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Minimizing Regret with Multiple Reserves
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We study the problem of computing and learning non-anonymous reserve prices to maximize revenue. We
first define the MAXIMIZING MULTIPLE RESERVES (MMR) problem in single-parameter matroid environ-
ments, where the input is m valuation profiles v

1, . . . ,vm, indexed by the same n bidders, and the goal is
to compute the vector r of (non-anonymous) reserve prices that maximizes the total revenue obtained on
these profiles by the VCG mechanism with reserves r. We prove that the problem is APX-hard, even in the
special case of single-item environments, and give a polynomial-time 1

2
-approximation algorithm for it in

arbitrary matroid environments.
We then consider the online no-regret learning problem, and show how to exploit the special structure

of the MMR problem to translate our offline approximation algorithm into an online learning algorithm
that achieves asympototically time-averaged revenue at least 1

2
times that of the best fixed reserve prices in

hindsight. On the negative side, we show that, quite generally, computational hardness for the offline opti-
mization problem translates to computational hardness for obtaining vanishing time-averaged regret. Thus
our hardness result for the MMR problem implies that computationally efficient online learning requires
approximation, even in the special case of single-item auction environments.
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1. INTRODUCTION

A basic issue in the design and deployment of revenue-maximizing auctions is the
determination of appropriate reserve prices. For example, consider the well-studied
problem of selecting an anonymous reserve price in a second-price (Vickrey) auction
for a single item — equivalently, an opening bid in an eBay auction.1 There are several
versions of the problem, depending on the informational assumptions made.

Baysian optimization. The standard economic approach is to assume a prior dis-
tribution over the valuations of the bidders participating in the auction, and to
maximize expected revenue with respect to this distribution. If bidders’ valuations

1In a second-price single-item auction with a reserve price r, the winner is the highest bidder that clears the
reserve (if any), and the selling price is the maximum of r and the second-highest bid. Bidding truthfully is
a dominant strategy for every bidder.
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are drawn i.i.d. from a distribution that satisfies some modest technical conditions
(“regularity”), then setting the reserve price equal to the distribution’s monopoly
price yields an optimal auction [Myerson 1981]. Chawla et al. [2007], Hartline and
Roughgarden [2009], and Alaei et al. [2015] provide guidance on how to set the
reserve price when the i.i.d. or regularity assumptions are relaxed.

Offline optimization. Given m arbitrary valuation profiles v1, . . . ,vm (each an
n-vector, where n is the number of bidders), the goal here is to determine the reserve
price of a second-price auction that maximizes the average auction revenue across
these profiles. There is always an optimal reserve price equal to some bidder’s
valuation in one the m profiles, so there are at most mn different reserve prices that
need to be tried. Thus the problem is easy to solve in polynomial time.

Batch learning. In this version, there is an unknown distribution F over bidders’
valuations. A learning algorithm is given m i.i.d. samples from F , and must then
output a reserve price. The goal is to output a reserve price that achieves expected
revenue (w.r.t. fresh draws from F ) close to that obtained by the best reserve price
(for F ), with high probability over the samples. This problem was studied implicitly
by Dhangwatnotai et al. [2010] and explicitly by Medina and Mohri [2014] and
Huang et al. [2015].

Online no-regret learning. In online learning, valuation profiles v1, . . . ,vT arrive one
at a time, and at time t a learning algorithm chooses a reserve price as a function
of the previously seen profiles v1, . . . ,vt−1. The goal is to choose reserve prices over
time so that the time-averaged revenue is almost as high as that achieved by the best
fixed reserve price in hindsight. Versions of this problem were studied by Kleinberg
and Leighton [2003], Blum and Hartline [2005], and Cesa-Bianchi et al. [2013].

There are well known connections between these different problems. For example, an
efficient exact or approximate algorithm for the offline optimization problem implies,
in “black-box” fashion, an efficient learning algorithm for the batch learning problem
with the same approximation factor (namely the “empirical risk minimizer” (ERM),
see e.g. [Anthony and Bartlett 1999]). An efficient exact algorithm for the offline prob-
lem can also be translated into an efficient online no-regret learning algorithm (see
e.g. [Cesa-Bianchi and Lugosi 2006]).2

In this paper, we study the problem of computing or learning non-anonymous reserve
prices, where a different reserve price ri can be used for each bidder i. For example, in
a single-item second-price auction with reserves r1, . . . , rn, the winner is the highest
bidder who clears her reserve (if any), and the selling price is either her reserve price
or the second-highest bid of a bidder who cleared her own reserve price, whichever is
larger.3

All four genres of problems are relevant and interesting with non-anonymous re-
serve prices; we study the latter three in this work.

Baysian optimization. Hartline and Roughgarden [2009], extending [Chawla et al.
2007], study the power of non-anonymous reserve prices in Bayesian settings,

2The positive results by Kleinberg and Leighton [2003] and Cesa-Bianchi et al. [2013] are interesting and
non-trivial because they apply even when the price-setter receives only limited feedback from each auction.
3These are called “eager reserves” by Dhangwatnotai et al. [2010]. With “lazy reserves,” the winner is the
highest bidder, if she clears her reserve (and no one, otherwise), and the selling price is the maximum of
her reserve and the second-highest bid overall. Note that whenever a sale occurs with lazy reserves, a sale
would also occur with eager reserves (but not vice versa). Eager reserves are superior from both a welfare
and revenue standpoint; see Paes Leme et al. [2016] for these and many other interesting comparisons.
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where bidders’ valuations are independently but not identically distributed. The
main results show that setting each bidder’s reserve to the monopoly price for
her distribution yields a mechanism with near-optimal expected revenue in many
scenarios.4

Offline optimization. Given m arbitrary valuation profiles v1, . . . ,vm, each indexed
by the same set of bidders, the goal is now to compute one reserve price per bidder
to maximize the average revenue of the second-price auction with reserves across
these profiles. In contrast to the anonymous reserve price setting, this optimization
problem is non-trivial: there are now mn different price vectors that could be
optimal. This problem has not been studied previously, except for the independent
work by Paes Leme et al. [2016], who proved that the problem is NP -hard.5

Batch learning. The learning algorithm must now compute, based on samples, one
reserve price per bidder. This problem was studied by Morgenstern and Roughgar-
den [2015]: their “1-level auctions” correspond exactly to second-price auctions with
non-anonymous reserve prices.6 Their work focuses on sample complexity bounds.
Their learning algorithm uses an algorithm for offline optimization as a subroutine,
but they do not address its computational efficiency.

Online no-regret learning. The online learning algorithm must now compute one re-
serve price per bidder in each time step, and perform almost as well as the best fixed
non-anonymous reserve prices in hindsight. This problem has not been previously
considered.

We study the problem of computing and learning multiple reserve prices primarily
because of its basic nature, but we note that non-anonymous reserve prices are used
in practice (often in a disguised form, for better optics). For example, in sponsored
search auctions a “quality score” is associated with each advertiser, and different qual-
ity scores translate to different effective reserve prices for different advertisers (see
e.g. [Athey and Nekipelov 2012]). Along the same lines, in the ongoing FCC Incentive
Auction (for re-allocating spectrum licenses from TV broadcasters to mobile broadband
companies), a particular formula is used to set different opening bids for different par-
ticipants, depending on the market share and geographic location of the broadcaster
(see e.g. [Cramton et al. 2015]).

1.1. Our Results

We first consider the offline optimization problem MAXIMIZING MULTIPLE RESERVES

(MMR) in general matroid environments (see Section 2 for background). The input
is m valuation profiles v1, . . . ,vm, indexed by the same n bidders. The goal is to com-
pute the vector r of reserve prices that maximizes the total revenue obtained on these
profiles by the Vickrey-Clarke-Groves mechanism with reserves r. We prove that the
problem is APX-hard (i.e., hard to approximate better than some fixed constant),
even in the special case of single-item environments, and give a polynomial-time 1

2 -

approximation algorithm for it in arbitrary matroid environments.7

4These results are extended to lazy monopoly reserves by Dhangwatnotai et al. [2010].
5The analogous problem with lazy reserve prices is easy [Paes Leme et al. 2016].
6The problem of batch learning a near-optimal auction that need not be reserve-price-based is studied by
Cole and Roughgarden [2014] and Devanur et al. [2016].
7Both our approximation algorithm and analysis approach bear some resemblance to the lookahead auction
of Ronen [2001] and its extension to matroids by Chawla et al. [2014]. (The uniform distribution over the
valuation profiles in an offline instance can be thought of as a correlated valuation distribution.) We require
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This immediately implies a polynomial-time approximate learning algorithm for the
batch learning problem, which (with high probability) computes reserve prices lead-
ing to expected revenue (w.r.t. the unknown distribution F ) at least 1

2 − ǫ times that
obtained with the best reserve prices for F .

We then consider the online no-regret learning problem. The 1
2 -approximation algo-

rithm for the offline problem does not automatically imply an approximately no-regret
online learning algorithm.8 We show how to exploit the special structure of the MMR
problem to translate our offline approximation algorithm into an online learning al-
gorithm that achieves time-averaged revenue at least 1

2 times that of the best fixed
reserve prices in hindsight, less an o(1) error term (as T → ∞). This positive result
applies to arbitrary matroid environments. On the negative side, we show that, quite
generally, computational hardness for the offline optimization problem translates to
computational hardness for obtaining vanishing time-averaged regret.9 (This is not
obvious because an online algorithm might achieve high revenue with different re-
serves at different times, while never figuring out the best fixed reserves in hindsight.)
This general translation may be of independent interest. In any case, our hardness
result for the MMR problem carries over to the problem of online no-regret learning,
even in the special case of single-item auction environments.

2. PRELIMINARIES

2.1. Matroid Environments

For our purposes, an environment is defined by a set E of bidders, and a non-empty
collection I ⊆ 2E of feasible sets of bidders, which are the subsets of bidders that can
simultaneously “win.” For example, in a k-unit auction with unit-demand bidders, I
is all subsets of E that have size at most k. Each bidder has a private valuation for
winning. Depending on the setting, bidders’ valuations can be drawn from a (possibly
unknown) distribution, or arbitrary.

We consider matroid environments, where (i) the set system (E, I) is downward-
closed, meaning that if T ∈ I and S ⊆ T , then S ∈ I; and (ii) the exchange property
holds, stating that whenever S, T ∈ I with |T | < |S|, there is some i ∈ S \ T such that
T ∪ {i} ∈ I. Examples of matroid environments include digital goods (where I = 2E),
k-unit auctions (where I is all subsets of size at most k), and certain unit-demand
matching markets (corresponding to transversal matroids).

2.2. The VCG Mechanism with Non-Anonymous Reserves

Name the bidders E = {1, 2, . . . , n}. A (deterministic) mechanism M comprises an
allocation rule x that maps every bid vector b to a characteristic vector of a feasible
set (in {0, 1}n), and a payment rule p that maps every bid vector b to a non-negative
payment vector in [0,∞)n. We assume that every bidder i aims to maximize its quasi-
linear utility ui(b) = vi · xi(b)− pi(b), where vi is its private valuation for winning. We
call a mechanism M truthful if for every bidder i and fixed bids b−i of the other bidders,
bidder i maximizes its utility by setting its bid bi to its private valuation vi. Since we

a different argument because we restrict our solution to a fixed vector of reserve prices; the lookahead auc-
tion uses “conditional reserve prices.” To see the difference, suppose there are two bidders and two valuation
profiles, (1, 2) and (2, 4). The lookahead auction extracts the full welfare with respect to the uniform distri-
bution over the two profiles (by always charging the second bidder twice the first bid), and no fixed set of
reserve prices can compete.
8For linear optimization problems, there is such a black-box reduction [Kakade et al. 2009]. But in the MMR
problem, the revenue is not a linear function of the reserves or of the valuations.
9Related results, based on somewhat different arguments, were developed independently by Daskalakis and
Syrgkanis [2016], in the context of utility-maximization for a bidder (rather than revenue-maximization for
a seller) in simultaneous second-price auctions.
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only consider truthful mechanisms, in the rest of the paper we use valuations and bids
interchangeably. The efficiency or welfare of the outcome of a mechanism is the sum of
the winners’ valuations, and the revenue is the sum of the winners’ payments.

The VCG mechanism chooses the feasible set S ∈ I that maximizes the welfare
∑

i∈S vi. Each winner in the mechanism pays the smallest bid at which she would
continue to win; this results in a truthful mechanisms. In a single-item setting, this is
just the second-price auction.

Let ri be a reserve price for bidder i. The VCG mechanism with reserves r works as
follows, given bids v: (1) remove all bidders i with vi < ri; (2) run the VCG mechanism
on the remaining bidders to determine the winners; (3) charge each winning bidder i
the larger of ri and its VCG payment in step (2). This is again a truthful mechanism
(for any r).

Matroid environments are special in that the VCG mechanism can be implemented
using a greedy algorithm. Specifically, to choose the winners: sort the bidders in order
of decreasing bids, and in one pass in this order, add a bidder to the winner set if
and only if doing so preserves feasibility. It is well known and easy to prove that this
algorithm computes the welfare-maximizing outcome.

This greedy algorithm also reveals what the payments are. Consider some winning
bidder i. As a thought experiment, imagine re-running the greedy algorithm without i,
and let f(i) be the first winning bidder after which it would be infeasible to add w the
winner set (if any). The VCG payment of i is the valuation of f(i), or zero if f(i) does
not exist.

3. THE OFFLINE OPTIMIZATION PROBLEM: ALGORITHMS

The offline MMR problem is interesting in its own right, and algorithms for it also
serve as a useful starting point for designing online MMR algorithms. We warm-up
with the single-item case (Section 3.1) and then address the general matroid environ-
ment case (Section 3.2).

3.1. Warm-Up: The Single-Item Case

In the single-item special case of the MMR problem, the input is valuation profiles
v1, . . . ,vm, and the goal is to choose (non-anonymous) reserve prices r to maximize the
average revenue of a second-price auction with reserves r on these profiles. Without
loss of generality, each reserve price ri is equal to the valuation of bidder i in one of the
m valuation profiles. (This still leaves a search space of mn reserve price vectors.)

Observe the tension in setting the reserve price ri for a bidder i: increasing it may
increase revenue on profiles where i is a winner (provided ri stays below vi), but it may
also decrease revenue if ri passes vi, even when i is only the second-highest bidder (vi
was previously setting the price of the winner). The following algorithm balances these
considerations.

MMR Algorithm (Single-Item Case)

for each bidder i = 1, 2, . . . , n do
let Si denote the profiles where i has the highest valuation;

let vj(2) denote the second highest valuation in v
j ;

let ri maximize
∑

j∈Si
qj(ri), where qj(ri) is ri − vj(2) if ri ∈ [vj(2), v

j
i ], and 0 otherwise

end
return either r or the all-zero vector, whichever generates more revenue;
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In words, qj(ri) represents the additional revenue obtained by the reserve price ri from
bidder i on day j, above and beyond the revenue already obtained by a reserve price
of 0.

This algorithm can be implemented in polynomial time. Each reserve price ri can be
computed independently, and there are only m different relevant choices for each.

LEMMA 3.1. The algorithm above is a 1
2 -approximation algorithm for the MMR

problem in single-item environments.

PROOF. Fix an input v1, . . . ,vm and let r∗ denote the optimal reserve prices. The
revenue obtained from a valuation profile vj with j ∈ Si is at most max{vj(2), r∗i }. (If the

item is sold to someone other than the highest bidder, then the selling price is at most
vj(2).) Overall, the optimal revenue can be upper bounded by

n∑

i=1

∑

j∈Si

max{vj(2), r
∗

i } ≤
m∑

j=1

vj(2) +
n∑

i=1

∑

j∈Si

qj(r
∗

i ).

The all-zero reserves obtain revenue equal to the first term on the right-hand side. The
reserves r computed by the algorithm above obtain, by construction, revenue that is at
least the second term on the right-hand side (with ri chosen to maximize the ith inner
sum). The better of these two reserve price vectors earns revenue at least 1

2 times the
maximum possible.

Example 3.2. Our analysis in Lemma 3.1 is tight: for every ǫ > 0, there is an input
where the algorithm achieves less than (1/2 + ǫ) times the optimal revenue. The bad
input is as follows: let n be an integer to be chosen later, and let there be two bidders
and n valuation profiles. The first bidder has valuation n on the first day, valuation
0 on the second day, and valuation 1 + 1/n on every other day. The second bidder
has valuation 0 on the first day, valuation 1 + 1/n on the second day, and valuation 1
on every other day. For this input, the all-zero vector will achieve a revenue of (n −
2). Also, r will be the vector (n, 1 + 1/n), which achieves a revenue of (n + 1 + 1/n).
However, choosing r⋆ to be (n, 1) results in a revenue of (2n − 1). When n > 5

4ǫ
−1 + 1

2 ,
the algorithm’s revenue is less than (1/2 + ǫ) times the optimal revenue.

3.2. An Offline MMR Algorithm

We now consider matroid environments. The new complication is that there are mul-
tiple winners, and we need to determine the relationship between the winners in the
VCG mechanism (without reserves) and the winners in an optimal solution.

The generalization of our previous algorithm is as follows.

MMR Algorithm (Matroid Case)

for each bidder i = 1, 2, . . . , n do
let Si denote the profiles where i is a winner in the VCG mechanism (without
reserves);

for j ∈ Si, let pji denote i’s payment in the VCG mechanism (without reserves) with the
profile v

j ;

let ri maximize
∑

j∈Si
qj(ri), where qj(ri) is ri − pji if ri ∈ [pji , v

j
i ], and 0 otherwise

end
return either r or the all-zero vector, whichever leads to more revenue;

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.
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As in the single-item special case, it is straightforward to implement this algorithm so
that it runs in polynomial time.

As a lead-up to the analysis, the next three propositions review well-known proper-
ties of matroids and the VCG mechanism (see e.g. [Talwar 2003]).

PROPOSITION 3.3 ([SCHRIJVER 2003], COROLLARY 39.12A). Let W , W ′ be feasi-
ble sets of size k in a matroid M . Then there is a bijection f : W ′ \ W → W \ W ′ such
that for every i ∈ W ′ \W , the set W \ {f(i)} ∪ {i} is a feasible set in M .

From the definition of VCG payments, we have:

PROPOSITION 3.4. Suppose that the winners in the VCG mechanism with zero re-
serves are W , and that i ∈ W but j 6∈ W , and that W \ {i} ∪ {j} is a feasible set. Then
the VCG payment of i is at least the valuation of j.

The following proposition explains what happens when a winner is removed from
the auction:

PROPOSITION 3.5. Suppose the current winners of a matroid auction are W , and
we then remove some winner w ∈ W from the auction. Then the new set of winners will
be W \ {w} ∪ p(w), if p(w) exists, or W \ {w} otherwise.

LEMMA 3.6 (REVENUE DECOMPOSITION LEMMA). Consider a valuation profile v
and reserve prices r⋆. Let the winners of the VCG mechanism with profile v and no
reserves be W , with pi denoting the payment of i. Then, the revenue of r⋆ on v is at most

∑

i∈W

pi +
∑

i∈W

q(r∗i ),

where q(r∗i ) is r∗i − pi if ri ∈ [pi, vi], and 0 otherwise.

PROOF. The winning set W with zero reserves is a basis of the matroid of feasible
subsets. The reserves r⋆ result in some set of winners W ⋆. Extend W ⋆ to a basis using
the exchange property (Section 2), and apply Proposition 3.3 to get a bijection from a
superset of W ⋆ to W . Ignoring elements not in W ⋆, we get a injection f from W ⋆ to
W . Furthermore, we are guaranteed that for every bidder i ∈ W ⋆, W \ {i} ∪ {f(i)} is
feasible. Applying Proposition 3.4, this means that whenever f(i) 6= i, pf(i) is at least
the valuation of i.

Next, consider a bidder i ∈ W . We claim that increasing the reserves for bidders
other than i (from 0 to some positive amount) can never cause i to lose or to pay more
than pi. For the first statement, the only effect of reserve prices on the winning set is
to remove bidders before invoking the greedy algorithm. By Proposition 3.5, removing
a winner and re-running the greedy algorithm simply causes them to be replaced (i.e.,
no other bidders are removed as a consequence). Trivially, removing a nonwinner has
no effect on the winning set. Thus if i’s reserve is not changed, it remains a winner.
Similarly, removing other bidders can only decrease the valuation of the losing bidder
that sets i’s price (recall Section 2).

These two facts imply that, for every winner i ∈ W ⋆, we can use f to find a winner
f(i) ∈ W such that either (i) i’s valuation, and hence contribution to the revenue of
r⋆, is at most pf(i) or (ii) f(i) = i and i only pays more than pi to the extent that r⋆i
is larger than pi (while also being at most vi). The quanity in (ii) is precisely q(r∗i ).
Because f is an injection, we can sum over all w ∈ W ⋆ to get the inequality in the
lemma statement.

The lemma easily implies that our algorithm is a 1
2 -approximation.
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THEOREM 3.7. The algorithm above is a 1
2 -approximation algorithm for the MMR

problem in matroid environments.

PROOF. Fix an input v1, . . . ,vm and let r∗ denote the optimal reserve prices. Let Wj

denote the winners in the VCG mechanism with profile vj and no reserves, and pji
the payment made by a bidder i ∈ Wj . Applying Lemma 3.6 to each profile vj and
summing over j, the total revenue obtained by r∗ is at most

m∑

j=1




∑

i∈Wj

pji +
∑

i∈Wj

qj(r∗i )



 =

m∑

j=1

∑

i∈Wj

pji +

n∑

i=1

∑

j∈Si

qj(r∗i ),

where Si and qj are defined as in the algorithm description. The all-zero reserves ob-
tain total revenue equal to the first term on the right-hand side. The reserves r com-
puted by the algorithm above earn revenue that is at least the second term on the
right-hand side (again, with ri chosen to maximize the ith inner sum). The better of
these two reserve price vectors earns revenue at least 1

2 times the maximum possi-
ble.

3.3. Consequences for Batch Learning

Recall the batch learning problem mentioned in the Introduction: valuation profiles
v1, . . . ,vm are sampled i.i.d. from an unknown distribution F and given as a batch to
a learning algorithm. The responsibility of the learning algorithm is to output non-
anonymous reserve prices r that earn expected revenue (on a new i.i.d. draw from F )
within ǫ of that obtained by the optimal non-anonymous reserve prices (for F ). Morgen-

stern and Roughgarden [2015] show that, information-theoretically, m = Ω(H
2

ǫ2 n log n)
samples are enough to in principle compute such reserve prices in matroid environ-
ments (with high probability over the samples, and where H is a bound on the maxi-
mum valuation). This guarantee is realized by the “empirical risk minimizing (ERM)”
algorithm, which simply solves the offline optimization problem (using the samples as
input) and returns the result. Morgenstern and Roughgarden [2015] did not address
computational complexity issues in their work. Since the offline optimization problem
is NP -hard to approximate to within some constant (Theorem 5.2 below), the ERM
algorithm cannot be implemented in polynomial time (unless P = NP ).

On the positive side, the same machinery (based on “uniform convergence”) used to
establish the guarantee of the ERM algorithm applies to approximation algorithms for
the offline optimization problem. Thus our 1

2 -approximation algorithm for the MMR
problem (Theorem 3.7) can be used as a black box to efficiently compute, from m =

Ω(H
2

ǫ2 n log n) i.i.d. samples from an unknown distribution F , reserve prices that obtain
expected revenue at least half that of the maximum possible (with high probability,
and less ǫ).

4. ONLINE LEARNING ALGORITHMS

4.1. Regret-Minimization

This section considers the online no-regret learning problem mentioned in the In-
troduction. Here, valuation profiles v1, . . . ,vT arrive one at a time (indexed by the
same set of n bidders in a matroid environment), and at time t a learning algorithm
chooses reserve prices rt as a function of the previously seen profiles v1, . . . ,vt−1. We
use R(rt,vt) to denote the revenue earned by the VCG mechanism with reserve prices
rt on the valuation profile vt. The goal is to choose reserve prices over time so that
the time-averaged revenue is almost as high as that achieved by the best fixed reserve
prices in hindsight. Formally, the regret of a sequence r1, . . . , rT of reserve prices with
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respect to a sequence of valuation profiles v1, . . . ,vT is

max
r

1

T

T∑

t=1

R(r,vt)− 1

T

T∑

t=1

R(rt,vt),

and the goal is drive this quantity toward 0 as quickly as possible (as T grows large).
Since regret corresponds to additive error, we normalize valuations to lie in the range
[0, 1].

We prove in Section 6 that this notion of regret is too optimistic. Our main positive
result is an online learning algorithm with vanishing α-regret, a quantity defined by
[Kakade et al. 2009] to introduce approximation into no-regret guarantees:

α ·max
r

1

T

T∑

t=1

R(r,vt)− 1

T

T∑

t=1

R(rt,vt).

4.2. An Online MMR Algorithm

We now work toward an algorithm for the online setting with good α-regret. A nat-
ural idea is to apply the existing machinery for translating offline α-approximation
algorithms into online learning algorithms with vanishing α-regret. However, these
techniques do not immediately apply in our setting. First, the number of actions (corre-
sponding to reserve price vectors) is exponential in n, so we cannot separately track the
past performance of each reserve price vector. The well-known “follow-the-perturbed-
leader (FTPL)” algorithm of [Kalai and Vempala 2003] (based on the idea of [Hannan
1957]) can be used to translate certain α-approximation algorithms to online no-α-
regret algorithms for arbitrary action spaces (subsets of R

n), provided the payoff in
each time step is a linear function of the chosen action. In our setting, the correspond-
ing function R(rt,vt) is not linear in rt or vt. Nonetheless, we show how to combine
the main ideas of the FTPL algorithm and of our offline approximation algorithm in
Section 3 to obtain an online learning algorithm with vanishing 1

2 -regret.10

Our learning algorithm, defined for an arbitrary matroid environment, is given on
the next page. It is straightforward to implement this algorithm so that it runs in
O(n

√
T ) at each time step, and O(nT 3/2) time overall. A key point is that each reserve

price rti is determined independently for each bidder i, enabling us to keep track of only
Kn quantities (as opposed to a quantity for each of the Kn reserve price vectors).11

The analysis challenge is to show that our online algorithm earns revenue compara-
ble to each term of the Revenue Decomposition Lemma (Lemma 3.6), despite having to
produce reserve prices before seeing the valuation profile for which they will be used.

10This use of the FTPL algorithm in online auction design is reminiscent of [Blum and Hartline 2005]; the
problem studied their corresponds to a single-bidder setting in our work.
11The algorithm is described for the case where the time horizon T is known in advance. Standard doubling
arguments extend the algorithm and analysis to the case of an a priori unknown time horizon.
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39:10 Tim Roughgarden and Joshua R. Wang

MMR Algorithm (Online)

set K =
√
T ;

set ǫ =
√

logK/T ;
for each round t = 1, 2, . . . , T do

for each bidder i = 1, 2, . . . , n do
let Si denote the previous rounds where i is a winner in the VCG mechanism
(without reserves);

for j ∈ Si, let pji denote i’s payment in the VCG mechanism (without reserves) with
the profile v

j ;
for each reserve price r = 1/K, 2/K, . . . , 1 do

draw a random variable Xi,r from the standard exponential distribution (each
x ≥ 0 has probability density e−x);

choose Yi,r to be + 1
ǫ
Xi,r or − 1

ǫ
Xi,r uniformly at random;

end

Choose rti ∈ {1/K, 2/K, . . . , 1} to maximize Yi,r +
∑

j∈Si
qj(rti), where qj(rti) is

rti − pji if rti ∈ [pji , v
j
i ], and 0 otherwise;

end

return either r
t or all the-zero vector, each with 1

2
probability;

end

THEOREM 4.1. The 1
2 -regret of the online learning algorithm above is

O(n
√

log T/T ).

PROOF. Fix an input sequence v1, . . . ,vT and let r⋆ denote the optimal reserve
prices. Let Wt denote the winners in the VCG mechanism with profile vt and no re-
serves, and pti the payment made by a bidder i ∈ Wt. Lemma 3.6 again implies, after
summing over t, that the total revenue obtained by r⋆ is at most

T∑

t=1

(
∑

i∈Wt

pti +
∑

i∈Wt

qt(r∗i )

)

=
T∑

t=1

∑

i∈Wt

pti +
n∑

i=1

∑

t∈Si

qt(r∗i ),

where Si and qt are defined as in the algorithm description. Choosing the all-zero
reserve prices every round obtains total revenue equal to the first term on the right-
hand side. We will prove that choosing the rt computed by the algorithm every round
obtains total expected revenue equal to the second term on the right-hand side, less an
error of O(n

√
T log T ).

The algorithm limits itself to reserve prices from the set {1/K, 2/K, . . . , 1} rather
than [0, 1]. Then, for each bidder i, it tries to find a reserve ri that maximizes
∑

t∈Si
qt(ri), with perturbations as in the FTPL algorithm. [Kalai and Vempala 2003]

showed that in an online decision-making setting with K actions (a.k.a. “experts”),
each incurring a cost in [0, 1] each round, the expected cost of FTPL algorithm (with
weights Yi,r rechosen every round as in our algorithm) is at most the cost of the best

fixed expert plus ǫT + O(logK)
ǫ . Our algorithm treats each possible reserve as an ac-

tion and considers 1 − qt to be the cost of choosing an expert in round t. Note that
our algorithm runs the FTPL algorithm every round for bidder i, but Si only increases
when i turned out to be a winner in the VCG mechanism without reserves. When we
only consider rounds where i is a winner in the VCG mechanism without reserves, the
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guarantee becomes:

E

[
∑

t∈Si

qt(rti)

]

≥
∑

t∈Si

qt(r⋆i )− ǫT − O(logK)

ǫ
≥
∑

t∈Si

qt(r⋆i )−O(
√

T log T ),

with second inequality following from our choice of ǫ. However, the r⋆ in this equation is
limited to the set {1/K, 2/K, . . . , 1}. This restriction costs at most T

K =
√
T revenue (we

chose K to balance this term with the regret of FTPL), which folds into the O(
√
T log T )

term.
Summing over all bidders i, choosing rt every round gives expected revenue at least

n∑

i=1

∑

t∈Si

qt(r⋆i )−O(n
√

T log T ).

We conclude that randomly returning either rt or the all-zero vector at each round t
yields expected revenue at least 1

2 times the maximum revenue achieved by any

fixed set of reserve prices, less an error of O(n
√
T log T ). Hence our algorithm has

O(n
√

log T/T ) (time-averaged) 1
2 -regret, as claimed.

5. OFFLINE LOWER BOUND

In this section, we prove that the MMR problem is NP -hard to approximate within
a (1 + ǫ) factor for some constant ǫ > 0, even in the special case of single-item en-
vironments. Section 6 extends this hardness result to the online no-regret learning
problem.

Our proof approach is to provide an L-reduction, in the sense of Papadimitriou and
Yannakakis [1988], from DOMINATINGSET on graphs of bounded degree to the MMR
problem.

Definition 5.1 ([Papadimitriou and Yannakakis 1988]). Suppose Π and Π′ are two
maximization problems. We say Π L-reduces to Π′ if there are poly-time algorithms f, g
and constants α, β > 0 such that given an instance I of Π:

(1) Algorithm f produces an instance I ′ of Π′ such that OPT (I ′) ≤ αOPT (I).
(2) Given a solution of I ′ with cost c′, algorithm g produces a solution of I with cost c

with |c−OPT (I)| ≤ β|c′ −OPT (I ′)|.
This definition is designed so that L-reductions compose and if Π L-reduces to Π′,

then a (1 + ǫ)-approximation for Π′ yields a (1 + αβǫ)-approximation for Π. The DOM-
INATINGSET problem on graphs of bounded degree is hard to approximate to within
some constant, so our L-reduction proves the same hardness result for the MMR prob-
lem.

THEOREM 5.2. DOMINATINGSET on graphs of bounded degree B L-reduces to the
MMR problem in single-item environments with α = 3B + 2 and β = 1.

PROOF. Suppose we have a Dominating Set-B instance G = (V,E). Suppose it has
n nodes and the smallest dominating set uses k nodes. We produce an MMR instance
with n bidders and 2n valuation profiles. The profiles are divided into two groups:
n blue profiles and n red profiles. For convenience, we allow valuations in [0, 2] rather
than [0, 1] (by scaling, it doesn’t matter). The valuation of bidder i in the jth blue profile
will be 1 if i = j or (i, j) ∈ E and 0 otherwise. The valuation of bidder i in the jth red
profile will be 2 if i = j and 0 otherwise.
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For every bidder, the only valuations they ever have are 0, 1, and 2. Hence the only
possible reserve choices for each bidder are 1 or 2 (we can always round up to the
nearest valuation). We associate a reserve price of 1 with choosing the node to be in the
dominating set and a reserve price of 2 with not choosing the node. In a blue profile,
a bidder can only clear a reserve of 1. In a red profile, the relevant bidder faces no
competition, and hence a second-price auction with research only extracts the revenue
from them by choosing the reserve of 2. The blue profiles encode the dominating set
constraint, while the red profiles encode the objective to minimize nodes chosen.

Suppose there is a dominating set of size k. Choosing the associated reserve prices,
as described above, achieves a revenue of 3n − k: we achieve a revenue of 1 in the
blue profiles since we cover them all by definition, a revenue of 1 from each red profile
corresponding to one of the k chosen nodes, and a revenue of 2 from each of the other
n− k red profiles.

Since every node in the original problem covered at most B + 1 nodes, the original
optimum was at least n/(B + 1). Combining this bound with our argument above, the
optimal revenue is at most 3B+2

B+1 n. Hence we can choose α = 3B + 2.

Next, we show that if there are non-anonymous reserve prices that get within c of
the new optimum, then we can produce a dominating set that gets within c of the old
optimum (with a polynomial-time algorithm). Suppose we achieve a revenue of 3n− k
for some k. We claim that we can assume that we achieve a revenue of 1 in every
blue profile. For if we do not, then consider any bidder who has a valuation of 1 in
that profile. Changing their reserve to 1 nets an additional 1 revenue in this profile,
and loses at most 1 revenue (from their red profile). Hence in polynomial time, we can
transform a solution to one that only has more revenue and achieves a revenue of 1
every blue profile. But then our association of nodes with reserve prices gives us a
dominating set of size at most k. This completes the proof with β = 1.

Tight approximation bounds are not known for bounded-degree dominating set and
related problems, and as a result there is a gap between our lower bound in The-
orem 5.2 and our 1

2 -approximation algorithm. Using the state-of-the-art result of
[Chlebik and Chlebikova 2008] (with B = 5), we get that the MMR problem cannot
be approximated better than a factor of 884

885 . This inapproximability result holds for
generally for estimating the value of an optimal solution to the MMR problem; this
will be useful in the next section.

COROLLARY 5.3. It is NP -hard to distinguish between single-item MMR instances
in which the maximum-possible revenue is at least a given parameter X, and those
instances in which the maximum-possible revenue is at most 884

885X, even when X ≥ m
2 .

6. ONLINE LOWER BOUNDS

6.1. Online MMR Lower Bound

Our hardness result for offline optimization (Theorem 5.2) translates to an analogous
hardness result for online learning. This is not immediately obvious because an on-
line learning algorithm could conceivably achieve high revenue with different reserves
at different times, while never figuring out the best fixed reserves in hindsight. Our
randomized polynomial-time reduction is the following (where α ∈ ( 884885 , 1]):
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MMR Reduction (Offline to Online)

Input: valuation profiles v
1, . . . ,vm and target X;

let A be the online algorithm and f(T ) its α-regret after T rounds;

choose the smallest T such that f(T ) is at most 1
4
· (α− 884

885
);

for rounds t = 1, 2, . . . , T do
ask A for its next choice of reserves r

t and then give it a uniformly random valuation
profile from {v1, . . . ,vm};

end

return YES if at least one of the r
t results in strictly more than 884

885
X total revenue on

{v1, . . . ,vm}, and NO otherwise;

We note that whenever the resulting offline algorithm says “yes” it must be correct
— it finds a reserve price vector witnessing the lower bound on the optimal objective
function value. Thus the algorithm has one-sided error (with false negatives only).

For the purposes of the following theorem, we say that an online learning algorithm
has no α-regret if for every fixed constant ǫ > 0, the number of rounds needed to drive
the α-regret down to ǫ is bounded by a polynomial in the number of bidders n. For
example, any regret bound of the form poly(n)/T δ (for any fixed δ > 0) satisfies this
condition.

THEOREM 6.1. For all constants α > 884
885 , there is no polynomial-time algorithm for

the online MMR problem with no α-regret, unless NP ⊆ RP .

PROOF. We show that if the conjectured online algorithm exists, then the reduc-
tion above distinguishes between single-item MMR instances in which the maximum-
possible revenue is at least a given parameter X, and those instances in which the
maximum-possible revenue is at most 884

885X, where X is at least m
2 (with constant

one-sided error). By Corollary 5.3, this would imply NP ⊆ RP .
For the analysis, our proof begins with algorithm A, which has f(T ) α-regret, and

gradually transforms it to the same algorithm produced by our reduction. Recall that
the α-regret bound means that

α
1

T

T∑

t=1

R(r⋆,vt)− E

[

1

T

T∑

t=1

R(rt,vt)

]

≤ f(T ),

for every sequence v1, . . . ,vT , where the expectation is over the coin flips of A.
Suppose we now change the setup as follows. For simplicity, assume that T is a

multiple of m. Define the m-periodic regret as the regret if only rounds 1, m+1, 2m+1,
etc. contribute to the regret computation. (The best fixed auction in hindsight is still
computed with respect to the valuation profiles at all rounds, not just this subset of
rounds.)

Derive algorithm A′ for the new setup from A as follows: in rounds 1, m + 1, . . . , A′

simulates A and also feeds it the new valuation profile. On other rounds A′ behaves ar-
bitrarily and does not feed anything into algorithm A. We know A has f(T/m) α-regret
with respect to the sequence it is given. But the best fixed auction for this subsequence
is only better than the best fixed auction for the entire sequence. Hence A′ has f(T/m)
m-periodic α regret with respect to the original sequence. That is:

α
m

T

T/m
∑

t=1

R(rmt−m+1,vmt−m+1)− E




m

T

T/m
∑

t=1

R(r⋆,vmt−m+1)



 ≤ f(T/m).
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Next, we define an online algorithm A′′ that uses the same reserves rt for m rounds
in a row before changing, and bound its α-regret. At a round 1, m+1, . . . , A′′ simulates
A′. Whatever auction A′ recommends, A′′ plays this auction for the next m rounds.
During these rounds, A′′ receives m valuation profiles. After these rounds finish, A′′

feeds these m valuation profiles into A′, one at a time in a random order (uniform over
all m! possible orderings).

We now bound the α-regret of A′′. Fix a sequence of valuations v1, . . . ,vT that an
adversary chooses for A′′, with the best fixed reserves r⋆. Notice that A′′ will give these
same valuations to A′, but possibly out of order. However, reordering does not affect the
best fixed reserves. Furthermore, the m-periodic α-regret guarantee of A′ holds with
respect to any input sequence, and in particular any reordering of our input sequence.

Consider a block of valuations, v(k−1)m+1, . . . ,vkm that A′′ must choose the same
reserves for. We can express the expected average difference between the revenue of
A′′ and α times the revenue of r⋆ on the entire block as follows:

α
1

m

km∑

t=(k−1)m+1

R(r⋆,vt)− E




1

m

km∑

t=(k−1)m+1

R(r(k−1)m+1,vt)



 ,

where r(k−1)m+1 is the auction recommended by A′ at the beginning of the block and
the expectation is over any internal coin flips of the algorithm (this quantity is in-
dependent of the ordering of the profiles in the block). We can express the expected
difference between the revenue of A′ and α times the revenue of r⋆ on the very first
valuation of this block as follows:

α

km∑

t=(k−1)m+1

Pr[vt first] ·R(r⋆,vt)− E





km∑

t=(k−1)m+1

Pr[vt first]R(r(k−1)m+1,vt)



 ,

where the probabilities are over the random ordering and the expectation over the coin
flips of the algorithm. Because the probability that any particular vt comes first in this
block is 1

m , these two expressions are equal. This allows us to relate the m-periodic
α-regret of A′ with the α-regret of A′′. Summing the first expression over all blocks
and averaging by the number of blocks yields the α-regret of A′′. Summing the second
expression over all blocks and averaging by the number of blocks yields the m-periodic
α-regret of A′, averaged over all orderings. Since (m-periodic) regret is defined with
respect to worst-case inputs, this means the α-regret of A′′ is f(T/m).

Unraveling the definitions of A′′ and A′, A′′ really just samples one valuation profile
from every block of m and runs A, which is the same as the algorithm produced by our
reduction. The reduction algorithm above, in effect, uses A′′ to approximate the offline
problem, giving it T blocks, where each block is a copy of the m valuation profiles in its
offline input, for a total of Tm rounds given to A′′, which will simulate A for T rounds.
By our assumption on the regret guarantee, T will be polynomial in n. By our choice of
T , from the guarantee for A′′, we know:

α
1

m

1

T

mT∑

t=1

R(r⋆,vt)

︸ ︷︷ ︸

OPT

−E

[

1

mT

mT∑

t=1

R(rt,vt)

]

≤ 1
4 · (α− 884

885 ),
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where rt is the action played by A′′ at time t and the expectation is over the coin flips
of A′′, and hence

E




1

T

T∑

t=1

m∑

j=1

R(rt,vj)



 ≥ αOPT − m
4 · (α− 884

885 ).

When we have a YES instance, OPT is at least X. This implies OPT is also at least
m
2 . The second term on the right-hand side is then at most 1

2 (α − 884
885 )OPT , so the

right-hand side is at least α+884/885
2 OPT .

However, no reserves rt can get more total revenue on all valuation profiles than
OPT. The left-hand side is the expected (over the randomness of A′′) average (over the
outputs of A′′ to A′) total revenue of A′′ on all valuation profiles. The actual average
total revenue lies between 0 and OPT , but we have shown its expectation is at least
α+884/885

2 OPT . By Markov’s inequality, this means there is a constant probability that

the average total revenue is better than 884
885OPT , and hence better than 884

885X. In this

event, there must be at least one rt which results in strictly more than 884
885X total

revenue on the valuation profiles. The constant success probability only depends on α,
which was assumed to be a constant. (And since there is one-sided error, this correct-
ness probability can be amplified to a constant arbitrarily close to 1 by repetitions.)

On the other hand, suppose we have a NO instance. This means that OPT is at most
884
885X, and hence our algorithm cannot find reserves rt which result in more than 884

885X
total revenue. This completes the correctness analysis.

6.2. General Offline to Online Inapproximability Reduction

The reduction of Theorem 6.1 can generalized to a wide class of online problems. Sup-
pose we have an online problem where every round, the algorithm commits to an ac-
tion and then receives a payoff vector with description length n which can be used to
compute the payoff of any action in poly(n) time. Payoffs lie in the range [0, 1]. The
corresponding offline problem is to compute the best fixed action given m (succinct de-
scriptions of) payoff vectors and a probability for each payoff vector occurring. Note
that this is a different formulation than our offline problem, which corresponds to the
uniform distribution over the m payoff vectors, and with the answer scaled by a factor
of m. In this formulation, the answer to the problem also lies in the range [0, 1]. We
show that if this offline problem cannot be approximated, then neither can the online
problem:

THEOREM 6.2. Suppose it is NP-hard to distinguish between offline instances in
which the maximum payoff is at least a given parameter X, and those instances in
which the maximum payoff is at most αX, even when X ≥ β for some constants α, β > 0.
Then unless NP ⊆ RP , for all constants α′ > α there is no polynomial-time algorithm
for the online problem with no α′-regret.

PROOF. The proof of Theorem 6.1 did not rely on any specific facts about the MMR
problem. We can still transform any online algorithm A with α′-regret f(T ) into A′ with
m-periodic α′-regret f(T/m). However, we need to be more detailed with our transfor-
mation from A′ to A′′ to account for the fact that we are no longer using a uniform
distribution. We plan to again produce an A′′ which must output the same action for m
rounds in a row; these m rounds constitute a block. We augment the problem so that
the input for each round t in a block comes with a probability pt, and the probabilities
for a round sum to 1. These probabilities indicate how much each round is weighted;
the (time-averaged) α-regret of a weighted online algorithm over a block of valuations
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v(k−1)m+1, . . . ,vkm is:

α

km∑

t=(k−1)m+1

ptR(r⋆,vt)− E





km∑

t=(k−1)m+1

ptR(r(k−1)m+1,vt)



 ,

where r(k−1)m+1 is the action chosen for the entire block. Our A′′ is as before, but
instead of choosing an block ordering uniformly at random, we choose round t to be
the first in the block with probability pt. Again reordering does not affect the best fixed
reserves. However, under this reordering and the definition of m-periodic regret for A′,
we get that the α′-regret of A′′ is f(T/m).

Choosing the smallest T (the number of blocks or equivalently, random samples)
such that f(T ) is at most 1

2β(α
′ − α) requires T to only be poly(n). This choice of T

guarantees the expected average payoff of an output of A′′ is at least α′ · OPT minus
1
2βm(α′ − α). For YES instances, this shows the expected average total payoff is at

least α′+α
2 X, so with constant probability some action returned by A′′ will have total

payoff more than αX. For NO instances, all actions have total payoff at most αX. This
RP algorithm would solve an NP-hard problem, contradicting our hypothesis. Hence
no such online algorithm can exist.
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