are full column rank for ` ∈ {1, 2},
then the optimal solution g? of problem (5) is given by g? =
γs, where γ ∈ C, γ 6= 0 is the scaling ambiguity.

Proof. The proof is provided in Theorem 1 in [11].

Note that the full rank condition on the matrices X` needs
the signals s and p` to be linearly independent which is prac-
tically always the case for any reasonable “packet” length N ,
because these signals are drawn from statistically independent
sources. On the other hand, the full rank condition on Hs is in
fact the more restrictive one as it requires i) the number of an-
tennas at the SRx to be ≥ to the number of co-channel signals
(two in our setting) and ii) the channel vectors to be linearly
independent. The latter is realistic, these being statistically in-
dependent channel vectors from the PTx and the STx to the
SRx.

Remark 3. Although (3) and (4) implicitly assume that that
the channel is constant across the two secondary repetition
blocks, our proposed method in fact can work even if the two
channel matrices are different [11]. Therefore, with block rep-
etition, the coherence time needs to be only greater than one
block duration.

5. NUMERICAL RESULTS

In this section, we provide simulation results to assess the per-
formance of the proposed CCA approach. We consider the
underlay scenario shown in Fig. 1. The transmit power at the
PTx, αp, is set to 25 dBm while the maximum transmit power
at the STx, αs, is set to 6 dBm. The large scale fading param-
eters (path-loss) used in the simulation are set to σ2

s = −85
dB, σ2

sp = σ2
ps = −80 dB, and the additive white Gaussian

noise power is set to N0 = −90 dBm. The small scale fading
parameters are modeled as circularly symmetric Gaussian ran-
dom variables with zero mean and unit variance. It is assumed
that the SRx has two antennas, unless stated otherwise. Fur-
thermore, the total number of samples collected at the SRx is
assumed to be 1024, so the repetition is done over two blocks,
each of length 512 samples. We conducted 104 Monte-Carlo
two-block-transmission experiments, each time drawing new
s,p,W and Hs.

Since we assume digitally-modulated symbols at the sec-
ondary user, we will use the bit error rate (BER) as a perfor-
mance metric (but recall that our method can also work with
analog transmissions). Furthermore, to benchmark our pro-
posed method, we will use the singular value decomposition
(SVD) of the matrix Y to estimate the channel direction dur-
ing a period when the primary user is inactive, i.e., there is no
interference from the primary user. Then, the secondary user
signal can be estimated by projecting the received signal Y on
the principal left singular vector. In order to resolve the scaling
ambiguity that is inherent both in the proposed CCA method
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Fig. 2: BER vs. SNR of the secondary user at three levels of
secondary SINR.

and the SVD-based baseline, we assume that the first bit of s
is +1.

In the first experiment, we studied the detection perfor-
mance of the secondary system with and without spectrum
sharing. In order to illustrate the ability of our proposed ap-
proach to correctly decode the secondary transmission at very
low SINR, we varied the STx power from −8 dBm to 6 dBm
which corresponds to the received SNR range in Fig. 2. For
each value of the secondary SNR, we report the corresponding
BER obtained by our proposed CCA method at three levels
of the SRx SINR: from −25 dB to −45 dB. For this simu-
lation, we assume that the PTx is sending a real analog sig-
nal with each sample drawn from a Gaussian distribution with
zero mean and unit variance, while the STx is sending a BPSK
signal. After solving the CCA problem (5), we averaged the
two soft estimates of s obtained via Y1q1 and Y2q2, before
hard thresholding. Fig. 2 depicts BER results obtained by our
proposed CCA method for all three levels of primary inter-
ference, and the corresponding BER curve obtained using the
SVD-based method at the same SNR without any interference.
The results are pretty striking: CCA is remarkably insensitive
to interference from the primary user, and it even outperforms
the performance obtained using interference-free SVD in the
low SNR region. In particular, under very strong interference
from the primary user, our proposed method achieves approx-
imately 1 dB SNR gain over the interference-free SVD-based
method in the range [−3, 3]dB. This is in fact one of the most
appealing features of the proposed CCA method. Note that
the SVD-based method works better than our approach as the
SNR increases, as expected. Finally, it is obvious that using
matched filter assuming perfect knowledge of the secondary
channel hs at the SRx completely fails when the primary user
is active (top orange line in in Fig. 1).

We now consider another experiment over the same SNR
range, but this time we report the BER for different numbers of
antennas at the SRx, assuming Gray coded QPSK transmission
for both the STx and the PTx. Further, in this simulation the
SINR at the SRx is−35 dB. In order to resolve the scaling am-
biguity of both methods, we assume that that the first symbol is
(1+1j)/

√
(2). Fig. 3 shows that an order of magnitude reduc-
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Fig. 3: BER vs. secondary user SNR for different number of
antennas at the SRx.

tion in the BER can be achieved by both methods when using
three receive antennas at the SRx compared to two antennas.
In particular, with three receive antennas, our method achieves
10−2 BER at 7 dB SNR while at the same time the resulting
interference at the PRx is around its noise floor. Furthermore,
it can be easily seen that our method is always approaching the
SVD baseline operating without the primary user interference,
and the gap between the two methods becomes even narrower
by increasing the number of antennas.

Remark 4. Note that our use of the SVD “baseline” with-
out interference (which is more appropriately called an “or-
acle” method here) is purely to show how well the proposed
method works – close to an oracle which operates in a fic-
titious interference-free environment. There is no real base-
line method that we can use for comparison, because no other
method (except ideal interference cancellation – which can-
not work with an analog primary transmission or at medium
SINR) can decode the secondary signal at this low SINR.

6. CONCLUSIONS

In this paper, we proposed a low-complexity data-centric spec-
trum sharing approach for an underlay scenario with a pair of
secondary users and a pair of primary users. The proposed
method allows the secondary users to reliably communicate
over the same channel occupied by the primary users, without
any coordination, and without any channel state information.
Our proposed solution is based on “repetition coding”: the sec-
ondary user transmits its signal twice at very low power such
that it does not affect the primary user detection performance.
Constructing two signal views at the SRx and applying CCA
to these views, we showed that the secondary receiver can reli-
ably decode its intended signal at low SNR even if it is buried
under strong interference from the primary user transmission.
Numerical results demonstrated that our unsupervised CCA
approach allows the SRx with two receive antennas to attain
the same BER at -40 dB SINR as achieved by an SVD-based
baseline in the interference-free case where the primary user is
silent.
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