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A NOTE ON THE ORTHOGONAL PROCRUSTES PROBLEM

AND NORM-DEPENDENT OPTIMALITY∗
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Abstract. This note revisits the classical orthogonal Procrustes problem and investigates the norm-dependent geometric

behavior underlying Procrustes alignment for subspaces. It presents generic, deterministic bounds quantifying the performance

of a specified Procrustes-based choice of subspace alignment. Numerical examples illustrate the theoretical observations and

offer additional, empirical findings which are discussed in detail. This note complements recent advances in statistics involving

Procrustean matrix perturbation decompositions and eigenvector estimation.
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1. Introduction. Let U, V ∈ Om,r where Om,r denotes the set of orthonormal r-frames in Rm (i.e.,

Stiefel matrices) and Om,m ≡ Om denotes the set of m × m real orthogonal matrices. In this paper we

consider the orthogonal Procrustes problem(s)

(1.1) inf
W∈Or

‖U − VW‖,

where the norm ‖ · ‖ is taken to be any of the following: the Frobenius norm ‖ · ‖F , the spectral norm ‖ · ‖2,

or the two-to-infinity norm ‖ · ‖2→∞, the latter of which is defined for any matrix A ∈ Rm×n as

(1.2) ‖A‖2→∞ := sup
‖x‖2=1

‖Ax‖∞.

Our motivation for considering the two-to-infinity norm stems from recent matrix analysis applications in

statistics. There, the two-to-infinity norm is leveraged together with perturbation analysis to yield novel

estimation results for eigenvectors and principal subspaces.

Considerable effort has been devoted to Procrustes problems over the years (see [7] for an overview),

beginning with the classical orthogonal Procrustes problem which is well-understood under the Frobenius

norm [11]. In particular, when writing the singular value decomposition of V >U ∈ Rr×r as V >U ≡W1ΣW2

with W1,W2 ∈ Or, then W ? := W1W2 ∈ Or solves equation (1.1) under ‖ · ‖F . Less is generally known

about the orthogonal Procrustes problem under different norms.

Taken together, and given the analytic tractability of W ?, we are led to investigate

(1.3) ‖U − VW ?‖

in both spectral and two-to-infinity norm. We also study the behavior of ‖U − VW‖ when W 6= W ?.
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2. Overview and motivation. This paper is intended to serve as a baseline, perturbation-free coun-

terpart to [6], providing both complementary theory and numerics. Here and in [6], we advocate for more

widespread consideration of the two-to-infinity subordinate vector norm on matrices and demonstrate how

‖ · ‖2→∞ provides an easily interpretable, operationally useful, and geometrically significant quantity.

This paper does not assume an a priori relationship between the matrices U, V ∈ Om,r in equation (1.3).

As such, the results discussed here hold in broad generality. By way of contrast, stronger results can be

obtained under additional structural assumptions, particularly in the classical matrix perturbation setting

Ã := A+E. In statistics, for example, the papers [3, 5, 6] consider such settings where U (derived from some

matrix Ã) is viewed as a (stochastic) perturbation of V (derived from some matrix A), making it possible

to considerably improve (probabilistically) upon certain bounds (e.g., Theorem 4.4).

With an eye towards applications and numerics, we remark that an orthonormal r-frame U ∈ Om,r
may be viewed as a concatenated matrix of r orthonormal (column) eigenvectors (or singular vectors) cor-

responding to some underlying m ×m matrix. As such, ‖U‖2→∞ provides a measure of joint eigenvector

homogeneity and basis coherence. Indeed, this two-to-infinity norm quantity is relevant for various problems

in fields including statistics, computer science, and applied mathematics, arising either implicitly or explicitly

in the following settings:

• Matrix completion and recovery in optimization [4, 8];

• Consistency of clustering in random graph inference [9];

• Delocalization of eigenvectors in random matrix theory [10];

• Singular subspace perturbation in high-dimensional statistics [3, 6].

The remainder of this paper is organized as follows. Section 3 establishes notation and discusses ele-

mentary properties of the two-to-infinity norm that can be derived in a straightforward fashion from first

principles. Section 4 provides a collection of bounds relating specifications of ‖U − VW‖ (e.g., in two-to-

infinity norm; for W ?) to canonical angles, matrix dimensions, entrywise matrix behavior, and two-to-infinity

norm quantities. Section 5 provides numerical investigations of the ideas considered in this work and is the

focus of this paper. In addition to illustrating theoretical bounds provided earlier, Section 5 further explores

the complexities of Procrustes problems when varying the choice of norm and choice of orthogonal matrix

W . We observe diverse, subtle behavior occurring already in low-dimensional Euclidean space. Collectively,

these contributions do not seem to appear elsewhere in the literature. We conclude with additional discussion

in Section 6, and collect proof details in the appendix.

3. Preliminaries. We begin by establishing notation, introducing the two-to-infinity norm with its

basic properties, and reviewing the concept of canonical angles.

3.1. Notation. All vectors and matrices in this paper are taken to be real-valued. The symbols := and

≡ are used to assign definitions and to denote formal equivalence, respectively. For any positive integer m,

let [m] := {1, 2, . . . ,m}. For (column) vectors x, y ∈ Rm where x ≡ (x1, . . . , xm)>, the standard Euclidean

inner product between x and y is denoted by 〈x, y〉. The vector of all ones is denoted by e. The classical `p

vector norms are denoted by ‖x‖p := (
∑p
i=1 |xi|p)

1/p
for 1 ≤ p <∞ and ‖x‖∞ := maxi|xi|. In addition to the

Frobenius norm, ‖·‖F , the spectral norm, ‖·‖2, and two-to-infinity norm, ‖·‖2→∞, let ‖A‖∞ := maxi
∑
j |aij |

denote the maximum absolute row sum of A, i.e., the matrix norm induced by the `∞ vector norm. We also

consider the matrix norm given by ‖A‖max := maxi,j |aij |.
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3.2. The two-to-infinity norm. We catalog several preliminary facts about the two-to-infinity norm

in the form of several propositions. The proofs are straightforward in nature, and we refer to [6] for additional

details. Below, in summary:

• Proposition 3.1 says that ‖A‖2→∞ corresponds to the maximum Euclidean row norm of A.

• Proposition 3.2 makes explicit the relationship between ‖ · ‖2→∞ and ‖ · ‖2 in terms of underlying

matrix dimensions.

• Proposition 3.3 records the sub-multiplicative behavior of ‖ · ‖2→∞ as a subordinate operator norm

(see [12] for more general discussion of such norms).

• Proposition 3.4 recalls the partial isometry invariance of ‖ · ‖2 and notes the “restricted” partial

isometry invariance of ‖ · ‖2→∞.

Proposition 3.1. Let A ∈ Rm×n and Ai ∈ Rn denote the i-th row of A. Then

‖A‖2→∞ = max
i∈[m]
‖Ai‖2.(3.4)

Proposition 3.2. For A ∈ Rm×n,

(3.5) ‖A‖2→∞ ≤ ‖A‖2 ≤ min{
√
m‖A‖2→∞,

√
n‖A>‖2→∞}.

Proposition 3.3. For A ∈ Rm×n, B ∈ Rn×p, and C ∈ Rl×m,

(3.6) ‖AB‖2→∞ ≤ ‖A‖2→∞‖B‖2 and ‖CA‖2→∞ ≤ ‖C‖∞‖A‖2→∞.

Proposition 3.4. For A ∈ Rr×s, U ∈ Om,r, and V ∈ On,s,

‖A‖2 = ‖UA‖2 = ‖AV >‖2 = ‖UAV >‖2, and ‖A‖2→∞ = ‖AV >‖2→∞.(3.7)

However, ‖UA‖2→∞ need not equal ‖A‖2→∞.

We emphasize that for U ∈ Om,r, ‖U‖2→∞ = ‖UU>‖2→∞ by Proposition 3.4.

This subsection concludes with a simple proposition describing the possible two-to-infinity norm values

of orthonormal r-frames. The key observation underlying Proposition 3.5 is that the standard basis vectors

and e/
√
m ∈ Rm represent the “extremal” unit vectors with respect to the two-to-infinity norm.

Proposition 3.5. For 1 ≤ r < m let U ∈ Om,r and U⊥ ∈ Om,m−r be such that [U |U⊥] ∈ Om. Then√
r
m ≤ ‖U‖2→∞ ≤ 1,

√
m−r
m ≤ ‖U⊥‖2→∞ ≤ 1, and

‖[U |U⊥]‖2→∞ = 1 <
√
r+
√
m−r√
m

≤ ‖U‖2→∞ + ‖U⊥‖2→∞ ≤ 2.(3.8)

3.3. Canonical angles and sin Θ distance. The columns of matrices U, V ∈ Om,r form orthonormal

bases for r-dimensional subspaces in Rm, respectively. Letting {σi(V >U)}ri=1 denote the singular values of

V >U indexed in non-increasing order, it follows from the classical CS matrix decomposition [1] that the

canonical angles between the subspaces corresponding to U and V are given by the main diagonal elements

of the r × r diagonal matrix

(3.9) Θ(U, V ) := diag(cos−1(σ1(V >U)), cos−1(σ2(V >U)), . . . , cos−1(σr(V
>U))).
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In turn, it is well-known (e.g., see [1]) that for the matrix of canonical angles,

(3.10) ‖ sin Θ(U, V )‖2 = ‖V⊥V >⊥ UU>‖2 ≡ ‖V >⊥ U‖2,

where the trigonometric sine operation is applied to the main diagonal elements of the matrix Θ(U, V ), and

U⊥ ∈ Om,m−r is such that [U |U⊥] ∈ Om. In certain instances that follow, it will be expedient to write

sU,V := ‖ sin Θ(U, V )‖2.

4. Theory. Lemma 4.1 (below) represents a first step in the direction of understanding the relationship

between equation (1.3) and the geometry of sin Θ distance. A proof can be found in [6].

Lemma 4.1. For U, V ∈ Om,r and T ∈ Rr×r, then ‖ sin Θ(U, V )‖2 ≤ ‖U − V T‖2. Furthermore, for any

W ∈ Or,

(4.11) 1√
m
‖ sin Θ(U, V )‖2 ≤ ‖U − VW‖2→∞.

Lemma 4.2 (below) is fundamentally a statement about the geometry of two orthogonal projections, more

precisely about the distance between subspaces. It is not new (e.g., see [2]), though it plays an important

role in this paper. A concise proof using our notation is provided in the appendix for convenience.

Lemma 4.2. For any U, V ∈ Om,r and W ? ∈ Or as in Section 1,

‖U − VW ?‖2 =

√
2− 2

√
1− ‖ sin Θ(U, V )‖22;(4.12a)

‖V >U −W ?‖2 = 1−
√

1− ‖ sin Θ(U, V )‖22.(4.12b)

For notational convenience we define the functions α(·) and β(·) on [0, 1] to be

α(a) :=

√
2− 2

√
1− a2, β(b) := 1−

√
1− b2,

noting that α(·) =
√

2β(·).

Corollary 4.3. Let U, V ∈ Om,r. Proposition 3.2 and equation (4.12a) together yield

(4.13) 1√
m
α(sU,V ) ≤ ‖U − VW ?‖2→∞ ≤ α(sU,V ).

In addition, Proposition 3.3, Proposition 3.4, and equation (3.10) together yield

(4.14) ‖ sin Θ(U, V )‖2 ≥
(
‖V⊥V >⊥ UU>‖2→∞
‖V⊥V >⊥ ‖2→∞

)
.

Equation (4.13) provides simple, general bounds for the two-to-infinity norm formulation of equation

(1.3) in terms of sin Θ distance by passing between norms. The lower bound here is also a bound for equation

(1.1) under ‖ · ‖2→∞ as can be seen in the proof.

Equation (4.14) relates sin Θ distance between subspaces to the two-to-infinity norm of associated or-

thogonal projections. The lower bound improves upon the trivial bound ‖ sin Θ(U, V )‖2 ≥ ‖V⊥V >⊥ UU>‖2→∞
by equation (3.10), since ‖V⊥V >⊥ ‖2→∞ = ‖V⊥‖2→∞ ≤ 1.
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Theorem 4.4 (below) relates the quantity ‖U − VW ?‖2→∞ to both the sin Θ distance and to the row

structure of V and V⊥. We remark that in various (statistical) settings involving (stochastic) matrix pertur-

bations, the term implicitly bounded by sU,V ‖V⊥‖2→∞ can be analyzed more delicately to yield an improved

leading-order term, as pursued in [5, 6].

Theorem 4.4. Let U, V ∈ Om,r, and W ? ∈ Or be as in Section 1. Then for V⊥ ∈ Om,m−r such that

[V |V⊥] ∈ Om,

(4.15) ‖U − VW ?‖2→∞ ≤ sU,V ‖V⊥‖2→∞ + β(sU,V )‖V ‖2→∞.

Furthermore, when m = 2, r = 1, and V ≡ 1√
2
e, the above inequality becomes equality.

Establishing a lower bound for ‖U − VW ?‖2→∞ in terms of sU,V and two-to-infinity norm quantities is

a more delicate task. The earlier lower bound in Corollary 4.3 is suboptimal in the presence of additional

structure (in V ) given the corollary’s level of generality. This point is addressed further in Section 5.

We conclude this section with Theorem 4.5 which describes the deviation between the matrices U −VW
and UU> − V V > in a row-wise and entrywise sense.

Theorem 4.5. For U, V ∈ Om,r and W ∈ Or,

(4.16) ‖UU> − V V >‖max ≤ (‖U‖2→∞ + ‖V ‖2→∞) ‖U − VW‖2→∞.

In addition, ‖U‖2→∞ ≤ ‖V ‖2→∞ + ‖U − VW‖2→∞.

5. Numerics. This section presents numerical simulation results which complement the theoretical

observations in Section 4. Specifically, we provide numerical verifications for several aforementioned bounds.

Furthermore, we investigate the quality (optimality) of candidate orthogonal matrices W in terms of Pro-

crustes alignment for the less well understood two-to-infinity norm.

5.1. Sampling scheme for U, V ∈ Om,r. Sampling matrices from Om,r can be done in a straight-

forward manner by performing Gram–Schmidt (GS) orthonormalization on collections of independent and

identically distributed (i.i.d.) random vectors generated from the m-dimensional multivariate standard nor-

mal distribution, N (0, Im). More specifically, one can generate U (sim. V ) by setting U := GS(Z) ∈ Om,r
where Z := [z1|z2| · · · |zr] ∈ Rm×r and the random vector zi is independently distributed according to

N (0, Im) for each i ∈ [r]. We explicitly consider small values of m and r in order to obtain good coverage in

our simulations and to avoid probabilistic concentration in high dimensions.

5.2. Simulated ‖U − VW ?‖2→∞ for i.i.d. U and V . We first consider an unstructured setting in

which pairs of U, V ∈ Om,r are taken to be i.i.d. as described in the previous paragraph. Figure 1 plots

‖U − VW ?‖2→∞ as a function of ‖ sin Θ(U, V )‖2 for two regimes of m and r. In each regime, we see that,

given the underlying absence of additional structure, the depicted tight bounds are simply those obtained

from passing between the two-to-infinity and spectral norms (Corollary 4.3).
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Figure 1: Scatter plots of ‖U−VW ?‖2→∞ as a function of ‖ sin Θ(U, V )‖2 for 40,000 replicates of i.i.d. matrix

pairs U, V where W ? ≡ W ?(U, V ) as in Section 1. The dashed lines represent theoretical upper and lower

bounds given by Corollary 4.3.
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Figure 2: Scatter plots of ‖U − VW ?‖2→∞ as a function of ‖ sin Θ(U, V )‖2 for 40,000 replicates of i.i.d. U

and fixed V . The dashed lines represent theoretical upper and lower bounds given by Corollary 4.3. The

solid lines represent theoretical upper and lower bounds given by Theorem 4.4 and Lemma 4.1, respectively.

Observe the appearance of piecewise continuous lower bound behavior in the scatter plots, with cusps near

the ‖ sin Θ(U, V )‖2 values of 0.65 and 0.85, respectively. Here, tight lower bounds with exact endpoints can

in principle be computed explicitly via the case-by-case approach employed in the proof of Theorem 4.4.

5.3. Simulated ‖U − VW ?‖2→∞ for random U and fixed V . Next, we again sample U ∈ Om,r
i.i.d. as described in Section 5.1 but now specify that V ≡ 1√

m
e.

Figure 2 shows realizations of the quantity ‖U − VW ?‖2→∞ as a function of ‖ sin Θ(U, V )‖2 for the

regimes m ∈ {3, 4} and r = 1. The choices of V and m here provide low-dimensional examples to contrast

the special equality case in Theorem 4.4. In this structured setting, the upper and lower bounds behave
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in a more nuanced manner compared to the unstructured setting depicted in Figure 1. Namely, here the

spectral norm-implied theoretical upper bound (top dashed line) is improved by the theoretical upper bound

(top solid line) which takes into account the structure of V and V⊥. The spectral norm-implied theoretical

lower bound (bottom dashed line) is no longer tight. Rather, the tight lower bounds in each regime (not

depicted) are piecewise continuous functions of ‖ sin Θ(U, V )‖2 and can be derived in a similar fashion as in

the case m = 2, r = 1 in Theorem 4.4. We also plot 1√
m
‖ sin Θ(U, V )‖2 from Theorem 4.4 (bottom solid line)

which demonstrates the theoretical gap between two-to-infinity norm optimality and the Frobenius norm

optimality of the matrix W ?.

5.4. On norm-dependent optimality and optimal orthogonal matrices. In the previous sec-

tions, W ? has been viewed as a surrogate for the (analytically intractable) two-to-infinity-optimal orthogonal

Procrustes solution, namely

arg inf
W∈Or

‖U − VW‖2→∞.

This section addresses the question “How good is the choice of W ??” by providing an illustrative empirical

investigation of this query.

To begin, we recapitulate that given U, V ∈ Om,r and the associated Frobenius-optimal orthogonal

matrix W ?, then for all W ∈ Or,

(5.17) 1√
m
‖ sin Θ(U, V )‖2 ≤ ‖U − VW ?‖2→∞ ≤ ‖U − VW ?‖F ≤ ‖U − VW‖F ,

together with ‖U − VW‖2→∞ ≤ ‖U − VW‖F .

For θ ∈ [0, 2π) let Rrot
θ denote the two-by-two counterclockwise (orthogonal) rotation matrix with angle

θ, i.e.,

Rrot
θ :=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
.

For each sub-figure in Figure 3, we independently simulate a single pair of matrices U, V from O4,2 and

plot both ‖U − V Rrot
θ ‖ and ‖U − VW ?‖ in two-to-infinity norm and Frobenius norm, together with a lower

bound on the two-to-infinity-optimal Procrustes norm value. We summarize Figure 3 shown below.

• Figure 3a: the rotation Rrot
θ is uniformly (in θ) dominated under both ‖·‖2→∞ and ‖·‖F . Moreover,

Rrot
θ under ‖ · ‖2→∞ is always strictly worse than W ? under ‖ · ‖F , namely ‖U − VW ?‖F ≤ ‖U −

V Rrot
θ ‖2→∞.

• Figure 3b: the rotation Rrot
θ uniformly improves upon ‖·‖F in ‖·‖2→∞ but is inferior to W ?, namely

‖U − VW ?‖2→∞ ≤ ‖U − V Rrot
θ ‖2→∞ ≤ ‖U − VW ?‖F .

• Figures 3c and 3d: the behavior of Rrot
θ is more nuanced in that, depending on the value of θ, ‖U −

V Rrot
θ ‖2→∞ is smaller than or larger than each of ‖U − VW ?‖2→∞ and ‖U − VW ?‖F , respectively.

In Figure 3c observe the improvement over W ? in that ‖U − V Rrot
θ ‖2→∞ < ‖U − VW ?‖2→∞ for θ

near ‖U−V Rrot
θ ‖F ≈ ‖U−VW ?‖F . Figure 3d demonstrates a pronounced effect of norm-dependent

optimality for orthogonal Procrustes in that, for θ ≈ 5, then ‖U − V Rrot
θ ‖2→∞ < ‖U − VW ?‖2→∞

while ‖U − V Rrot
θ ‖F > ‖U − VW ?‖F , whereas ‖U − V Rrot

θ ‖2→∞ = ‖U − VW ?‖2→∞ as well as

‖U − V Rrot
θ ‖F = ‖U − VW ?‖F for θ ≈ 5.85.
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Figure 3: For underlying matrices U, V ∈ O4,2 each plot depicts two curves and three (constant) lines as

functions of θ. The upper and bottom solid lines represent ‖U −VW ?‖F and 1
2‖ sin Θ(U, V )‖2, respectively.

The dashed line represents ‖U −VW ?‖2→∞. The upper and lower solid curves represent ‖U −V Rrot
θ ‖F and

‖U − V Rrot
θ ‖2→∞, respectively.

It is in fact possible to explicitly parametrize all 2 × 2 real orthogonal matrices and therefore to solve

equation (1.1) under the two-to-infinity norm in the present special setting. To this end, for θ ∈ [0, 2π) let

Rref
θ denote the two-by-two (orthogonal) reflection matrix given by

Rref
θ :=

[
cos(θ) sin(θ)

sin(θ) − cos(θ)

]
.

Table 1 displays the results when numerically solving equation (1.1) for each of the four pairs of matrices

U and V underlying Figure 3. In the setting corresponding to Figure 3d, both the Frobenius optimal and

two-to-infinity norm optimal orthogonal transformations are in fact rotation matrices. Plots for Rref
θ resemble

the range of behavior exhibited in Figure 3 and are therefore not shown.

In each simulation example, W ? ∈ {Rrot
θ }θ∈[0,2π) ∪ {Rref

θ }θ∈[0,2π), and W ? is suboptimal for the two-

to-infinity norm orthogonal Procrustes problem. Figure 3d depicts this suboptimality near the true two-to-

infinity and Frobenius minimizers, whereas Figure 3c demonstrates similar behavior in a small parameter

region for θ near a local minimum in Frobenius norm. In all cases, the location of W ? is “close” to that of the

true minimizing orthogonal transformation (not shown in Figures 3a and 3b since the optima are in Rref
θ ).

Such “closeness” can be quantified more precisely in matrix analysis applications found in high-dimensional
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statistics.1

Table 1

Pair (a) Pair (b) Pair (c) Pair (d)

optF (0.83, θref = 2.22) (1.41, θref = 5.28) (1.41, θref = 5.00) (0.84, θrot = 5.69)

opt2→∞ (0.44, θref = 2.01) (0.94, θref = 6.26) (0.90, θref = 4.16) (0.63, θrot = 5.04)

6. Discussion. This paper investigates the geometry corresponding to U, V ∈ Om,r both column-wise

(i.e., via sin Θ distance) and row-wise (i.e., via ‖U‖2→∞, ‖V ‖2→∞). Geometrically, the value ‖V ‖2→∞
corresponds to the radius of the minimal Euclidean ball in Rr centered at the origin which contains all the

rows of V . In contrast, the columns of V are all on the unit Euclidean sphere in Rm.

The goal of minimizing ‖U−VW‖ in terms of W may be viewed as seeking the best-possible alignment of

U subject to a ground-truth subspace basis V . In Section 4 we show how additional structural considerations

on the ground-truth V influence the two-to-infinity norm behavior of the matrix U − VW and related

quantities (see Theorem 4.4 and Theorem 4.5). We emphasize that the two-to-infinity norm, unlike the

spectral and Frobenius norms, is an example of a basis-dependent norm (recall Proposition 3.4). In Section 5

we illustrate the interplay between the choice of norm, choice of subspace, and orthogonal transformation

when quantifying subspace alignment.

Appendix A. Technical material.

Proof of Lemma 4.2. For any real matrix A, the spectral norm satisfies ‖A‖22 = ‖A>A‖2. This observation

facilitates the computation

‖U − VW ?‖22 = ‖(U − VW ?)>(U − VW ?)‖2
= ‖U>U − U>VW ? − (W ?)>V >U + (W ?)>V >VW ?‖2
= ‖2I − (V >U)>W ? − (W ?)>(V >U)‖2
= ‖2I − (W1ΣW2)>W1W2 − (W1W2)>(W1ΣW2)‖2
= ‖2I −W>2 ΣW2 −W>2 ΣW2‖2
= 2‖I − Σ‖2
= 2(1−mini cos(θi))

= 2

(
1−

√
1−maxi sin2(θi)

)
.

Taking square roots establishes the first claim. As for the second claim, observe that ‖V >U − W ?‖2 =

‖Σ− I‖2 = 1−mini cos(θi) = 1−
√

1−maxi sin2(θi).

1Remark: within the perturbation framework considered in [5, 6], it is shown that the approximation error incurred by con-

sidering W ? rather than the true-but-intractable two-to-infinity optimal orthogonal transformation is asymptotically negligible

in certain settings.
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Proof of Theorem 4.4. Using the triangle inequality together with Proposition 3.3 and equation (4.12b)

yields

‖U − VW ?‖2→∞ = ‖U − V V >U + V V >U − VW ?‖2→∞
≤ ‖(V⊥V >⊥ )U‖2→∞ + ‖V (V >U −W ?)‖2→∞
≤ ‖V >⊥ U‖2‖V⊥‖2→∞ + ‖V >U −W ?‖2‖V ‖2→∞
= sU,V ‖V⊥‖2→∞ + β(sU,V )‖V ‖2→∞.

Proof of equality special case in Theorem 4.4. Consider the case when m = 2 and r = 1 with U ≡ u ∈ R2

and V ≡ v := ( 1√
2
, 1√

2
)> ∈ R2. Then ‖U−VW ?‖2→∞ = maxi|ui− 1√

2
ω| where ω = 1 when cos θ ≡ 〈u, v〉 > 0

and ω = −1 when 〈u, v〉 < 0. If 〈u, v〉 = 0, note that ‖U − VW ?‖2→∞ =
√

2.

Here, sU,V ≡ | sin θ|, so squaring both sides of the equality cos θ ≡ 〈u, v〉, expanding the inner product,

and using the fact that ‖u‖2 = 1 yields u1u2 = 1
2 − s2U,V . There are three cases to consider:

• Case 1: If sU,V = 1√
2

then maxi|ui| = 1 and so ‖U − VW ?‖2→∞ = 1√
2
;

• Case 2: If 0 ≤ sU,V < 1√
2
, then u1 and u2 have the same sign;

• Case 3: If 1√
2
< sU,V ≤ 1, then u1 and u2 have different signs.

In Case 2, one has 1
2 − s2U,V = |u1||u2| = |u1|(1 − |u1|2)1/2 and similarly for |u2| by symmetry. Solving the

previous equation yields

maxi|ui| = 1√
2

√
1 + 2sU,V

√
1− s2U,V = 1√

2

√(
sU,V +

√
1− s2U,V

)2
= 1√

2

∣∣∣sU,V +
√

1− s2U,V

∣∣∣ , and similarly

mini|ui| = 1√
2

∣∣∣sU,V −√1− s2U,V

∣∣∣ .
If u1, u2 > 0 then ω = 1 whereas if u1, u2 < 0 then ω = −1. So, for 0 ≤ sU,V < 1√

2
,

‖U − VW ?‖2→∞ = max
{∣∣∣±maxi|ui| ∓ 1√

2

∣∣∣ , ∣∣∣±mini|ui| ∓ 1√
2

∣∣∣}
= 1√

2

(
1 + sU,V −

√
1− s2U,V

)
.

On the other hand, for Case 3 when u1 and u2 differ in sign, then

‖U − VW ?‖2→∞ = max
{∣∣∣±maxi|ui| ∓ 1√

2

∣∣∣ , ∣∣∣∓mini|ui| ∓ 1√
2

∣∣∣}
= 1√

2

(
1 + sU,V −

√
1− s2U,V

)
.

Hence, for V , m, and r as specified above, over the entire domain sU,V ∈ [0, 1],

‖U − VW ?‖2→∞ = 1√
2

(
1 + sU,V −

√
1− s2U,V

)
= sU,V ‖V⊥‖2→∞ + β(sU,V )‖V ‖2→∞.

Proof of Theorem 4.5. For U, V ∈ Om,r and W ∈ Or, observe that

UU> − V V > = (U − VW )U> + V (WU> − V >).
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11 Orthogonal Procrustes and Norm-dependent Optimality

The result follows by applying the triangle inequality with respect to ‖ · ‖max and then jointly invoking

Proposition 3.4 together with the observation that ‖AB>‖max ≤ ‖A‖2→∞‖B‖2→∞ for matrices A and B.
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[2] A. Böttcher and I. Spitkovsky. A gentle guide to the basics of two projections theory. Linear Algebra and its Applications,

432:1412–1459, 2010.

[3] T.T. Cai and A. Zhang. Rate-optimal perturbation bounds for singular subspaces with applications to high-dimensional

statistics. Annals of Statistics, 46:60–89, 2018.

[4] E. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of Computational Mathematics,

9:717–772, 2009.

[5] J. Cape, M. Tang, and C.E. Priebe. Signal-plus-noise matrix models: eigenvector deviations and fluctuations. Biometrika,

106:243–250, 2019.

[6] J. Cape, M. Tang, and C.E. Priebe. The two-to-infinity norm and singular subspace geometry with applications to high-

dimensional statistics. Annals of Statistics, 47:2405–2439, 2019.

[7] J. Gower and G. Dijksterhuis. Procrustes Problems. Oxford University Press, New York, 2004.

[8] D. Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions on Information Theory,

57:1548–1566, 2011.

[9] V. Lyzinski, D. Sussman, M. Tang, A. Athreya, and C.E. Priebe. Perfect clustering for stochastic blockmodel graphs via

adjacency spectral embedding. Electronic Journal of Statistics, 8:2905–2922, 2014.

[10] M. Rudelson and R. Vershynin. Delocalization of eigenvectors of random matrices with independent entries. Duke

Mathematical Journal, 164:2507–2538, 2015.

[11] P. Schönemann. A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31:1–10, 1966.

[12] G.W. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.


	Introduction
	Overview and motivation
	Preliminaries
	Notation
	The two-to-infinity norm
	Canonical angles and sin distance

	Theory
	Numerics
	Sampling scheme for U, V Om,r
	Simulated "026B30D U-VW"026B30D 2 for i.i.d. U and V
	Simulated "026B30D U-VW"026B30D 2 for random U and fixed V
	On norm-dependent optimality and optimal orthogonal matrices

	Discussion
	Appendix A. Technical material
	References

