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A B S T R A C T   

As the current power grid is highly interconnected and more information and communication technologies (ICTs) 
are being deployed recently, it could be the target of malicious cyber-physical attacks. Dynamic load altering 
attacks (D-LAAs), as a special case of load altering attacks, could be performed to interfere the demand response 
and ultimately force certain generators off-line. Cascading failures due to transmission line overloads may also be 
triggered. In this paper, we propose a new dynamic defense strategy against D-LAAs through a multistage game 
between the attacker and the defender which is solved by minimax-q learning. Different from the static game, the 
multistage game considers the attacker and defender’s action sequences and the optimal strategies at each state 
are learned. After each time step, the cascading failure is measured, and the load shedding is used as the feedback 
for the attacker to generate the next action strategy. The performance of the proposed model is evaluated on the 
IEEE 39-bus system. Comparisons between the dynamic defense strategy and the passive defense strategy are 
conducted, and the results verify the advantage of the proposed dynamic defense strategy. To improve the power 
system resilience, this defense strategy can be deployed in advance when such cyber-physical attacks are 
anticipated.   

1. Introduction 

Ensuring cybersecurity of modern power grids has become a national 
priority with the smart grid initiative. The use of information and 
communication technologies (ICTs) has not only enhanced the efficiency 
and reliability of the power grids but also created new vulnerabilities if 
they are not accompanied by advisable security reinforcements [1,2]. 
Various vulnerabilities may leave some sectors of the power system to a 
wide range of cyber-physical attacks [3]. As a real example, attackers 
remotely switched off the breakers in a series of substations by pre- 
installed malware, resulting in a widespread outage in the Ukrainian 
power system in late 2015. This blackout is the first publicly acknowl
edged incident caused by cyber-attack which is even more destructive 
than natural disasters [4]. Furthermore, identifying and mitigating such 
risks are instrumental in improving the resiliency of power grids [5]. 
Thus, considering the increasing cyber-physical threats to the modern 
power system, it is imperative that we understand the risks resulting 
from cyber-physical attacks and thus implement effective security stra
tegies against them. 

Load Altering Attack (LAA) is a representative cyber-physical attack 

with the aim to maliciously control and alter a group of remotely 
accessible yet unsecured controllable loads. A successful LAA can 
disturb the balance between the power demand and supply, causing 
frequency and angle instability and consequently system blackout 
through circuit overflow or generator tripping. The potential vulnerable 
loads to LAAs can be frequency-responsive loads [6,7], data center’s 
computational load [8], loads with direct load control (DLC) which is 
one of the most common demand side management programs [9,10], 
etc. 

LAAs can be categorized into static load altering attack (S-LAA) 
(which is mainly focused on the amount of vulnerable loads) and dy
namic load altering attack (D-LAA) (which is additionally concerned 
with the trajectory of the changes that are made in the vulnerable loads). 
Reference [11] introduces and models S-LAA in smart grids, and the 
studies in [12–14] address the prevention or detection of LAAs. Unlike 
these investigations, reference [15] introduces, characterizes and clas
sifies D-LAAs as a new class of cyber-physical attacks against the power 
grids. In [16], the authors present a protection scheme using energy 
storage systems to improve the power grid’s reaction to D-LAAs. 

Game theory is oftentimes used to help people understand the 
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situations in which decision-makers interact, e.g., between attackers and 
defenders. There is a wide range of situations to which game theory can 
be applied: political candidates competing, companies competing in 
business, bidders bidding in an auction, and so on [17]. Various games 
are formulated to illuminate different economic, political, engineering 
phenomena, such as general sum, zero-sum and potential games. 
Recently, researchers recognized the critical role of game-theoretic ap
proaches in power grid security. The security games introduce an 
analytical framework with a rich mathematical basis for modelling the 
interactions between intentional attackers whose aim is to disrupt the 
power grid and operators defending it [18,19]. The games in power grid 
security are classified into two categories: static and dynamic games. The 
static game can be considered as a one-shot process, which means 
players only take one action. A wealth of research [20–25] has emerged 
on the static defense schemes against malicious attacks in the smart grid. 
In [20], the authors present a comprehensive and quantitative static 
game framework for the power system security problem. Under this 
framework, a new criterion is derived to seek reliable defense strategies. 
In [21], a zero-sum static game model is proposed to provide security 
policies in the cyber layer with corresponding resilient control in the 
physical layer. In [22], Farraj et al. analyze the cyber switching attacks 
and corresponding mitigation method by the zero-determinant strategy 
in an iterative game. The strategy allows the electric power utility (EPU) 
to stabilize the power grid in the face of cyber switching attacks. A game 
equilibrium is obtained by a zero-sum static game between intentional 
attackers and defenders to provide a reliable fusion-based defense 
scheme for the communication network of power systems in [23]. In 
[24], the effect of the compromised active power measurements on the 
electricity price is quantified. This situation is modeled as a zero-sum 
game between the defender and the attacker who performs the bad 
data injection attack on the measurements. For defending against 
denial-of-service (DoS) attacks, Li et al. [25] investigate the interaction 
between the sensor nodes and adversaries. 

On the other hand, dynamic games have been a largely underex
plored domain in the power grid security area. Most existing work 
mentioned previously are focused on static games or static defenses 
without considering dynamic processes. In dynamic or multistage 
games, attackers can compromise multiple components in a time 
sequence [26]. For some practical cases, to obtain the maximum profit 
or achieve the attack objective, attackers have to take offensive actions 
one by one based on the defender’s protection policy and the next steady 
state of system. Note that full knowledge and observation of the target 
system are required for the players. In [27], the authors propose a sto
chastic game to protect the power system against coordinated cyber- 
physical attacks. Although two states are considered, the game pro
posed in [27] is more like a one-shot game because the attacker can only 
target one element at a time. There is no more dynamic evolution in this 
game. Ma et al. consider a multi-act dynamic game in the electricity 
market for defending against jamming attacks in [28]. Dynamic pro
gramming is adopted to solve the game. To carry out the recursions, 
knowing the model of environment is necessary. In [29], a q-learning 
method is devised to solve a multistage game. The attacker’s actions are 
considered while the defender’s actions are pre-defined rather than 
evolving by interacting with the attacker’s action and system state. 

Furthermore, machine learning methods are being applied to address 
cyber-physical security issues in power systems for attack detection, 
analysis of defense strategy, and fault diagnosis. In [30], a deep- 
learning-based algorithm to detect power theft and false data injection 
(FDI) attack on real-time measurements is proposed. The authors in [31] 
use Q-learning to analyze vulnerabilities of the power system in 
sequential topological attacks. Wang et al. [32] develop a deep learning 
method for fault diagnosis of power plants. A hierarchical deep domain 
adaptation (HDDA) approach is proposed to apply a classifier with 
labeled data under one loading condition to detect faults with unlabeled 
data under another loading condition. 

Thus far, the focus in power grid security against malicious attacks 

has been mainly on static defense schemes. In contrast, in this paper, we 
address a new dynamic defense policy against multistage D-LAA, which 
is concerned with dynamic interactions between the attacker and de
fender. The attack-defense interaction is modeled by a two-player zero- 
sum multistage game and the solution is obtained based on minimax-q 
learning. Unlike dynamic programming solution given in [28] that re
quires exact knowledge of the model of environment, the proposed 
minimax-q learning based solution in this paper goes from experience to 
policies by learning a model rather than needing a model. The main 
contributions of this paper are summarized as follows:  

• The one-shot dynamic load altering attacks (D-LAA) in [15] is 
extended to a sequence attack. The corresponding cascading failures 
caused by D-LAA are studied holistically. It allows the attacker takes 
offensive actions one by one based on the states of system and 
adversary’s protection policy to achieve much higher attack 
objective.  

• A two-player zero-sum multistage game considering both dynamic of 
the attacker and the defender is proposed.Different from the one-shot 
games that lack dynamic evolvement of the attack-defense sequence 
and passive defense strategies where the evolvement of defender’s 
actions is neglected in the existing literature, a minimax-q learning 
scheme is adopted in this paper to effectively find out the optimal 
defense sequence against chronological D-LAA considering dynamic 
interactions between the attacker and the defender. This is also the 
main difference between the proposed dynamic defense and the 
existing research.  

• This dynamic defense strategy is compared with the static (passive) 
defense policy. The simulation results show that the power grid with 
the proposed defense strategy does have lower load loss due to D- 
LAAs. 

The rest of this paper is organized as follows: Section II presents the 
related preliminaries and the game model is formulated in Section III. 
Analysis of the minimax-q learning solution is presented in Section IV. In 
Section V, simulation setup, results and analysis are presented. 
Concluding remarks and potential future directions are given in Section 
VI. 

2. Related Preliminaries 

In this section, some related preliminaries are presented including 
the mathematical model of D-LAAs, optimal load shedding problem and 

Fig. 1. Single-point closed-loop D-LAA.  
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cascading failures. 

2.1. Dynamic Load Altering Attack 

2.1.1. D-LAA Implementation Principle 
The basic threat model is adopted from reference [15]. As 

mentioned, D-LAA is concerned with the volume as well as the trajectory 
of the changes in the vulnerable load. In a closed-loop D-LAA, referring 
to Fig. 1, the attacker tries to manipulate the vulnerable load (P1) with 
constant monitoring at the sensor bus for the grid conditions. Although 
there are various approaches to measure the grid conditions and alter 
the load, in this paper we limit our scope to the power system frequency 
obtained from the installed frequency sensors and frequency-responsive 
loads. A successful D-LAA can be conducted only if there are sufficient 
potential vulnerable loads to be compromised. The attack objective is to 
deviate the frequency from the system’s nominal value and eventually 
push one generator off-line. To implement a D-LAA, there are three main 
steps that the attacker must undertake:  

• Install the frequency monitor at the sensor bus and constantly send 
frequency acquisitions to the D-LAA controller. In general, it is not 
difficult to monitor the frequency of power system using an inex
pensive commercial sensor.  

• Based on the mechanism of the attack controller and the feedback 
signal, calculate the amount of vulnerable load which needs to be 
compromised at the victim bus.  

• Remotely control and alter the victim load at the amount that is 
calculated in the last step. The feasibility of remotely altering the 
load is discussed in [33]. 

2.1.2. Attack Model 
In power systems, theoretically, the power flow between buses i and j 

is a nonlinear function of bus voltages and the impedance of trans
mission lines. The active power flow can be given as follows: 

Pij = ViVj
[
Gijcos

(
ϕi − ϕj

)
+ Bijsin

(
ϕi − ϕj

)]
(1)  

where V is the voltage magnitude, ϕ is the phase angle in the corre
sponding bus, and G and B are the real and imaginary parts of the 
impedance, respectively. Note that Gij can be considered as zero because 
the resistance of the transmission lines is significantly less than the 
reactance in practice. Furthermore, the difference of voltage phase angle 
between two buses is small and the voltage magnitude in each bus is 
very close to unity in the per-unit system. Thus, further approximation 
for the power flow equation can be written as: 

Pij = Bij
(
ϕi − ϕj

)
. (2)  

Specifically, consider a power system with G generator buses and L 

load buses. Let then N = G ∪ L represents the set of all buses in this 
grid. For a bus i ∈ N , the total amount of power flow can be separated 
into the power injection of the generator PG

i at bus i ∈ G and power 
absorbed by load PL

i at bus i ∈ L . Defining δi as the voltage phase angle 
of the i-th generator bus, θi as the voltage phase angle at i-th load bus and 
Bij as the admittance value between buses i and j, the linearized power 
flow equations based on Eq. (2) can be written as: 

PG
i =

∑

j∈G

Bij

(

δi − δj

)

+
∑

j∈L

Bij

(

δi − θj

)

, (3)  

−PL
i =

∑

j∈G

Bij

(

θi − δj

)

+
∑

j∈L

Bij

(

θi − θj

)

.
(4)  

To model the dynamic behavior of each generator, the swing equations 
are used for the generator bus: 

δ̇i = ωi, (5)  

Miω̇i = PM
i − PG

i − DG
i ωi, (6)  

where ωi is the rotor angular frequency deviation of generator bus i, Mi is 
the rotor inertia of each generator, PM

i is the mechanical power input and 
DG

i represents the damping coefficient. Note that PM
i and DG

i must be 
positive. 

Specifically, the turbine-governor controller and the load–frequency 
controller can be integrated together as a proportional-integral (PI) 
controller, aimed at maintaining the rotor angular frequency at its 
nominal level to affect the mechanical power input [34]. The PI 
controller is represented as: 

PM
i = −

(

KP
i ωi + KI

i

∫ t

0
ωi

)

, KP
i , KI

i > 0, (7)  

where KP
i and KI

i are the proportional and integral controller coefficients, 
respectively. As a result, the rotor frequency dynamics in Eq. (6) can be 
rewritten by expressing the mechanical power for each generator in 
terms of frequency deviation ωi, as defined in Eq. (7). It becomes: 

Miω̇i = −

(

KP
i ωi + KI

i

∫ t

0
ωi

)

− PG
i − DG

i ωi. (8)  

According to Eq. (3), we obtain: 

Miω̇i = −

(

KP
i +DG

i

)

ωi −KI
i δi −

∑

j∈G

Bij

(

δi −δj

)

−
∑

j∈L

Bij

(

δi −θj

)

. (9)  

In this way, expressions (5), (4), (9) formulate the complete dynamical 
model and can be written as the following linear state-space descriptor 
system: 

⎡

⎣
I 0 0
0 0 0
0 0 M

⎤

⎦

⎡

⎣
δ̇
θ̇
ω̇

⎤

⎦=

⎡

⎢
⎢
⎣

0 I 0
BLG BLL 0

−
(
KI +BGG)

−BGL −
(
KP +DG)

⎤

⎥
⎥
⎦

⎡

⎣
δ
θ
ω

⎤

⎦+

⎡

⎣
0

PL

0

⎤

⎦, (10)  

where B is the imaginary part of the admittance matrix: 

Bbus =

[
BGG BGL

BLG BLL

]

. (11)  

Now, we consider a single-point closed-loop D-LAA that is performed at 
victim load bus v and the frequency sensor is installed at a generator bus 
s aiming to push this particular generator off-line. Suppose a 
proportional-integral controller is used by the attacker, creating a large 
deviation while less load is needed. Let KL

p and KL
I denote the attack 

controller’s proportional and integral gains at the generator bus (sensor 
bus) s, respectively. We can write the compromised power consumption 
level PL

v at victim bus v: 

PL
v = PL

v − KL
pωs − KL

I

∫ t

0
ωs. (12)  

As a result, the system dynamics subjects to the above D-LAA becomes 

⎡

⎣
I 0 0
0 0 0
0 0 M

⎤

⎦

⎡

⎣
δ̇
θ̇
ω̇

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 I 0
BLG −KL

I BLL −KL
P

−
(
KI +BGG)

−BGL −
(
KP +DG)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
δ
θ
ω

⎤

⎦+

⎡

⎣
0

PL

0

⎤

⎦. (13)  

From Eq. (13), when the system is under attack, the attacker can affect 
the system dynamics and compromise the system stability by adjusting 
the attack controller matrices KL

p and KL
I . In particular, the system 
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becomes unstable if the attacker is capable of moving the system poles to 
the right-half complex plane assuming the vulnerable load is large 
enough. Considering generators are generally equipped with various 
relays in the modern power system [35], a single-point closed-loop D- 
LAA may push the generator off-line and disconnect it from the grid. 

2.1.3. Control Scheme of Closed-loop D-LAA 
It is worth mentioning that PI control in (7) is not the only option to 

successfully implement D-LAA. In general, the closed-loop D-LAA can be 
viewed as a frequency controller which makes the compromised loads 
react to frequency deviants in the opposite direction of the normal de
mand response for frequency regulation. It has been discussed in [15] 
that “the attacker may use a bang-bang, P, PI, or PID controller, or any other 
more complex feedback control system mechanism” for the closed-loop D- 
LAA, and a P control model is used in [15] to formulate the D-LAA. In 
this work, the P control based D-LAA attack model in [15] is extended to 
a more general PI control based model. The models provide effective 
methods for the modeling of malicious D-LAA actions against the fre
quency control of the grid. The proposed model keeps the direction of D- 
LAA actions opposite to the normal frequency control of the grid. 
Furthermore, the focus of this work is not to design attack controller but 
rather to develop a dynamic defense framework plan by minimax-q 
learning against such multistage attacks. This method and idea are not 
affected by the controller selection and can potentially be extended to 
other multistage attacks. 

2.1.4. D-LAA Implementation 
The D-LLA is launched by altering the remotely controllable de

mands instead of the outputs of the generation units in the grid. Refer
ring to Fig. 1 the adversary only needs to hack into the remote load 
control systems to adjust the power consumption trajectory by 
constantly monitoring the frequency signals to implement D-LAA. Such 
remote load control systems extensively exist in demand response pro
grams. Specifically, an attacker may aim to compromise command sig
nals in Direct Load Control (DLC) programs that often involve two-way 
communications between the power system operator and loads or 

aggregators [36]. The adversary may utilize the vulnerability in any of 
these communications infrastructures to gain direct and remote access 
and control over the load through the load control mechanism. These 
loads that are potentially vulnerable to D-LAA attack include air con
ditioners [37], building lighting system [38], water heaters [39] and 
electric vehicles [40]. For example, considering the heating, ventilation 
and air conditioning (HVAC) demand in buildings, after intruding into 
the communication between the building and grid operator, the attacker 
could generate desired aggregated load profile by orchestrated periodic 
on/off signals to each component, e.g., air conditioner and fan. 

To set the parameters in the controller-based model of D-LAA, the 
attacker needs to know or estimate the system dynamic model including 
the system frequency control settings and grid topology, which do not 
change frequently and are considered constant during the attack in this 
paper. The only signal that needs to be updated in real time by the 
attacker when implementing the closed-loop D-LAA is the frequency 
signal. Thus, following the work in [15], it is assumed in this paper that 
the attacker can constantly monitor the frequency signals via the at
tacker’s installed sensors or by hacking into an existing monitoring 
infrastructure of the grid. 

2.2. Optimal Load Shedding 

As mentioned, when a system is attacked and the topological struc
ture of the system is changed, such as a generator being off-line, a 
transmission line being tripped by relay/man or a system partition being 
caused, load shedding must be performed to regain stability. Consid
ering a power system with n buses the optimal load shedding problem 
can be formulated as a constrained optimization problem with the 
physical constraints of the power flows [27,41,42]: 

min
zg ,zl

=
∑n

i=1
wlizli, (14)  

subject to, 

Fig. 2. Root locus plot of power system under a D-LAA attack.  
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Λ′BΛϕ − (p + z) = 0, (15)  

pgmin⩽pg + zg⩽pgmax, (16)  

zgmin⩽zg⩽zgmax, (17)  

plmin⩽pl − zl⩽pl, (18)  

ϕmin⩽Λϕ⩽ϕmax, (19)  

where wl = [wl1, wl2, …, wln]
T is the weight vector representing the 

relative importance of different load buses; vector z = [zg; zl], in which 
vector zg refers to the re-dispatched power at each generation bus; vector 
zl is the load to be shed at each load bus; vector p = [pg; pl], in which 
vector pg represents the original active power output at each generation 
bus; vector pl is the demand at each load bus; vector ϕ represents the 
phase angle at each bus; Λ is the incidence matrix for the topology of the 
grid; and B is the diagonal matrix of the transmission-line admittances. 
Constraint (15) represents the power balance at each bus; constraint 
(16) is the power output limit of the generation; constraints (17) and 
(18) are the constraints of the generation redispatch and load shedding 
respectively; Constraint (19) limits the phase angle difference of the 
connected buses of each transmission line in the grid. 

2.3. Cascading Failures and D-LAA in Sequence 

A successful single D-LAA with the aim to disconnect a generator 
may cause cascading failures during the post-attack stage. Due to the 
excessive load demand after attack, load shedding is an inevitable option 
for the system operator [11]. The optimal load shedding technology has 
been discussed and presented in Section 2.2. After the load shedding is 
carried out, a DC power flow analysis is performed to check for over
loads on the transmission lines. If a transmission line is overloaded by 
over 50%, it will be tripped by the operator. Then the balance between 
the generation and demand is checked again and these steps are 
repeated until entering into the next steady state. 

On the other hand, for causing a more severe damage to the power 
system such as more load shedding or generation losses, the attacker 
may perform the D-LAAs in sequence (one-by-one). For example, the 
attacker may perform a D-LAA to force a generator to be disconnected 
from the grid and trigger cascading failures. Then, based on the current 
state and system topology of the post-attack stage, the new proper victim 
and sensor buses are selected and another D-LAA can be performed. The 
attacker may repeat this process until the attack goal is achieved. 

There is a main concern for the D-LAA sequence: how to choose the 
best attack controller gain for each step? For the ease of analysis, it is 
assumed the frequency sensor is placed at the generator bus, that is, the 

sensor bus is always one of the generator buses, and all portions of loads 
are controllable at each vulnerable load bus. As mentioned previously, 
the attacker may destabilize the system by changing the controller gain 
matrix KL

P. From the control perspective, the locations of system poles 
change with the increase of KL

P and once the pole(s) are moved to right- 
half plane the system becomes unstable. Fig. 2 shows how the root locus 
analysis helps the attacker find the minimum attack gain. 

The minimum vulnerable load that must be compromised can be 
calculated by Eq. (12). If the minimum amount of load is not larger than 
the total load at this load bus, the selections of victim load bus and 
sensor bus are feasible. The attacker tries to make the least effort to 
achieve the attack goal, so for the same sensor bus when there are two 
feasible victim buses the attacker tends to choose the one with less 
minimum compromised load. Once a D-LAA is successfully performed 
and the cascading failures are triggered, the system enters into the next 
steady state and the attacker may choose the new feasible victim and 
sensor buses to conduct the next attack. In simulations, we can change 
the entries of matrix B in Eq. (13) based on the current system topology 
because Bij = 0 if the transmission line between buses i and j is tripped. 

3. Game-theoretic Analysis of Attack-defense Interactions 

In this section, the behaviors of the attacker and defender are 
modeled using a two-player zero-sum multistage game. As introduced in 
Section 1, game theory helps people understand the interactions be
tween the decision-makers. For the analysis of power system security, 
the attacker and defender are considered as two decision-makers or 
players. The attacker can be hackers, organized terrorists or other 
criminals. The defender is the system administrator who monitors the 
power system network and implements security measures. The attacker 
intends to cause the maximum damage to power grid while the defender 
strives to minimize the impact. Thus, the defender’s gain is regarded as 
the opposite of the attacker’s gain. In the attack, the adversary may 
compromise components in sequence instead of at the same time, in 
order to cause more damage and decrease the risk of being detected. 
Similarly, the defender has to change defense actions with a dynamic 
attacker. Thus, both the attacker and defender have to adjust their ac
tions based on the observation of their past actions and current states. In 
this way, the attack-defense game falls exactly into the category of two- 
player zero-sum games. 

This game can be considered as a 5-tuple (S S
, A A, A D, RA, RD) 

Markov game, where.  

• S
S

=
def

{s1, …, sNs} denotes the system’s state space;  

• A A =
def

{a1, …, aNA } denotes the attacker’s action space; 

Fig. 3. The interaction between players and the system.  
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• A D =
def

{d1, …, dND } denotes the defender’s action space; 
• RA = [RA

a,d(s)]NA×ND 
denotes the attacker’s expected reward associ

ated with attack action a ∈ A A against defense action d ∈ A D in state 
s ∈ S

S; and 
• RD = [RD

a,d(s)]NA×ND 
denotes the defender’s expected reward associ

ated with defense action d ∈ A D against attack action a ∈ A A in state 
s ∈ S

S. 

Fig. 3 illustrates a typical player-system interaction for the two- 
player game. The attacker obtains system state s and takes the attack 
action a, and will receive reward RA. Meanwhile, the defender will 
conduct the same process and receive reward RD. 

3.1. Action Spaces 

Attacker’s target is to implement D-LAA aiming to disconnect one 
generator and cause cascading failures. Attacker’s action a ∈ A A means 
trying to force one generator disconnecting from the main grid at a time 
step. The defender’s action is related to protect a generator bus. How
ever, the defender can restrain this attack on generators by protecting 
the load on corresponding victim buses. As discussed in Section II-B, a 
successful D-LAA needs a victim bus and a sensor bus. The defender may 
follow the same method in Section II-B to obtain all vulnerable loads that 
can be potentially controlled by the attacker. Thus, protecting the victim 
load is an effective method against D-LAA. That is, the physical meaning 
of protection action is to protect the potential victim load rather than 
protecting these generators. Currently, the load can be protected by 
implementing reinforced security measures, e.g., adding hardware and 
software based security components, at both the communication level 
[43] and device level [44,45]. For example, reference[43] proposes a 
method in which the administrator can temporarily revoke the certifi
cate of some nodes. In this way, these nodes are excluded from the grid’s 
communication network, that is, the attacker is not able to remotely 
alter these loads. 

In this paper, it is assumed that when a defense action is performed 
on a load bus, the load at the protected bus PL

v cannot be manipulated by 
the attacker. Note that not all loads can be targeted by attacker to 
implement D-LAA because some loads are traditional types which 
cannot be remotely manipulated. 

3.2. System States 

This game is played over a finite state space denoted by S S. States 
are formulated as a combination of the statuses of all transmission lines 
of the power grid. For each state s, the status of the transmission lines is 
represented by a binary number ‘1’ or ‘0’. 

St

(

l
)

=

{
1 iflinelworksproperly
0 iflinelisout − of − service,

(20) 

Fig. 4 shows the transition process from one state to the next steady 
state through some intermediate states. At state s, attack (D-LAA in this 
paper) is launched and one generator is pushed to be disconnected from 
the grid due to instability. The load is shed based on the model in Section 
2.2 and the demand is balanced. Then, a DC power flow analysis is 
applied to decide if any overloads occur on the transmission lines. 

Generally, the transmission line is tripped if the overload exceeds 50%. 
The system repeats this process until the generation and demand is 
balanced and there is no overloaded transmission line. Please see Section 
2.3 for more details. 

3.3. Attacker and Defender’s Policies and Rewards 

There are two players in the game: the attacker and the defender. At 
state s, the players choose their respective actions a ∈ A A and d ∈ A D 

independently, and immediately receive rewards RA
a,d(s) and RD

a,d(s), 
respectively. In this zero-sum game, the defender’s expected reward is 
opposite to the attacker’s expected reward, denoted by RA

a,d(s) =

−RD
a,d(s). The rewards for players are assigned following the conditions 

given as: 

RA
a,d

⎛

⎝s

⎞

⎠ =

⎧
⎨

⎩

0 ifloadsheddingz(t) = z(t − 1)

1 ifz(t − 1) < z(t) < N
10 ifz(t)⩾N,

(21)  

and 

RD
a,d

⎛

⎝s

⎞

⎠ =

⎧
⎨

⎩

0 ifloadsheddingz(t) = z(t − 1)

−1 ifz(t − 1) < z(t) < N
−10 ifz(t)⩾N,

(22)  

where z represents the total load shedding caused by the D-LAA attack 
and N is the attack objective. 

Now we have specified the immediate rewards of the attacker and 
the defender at each state, but have not indicated how these rewards are 
aggregated into an overall payoff. The most commonly used aggregation 
method is the discounted-sum reward. For an attack action a and a de
fense action d, the discounted-sum rewards of the attacker and defender 
considering deterministic state transition are represented as: 

QA

(

s, a, d

)

=
∑∞

t=0
γtRA

a,d

(

s

(

t

))

, (23)  

QD

(

s, a, d

)

=
∑∞

t=0
γtRD

a,d

(

s

(

t

))

, (24)  

where QA and QD represent game values for the attacker and the de
fender, respectively; and γ ∈ (0, 1) is the discount factor. A smaller value 
of γ implies the agent emphasizes the immediate reward while a larger 
value indicates more concerns about future rewards. For a given state s, 
the attacker’s strategy is defined as probability distributions over action 
space A A, i.e., 

πA(
s
)

= [Pr(a(s) = a1), Pr(a(s) = a2), …, Pr(a(s) = aNA )]
T
, (25)  

which satisfies 
∑NA

i=1Pr(a(s) = ai) = 1
⃒
⃒
⃒ai ∈ A A. Similarly, the defender’s 

strategy is given as: 

πD(
s
)

= [Pr(d(s) = d1), Pr(d(s) = d2), …, Pr(d(s) = dND )]
T (26)  

and 
∑ND

i=1Pr(d(s) = di) = 1
⃒
⃒
⃒di ∈ A D. 

When only one entry of the strategies described above is nonzero 

Fig. 4. Transition from one state to the next steady state.  
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(and equal to 1), πA and πD are called pure strategy and players always 
adopt this action at state s(t). Otherwise, they are mixed strategies which 
are adopted in this paper. Note that in this multi-stage game, the 
attacker and defender choose their different targets in time sequence 
until the attack objective is achieved. 

3.4. Nash Equilibrium 

In this game, the defender tries to minimize the discounted sum of 
expected reward QD while the attacker aims to maximize it. Nash equi
librium is a common solution to solve the players’ optimal strategies for 
such a Markov game [17,46]. Nash equilibrium is a state that no player 
has a unilateral incentive to change actions as that would reduce their 
rewards, that is, each agent plays best response to their opponents. For 
the proposed game model, a Nash equilibrium can be mathematically 
defined as follows: 

Definition 1. In the proposed zero-sum two-player Markov game, a Nash 
equilibrium is a pair of mixed optimal strategies (π*

A, π*
D) for all mixed stra

tegies πA and πD for all states s ∈ S 

QA
(
s, π*

A, π*
D

)
⩾QA

(
s, πA, π*

D

)
, (27)  

QD
(
s, π*

A, π*
D

)
⩾QD

(
s, π*

A, πD
)
. (28)  

For such a two-player game, it is proved that unique Nash Equilibrium 
exists in stationary strategies (for all t) by Shapley [47]. That is, the 
mixed optimal attack/defense strategies can be solved for each state 
instead of each time t. In general, the stationary optimal strategy can be 
solved recursively by dynamic programming if environment of the 
model is known such as in [27,28]. 

4. Proposed Solution Approach 

4.1. Minimax-q Learning 

In this section, we propose a new dynamic defense solution for the 
two-player zero-sum Markov game based on the minimax-q learning 
approach. Our objective is to characterize the attacker’s and the de
fender’s Nash equilibrium strategies for each state s ∈ S

S and their 
attack/defense actions in time sequence, where all players are rational 
and tend to maximize their own benefits. The attacker and the defender 
are completely competitive and do not cooperate with each other. 
Minimax-q learning [48] is used in conjunction with Markov games. As a 
modification of q-learning which just considers the opponent as part of 
the environment, this algorithm treats the Q function not just from the 
state/action pairs to values, but from the state/action/action to values, i. 
e., Q(s, a, d). Thus, both players’ actions and their interactions are 
modeled more explicitly. The minimax-q learning algorithm is adopted 
to approach real unknown state value function V(s) by interacting with 
the environment and then players obtain the optimal Nash strategies by 
the learned state value function. Furthermore, a state-action value func
tion (Q function) is to quantify the performance for a player to apply a 
particular action following a policy π in a state. From the defender’s 
perspective, the Q function can be defined as: 

QD

(

s, a, d

)

=

(

1 − αt

)

QD

(

s, a, d

)

+ αt

(

RD + γ
∑

s′∈S

VD

(

s′

))

, (29)  

and the state value function V(s) is defined as: 

VD

(

s′

)

= min
πD

max
a

∑

a
Q

(

s′, a, d

)

πD

(

s′

)

, (30)  

where αt denotes the learning rate for adjusting the step size. To improve 
the convergence rate of this algorithm, a polynomial learning rate is 

adopted as 1/tβ where β ∈ (1/2,1). 
Note that in Eq. (30), minmax is adopted to find the best response 

instead of playing actions with the highest Q in [29]. Eq. (30) can be 
converted to a linear constraint optimization problem to obtain the 
optimal strategy at state s: 

min
πD

VD

(

s
)

,

s.t.VD

(

s

)

⩾
∑

d
Q

(

s, a, d

)

πD

(

s

)

, ∀a ∈ A
A.

(31)  

Similarly, the attacker’s state value function and Q function can be 
dually derived: 

QA

(

s, a, d

)

=

(

1 − αt

)

QA

(

s, a, d

)

+ αt

(

RA + γ
∑

s′∈S

VA

(

s′

))

, (32)  

VA

(

s′

)

= min
πA

max
d

∑

d
Q

(

s′, a, d

)

πA

(

s′

)

. (33)  

The optimal strategy of the attacker can also be obtained by linear 
programming in (33): 

max
πA

VA

(

s
)

,

s.t.VA

(

s

)

⩾
∑

a
Q

(

s, a, d

)

πA

(

s

)

, ∀d ∈ A
D.

(34)  

The procedure to compute the Nash equilibrium at each state and the 
attack/defense sequence are detailed in Algorithm 1. 

Algorithm 1. Minimax-q Learning Algorithm   
1: Initialize Q0(s,a,d),V(s), πA, and πD  

2: Obtain feasible D-LAA target for initial state discussed in Section 2.3 as action space 
for attack/defense 

3: Define exploration probability ∊ and learning rate α  
4: for number of episodes do 
5: while Attack objective is not reached do 
6: Select current state s 
7: if Generated random number < ∊ then  
8: Take random attack and defense action 
9: else 
10: Take attack and defense action based on Q-table 
11: end if 
12: Execute actions 
13: Calculate load shedding by (14), overloads, and cascades 
14: Determine next s′

15: Assign reward by Eqs. (21) and (22) 
16: Update state-action value function Q by Eqs. (29) and (32) 
17: Solve state value functions (30) and (33) by linear programming and update 

V(s) and πA(s)πD(s)
18: Update feasible D-LAA target for attack/defense’s action space 
19: Update s = s′

20: end while 
21: end for 
22: Find optimal strategies and sequences of actions for attacker and defender  

In the proposed algorithm, the game starts with the initialization of Q 
function, state value function V and attacker/defender’s policy. Then the 
system is evaluated to obtain feasible D-LAA attack discussed in Section 
2.3. Note that for simulations, instead of observing the root-locus plot, 
we can analytically obtain the minimum compromised load by gradually 
increasing controller KL

P until the system is unstable. In the beginning, 
the initial state is assumed at the normal operation condition, that is, all 
transmission lines and generators are active and work properly. A 
∊-greedy strategy is also adopted to balance the exploration and 
exploitation [49]. With ∊-greedy, the agent plays a random action with a 
probability 0 < ∊ < 1, instead of making the best decision given in the 
Q-function. With the execution of the actions, a certain generator is 
disconnected from the power grid due to the D-LAA if the corresponding 
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load is not protected by the defender. Load shedding of the current state 
is calculated and cascading overloads on the transmission lines may be 
triggered until the system enters into the next steady state s′. Instant 
rewards are assigned to the attacker and the defender by Eqs. (21) and 
(22) and the value of Q-function is updated. Strategies πA(s) and πD(s)
and state value V are solved by linear programming. Then, based on the 
new topology of system and state, feasible targets for the attack/de
fense’s action spaces are decided. The game is repeated until the attack 
objective is reached. Ideally, if the process above (from step 4 to step 20) 
repeats for enough times, i.e., Q matrix is updated at each state by 
enough times, the players will learn the real complex relationships be
tween the actions and outcomes. Thus, such relationships are reinforced 
in this process and eventually the players find their optimal Nash 
equilibrium strategies. Note that the optimal attack/defense sequence is 
not unique and in this study we evaluate the performance by computing 
the average impact to the system. 

Furthermore, this defense strategy is not a real-time one but is more 
like a pre-stipulated plan against low-probability high-impact attacks, 
such us D-LAA in this paper, to minimize the damage. According to the 
features of D-LAA attacks, the defender can find an optimal policy for 
each state against potential vicious attacker if both play rationally. The 
defense strategy can be deployed in advance when such attacks are 
anticipated to improve the resilience of the power system. 

In this paper, the proposed work focuses only on the D-LAA scenario. 
Nevertheless, because the proposed defense method is based on 
minimax-q learning which works with Markov game, this work can be 
extended to other multistage attacks, e.g., Load Redistribution (LR) at
tacks and line switching attacks, as long as the action spaces and 
cascading failures are redesigned following specific attack mechanisms. 
The power grid operator may make multiple such stored plans based on 
different types of attacks and defense actions. 

4.2. Discussion on Computational Complexity 

The computational complexity is O (S2MAMD) per iteration in Algo
rithm 1, where MA and MD are the numbers of strategies for the attacker 
and the defender, respectively. Because single-point D-LAA is considered 
in this paper, i.e., the attacker and the defender select one bus to 

compromise and protect at one time, MA =

(
1
A

)

and MD =

(
1
D

)

, 

where A and D represent the numbers of total possible attack and de
fense actions, respectively. It can be seen that the computational 
complexity increases linearly with more attack/defense options. As for 
S, more possible states will cause relatively quicker increase of the 
computational complexity. 

5. Simulation Results and Analysis 

Now we evaluate the performance of the proposed minimax-q 
learning for this two-player zero-sum Markov game on the IEEE 39- 
bus system that consists of 46 transmission lines and 10 generators. 
The results of dynamic defense strategy may provide useful insight for 
grid operators to improve the resiliency of power systems. Comparisons 
with the existing passive and dynamic defense strategies are conducted 
to illustrate the importance of deploying the proposed dynamic strategy 
against D-LAA. 

5.1. System Parameters 

Fig. 5 shows the IEEE 39-bus system based on a 10-machine New- 
England power network. There are 10 generators, 46 transmission 
lines and 19 loads. There are two loops in the simulation: episodes and 
runs. The episodes loop is the main loop in which the attacker and the 
defender interact to learn the optimal policy. The attacker and the 

Fig. 5. IEEE 39-bus system.  
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defender complete a bunch of actions in sequence. As the number of 
episodes increases, the attacker tends to approach the optimal policy. At 
the end of the episodes, the attacker and the defender reach the Nash 
equilibrium point. A number of runs are conducted to deduce different 
Nash equilibria. Therefore, the whole game simulation is conducted for 
many runs. Each run includes a number of episodes. The number of 
episodes is the required number of trials for the agent in the learning 
process. The initial exploration rate ∊ is 0.9 and decreases 10% every 20 
episodes to ensure the convergence. Other simulation parameters are 
given in Table 1. 

5.2. Selection of Vulnerable Bus and Attacker/defender’s Action Space 

As discussed in Section II, not all loads can be considered vulnerable 
to D-LAAs. Some loads are traditional ones and may not even have smart 
meters or any demand response equipment, which the attacker cannot 

remotely manipulate. In this case, we assume that only eight load buses 
have vulnerable loads. They can potentially become victim buses, i.e., 
V = {4, 6, 7, 12, 18, 19, 23, 29}. On the other hand, according to [50], 
generators {31, 35, 37, 38} represent nuclear stations which are fully 
protected. Thus, frequency sensors are assumed to be placed only at 
S = {30, 32, 33, 34, 36, 39} that are considered as fossil and hydro 
stations. Thus, the attacker’s action space is A A = {30, 32, 33, 34, 36,

39}. Table 2 shows the minimum portion of the vulnerable load that 
must be compromised to guarantee a successful D-LAA at the initial 
state. We assume KL

I a pre-tuned parameter and there is no need to 
change it for simplicity of calculation. The highlighted cells indicate the 
attacker could launch D-LAA on the corresponding sensor bus and victim 
bus. For the initial state, the attacker is not able to compromise gener
ator 34 because there are not enough loads to be manipulated for the 
given vulnerable buses. Therefore, for the initial state, the attacker can 
perform D-LAA to disconnect generators {30, 32, 33, 36, 39}. Further
more, at each visited unique state, Table 2 is updated for the next se
lection of the attack target. Based on the same table, the defender also 
decides the protection action that should be taken. The defender’s action 
space is denoted as A D = {30, 32, 33, 34, 36, 39}. As mentioned previ
ously, the physical meaning of the protection action is not to protect 
these generators but to protect the corresponding potential victim load. 
For example, at the initial state, when the defender selects action “30”, it 
means the load on the corresponding victim bus 7 is protected. 

5.3. Game-theoretic Attack/Defense 

Figs. 6 and 7 show the convergence curves of the optimal number of 
attacker/defender’s actions. After adequate learning and exploration, 
we can see that both players reach the optimal number of actions. 
Among 50 independent runs, the attacker needs three actions in 
sequence to achieve the objective and the defender also needs the same 
number of actions to minimize the load shedding caused by D-LAAs. The 
average computing time per run is about 564s. We need to emphasize 
again that the defense strategy is not real-time but off-line trained pre- 
stipulated plan against the low-probability high-impact D-LAA. The 
defense plan can be deployed in advance when such attacks are antici
pated. Therefore, the proposed strategy can adequately meet the time 
requirement of practical applications. 

Fig. 8 depicts the convergence of the total load shedding. The 
average load shedding converges to around 3400 MW after 50 runs. 
From the three figures, we can portray how the algorithm works espe
cially in the intermediate process. In the early stage of learning process, 

Table 1 
Simulation Parameters for IEEE 39-bus system  

No. Parameter Value 

1 Number of Generators, G  10 
2 Total Transmission lines 46 
3 Discount Factor, γ  0.8 
4 Learning Rate Coefficient, β  0.7 
5 Initial Exploration Probability, ∊  0.9 
6 Number of Episodes 1000 
7 Number of Runs 50 
8 Maximum Iteration per Episode 100 
9 Total Capacity 6245 MW 
10 Attack Objective at least 50% load shedding  

Table 2 
Minimum portion of vulnerable load that must be compromised at initial state.   

Sensor Bus 
Victim Bus 30 32 33 34 36 39 

4 62 92.5 79.1 69 125 46.2 
6 4.9 0.91 1.2 3.7 3.6 128 
7 0.72 12.4 0.6 64.5 5.1 5.1 

12 73.9 23.5 48.6 77.2 89.5 89 
18 146 8.5 117 222 189 46.5 
19 48.1 0.77 7.4 1.5 0.62 66.8 
23 280 1.9 15.6 2.8 1.9 72 
29 4.6 58.5 12.7 4.7 4 0.54  

Fig. 6. Convergence of the defender’s number of actions.  
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because of the large exploration rate ∊ and inaccurate Q matrix, both the 
attacker and defender take actions randomly or wrongly. Thus, they may 
take more additional steps and the total amounts of load shedding is not 
stable. With the decrease of ∊ and the update of Q matrix, the curves 
gradually converge. At the end of the process, the Q matrix is updated 
for enough times and the players learn the real relationships between the 
actions and outcomes. The policies at each state converge to the optimal 
Nash Equilibrium strategies. 

Figs. 9 and 10 show the attacker’s and defender’s optimal policies 
when Nash Equilibrium is reached at each unique state. For this situa
tion, both the attacker and defender have no unilateral incentive to alter 
their actions, because they have maximized their profits. The physical 
meaning of the Nash Equilibrium status for this case is that the defender 
can minimize the damage (load shedding) if they both play rationally 

their optimal strategies. The system operators are advised to adopt these 
strategies for each possible state against the D-LAA. Specifically, there is 
no need to place any defensive strategies for some states because there 
are not enough vulnerable loads to alter for disconnecting generators 
from the power grid. Note that mixed strategy at some states. Regarding 
the actual implementation in practice, the operator may change the 
defense plan according to the probabilities of the optimal policy. For 
instance, at state 9, the probabilities of defender’s action on generators 
(30, 32, 33, 34, 36, 39) are (0, 0.165, 0, 0.835, 0, 0), respectively. Thus, 
the system administrator may plan to take protective actions for bus 34 
with a probability of 0.835 and protect bus 32 with a probability of 
0.165 at each interval of the actions. The results provide useful infor
mation for power system operators to thwart dynamic load altering 
attacks. 

Fig. 7. Convergence of the attacker’s number of actions.  

Fig. 8. Convergence of the total load shedding.  
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The defensive action sequences are shown in Table 3. For this game, 
total 11 unique defense sequences are found and the average load 
shedding can be calculated as 3398.2 MW. As mentioned in Section 5.2, 
the defense action sequence indicates the protected generators identi
fied by the defender while the actual actions of the defense strategy are 

to protect the corresponding victim load buses. For example, for the first 
run, this action sequence indicates that the defender tries to protect the 
loads on victim buses (7, 19, 23). 

Fig. 9. Probability of attacker’s action at each state.  

Fig. 10. Probability of defender’s action at each state.  
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5.4. Comparison with Passive Defense Strategy 

To illustrate the importance of dynamic defense strategy, we 
compare our results with the passive defense strategy in this section. For 
a passive strategy, the defensive actions are predefined and the attacker 
is trained to find the optimal attack strategy in the presence of the 
passive defender. Considering the limited resources the operator has, we 
assume only two loads can be protected at a time. In this case study, 
three different predefined protected load sets are considered: (7, 29), (4, 
29) and (6, 7). They are denoted as passive defense case I, II and III 
respectively. We adopt a similar algorithm by calculating the largest 
value instead of solving minimax in Eq. (33). The attack objective is to 
cause at least 50% load shedding. 

Because the defense strategy is passive and unchangeable, we 
analyze the performance from the attacker’s perspective. Table 4–6 
show the attack sequences of different runs and the total load shedding. 
It is found in Table 7 that the attacker’s action converges to a sequence 
of three actions, and the total amounts of load shedding for the passive 
defense I, II and III are 12.6%, 6.0% and 14.6% more than that obtained 
by the dynamic defense strategy, respectively. The comparison shows 
the proposed dynamic defense method is more effective against the 
single point D-LAA. 

5.5. Comparison with Dynamic Defense Strategy 

In this section, the proposed dynamic defense strategy in this paper is 
compared with the dynamic strategy in [51]. In [51], the dynamic de
fense strategy is obtained by the pre-calculated worst-case dynamic 
attack, which ignores the adversarial game between the rational 
attacker and defender, and their future expected gains. This is the main 
difference between the proposed models in this paper and [51]. To 
compare by same standards, the attack objective is still at least 50% load 
shedding. The last row of Table 7 shows that the total amount of load 
shedding by applying the defense plan in [51] is 9.2% higher than that 
obtained by the proposed strategy in this paper. One reason of the result 
is that the outcome of two players’ game, i.e., the attacker and defender, 
is not always the best for one of them but inclines a Nash equilibrium 
mentioned in Section 3.4. Thus, the defense strategy derived by the 
worst-case dynamic attack, i.e., unilateral optimal attack, results in the 
worse outcome because the interaction between two rational players in 
each state of the Markov game for D-LAA is not considered. In general, 
the proposed model formulates a more complex and realistic game 
considering two rational players’ game, which leads to better perfor
mance for the defense against D-LAA. 

6. Concluding remarks 

In this paper, we propose a novel reinforcement-learning-based dy
namic defense solution against the single point D-LAA in power grid, 
where considering the attacker/defender’s action sequence. We have 
derived the D-LAA in time sequence considering cascading failures at 
each state. A two-player zero-sum Markov game is formulated to analyze 
the complex interactions between the attacker and the defender, in 
which all players are rational and tend to maximize their own benefits. 
The proposed minimax-q algorithm is applied to derive the attacker/ 
defender’s Nash equilibrium strategies. The IEEE 39-bus system is used 
to test the proposed algorithm and evaluate the dynamic defense strat
egy against D-LAA. Simulation results are compared with the existing 
passive and dynamic defense strategies, which indicates the proposed 
dynamic strategy exhibits a better performance. The system operator is 
informed to enforce the optimal dynamic defense strategy at each state 
in advance to improve the power system resiliency. In future work, 
distributed algorithms will be developed to further enhance the effec
tiveness of the defense strategy, such as the learning automata including 
linear reward-inaction and linear reward-penalty. 
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Table 3 
Defender’s action sequences for dynamic defense strategy.  

Runs Defense 
sequence 

Physical meaning 
(protected buses) 

Total load shedding 
(MW) 

1 (33, 39, 30) (7, 19, 23) 3421.1 
2 (30, 39, 32) (7, 29, 4) 3709.6 
3 (39, 32, 34) (29, 12, 18) 3315.2 

.. . … . .. … . .. … . .. … 
25 (39, 30, 32) (29, 19, 12) 4005 
26 (33, 32, 30) (7, 29, 6) 3321.9 

.. . … . .. … . .. … . .. … 
49 (36, 34, 33) (19, 18, 6) 3200.2 
50 (39, 32, 34) (29, 12, 18) 3315.6  

Table 4 
Attacker’s action sequences for passive defense strategy I.  

Runs Attack action sequence Total load shedding (MW) 

1 (32, 39, 36) 3856.4 
2 (32, 39, 36) 3856.4 
3 (32, 36, 30) 3725 

.. . … . .. … . .. … 
25 (32, 39, 36) 3856.4 
26 (32, 39, 36) 3856.4 

.. . … . .. … . .. … 
49 (32, 36, 30) 3725 
50 (32, 39, 36) 3856.4  

Table 5 
Attacker’s action sequences for passive defense strategy II.  

Runs Attack action sequence Total load shedding (MW) 

1 (32, 36, 34) 3564.7 
2 (32, 34, 36) 3649.2 
3 (32, 36, 34) 3564.7 

.. . … . .. … . .. … 
25 (32, 30, 34) 3425.7 
26 (32, 34, 36) 3649.2 

.. . … . .. … . .. … 
49 (32, 36, 34) 3564.7 
50 (32, 34, 36) 3649.2  

Table 6 
Attacker’s action sequences for passive defense strategy III.  

Runs Attack action sequence Total load shedding (MW) 

1 (36, 39, 30) 3992 
2 (39, 32, 36) 3710.3 
3 (36, 39, 30) 3992 

.. . … . .. … . .. … 
25 (36, 39, 30) 3992 
26 (36, 39, 30) 3992 

.. . … . .. … . .. … 
49 (39, 32, 36) 3710.3 
50 (36, 39, 30) 3992  

Table 7 
Total load shedding of different defense strategies.  

Proposed dynamic defense 3398.2 MW 

Passive defense I 3827.5 MW 
Passive defense II 3601.9 MW 
Passive defense III 3894.5 MW 
Dynamic defense in [51] 3709.6 MW  
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the work reported in this paper. 

Acknowledgment 

This work was supported by the U.S. National Science Foundation 
under Award ECCS1711617. 

References 

[1] Metke AR, Ekl RL. Security technology for smart grid networks. IEEE Transactions 
on Smart Grid 2010;1(1):99–107. https://doi.org/10.1109/TSG.2010.2046347. 

[2] Moslehi K, Kumar R. A reliability perspective of the smart grid. IEEE Transactions 
on Smart Grid 2010;1(1):57–64. https://doi.org/10.1109/TSG.2010.2046346. 

[3] Y. Guo, L. Wang, Cybersecurity analysis and improvement of bilinear systems 
against false data injection attacks, in: Proc. IEEE Power Energy Society Innovative 
Smart Grid Technologies Conf. (ISGT), 2020, pp. 1–5. doi:10.1109/ 
ISGT45199.2020.9087740. 

[4] Liang G, Weller SR, Zhao J, Luo F, Dong ZY. The 2015 Ukraine blackout: 
Implications for false data injection attacks. IEEE Trans. Power Syst. 2017;32(4): 
3317–8. https://doi.org/10.1109/TPWRS.2016.2631891. 

[5] NERC, Risc report on resilience, Tech. rep., NERC (2018). 
[6] G.S. Ledva, S. Peterson, J.L. Mathieu, Benchmarking of aggregate residential load 

models used for demand response, in: Proc. IEEE Power Energy Society General 
Meeting (PESGM), 2018, pp. 1–5. doi:10.1109/PESGM.2018.8585847. 

[7] Molina-Garcia A, Bouffard F, Kirschen DS. Decentralized demand-side contribution 
to primary frequency control. IEEE Trans. Power Syst. 2011;26(1):411–9. https:// 
doi.org/10.1109/TPWRS.2010.2048223. 

[8] Zeng W, Zhang Y, Chow M. Resilient distributed energy management subject to 
unexpected misbehaving generation units. IEEE Trans. Industr. Inf. 2017;13(1): 
208–16. https://doi.org/10.1109/TII.2015.2496228. 

[9] Mortaji H, Ow SH, Moghavvemi M, Almurib HAF. Load shedding and smart-direct 
load control using internet of things in smart grid demand response management. 
IEEE Trans. Ind. Appl. 2017;53(6):5155–63. https://doi.org/10.1109/ 
TIA.2017.2740832. 

[10] Haring TW, Mathieu JL, Andersson G. Comparing centralized and decentralized 
contract design enabling direct load control for reserves. IEEE Trans. Power Syst. 
2016;31(3):2044–54. https://doi.org/10.1109/TPWRS.2015.2458302. 

[11] Mohsenian-Rad A, Leon-Garcia A. Distributed internet-based load altering attacks 
against smart power grids. IEEE Transactions on Smart Grid 2011;2(4):667–74. 
https://doi.org/10.1109/TSG.2011.2160297. 

[12] Marnerides AK, Smith P, Schaeffer-Filho A, Mauthe A. Power consumption 
profiling using energy time-frequency distributions in smart grids. IEEE Commun. 
Lett. 2015;19(1):46–9. https://doi.org/10.1109/LCOMM.2014.2371035. 

[13] Mellucci C, Menon PP, Edwards C, Ferrara A. Load alteration fault detection and 
reconstruction in power networks modelled in semi-explicit differential algebraic 
equation form. In: Proc. American Control Conf. (ACC); 2015. p. 5836–41. https:// 
doi.org/10.1109/ACC.2015.7172254. 

[14] Pan T, Mishra S, Nguyen LN, Lee G, Kang J, Seo J, Thai MT. Threat from being 
social: Vulnerability analysis of social network coupled smart grid. IEEE Access 
2017;5:16774–83. https://doi.org/10.1109/ACCESS.2017.2738565. 

[15] Amini S, Pasqualetti F, Mohsenian-Rad H. Dynamic load altering attacks against 
power system stability: Attack models and protection schemes. IEEE Transactions 
on Smart Grid 2018;9(4):2862–72. https://doi.org/10.1109/TSG.2016.2622686. 

[16] Di Giorgio A, Giuseppi A, Liberati F, Ornatelli A, Rabezzano A, Celsi LR. On the 
optimization of energy storage system placement for protecting power 
transmission grids against dynamic load altering attacks. In: Proc. 25th 
Mediterranean Conf. Control and Automation (MED); 2017. p. 986–92. https://doi. 
org/10.1109/MED.2017.7984247. 

[17] Osborne MJ. An Introduction to Game Theory. Oxford University Press; 2004. 
[18] T. Alpcan, T. Basar, A game theoretic approach to decision and analysis in network 

intrusion detection, in: Proc. 42nd IEEE Int. Conf. Decision and Control (IEEE Cat. 
No.03CH37475), Vol. 3, 2003, pp. 2595–2600 Vol. 3. doi:10.1109/ 
CDC.2003.1273013. 

[19] Law YW, Alpcan T, Palaniswami M. Security games for risk minimization in 
automatic generation control. IEEE Trans. Power Syst. 2015;30(1):223–32. https:// 
doi.org/10.1109/TPWRS.2014.2326403. 

[20] Chen G, Dong ZY, Hill DJ, Xue YS. Exploring reliable strategies for defending 
power systems against targeted attacks. IEEE Trans. Power Syst. 2011;26(3): 
1000–9. https://doi.org/10.1109/TPWRS.2010.2078524. 

[21] Zhu Q, Basar T. Game-theoretic methods for robustness, security, and resilience of 
cyberphysical control systems: Games-in-games principle for optimal cross-layer 
resilient control systems. IEEE Control Syst. Mag. 2015;35(1):46–65. https://doi. 
org/10.1109/MCS.2014.2364710. 

[22] Farraj A, Hammad E, Daoud AA, Kundur D. A game-theoretic analysis of cyber 
switching attacks and mitigation in smart grid systems. IEEE Transactions on Smart 
Grid 2016;7(4):1846–55. https://doi.org/10.1109/TSG.2015.2440095. 

[23] Chen P, Cheng S, Chen K. Smart attacks in smart grid communication networks. 
IEEE Commun. Mag. 2012;50(8):24–9. https://doi.org/10.1109/ 
MCOM.2012.6257523. 

[24] Esmalifalak M, Shi G, Han Z, Song L. Bad data injection attack and defense in 
electricity market using game theory study. IEEE Transactions on Smart Grid 2013; 
4(1):160–9. https://doi.org/10.1109/TSG.2012.2224391. 

[25] Li Y, Shi L, Cheng P, Chen J, Quevedo DE. Jamming attacks on remote state 
estimation in cyber-physical systems: A game-theoretic approach. IEEE Trans. 
Autom. Control 2015;60(10):2831–6. https://doi.org/10.1109/ 
TAC.2015.2461851. 

[26] Z. Ni, S. Paul, X. Zhong, Q. Wei, A reinforcement learning approach for sequential 
decision-making process of attacks in smart grid, in: Proc. IEEE Symp. Series 
Computational Intelligence (SSCI), 2017, pp. 1–8. doi:10.1109/ 
SSCI.2017.8285291. 

[27] Wei L, Sarwat AI, Saad W, Biswas S. Stochastic games for power grid protection 
against coordinated cyber-physical attacks. IEEE Transactions on Smart Grid 2018; 
9(2):684–94. https://doi.org/10.1109/TSG.2016.2561266. 

[28] Ma J, Liu Y, Song L, Han Z. Multiact dynamic game strategy for jamming attack in 
electricity market. IEEE Transactions on Smart Grid 2015;6(5):2273–82. https:// 
doi.org/10.1109/TSG.2015.2400215. 

[29] Ni Z, Paul S. A multistage game in smart grid security: A reinforcement learning 
solution. IEEE Transactions on Neural Networks and Learning Systems 2019:1–12. 
https://doi.org/10.1109/TNNLS.2018.2885530. 

[30] He Y, Mendis GJ, Wei J. Real-time detection of false data injection attacks in smart 
grid: A deep learning-based intelligent mechanism. IEEE Transactions on Smart 
Grid 2017;8(5):2505–16. https://doi.org/10.1109/TSG.2017.2703842. 

[31] Yan J, He H, Zhong X, Tang Y. Q-learning-based vulnerability analysis of smart grid 
against sequential topology attacks. IEEE Trans. Inf. Forensics Secur. 2017;12(1): 
200–10. https://doi.org/10.1109/TIFS.2016.2607701. 

[32] Wang X, He H, Li L. A hierarchical deep domain adaptation approach for fault 
diagnosis of power plant thermal system. IEEE Trans. Industr. Inf. 2019;15(9): 
5139–48. https://doi.org/10.1109/TII.2019.2899118. 

[33] Ciavarella S, Joo J, Silvestri S. Managing contingencies in smart grids via the 
internet of things. IEEE Transactions on Smart Grid 2016;7(4):2134–41. https:// 
doi.org/10.1109/TSG.2016.2529579. 

[34] Glover JD, Sarma MS, Overbye TJ. Power System Analysis and Design. Cengage 
Learning; 2009. 

[35] Vieira JCM, Freitas W, Xu Wilsun, Morelato A. Performance of frequency relays for 
distributed generation protection. IEEE Trans. Power Delivery 2006;21(3):1120–7. 
https://doi.org/10.1109/TPWRD.2005.858751. 

[36] Kiliccote S, Lanzisera S, Liao A, Schetrit O, Piette M. Fast dr: Controlling small 
loads over the internet. Proc. ACEEE Sum. Study Energy Efficien. Build. 2014: 
196–208. 

[37] Yao L, Lu H. A two-way direct control of central air-conditioning load via the 
internet. IEEE Trans. Power Delivery 2009;24(1):240–8. https://doi.org/10.1109/ 
TPWRD.2008.923813. 

[38] S.A. Raziei, H. Mohscnian-Had, Optimal demand response capacity of automatic 
lighting control, in: Proc. IEEE PES Innovative Smart Grid Technologies Conf. 
(ISGT), 2013, pp. 1–6. doi:10.1109/ISGT.2013.6497854. 

[39] Vanthournout K, D’hulst R, Geysen D, Jacobs G. A smart domestic hot water buffer. 
IEEE Transactions on Smart Grid 2012;3(4):2121–7. https://doi.org/10.1109/ 
TSG.2012.2205591. 

[40] Masuta T, Yokoyama A. Supplementary load frequency control by use of a number 
of both electric vehicles and heat pump water heaters. IEEE Transactions on Smart 
Grid 2012;3(3):1253–62. https://doi.org/10.1109/TSG.2012.2194746. 

[41] Otomega B, Van Cutsem T. Undervoltage load shedding using distributed 
controllers. IEEE Trans. Power Syst. 2007;22(4):1898–907. https://doi.org/ 
10.1109/TPWRS.2007.907354. 

[42] Q. Wang, X. Cai, W. Tai, Y. Tang, A multi-stage game model for the false data 
injection attack against power systems, in: Proc. and Intelligent Systems (CYBER) 
2018 IEEE 8th Annual Int. Conf. CYBER Technology in Automation, Control, 2018, 
pp. 1450–1455. doi:10.1109/CYBER.2018.8688306. 

[43] Ma R, Chen H, Huang Y, Meng W. Smart grid communication: Its challenges and 
opportunities. IEEE Transactions on Smart Grid 2013;4(1):36–46. https://doi.org/ 
10.1109/TSG.2012.2225851. 
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