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As the current power grid is highly interconnected and more information and communication technologies (ICTs)
are being deployed recently, it could be the target of malicious cyber-physical attacks. Dynamic load altering
attacks (D-LAAs), as a special case of load altering attacks, could be performed to interfere the demand response
and ultimately force certain generators off-line. Cascading failures due to transmission line overloads may also be
triggered. In this paper, we propose a new dynamic defense strategy against D-LAAs through a multistage game
between the attacker and the defender which is solved by minimax-q learning. Different from the static game, the
multistage game considers the attacker and defender’s action sequences and the optimal strategies at each state
are learned. After each time step, the cascading failure is measured, and the load shedding is used as the feedback
for the attacker to generate the next action strategy. The performance of the proposed model is evaluated on the
IEEE 39-bus system. Comparisons between the dynamic defense strategy and the passive defense strategy are
conducted, and the results verify the advantage of the proposed dynamic defense strategy. To improve the power
system resilience, this defense strategy can be deployed in advance when such cyber-physical attacks are

anticipated.

1. Introduction

Ensuring cybersecurity of modern power grids has become a national
priority with the smart grid initiative. The use of information and
communication technologies (ICTs) has not only enhanced the efficiency
and reliability of the power grids but also created new vulnerabilities if
they are not accompanied by advisable security reinforcements [1,2].
Various vulnerabilities may leave some sectors of the power system to a
wide range of cyber-physical attacks [3]. As a real example, attackers
remotely switched off the breakers in a series of substations by pre-
installed malware, resulting in a widespread outage in the Ukrainian
power system in late 2015. This blackout is the first publicly acknowl-
edged incident caused by cyber-attack which is even more destructive
than natural disasters [4]. Furthermore, identifying and mitigating such
risks are instrumental in improving the resiliency of power grids [5].
Thus, considering the increasing cyber-physical threats to the modern
power system, it is imperative that we understand the risks resulting
from cyber-physical attacks and thus implement effective security stra-
tegies against them.

Load Altering Attack (LAA) is a representative cyber-physical attack
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with the aim to maliciously control and alter a group of remotely
accessible yet unsecured controllable loads. A successful LAA can
disturb the balance between the power demand and supply, causing
frequency and angle instability and consequently system blackout
through circuit overflow or generator tripping. The potential vulnerable
loads to LAAs can be frequency-responsive loads [6,7], data center’s
computational load [8], loads with direct load control (DLC) which is
one of the most common demand side management programs [9,10],
etc.

LAAs can be categorized into static load altering attack (S-LAA)
(which is mainly focused on the amount of vulnerable loads) and dy-
namic load altering attack (D-LAA) (which is additionally concerned
with the trajectory of the changes that are made in the vulnerable loads).
Reference [11] introduces and models S-LAA in smart grids, and the
studies in [12-14] address the prevention or detection of LAAs. Unlike
these investigations, reference [15] introduces, characterizes and clas-
sifies D-LAAs as a new class of cyber-physical attacks against the power
grids. In [16], the authors present a protection scheme using energy
storage systems to improve the power grid’s reaction to D-LAAs.

Game theory is oftentimes used to help people understand the
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situations in which decision-makers interact, e.g., between attackers and
defenders. There is a wide range of situations to which game theory can
be applied: political candidates competing, companies competing in
business, bidders bidding in an auction, and so on [17]. Various games
are formulated to illuminate different economic, political, engineering
phenomena, such as general sum, zero-sum and potential games.
Recently, researchers recognized the critical role of game-theoretic ap-
proaches in power grid security. The security games introduce an
analytical framework with a rich mathematical basis for modelling the
interactions between intentional attackers whose aim is to disrupt the
power grid and operators defending it [18,19]. The games in power grid
security are classified into two categories: static and dynamic games. The
static game can be considered as a one-shot process, which means
players only take one action. A wealth of research [20-25] has emerged
on the static defense schemes against malicious attacks in the smart grid.
In [20], the authors present a comprehensive and quantitative static
game framework for the power system security problem. Under this
framework, a new criterion is derived to seek reliable defense strategies.
In [21], a zero-sum static game model is proposed to provide security
policies in the cyber layer with corresponding resilient control in the
physical layer. In [22], Farraj et al. analyze the cyber switching attacks
and corresponding mitigation method by the zero-determinant strategy
in an iterative game. The strategy allows the electric power utility (EPU)
to stabilize the power grid in the face of cyber switching attacks. A game
equilibrium is obtained by a zero-sum static game between intentional
attackers and defenders to provide a reliable fusion-based defense
scheme for the communication network of power systems in [23]. In
[24], the effect of the compromised active power measurements on the
electricity price is quantified. This situation is modeled as a zero-sum
game between the defender and the attacker who performs the bad
data injection attack on the measurements. For defending against
denial-of-service (DoS) attacks, Li et al. [25] investigate the interaction
between the sensor nodes and adversaries.

On the other hand, dynamic games have been a largely underex-
plored domain in the power grid security area. Most existing work
mentioned previously are focused on static games or static defenses
without considering dynamic processes. In dynamic or multistage
games, attackers can compromise multiple components in a time
sequence [26]. For some practical cases, to obtain the maximum profit
or achieve the attack objective, attackers have to take offensive actions
one by one based on the defender’s protection policy and the next steady
state of system. Note that full knowledge and observation of the target
system are required for the players. In [27], the authors propose a sto-
chastic game to protect the power system against coordinated cyber-
physical attacks. Although two states are considered, the game pro-
posed in [27] is more like a one-shot game because the attacker can only
target one element at a time. There is no more dynamic evolution in this
game. Ma et al. consider a multi-act dynamic game in the electricity
market for defending against jamming attacks in [28]. Dynamic pro-
gramming is adopted to solve the game. To carry out the recursions,
knowing the model of environment is necessary. In [29], a gq-learning
method is devised to solve a multistage game. The attacker’s actions are
considered while the defender’s actions are pre-defined rather than
evolving by interacting with the attacker’s action and system state.

Furthermore, machine learning methods are being applied to address
cyber-physical security issues in power systems for attack detection,
analysis of defense strategy, and fault diagnosis. In [30], a deep-
learning-based algorithm to detect power theft and false data injection
(FDI) attack on real-time measurements is proposed. The authors in [31]
use Q-learning to analyze vulnerabilities of the power system in
sequential topological attacks. Wang et al. [32] develop a deep learning
method for fault diagnosis of power plants. A hierarchical deep domain
adaptation (HDDA) approach is proposed to apply a classifier with
labeled data under one loading condition to detect faults with unlabeled
data under another loading condition.

Thus far, the focus in power grid security against malicious attacks
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Fig. 1. Single-point closed-loop D-LAA.

has been mainly on static defense schemes. In contrast, in this paper, we
address a new dynamic defense policy against multistage D-LAA, which
is concerned with dynamic interactions between the attacker and de-
fender. The attack-defense interaction is modeled by a two-player zero-
sum multistage game and the solution is obtained based on minimax-q
learning. Unlike dynamic programming solution given in [28] that re-
quires exact knowledge of the model of environment, the proposed
minimax-q learning based solution in this paper goes from experience to
policies by learning a model rather than needing a model. The main
contributions of this paper are summarized as follows:

e The one-shot dynamic load altering attacks (D-LAA) in [15] is
extended to a sequence attack. The corresponding cascading failures
caused by D-LAA are studied holistically. It allows the attacker takes
offensive actions one by one based on the states of system and
adversary’s protection policy to achieve much higher attack
objective.

e A two-player zero-sum multistage game considering both dynamic of
the attacker and the defender is proposed.Different from the one-shot
games that lack dynamic evolvement of the attack-defense sequence
and passive defense strategies where the evolvement of defender’s
actions is neglected in the existing literature, a minimax-q learning
scheme is adopted in this paper to effectively find out the optimal
defense sequence against chronological D-LAA considering dynamic
interactions between the attacker and the defender. This is also the
main difference between the proposed dynamic defense and the
existing research.

e This dynamic defense strategy is compared with the static (passive)
defense policy. The simulation results show that the power grid with
the proposed defense strategy does have lower load loss due to D-
LAAs.

The rest of this paper is organized as follows: Section II presents the
related preliminaries and the game model is formulated in Section III.
Analysis of the minimax-q learning solution is presented in Section IV. In
Section V, simulation setup, results and analysis are presented.
Concluding remarks and potential future directions are given in Section
VI

2. Related Preliminaries

In this section, some related preliminaries are presented including
the mathematical model of D-LAAs, optimal load shedding problem and
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cascading failures.

2.1. Dynamic Load Altering Attack

2.1.1. D-LAA Implementation Principle

The basic threat model is adopted from reference [15]. As
mentioned, D-LAA is concerned with the volume as well as the trajectory
of the changes in the vulnerable load. In a closed-loop D-LAA, referring
to Fig. 1, the attacker tries to manipulate the vulnerable load (P1) with
constant monitoring at the sensor bus for the grid conditions. Although
there are various approaches to measure the grid conditions and alter
the load, in this paper we limit our scope to the power system frequency
obtained from the installed frequency sensors and frequency-responsive
loads. A successful D-LAA can be conducted only if there are sufficient
potential vulnerable loads to be compromised. The attack objective is to
deviate the frequency from the system’s nominal value and eventually
push one generator off-line. To implement a D-LAA, there are three main
steps that the attacker must undertake:

e Install the frequency monitor at the sensor bus and constantly send
frequency acquisitions to the D-LAA controller. In general, it is not
difficult to monitor the frequency of power system using an inex-
pensive commercial sensor.

e Based on the mechanism of the attack controller and the feedback
signal, calculate the amount of vulnerable load which needs to be
compromised at the victim bus.

e Remotely control and alter the victim load at the amount that is
calculated in the last step. The feasibility of remotely altering the
load is discussed in [33].

2.1.2. Attack Model

In power systems, theoretically, the power flow between buses i and j
is a nonlinear function of bus voltages and the impedance of trans-
mission lines. The active power flow can be given as follows:

Py = V;V;[Gycos(d; — ¢;) + Bysin(d; — ¢;)] (€]

where V is the voltage magnitude, ¢ is the phase angle in the corre-
sponding bus, and G and B are the real and imaginary parts of the
impedance, respectively. Note that G; can be considered as zero because
the resistance of the transmission lines is significantly less than the
reactance in practice. Furthermore, the difference of voltage phase angle
between two buses is small and the voltage magnitude in each bus is
very close to unity in the per-unit system. Thus, further approximation
for the power flow equation can be written as:

Py =B;(¢;— ;). @

Specifically, consider a power system with £ generator buses and .
load buses. Let then .7 = 2 U_Z represents the set of all buses in this
grid. For a bus i € ./, the total amount of power flow can be separated
into the power injection of the generator P¢ at bus i € % and power
absorbed by load P} at bus i € 7. Defining &; as the voltage phase angle
of the i-th generator bus, 6; as the voltage phase angle at i-th load bus and
Bjj as the admittance value between buses i and j, the linearized power
flow equations based on Eq. (2) can be written as:

PC =Y B; (5,- - 51) +Y By <5i - 9/) . 3)

jew jes
(C)]
—Pt=>"B; (0[ - 5,-) +> By (a[ - 9/) .
JEY jes

To model the dynamic behavior of each generator, the swing equations
are used for the generator bus:
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b =, (5)

where w; is the rotor angular frequency deviation of generator bus i, M; is
the rotor inertia of each generator, P is the mechanical power input and
D¢ represents the damping coefficient. Note that P¥ and DY must be
positive.

Specifically, the turbine-governor controller and the load-frequency
controller can be integrated together as a proportional-integral (PI)
controller, aimed at maintaining the rotor angular frequency at its
nominal level to affect the mechanical power input [34]. The PI
controller is represented as:

"t
PY = — (Kfm,-+1<j/ a),-),Kf,K{ >0, @
0

where K? and K/ are the proportional and integral controller coefficients,
respectively. As a result, the rotor frequency dynamics in Eq. (6) can be
rewritten by expressing the mechanical power for each generator in
terms of frequency deviation w;, as defined in Eq. (7). It becomes:

!
Mg = — (Kf’wi+Kf/ w,) —P¢ —Dfw,. (8
0

According to Eq. (3), we obtain:

Mo, = — (K,P +Df> 0i—K/5—) B; <5,» —5,~> - B; <5i —9,») . 9)

jez jes

In this way, expressions (5), (4), (9) formulate the complete dynamical
model and can be written as the following linear state-space descriptor
system:

. 0 1 0
10016 BLG B 0 6 OL
000 |0|= I | pGG GL P G 0|+ (P, @Q0)
ooumlle —(K'+B%) =B —(K"+D) | | ~ 0

where B is the imaginary part of the admittance matrix:

UG goL
Byus = |:BLG B | an

Now, we consider a single-point closed-loop D-LAA that is performed at
victim load bus v and the frequency sensor is installed at a generator bus
s aiming to push this particular generator off-line. Suppose a
proportional-integral controller is used by the attacker, creating a large
deviation while less load is needed. Let KIL7 and K} denote the attack
controller’s proportional and integral gains at the generator bus (sensor
bus) s, respectively. We can write the compromised power consumption

level 1_3LV at victim bus v:

—L 4

P :P‘L,fK,L,a)st,L/ w;. 12)
0

As a result, the system dynamics subjects to the above D-LAA becomes

0 1 0
IR AR NI,
= I | pGG GL P G :
oom||a |~EK+BY) BT —(K'+D)||,] |0

From Eq. (13), when the system is under attack, the attacker can affect
the system dynamics and compromise the system stability by adjusting

the attack controller matrices Kﬁ and K:. In particular, the system
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Fig. 2. Root locus plot of power system under a D-LAA attack.

becomes unstable if the attacker is capable of moving the system poles to
the right-half complex plane assuming the vulnerable load is large
enough. Considering generators are generally equipped with various
relays in the modern power system [35], a single-point closed-loop D-
LAA may push the generator off-line and disconnect it from the grid.

2.1.3. Control Scheme of Closed-loop D-LAA

It is worth mentioning that PI control in (7) is not the only option to
successfully implement D-LAA. In general, the closed-loop D-LAA can be
viewed as a frequency controller which makes the compromised loads
react to frequency deviants in the opposite direction of the normal de-
mand response for frequency regulation. It has been discussed in [15]
that “the attacker may use a bang-bang, P, PI, or PID controller, or any other
more complex feedback control system mechanism” for the closed-loop D-
LAA, and a P control model is used in [15] to formulate the D-LAA. In
this work, the P control based D-LAA attack model in [15] is extended to
a more general PI control based model. The models provide effective
methods for the modeling of malicious D-LAA actions against the fre-
quency control of the grid. The proposed model keeps the direction of D-
LAA actions opposite to the normal frequency control of the grid.
Furthermore, the focus of this work is not to design attack controller but
rather to develop a dynamic defense framework plan by minimax-q
learning against such multistage attacks. This method and idea are not
affected by the controller selection and can potentially be extended to
other multistage attacks.

2.1.4. D-LAA Implementation

The D-LLA is launched by altering the remotely controllable de-
mands instead of the outputs of the generation units in the grid. Refer-
ring to Fig. 1 the adversary only needs to hack into the remote load
control systems to adjust the power consumption trajectory by
constantly monitoring the frequency signals to implement D-LAA. Such
remote load control systems extensively exist in demand response pro-
grams. Specifically, an attacker may aim to compromise command sig-
nals in Direct Load Control (DLC) programs that often involve two-way
communications between the power system operator and loads or

aggregators [36]. The adversary may utilize the vulnerability in any of
these communications infrastructures to gain direct and remote access
and control over the load through the load control mechanism. These
loads that are potentially vulnerable to D-LAA attack include air con-
ditioners [37], building lighting system [38], water heaters [39] and
electric vehicles [40]. For example, considering the heating, ventilation
and air conditioning (HVAC) demand in buildings, after intruding into
the communication between the building and grid operator, the attacker
could generate desired aggregated load profile by orchestrated periodic
on/off signals to each component, e.g., air conditioner and fan.

To set the parameters in the controller-based model of D-LAA, the
attacker needs to know or estimate the system dynamic model including
the system frequency control settings and grid topology, which do not
change frequently and are considered constant during the attack in this
paper. The only signal that needs to be updated in real time by the
attacker when implementing the closed-loop D-LAA is the frequency
signal. Thus, following the work in [15], it is assumed in this paper that
the attacker can constantly monitor the frequency signals via the at-
tacker’s installed sensors or by hacking into an existing monitoring
infrastructure of the grid.

2.2. Optimal Load Shedding

As mentioned, when a system is attacked and the topological struc-
ture of the system is changed, such as a generator being off-line, a
transmission line being tripped by relay/man or a system partition being
caused, load shedding must be performed to regain stability. Consid-
ering a power system with n buses the optimal load shedding problem
can be formulated as a constrained optimization problem with the
physical constraints of the power flows [27,41,42]:

Zg,21

min = % wizs, 14
i=1

subject to,
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NBA¢p— (p+2) =0, (15) sensor bus is always one of the generator buses, and all portions of loads
are controllable at each vulnerable load bus. As mentioned previously,
DPemin<Pg + 2 <P gmax (16) the attacker may destabilize the system by changing the controller gain
matrix K5. From the control perspective, the locations of system poles
Zmin ST SZgmar; a7 change with the increase of K5 and once the pole(s) are moved to right-
< < as) half plane the system becomes unstable. Fig. 2 shows how the root locus
PiminSP1— USP1> analysis helps the attacker find the minimum attack gain.

b <AG<P, ., 19) The minimum vulnerable load that must be compromised can be

where w; = [wy, w, ...,Wzn]T is the weight vector representing the
relative importance of different load buses; vector 2 = [2,; ], in which
vector z, refers to the re-dispatched power at each generation bus; vector
7 is the load to be shed at each load bus; vector p = [pg; p;], in which
vector p, represents the original active power output at each generation
bus; vector p; is the demand at each load bus; vector ¢ represents the
phase angle at each bus; A is the incidence matrix for the topology of the
grid; and B is the diagonal matrix of the transmission-line admittances.
Constraint (15) represents the power balance at each bus; constraint
(16) is the power output limit of the generation; constraints (17) and
(18) are the constraints of the generation redispatch and load shedding
respectively; Constraint (19) limits the phase angle difference of the
connected buses of each transmission line in the grid.

2.3. Cascading Failures and D-LAA in Sequence

A successful single D-LAA with the aim to disconnect a generator
may cause cascading failures during the post-attack stage. Due to the
excessive load demand after attack, load shedding is an inevitable option
for the system operator [11]. The optimal load shedding technology has
been discussed and presented in Section 2.2. After the load shedding is
carried out, a DC power flow analysis is performed to check for over-
loads on the transmission lines. If a transmission line is overloaded by
over 50%, it will be tripped by the operator. Then the balance between
the generation and demand is checked again and these steps are
repeated until entering into the next steady state.

On the other hand, for causing a more severe damage to the power
system such as more load shedding or generation losses, the attacker
may perform the D-LAAs in sequence (one-by-one). For example, the
attacker may perform a D-LAA to force a generator to be disconnected
from the grid and trigger cascading failures. Then, based on the current
state and system topology of the post-attack stage, the new proper victim
and sensor buses are selected and another D-LAA can be performed. The
attacker may repeat this process until the attack goal is achieved.

There is a main concern for the D-LAA sequence: how to choose the
best attack controller gain for each step? For the ease of analysis, it is
assumed the frequency sensor is placed at the generator bus, that is, the

calculated by Eq. (12). If the minimum amount of load is not larger than
the total load at this load bus, the selections of victim load bus and
sensor bus are feasible. The attacker tries to make the least effort to
achieve the attack goal, so for the same sensor bus when there are two
feasible victim buses the attacker tends to choose the one with less
minimum compromised load. Once a D-LAA is successfully performed
and the cascading failures are triggered, the system enters into the next
steady state and the attacker may choose the new feasible victim and
sensor buses to conduct the next attack. In simulations, we can change
the entries of matrix B in Eq. (13) based on the current system topology
because B; = 0 if the transmission line between buses i and j is tripped.

3. Game-theoretic Analysis of Attack-defense Interactions

In this section, the behaviors of the attacker and defender are
modeled using a two-player zero-sum multistage game. As introduced in
Section 1, game theory helps people understand the interactions be-
tween the decision-makers. For the analysis of power system security,
the attacker and defender are considered as two decision-makers or
players. The attacker can be hackers, organized terrorists or other
criminals. The defender is the system administrator who monitors the
power system network and implements security measures. The attacker
intends to cause the maximum damage to power grid while the defender
strives to minimize the impact. Thus, the defender’s gain is regarded as
the opposite of the attacker’s gain. In the attack, the adversary may
compromise components in sequence instead of at the same time, in
order to cause more damage and decrease the risk of being detected.
Similarly, the defender has to change defense actions with a dynamic
attacker. Thus, both the attacker and defender have to adjust their ac-
tions based on the observation of their past actions and current states. In
this way, the attack-defense game falls exactly into the category of two-
player zero-sum games.

This game can be considered as a 5-tuple (77, 24, /P, R, RP)
Markov game, where.

g
o 75 ief {s1,...,Sns} denotes the system’s state space;

ad .
o 1Y {ai, ...,an, } denotes the attacker’s action space;
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o /P dg{dl, ...,dn, } denotes the defender’s action space;

o R* = [R}4(s)]x, «n, denotes the attacker’s expected reward associ-
ated with attack action a € ./ against defense action d € .«/® in state
se.7% and

o R” =[R2 4(5)]n, «n, denotes the defender’s expected reward associ-
ated with defense action d € .o/? against attack action a € ./ in state
se. 5.

Fig. 3 illustrates a typical player-system interaction for the two-
player game. The attacker obtains system state s and takes the attack
action a, and will receive reward R4. Meanwhile, the defender will
conduct the same process and receive reward Rp.

3.1. Action Spaces

Attacker’s target is to implement D-LAA aiming to disconnect one
generator and cause cascading failures. Attacker’s action a € ./ means
trying to force one generator disconnecting from the main grid at a time
step. The defender’s action is related to protect a generator bus. How-
ever, the defender can restrain this attack on generators by protecting
the load on corresponding victim buses. As discussed in Section II-B, a
successful D-LAA needs a victim bus and a sensor bus. The defender may
follow the same method in Section II-B to obtain all vulnerable loads that
can be potentially controlled by the attacker. Thus, protecting the victim
load is an effective method against D-LAA. That is, the physical meaning
of protection action is to protect the potential victim load rather than
protecting these generators. Currently, the load can be protected by
implementing reinforced security measures, e.g., adding hardware and
software based security components, at both the communication level
[43] and device level [44,45]. For example, reference[43] proposes a
method in which the administrator can temporarily revoke the certifi-
cate of some nodes. In this way, these nodes are excluded from the grid’s
communication network, that is, the attacker is not able to remotely
alter these loads.

In this paper, it is assumed that when a defense action is performed
on a load bus, the load at the protected bus PL cannot be manipulated by
the attacker. Note that not all loads can be targeted by attacker to
implement D-LAA because some loads are traditional types which
cannot be remotely manipulated.

3.2. System States

This game is played over a finite state space denoted by .7*. States
are formulated as a combination of the statuses of all transmission lines
of the power grid. For each state s, the status of the transmission lines is
represented by a binary number ‘1" or ‘0.

OBt

Fig. 4 shows the transition process from one state to the next steady
state through some intermediate states. At state s, attack (D-LAA in this
paper) is launched and one generator is pushed to be disconnected from
the grid due to instability. The load is shed based on the model in Section
2.2 and the demand is balanced. Then, a DC power flow analysis is
applied to decide if any overloads occur on the transmission lines.

ifline/worksproperly

iflinel/isout — of — service, (20)

Generally, the transmission line is tripped if the overload exceeds 50%.
The system repeats this process until the generation and demand is
balanced and there is no overloaded transmission line. Please see Section
2.3 for more details.

3.3. Attacker and Defender’s Policies and Rewards

There are two players in the game: the attacker and the defender. At
state s, the players choose their respective actions a € .7 and d € ./°
independently, and immediately receive rewards Rﬁ7d(s) and R?(s),
respectively. In this zero-sum game, the defender’s expected reward is
opposite to the attacker’s expected reward, denoted by Ri 4(8) =

—R? ;(s). The rewards for players are assigned following the conditions

given as:
0  ifloadsheddingz(r) = z(t — 1)

Rils]=q1 ifzt—1)<z(t) <N @1
10 ifz()>N,

and
0 ifloadsheddingz(r) = z(r — 1)

RO Is] =4 -1 ifz(r—1)<z() <N 22)

—10 ifz(f)=N,
where z represents the total load shedding caused by the D-LAA attack
and N is the attack objective.

Now we have specified the immediate rewards of the attacker and
the defender at each state, but have not indicated how these rewards are
aggregated into an overall payoff. The most commonly used aggregation
method is the discounted-sum reward. For an attack action a and a de-
fense action d, the discounted-sum rewards of the attacker and defender
considering deterministic state transition are represented as:

Ox <~Y-, a, d) = i VIRZ\,d (S (’) ) ) (23
=0

QD<s7a7d> —iy‘Rﬁd<s<>>, (24)
=0

where Q4 and Qp represent game values for the attacker and the de-
fender, respectively; and y € (0, 1) is the discount factor. A smaller value
of y implies the agent emphasizes the immediate reward while a larger
value indicates more concerns about future rewards. For a given state s,
the attacker’s strategy is defined as probability distributions over action
space .74, i.e.,

7 (s) = [Pr(a(s) = a1), Pr(a(s) = a2), ..., Pr(a(s) = ay,))’, (25)

which satisfies "M Pr(a(s) =a;) =1

strategy is given as:

a; € .2/, Similarly, the defender’s

7°(s) = [Pr(d(s) = d,),Pr(d(s) = &), ..., Pr(d(s) = dy,)|" (26)

and Y1 Pr(d(s) =d;) = l‘di c P

When only one entry of the strategies described above is nonzero
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(and equal to 1), 74 and #° are called pure strategy and players always
adopt this action at state s(t). Otherwise, they are mixed strategies which
are adopted in this paper. Note that in this multi-stage game, the
attacker and defender choose their different targets in time sequence
until the attack objective is achieved.

3.4. Nash Equilibrium

In this game, the defender tries to minimize the discounted sum of
expected reward Qp while the attacker aims to maximize it. Nash equi-
librium is a common solution to solve the players’ optimal strategies for
such a Markov game [17,46]. Nash equilibrium is a state that no player
has a unilateral incentive to change actions as that would reduce their
rewards, that is, each agent plays best response to their opponents. For
the proposed game model, a Nash equilibrium can be mathematically
defined as follows:

Definition 1. In the proposed zero-sum two-player Markov game, a Nash
equilibrium is a pair of mixed optimal strategies (r,, 7p,) for all mixed stra-
tegies na and np for all states s € S

0u (5, 7y, 7p) 20 (5, T, 7p), 27
Op (s, 7y, 7) 200 (s, 7y, 7). (28)

For such a two-player game, it is proved that unique Nash Equilibrium
exists in stationary strategies (for all t) by Shapley [47]. That is, the
mixed optimal attack/defense strategies can be solved for each state
instead of each time t. In general, the stationary optimal strategy can be
solved recursively by dynamic programming if environment of the
model is known such as in [27,28].

4. Proposed Solution Approach
4.1. Minimax-q Learning

In this section, we propose a new dynamic defense solution for the
two-player zero-sum Markov game based on the minimax-q learning
approach. Our objective is to characterize the attacker’s and the de-
fender’s Nash equilibrium strategies for each state s € .° and their
attack/defense actions in time sequence, where all players are rational
and tend to maximize their own benefits. The attacker and the defender
are completely competitive and do not cooperate with each other.
Minimax-q learning [48] is used in conjunction with Markov games. As a
modification of g-learning which just considers the opponent as part of
the environment, this algorithm treats the Q function not just from the
state/action pairs to values, but from the state/action/action to values, i.
e., Q(s, a, d). Thus, both players’ actions and their interactions are
modeled more explicitly. The minimax-q learning algorithm is adopted
to approach real unknown state value function V(s) by interacting with
the environment and then players obtain the optimal Nash strategies by
the learned state value function. Furthermore, a state-action value func-
tion (Q function) is to quantify the performance for a player to apply a
particular action following a policy « in a state. From the defender’s
perspective, the Q function can be defined as:

Op (s, a, d> = (1 — a,) Op <s,a,d> +a, <RD +yZVD (s’) > , (29)
s'eS

and the state value function V(s) is defined as:

Vi <s’> = minmaxZQ <s’, a, d) o (s’) , (30)

where a; denotes the learning rate for adjusting the step size. To improve
the convergence rate of this algorithm, a polynomial learning rate is
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adopted as 1/t where g € (1/2,1).

Note that in Eq. (30), minmax is adopted to find the best response
instead of playing actions with the highest Q in [29]. Eq. (30) can be
converted to a linear constraint optimization problem to obtain the
optimal strategy at state s:
minVp <s> s

7D

31
s.t.Vp (A) > E (0] <s, a, d> p <A> Va € 7.
P

Similarly, the attacker’s state value function and Q function can be
dually derived:

04 <s, a, d) = (1 - a,> 0Oa <s, a, d) +a, (RA +7rY Va <s> ) , (32)
ves
Va (s’) = mﬂinmj{xzd:Q (s’, a, d) A (s’) . (33)

The optimal strategy of the attacker can also be obtained by linear
programming in (33):

maxVy (3) ,

A

(€D)]
s.t.Vy (s) >ZQ (s, a, d) A <v) vd € /P

The procedure to compute the Nash equilibrium at each state and the
attack/defense sequence are detailed in Algorithm 1.

Algorithm 1.

1: Initialize Qo(s,a,d), V(s), 7a, and 7p

2: Obtain feasible D-LAA target for initial state discussed in Section 2.3 as action space
for attack/defense

3: Define exploration probability < and learning rate a

4: for number of episodes do

5:  while Attack objective is not reached do

Minimax-q Learning Algorithm

6 Select current state s

7: if Generated random number < e then

8 Take random attack and defense action

9: else

10: Take attack and defense action based on Q-table
11: end if

12: Execute actions

13: Calculate load shedding by (14), overloads, and cascades

14: Determine next s’

15: Assign reward by Egs. (21) and (22)

16: Update state-action value function Q by Egs. (29) and (32)

17: Solve state value functions (30) and (33) by linear programming and update
V(s) and 7a(s)7p(s)

18: Update feasible D-LAA target for attack/defense’s action space

19: Update s = s’

20: end while

21: end for

22: Find optimal strategies and sequences of actions for attacker and defender

In the proposed algorithm, the game starts with the initialization of Q
function, state value function V and attacker/defender’s policy. Then the
system is evaluated to obtain feasible D-LAA attack discussed in Section
2.3. Note that for simulations, instead of observing the root-locus plot,
we can analytically obtain the minimum compromised load by gradually
increasing controller K5 until the system is unstable. In the beginning,
the initial state is assumed at the normal operation condition, that is, all
transmission lines and generators are active and work properly. A
e-greedy strategy is also adopted to balance the exploration and
exploitation [49]. With e-greedy, the agent plays a random action with a
probability 0 < e < 1, instead of making the best decision given in the
Q-function. With the execution of the actions, a certain generator is
disconnected from the power grid due to the D-LAA if the corresponding
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Fig. 5. IEEE 39-bus system.

load is not protected by the defender. Load shedding of the current state
is calculated and cascading overloads on the transmission lines may be
triggered until the system enters into the next steady state s'. Instant
rewards are assigned to the attacker and the defender by Egs. (21) and
(22) and the value of Q-function is updated. Strategies 74 (s) and zp(s)
and state value V are solved by linear programming. Then, based on the
new topology of system and state, feasible targets for the attack/de-
fense’s action spaces are decided. The game is repeated until the attack
objective is reached. Ideally, if the process above (from step 4 to step 20)
repeats for enough times, i.e., Q matrix is updated at each state by
enough times, the players will learn the real complex relationships be-
tween the actions and outcomes. Thus, such relationships are reinforced
in this process and eventually the players find their optimal Nash
equilibrium strategies. Note that the optimal attack/defense sequence is
not unique and in this study we evaluate the performance by computing
the average impact to the system.

Furthermore, this defense strategy is not a real-time one but is more
like a pre-stipulated plan against low-probability high-impact attacks,
such us D-LAA in this paper, to minimize the damage. According to the
features of D-LAA attacks, the defender can find an optimal policy for
each state against potential vicious attacker if both play rationally. The
defense strategy can be deployed in advance when such attacks are
anticipated to improve the resilience of the power system.

In this paper, the proposed work focuses only on the D-LAA scenario.
Nevertheless, because the proposed defense method is based on
minimax-q learning which works with Markov game, this work can be
extended to other multistage attacks, e.g., Load Redistribution (LR) at-
tacks and line switching attacks, as long as the action spaces and
cascading failures are redesigned following specific attack mechanisms.
The power grid operator may make multiple such stored plans based on
different types of attacks and defense actions.

4.2. Discussion on Computational Complexity

The computational complexity is @ (S?MaMp) per iteration in Algo-
rithm 1, where My and Mp are the numbers of strategies for the attacker
and the defender, respectively. Because single-point D-LAA is considered
in this paper, i.e., the attacker and the defender select one bus to
compromise and protect at one time, My = (i) and Mp = (%)),
where A and D represent the numbers of total possible attack and de-
fense actions, respectively. It can be seen that the computational
complexity increases linearly with more attack/defense options. As for
S, more possible states will cause relatively quicker increase of the
computational complexity.

5. Simulation Results and Analysis

Now we evaluate the performance of the proposed minimax-q
learning for this two-player zero-sum Markov game on the IEEE 39-
bus system that consists of 46 transmission lines and 10 generators.
The results of dynamic defense strategy may provide useful insight for
grid operators to improve the resiliency of power systems. Comparisons
with the existing passive and dynamic defense strategies are conducted
to illustrate the importance of deploying the proposed dynamic strategy
against D-LAA.

5.1. System Parameters

Fig. 5 shows the IEEE 39-bus system based on a 10-machine New-
England power network. There are 10 generators, 46 transmission
lines and 19 loads. There are two loops in the simulation: episodes and
runs. The episodes loop is the main loop in which the attacker and the
defender interact to learn the optimal policy. The attacker and the
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Table 1
Simulation Parameters for IEEE 39-bus system
No. Parameter Value
1 Number of Generators, & 10
2 Total Transmission lines 46
3 Discount Factor, y 0.8
4 Learning Rate Coefficient, 0.7
5 Initial Exploration Probability, < 0.9
6 Number of Episodes 1000
7 Number of Runs 50
8 Maximum Iteration per Episode 100
9 Total Capacity 6245 MW
10 Attack Objective at least 50% load shedding
Table 2
Minimum portion of vulnerable load that must be compromised at initial state.
Sensor Bus
Victim Bus 30 32 33 34 36 39
4 62 92.5 79.1 69 125 46.2
6 4.9 0.91 1.2 3.7 3.6 128
7 0.72 12.4 0.6 64.5 5.1 5.1
12 73.9 23.5 48.6 77.2 89.5 89
18 146 8.5 117 222 189 46.5
19 48.1 0.77 7.4 1.5 0.62 66.8
23 280 1.9 15.6 2.8 1.9 72
29 4.6 58.5 12.7 4.7 4 0.54

defender complete a bunch of actions in sequence. As the number of
episodes increases, the attacker tends to approach the optimal policy. At
the end of the episodes, the attacker and the defender reach the Nash
equilibrium point. A number of runs are conducted to deduce different
Nash equilibria. Therefore, the whole game simulation is conducted for
many runs. Each run includes a number of episodes. The number of
episodes is the required number of trials for the agent in the learning
process. The initial exploration rate € is 0.9 and decreases 10% every 20
episodes to ensure the convergence. Other simulation parameters are
given in Table 1.

5.2. Selection of Vulnerable Bus and Attacker/defender’s Action Space
As discussed in Section II, not all loads can be considered vulnerable

to D-LAAs. Some loads are traditional ones and may not even have smart
meters or any demand response equipment, which the attacker cannot
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remotely manipulate. In this case, we assume that only eight load buses
have vulnerable loads. They can potentially become victim buses, i.e.,
7" ={4,6,7,12,18,19,23,29}. On the other hand, according to [50],
generators {31, 35,37,38} represent nuclear stations which are fully
protected. Thus, frequency sensors are assumed to be placed only at
. =1{30,32,33,34,36,39} that are considered as fossil and hydro
stations. Thus, the attacker’s action space is 7 = {30, 32, 33, 34, 36,
39}. Table 2 shows the minimum portion of the vulnerable load that
must be compromised to guarantee a successful D-LAA at the initial
state. We assume K a pre-tuned parameter and there is no need to
change it for simplicity of calculation. The highlighted cells indicate the
attacker could launch D-LAA on the corresponding sensor bus and victim
bus. For the initial state, the attacker is not able to compromise gener-
ator 34 because there are not enough loads to be manipulated for the
given vulnerable buses. Therefore, for the initial state, the attacker can
perform D-LAA to disconnect generators {30, 32, 33, 36, 39}. Further-
more, at each visited unique state, Table 2 is updated for the next se-
lection of the attack target. Based on the same table, the defender also
decides the protection action that should be taken. The defender’s action
space is denoted as ./ = {30, 32,33, 34, 36,39}. As mentioned previ-
ously, the physical meaning of the protection action is not to protect
these generators but to protect the corresponding potential victim load.
For example, at the initial state, when the defender selects action “30”, it
means the load on the corresponding victim bus 7 is protected.

5.3. Game-theoretic Attack/Defense

Figs. 6 and 7 show the convergence curves of the optimal number of
attacker/defender’s actions. After adequate learning and exploration,
we can see that both players reach the optimal number of actions.
Among 50 independent runs, the attacker needs three actions in
sequence to achieve the objective and the defender also needs the same
number of actions to minimize the load shedding caused by D-LAAs. The
average computing time per run is about 564s. We need to emphasize
again that the defense strategy is not real-time but off-line trained pre-
stipulated plan against the low-probability high-impact D-LAA. The
defense plan can be deployed in advance when such attacks are antici-
pated. Therefore, the proposed strategy can adequately meet the time
requirement of practical applications.

Fig. 8 depicts the convergence of the total load shedding. The
average load shedding converges to around 3400 MW after 50 runs.
From the three figures, we can portray how the algorithm works espe-
cially in the intermediate process. In the early stage of learning process,
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Fig. 6. Convergence of the defender’s number of actions.
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because of the large exploration rate € and inaccurate Q matrix, both the
attacker and defender take actions randomly or wrongly. Thus, they may
take more additional steps and the total amounts of load shedding is not
stable. With the decrease of € and the update of Q matrix, the curves
gradually converge. At the end of the process, the Q matrix is updated
for enough times and the players learn the real relationships between the
actions and outcomes. The policies at each state converge to the optimal
Nash Equilibrium strategies.

Figs. 9 and 10 show the attacker’s and defender’s optimal policies
when Nash Equilibrium is reached at each unique state. For this situa-
tion, both the attacker and defender have no unilateral incentive to alter
their actions, because they have maximized their profits. The physical
meaning of the Nash Equilibrium status for this case is that the defender
can minimize the damage (load shedding) if they both play rationally

their optimal strategies. The system operators are advised to adopt these
strategies for each possible state against the D-LAA. Specifically, there is
no need to place any defensive strategies for some states because there
are not enough vulnerable loads to alter for disconnecting generators
from the power grid. Note that mixed strategy at some states. Regarding
the actual implementation in practice, the operator may change the
defense plan according to the probabilities of the optimal policy. For
instance, at state 9, the probabilities of defender’s action on generators
(30, 32, 33, 34, 36, 39) are (0, 0.165, 0, 0.835, 0, 0), respectively. Thus,
the system administrator may plan to take protective actions for bus 34
with a probability of 0.835 and protect bus 32 with a probability of
0.165 at each interval of the actions. The results provide useful infor-
mation for power system operators to thwart dynamic load altering
attacks.

10
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The defensive action sequences are shown in Table 3. For this game, to protect the corresponding victim load buses. For example, for the first
total 11 unique defense sequences are found and the average load run, this action sequence indicates that the defender tries to protect the

shedding can be calculated as 3398.2 MW. As mentioned in Section 5.2, loads on victim buses (7, 19, 23).
the defense action sequence indicates the protected generators identi-
fied by the defender while the actual actions of the defense strategy are

11
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Table 3
Defender’s action sequences for dynamic defense strategy.

Runs  Defense Physical meaning Total load shedding
sequence (protected buses) (MW)
1 (33, 39, 30) (7,19, 23) 3421.1
2 (30, 39, 32) (7,29, 4) 3709.6
3 (39, 32, 34) (29, 12,18) 3315.2
25 (39, 30, 32) (29, 19, 12) 4005
26 (33, 32, 30) (7, 29, 6) 3321.9
49 (36, 34, 33) (19, 18, 6) 3200.2
50 (39, 32,34) (29, 12, 18) 3315.6
Table 4

Attacker’s action sequences for passive defense strategy I.

Runs Attack action sequence Total load shedding (MW)
1 (32, 39, 36) 3856.4
2 (32, 39, 36) 3856.4
3 (32, 36, 30) 3725
25 (32, 39, 36) 3856.4
26 (32, 39, 36) 3856.4
49 (32, 36, 30) 3725
50 (32, 39, 36) 3856.4
Table 5

Attacker’s action sequences for passive defense strategy II.

Runs Attack action sequence Total load shedding (MW)
1 (32, 36, 34) 3564.7
2 (32, 34, 36) 3649.2
3 (32, 36, 34) 3564.7
25 (32, 30, 34) 3425.7
26 (32, 34, 36) 3649.2
49 (32, 36, 34) 3564.7
50 (32, 34, 36) 3649.2
Table 6

Attacker’s action sequences for passive defense strategy III.

Runs Attack action sequence Total load shedding (MW)
1 (36, 39, 30) 3992
2 (39, 32, 36) 3710.3
3 (36, 39, 30) 3992
25 (36, 39, 30) 3992
26 (36, 39, 30) 3992
49 (39, 32, 36) 3710.3
50 (36, 39, 30) 3992

5.4. Comparison with Passive Defense Strategy

To illustrate the importance of dynamic defense strategy, we
compare our results with the passive defense strategy in this section. For
a passive strategy, the defensive actions are predefined and the attacker
is trained to find the optimal attack strategy in the presence of the
passive defender. Considering the limited resources the operator has, we
assume only two loads can be protected at a time. In this case study,
three different predefined protected load sets are considered: (7, 29), (4,
29) and (6, 7). They are denoted as passive defense case I, II and III
respectively. We adopt a similar algorithm by calculating the largest
value instead of solving minimax in Eq. (33). The attack objective is to
cause at least 50% load shedding.

12
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Table 7

Total load shedding of different defense strategies.
Proposed dynamic defense 3398.2 MW
Passive defense I 3827.5 MW
Passive defense II 3601.9 MW
Passive defense III 3894.5 MW
Dynamic defense in [51] 3709.6 MW

Because the defense strategy is passive and unchangeable, we
analyze the performance from the attacker’s perspective. Table 4-6
show the attack sequences of different runs and the total load shedding.
It is found in Table 7 that the attacker’s action converges to a sequence
of three actions, and the total amounts of load shedding for the passive
defense I, II and III are 12.6%, 6.0% and 14.6% more than that obtained
by the dynamic defense strategy, respectively. The comparison shows
the proposed dynamic defense method is more effective against the
single point D-LAA.

5.5. Comparison with Dynamic Defense Strategy

In this section, the proposed dynamic defense strategy in this paper is
compared with the dynamic strategy in [51]. In [51], the dynamic de-
fense strategy is obtained by the pre-calculated worst-case dynamic
attack, which ignores the adversarial game between the rational
attacker and defender, and their future expected gains. This is the main
difference between the proposed models in this paper and [51]. To
compare by same standards, the attack objective is still at least 50% load
shedding. The last row of Table 7 shows that the total amount of load
shedding by applying the defense plan in [51] is 9.2% higher than that
obtained by the proposed strategy in this paper. One reason of the result
is that the outcome of two players’ game, i.e., the attacker and defender,
is not always the best for one of them but inclines a Nash equilibrium
mentioned in Section 3.4. Thus, the defense strategy derived by the
worst-case dynamic attack, i.e., unilateral optimal attack, results in the
worse outcome because the interaction between two rational players in
each state of the Markov game for D-LAA is not considered. In general,
the proposed model formulates a more complex and realistic game
considering two rational players’ game, which leads to better perfor-
mance for the defense against D-LAA.

6. Concluding remarks

In this paper, we propose a novel reinforcement-learning-based dy-
namic defense solution against the single point D-LAA in power grid,
where considering the attacker/defender’s action sequence. We have
derived the D-LAA in time sequence considering cascading failures at
each state. A two-player zero-sum Markov game is formulated to analyze
the complex interactions between the attacker and the defender, in
which all players are rational and tend to maximize their own benefits.
The proposed minimax-q algorithm is applied to derive the attacker/
defender’s Nash equilibrium strategies. The IEEE 39-bus system is used
to test the proposed algorithm and evaluate the dynamic defense strat-
egy against D-LAA. Simulation results are compared with the existing
passive and dynamic defense strategies, which indicates the proposed
dynamic strategy exhibits a better performance. The system operator is
informed to enforce the optimal dynamic defense strategy at each state
in advance to improve the power system resiliency. In future work,
distributed algorithms will be developed to further enhance the effec-
tiveness of the defense strategy, such as the learning automata including
linear reward-inaction and linear reward-penalty.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence



Y. Guo et al.

the work reported in this paper.

Acknowledgment

This work was supported by the U.S. National Science Foundation
under Award ECCS1711617.

References

[1]

[2]

[3]

[4]

[5]
[6]

[71

8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

Metke AR, EkI RL. Security technology for smart grid networks. IEEE Transactions
on Smart Grid 2010;1(1):99-107. https://doi.org/10.1109/TSG.2010.2046347.
Moslehi K, Kumar R. A reliability perspective of the smart grid. IEEE Transactions
on Smart Grid 2010;1(1):57-64. https://doi.org/10.1109/TSG.2010.2046346.

Y. Guo, L. Wang, Cybersecurity analysis and improvement of bilinear systems
against false data injection attacks, in: Proc. IEEE Power Energy Society Innovative
Smart Grid Technologies Conf. (ISGT), 2020, pp. 1-5. doi:10.1109/
1SGT45199.2020.9087740.

Liang G, Weller SR, Zhao J, Luo F, Dong ZY. The 2015 Ukraine blackout:
Implications for false data injection attacks. IEEE Trans. Power Syst. 2017;32(4):
3317-8. https://doi.org/10.1109/TPWRS.2016.2631891.

NERGC, Risc report on resilience, Tech. rep., NERC (2018).

G.S. Ledva, S. Peterson, J.L. Mathieu, Benchmarking of aggregate residential load
models used for demand response, in: Proc. IEEE Power Energy Society General
Meeting (PESGM), 2018, pp. 1-5. doi:10.1109/PESGM.2018.8585847.
Molina-Garcia A, Bouffard F, Kirschen DS. Decentralized demand-side contribution
to primary frequency control. IEEE Trans. Power Syst. 2011;26(1):411-9. https://
doi.org/10.1109/TPWRS.2010.2048223.

Zeng W, Zhang Y, Chow M. Resilient distributed energy management subject to
unexpected misbehaving generation units. IEEE Trans. Industr. Inf. 2017;13(1):
208-16. https://doi.org/10.1109/TII.2015.2496228.

Mortaji H, Ow SH, Moghavvemi M, Almurib HAF. Load shedding and smart-direct
load control using internet of things in smart grid demand response management.
IEEE Trans. Ind. Appl. 2017;53(6):5155-63. https://doi.org/10.1109/
TIA.2017.2740832.

Haring TW, Mathieu JL, Andersson G. Comparing centralized and decentralized
contract design enabling direct load control for reserves. IEEE Trans. Power Syst.
2016;31(3):2044-54. https://doi.org/10.1109/TPWRS.2015.2458302.
Mohsenian-Rad A, Leon-Garcia A. Distributed internet-based load altering attacks
against smart power grids. IEEE Transactions on Smart Grid 2011;2(4):667-74.
https://doi.org/10.1109/TSG.2011.2160297.

Marnerides AK, Smith P, Schaeffer-Filho A, Mauthe A. Power consumption
profiling using energy time-frequency distributions in smart grids. IEEE Commun.
Lett. 2015;19(1):46-9. https://doi.org/10.1109/LCOMM.2014.2371035.

Mellucci C, Menon PP, Edwards C, Ferrara A. Load alteration fault detection and
reconstruction in power networks modelled in semi-explicit differential algebraic
equation form. In: Proc. American Control Conf. (ACC); 2015. p. 5836-41. https://
doi.org/10.1109/ACC.2015.7172254.

Pan T, Mishra S, Nguyen LN, Lee G, Kang J, Seo J, Thai MT. Threat from being
social: Vulnerability analysis of social network coupled smart grid. IEEE Access
2017;5:16774-83. https://doi.org/10.1109/ACCESS.2017.2738565.

Amini S, Pasqualetti F, Mohsenian-Rad H. Dynamic load altering attacks against
power system stability: Attack models and protection schemes. IEEE Transactions
on Smart Grid 2018;9(4):2862-72. https://doi.org/10.1109/TSG.2016.2622686.
Di Giorgio A, Giuseppi A, Liberati F, Ornatelli A, Rabezzano A, Celsi LR. On the
optimization of energy storage system placement for protecting power
transmission grids against dynamic load altering attacks. In: Proc. 25th
Mediterranean Conf. Control and Automation (MED); 2017. p. 986-92. https://doi.
org/10.1109/MED.2017.7984247.

Osborne MJ. An Introduction to Game Theory. Oxford University Press; 2004.

T. Alpcan, T. Basar, A game theoretic approach to decision and analysis in network
intrusion detection, in: Proc. 42nd IEEE Int. Conf. Decision and Control (IEEE Cat.
No.03CH37475), Vol. 3, 2003, pp. 2595-2600 Vol. 3. doi:10.1109/
CDC.2003.1273013.

Law YW, Alpcan T, Palaniswami M. Security games for risk minimization in
automatic generation control. IEEE Trans. Power Syst. 2015;30(1):223-32. https://
doi.org/10.1109/TPWRS.2014.2326403.

Chen G, Dong ZY, Hill DJ, Xue YS. Exploring reliable strategies for defending
power systems against targeted attacks. IEEE Trans. Power Syst. 2011;26(3):
1000-9. https://doi.org/10.1109/TPWRS.2010.2078524.

Zhu Q, Basar T. Game-theoretic methods for robustness, security, and resilience of
cyberphysical control systems: Games-in-games principle for optimal cross-layer
resilient control systems. IEEE Control Syst. Mag. 2015;35(1):46-65. https://doi.
org/10.1109/MCS.2014.2364710.

Farraj A, Hammad E, Daoud AA, Kundur D. A game-theoretic analysis of cyber
switching attacks and mitigation in smart grid systems. IEEE Transactions on Smart
Grid 2016;7(4):1846-55. https://doi.org/10.1109/TSG.2015.2440095.

Chen P, Cheng S, Chen K. Smart attacks in smart grid communication networks.
IEEE Commun. Mag. 2012;50(8):24-9. https://doi.org/10.1109/
MCOM.2012.6257523.

13

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[501]
[51]

International Journal of Electrical Power and Energy Systems 131 (2021) 107113

Esmalifalak M, Shi G, Han Z, Song L. Bad data injection attack and defense in
electricity market using game theory study. IEEE Transactions on Smart Grid 2013;
4(1):160-9. https://doi.org/10.1109/TSG.2012.2224391.

Li Y, Shi L, Cheng P, Chen J, Quevedo DE. Jamming attacks on remote state
estimation in cyber-physical systems: A game-theoretic approach. IEEE Trans.
Autom. Control 2015;60(10):2831-6. https://doi.org/10.1109/
TAC.2015.2461851.

Z. Ni, S. Paul, X. Zhong, Q. Wei, A reinforcement learning approach for sequential
decision-making process of attacks in smart grid, in: Proc. IEEE Symp. Series
Computational Intelligence (SSCI), 2017, pp. 1-8. doi:10.1109/
SSCI.2017.8285291.

Wei L, Sarwat Al, Saad W, Biswas S. Stochastic games for power grid protection
against coordinated cyber-physical attacks. IEEE Transactions on Smart Grid 2018;
9(2):684-94. https://doi.org/10.1109/TSG.2016.2561266.

Ma J, Liu Y, Song L, Han Z. Multiact dynamic game strategy for jamming attack in
electricity market. IEEE Transactions on Smart Grid 2015;6(5):2273-82. https://
doi.org/10.1109/TSG.2015.2400215.

Ni Z, Paul S. A multistage game in smart grid security: A reinforcement learning
solution. IEEE Transactions on Neural Networks and Learning Systems 2019:1-12.
https://doi.org/10.1109/TNNLS.2018.2885530.

He Y, Mendis GJ, Wei J. Real-time detection of false data injection attacks in smart
grid: A deep learning-based intelligent mechanism. IEEE Transactions on Smart
Grid 2017;8(5):2505-16. https://doi.org/10.1109/TSG.2017.2703842.

Yan J, He H, Zhong X, Tang Y. Q-learning-based vulnerability analysis of smart grid
against sequential topology attacks. IEEE Trans. Inf. Forensics Secur. 2017;12(1):
200-10. https://doi.org/10.1109/TIFS.2016.2607701.

Wang X, He H, Li L. A hierarchical deep domain adaptation approach for fault
diagnosis of power plant thermal system. IEEE Trans. Industr. Inf. 2019;15(9):
5139-48. https://doi.org/10.1109/TI11.2019.2899118.

Ciavarella S, Joo J, Silvestri S. Managing contingencies in smart grids via the
internet of things. IEEE Transactions on Smart Grid 2016;7(4):2134-41. https://
doi.org/10.1109/TSG.2016.2529579.

Glover JD, Sarma MS, Overbye TJ. Power System Analysis and Design. Cengage
Learning; 2009.

Vieira JCM, Freitas W, Xu Wilsun, Morelato A. Performance of frequency relays for
distributed generation protection. IEEE Trans. Power Delivery 2006;21(3):1120-7.
https://doi.org/10.1109/TPWRD.2005.858751.

Kiliccote S, Lanzisera S, Liao A, Schetrit O, Piette M. Fast dr: Controlling small
loads over the internet. Proc. ACEEE Sum. Study Energy Efficien. Build. 2014:
196-208.

Yao L, Lu H. A two-way direct control of central air-conditioning load via the
internet. IEEE Trans. Power Delivery 2009;24(1):240-8. https://doi.org/10.1109/
TPWRD.2008.923813.

S.A. Raziei, H. Mohscnian-Had, Optimal demand response capacity of automatic
lighting control, in: Proc. IEEE PES Innovative Smart Grid Technologies Conf.
(ISGT), 2013, pp. 1-6. doi:10.1109/ISGT.2013.6497854.

Vanthournout K, D’hulst R, Geysen D, Jacobs G. A smart domestic hot water buffer.
IEEE Transactions on Smart Grid 2012;3(4):2121-7. https://doi.org/10.1109/
TSG.2012.2205591.

Masuta T, Yokoyama A. Supplementary load frequency control by use of a number
of both electric vehicles and heat pump water heaters. IEEE Transactions on Smart
Grid 2012;3(3):1253-62. https://doi.org/10.1109/TSG.2012.2194746.

Otomega B, Van Cutsem T. Undervoltage load shedding using distributed
controllers. IEEE Trans. Power Syst. 2007;22(4):1898-907. https://doi.org/
10.1109/TPWRS.2007.907354.

Q. Wang, X. Cai, W. Tai, Y. Tang, A multi-stage game model for the false data
injection attack against power systems, in: Proc. and Intelligent Systems (CYBER)
2018 IEEE 8th Annual Int. Conf. CYBER Technology in Automation, Control, 2018,
pp. 1450-1455. doi:10.1109/CYBER.2018.8688306.

Ma R, Chen H, Huang Y, Meng W. Smart grid communication: Its challenges and
opportunities. IEEE Transactions on Smart Grid 2013;4(1):36-46. https://doi.org/
10.1109/TSG.2012.2225851.

Mahmoud MMEA, Misic J, Akkaya K, Shen X. Investigating public-key certificate
revocation in smart grid. IEEE Internet of Things Journal 2015;2(6):490-503.
https://doi.org/10.1109/JI10T.2015.2408597.

R. Hassan, M. Abdallah, G. Radman, F. Marco, S. Hammer, J. Wigington, J. Givens,
D. Hislop, J. Short, S. Carroll, Under-frequency load shedding: Towards a smarter
smart house with a consumer level controller, in: Proc. IEEE Southeastcon 2011,
2011, pp. 73-78.

Alpaydin E. Introduction to Machine Learning. Cambridg, MA: MIT Press; 2012.
Shapley LS. Stochastic games. Proceedings of the national academy of sciences
1953;39(10):1095-100.

Littman ML. Markov games as a framework for multi-agent reinforcement learning.
In: Machine learning proceedings 1994. Elsevier; 1994. p. 157-63.

M. Tokic, Adaptive e-greedy exploration in reinforcement learning based on value
differences, in: Annual Conference on Artificial Intelligence, Springer, 2010, pp.
203-210.

Pai A. Energy Function Analysis for Power System Stability. Springer; 1989.
Hasan S, Dubey A, Karsai G, Koutsoukos X. A game-theoretic approach for power
systems defense against dynamic cyber-attacks. International Journal of Electrical
Power & Energy Systems 2020;115:105432. https://doi.org/10.1016/j.
ijepes.2019.105432.


https://doi.org/10.1109/TSG.2010.2046347
https://doi.org/10.1109/TSG.2010.2046346
https://doi.org/10.1109/TPWRS.2016.2631891
https://doi.org/10.1109/TPWRS.2010.2048223
https://doi.org/10.1109/TPWRS.2010.2048223
https://doi.org/10.1109/TII.2015.2496228
https://doi.org/10.1109/TIA.2017.2740832
https://doi.org/10.1109/TIA.2017.2740832
https://doi.org/10.1109/TPWRS.2015.2458302
https://doi.org/10.1109/TSG.2011.2160297
https://doi.org/10.1109/LCOMM.2014.2371035
https://doi.org/10.1109/ACC.2015.7172254
https://doi.org/10.1109/ACC.2015.7172254
https://doi.org/10.1109/ACCESS.2017.2738565
https://doi.org/10.1109/TSG.2016.2622686
https://doi.org/10.1109/MED.2017.7984247
https://doi.org/10.1109/MED.2017.7984247
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0085
https://doi.org/10.1109/TPWRS.2014.2326403
https://doi.org/10.1109/TPWRS.2014.2326403
https://doi.org/10.1109/TPWRS.2010.2078524
https://doi.org/10.1109/MCS.2014.2364710
https://doi.org/10.1109/MCS.2014.2364710
https://doi.org/10.1109/TSG.2015.2440095
https://doi.org/10.1109/MCOM.2012.6257523
https://doi.org/10.1109/MCOM.2012.6257523
https://doi.org/10.1109/TSG.2012.2224391
https://doi.org/10.1109/TAC.2015.2461851
https://doi.org/10.1109/TAC.2015.2461851
https://doi.org/10.1109/TSG.2016.2561266
https://doi.org/10.1109/TSG.2015.2400215
https://doi.org/10.1109/TSG.2015.2400215
https://doi.org/10.1109/TNNLS.2018.2885530
https://doi.org/10.1109/TSG.2017.2703842
https://doi.org/10.1109/TIFS.2016.2607701
https://doi.org/10.1109/TII.2019.2899118
https://doi.org/10.1109/TSG.2016.2529579
https://doi.org/10.1109/TSG.2016.2529579
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0170
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0170
https://doi.org/10.1109/TPWRD.2005.858751
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0180
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0180
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0180
https://doi.org/10.1109/TPWRD.2008.923813
https://doi.org/10.1109/TPWRD.2008.923813
https://doi.org/10.1109/TSG.2012.2205591
https://doi.org/10.1109/TSG.2012.2205591
https://doi.org/10.1109/TSG.2012.2194746
https://doi.org/10.1109/TPWRS.2007.907354
https://doi.org/10.1109/TPWRS.2007.907354
https://doi.org/10.1109/TSG.2012.2225851
https://doi.org/10.1109/TSG.2012.2225851
https://doi.org/10.1109/JIOT.2015.2408597
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0230
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0235
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0235
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0240
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0240
http://refhub.elsevier.com/S0142-0615(21)00352-5/h0250
https://doi.org/10.1016/j.ijepes.2019.105432
https://doi.org/10.1016/j.ijepes.2019.105432

	Reinforcement-learning-based dynamic defense strategy of multistage game against dynamic load altering attack
	1 Introduction
	2 Related Preliminaries
	2.1 Dynamic Load Altering Attack
	2.1.1 D-LAA Implementation Principle
	2.1.2 Attack Model
	2.1.3 Control Scheme of Closed-loop D-LAA
	2.1.4 D-LAA Implementation

	2.2 Optimal Load Shedding
	2.3 Cascading Failures and D-LAA in Sequence

	3 Game-theoretic Analysis of Attack-defense Interactions
	3.1 Action Spaces
	3.2 System States
	3.3 Attacker and Defender’s Policies and Rewards
	3.4 Nash Equilibrium

	4 Proposed Solution Approach
	4.1 Minimax-q Learning
	4.2 Discussion on Computational Complexity

	5 Simulation Results and Analysis
	5.1 System Parameters
	5.2 Selection of Vulnerable Bus and Attacker/defender’s Action Space
	5.3 Game-theoretic Attack/Defense
	5.4 Comparison with Passive Defense Strategy
	5.5 Comparison with Dynamic Defense Strategy

	6 Concluding remarks
	Declaration of Competing Interest
	Acknowledgment
	References


